code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class _a ( unittest.TestCase ): def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = get_activation('''swish''' ) self.assertIsInstance(lowercase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = get_activation('''silu''' ) self.assertIsInstance(lowercase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = get_activation('''mish''' ) self.assertIsInstance(lowercase , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = get_activation('''gelu''' ) self.assertIsInstance(lowercase , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
34
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def snake_case_ (_a : Any=None ): if subparsers is not None: UpperCAmelCase = subparsers.add_parser('''test''' ) else: UpperCAmelCase = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=_a , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_a ) return parser def snake_case_ (_a : Tuple ): UpperCAmelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: UpperCAmelCase = script_name else: UpperCAmelCase = F"--config_file={args.config_file} {script_name}" UpperCAmelCase = ['''accelerate-launch'''] + test_args.split() UpperCAmelCase = execute_subprocess_async(_a , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def snake_case_ (): UpperCAmelCase = test_command_parser() UpperCAmelCase = parser.parse_args() test_command(_a ) if __name__ == "__main__": main()
34
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A =logging.getLogger(__name__) def snake_case_ (_a : Dict , _a : Union[str, Any] ): return (preds == labels).mean() @dataclass class _a : __a : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : __a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __a : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) __a : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _a ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase = processors[data_args.task_name]() UpperCAmelCase = processor.get_labels() UpperCAmelCase = len(_a ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_a : EvalPrediction ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_a , p.label_ids )} # Data collator UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_a , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _a , _a ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_a ) return results def snake_case_ (_a : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
34
'''simple docstring''' class _a : def __init__( self : Any ): '''simple docstring''' UpperCAmelCase = {} # Mapping from char to TrieNode UpperCAmelCase = False def A ( self : int , lowercase : list[str] ): '''simple docstring''' for word in words: self.insert(lowercase ) def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: UpperCAmelCase = TrieNode() UpperCAmelCase = curr.nodes[char] UpperCAmelCase = True def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: return False UpperCAmelCase = curr.nodes[char] return curr.is_leaf def A ( self : str , lowercase : str ): '''simple docstring''' def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool: if index == len(lowercase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase = False return len(curr.nodes ) == 0 UpperCAmelCase = word[index] UpperCAmelCase = curr.nodes.get(lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase = _delete(lowercase , lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowercase , 0 ) def snake_case_ (_a : TrieNode , _a : str ): if node.is_leaf: print(_a , end=''' ''' ) for key, value in node.nodes.items(): print_words(_a , word + key ) def snake_case_ (): UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase = TrieNode() root.insert_many(_a ) # print_words(root, "") assert all(root.find(_a ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def snake_case_ (_a : str , _a : bool ): print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' ) def snake_case_ (): assert test_trie() def snake_case_ (): print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
34
1
'''simple docstring''' def snake_case_ (_a : Optional[int]=2_8_1_2_3 ): UpperCAmelCase = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i UpperCAmelCase = set() UpperCAmelCase = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(_a ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
34
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( __a ): __a : Union[str, Any] = """encodec""" def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowercase ) @property def A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A ( self : Optional[int] ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
34
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class _a ( __a ): __a : Optional[int] = """owlvit_text_model""" def __init__( self : Tuple , lowercase : Union[str, Any]=49_408 , lowercase : str=512 , lowercase : int=2_048 , lowercase : Optional[Any]=12 , lowercase : Any=8 , lowercase : Optional[int]=16 , lowercase : Union[str, Any]="quick_gelu" , lowercase : Dict=1E-5 , lowercase : Tuple=0.0 , lowercase : str=0.02 , lowercase : Dict=1.0 , lowercase : str=0 , lowercase : List[str]=49_406 , lowercase : int=49_407 , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = attention_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor @classmethod def A ( cls : int , lowercase : Union[str, os.PathLike] , **lowercase : List[Any] ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": UpperCAmelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) class _a ( __a ): __a : Dict = """owlvit_vision_model""" def __init__( self : Tuple , lowercase : str=768 , lowercase : Dict=3_072 , lowercase : int=12 , lowercase : Tuple=12 , lowercase : Optional[int]=3 , lowercase : Optional[int]=768 , lowercase : Optional[int]=32 , lowercase : Union[str, Any]="quick_gelu" , lowercase : Dict=1E-5 , lowercase : List[Any]=0.0 , lowercase : List[Any]=0.02 , lowercase : str=1.0 , **lowercase : str , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = attention_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor @classmethod def A ( cls : Optional[Any] , lowercase : Union[str, os.PathLike] , **lowercase : int ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": UpperCAmelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) class _a ( __a ): __a : Dict = """owlvit""" __a : Optional[Any] = True def __init__( self : Tuple , lowercase : Tuple=None , lowercase : Optional[Any]=None , lowercase : List[str]=512 , lowercase : Any=2.6592 , lowercase : List[Any]=True , **lowercase : str , ): '''simple docstring''' super().__init__(**lowercase ) if text_config is None: UpperCAmelCase = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: UpperCAmelCase = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) UpperCAmelCase = OwlViTTextConfig(**lowercase ) UpperCAmelCase = OwlViTVisionConfig(**lowercase ) UpperCAmelCase = projection_dim UpperCAmelCase = logit_scale_init_value UpperCAmelCase = return_dict UpperCAmelCase = 1.0 @classmethod def A ( cls : Tuple , lowercase : Union[str, os.PathLike] , **lowercase : List[str] ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) @classmethod def A ( cls : List[str] , lowercase : Dict , lowercase : Dict , **lowercase : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = text_config UpperCAmelCase = vision_config return cls.from_dict(lowercase , **lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.text_config.to_dict() UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output class _a ( __a ): @property def A ( self : Optional[Any] ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 def A ( self : Tuple , lowercase : "ProcessorMixin" , lowercase : int = -1 , lowercase : int = -1 , lowercase : Optional["TensorType"] = None , ): '''simple docstring''' UpperCAmelCase = super().generate_dummy_inputs( processor.tokenizer , batch_size=lowercase , seq_length=lowercase , framework=lowercase ) UpperCAmelCase = super().generate_dummy_inputs( processor.image_processor , batch_size=lowercase , framework=lowercase ) return {**text_input_dict, **image_input_dict} @property def A ( self : List[Any] ): '''simple docstring''' return 14
34
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A =logging.get_logger(__name__) class _a ( __a ): __a : str = ["""pixel_values"""] def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase ) def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase ): UpperCAmelCase = target_sizes.numpy() UpperCAmelCase = [] for idx in range(len(lowercase ) ): UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase ) UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase = logits.argmax(dim=1 ) UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
34
1
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ (_a : Tuple , _a : Tuple , _a : Any ): # Initialise PyTorch model UpperCAmelCase = LxmertConfig.from_json_file(_a ) print(F"Building PyTorch model from configuration: {config}" ) UpperCAmelCase = LxmertForPreTraining(_a ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_a , _a , _a ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _a ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
34
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A =logging.getLogger(__name__) def snake_case_ (_a : Dict , _a : Union[str, Any] ): return (preds == labels).mean() @dataclass class _a : __a : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : __a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __a : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) __a : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _a ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase = processors[data_args.task_name]() UpperCAmelCase = processor.get_labels() UpperCAmelCase = len(_a ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_a : EvalPrediction ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_a , p.label_ids )} # Data collator UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_a , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _a , _a ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_a ) return results def snake_case_ (_a : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
34
1
'''simple docstring''' def snake_case_ (_a : list[list[int]] , _a : int , _a : int , _a : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case_ (_a : list[list[int]] , _a : list[int] , _a : int ): # Base Case if curr_ind == len(_a ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_a ) ): if valid_connection(_a , _a , _a , _a ): # Insert current vertex into path as next transition UpperCAmelCase = next_ver # Validate created path if util_hamilton_cycle(_a , _a , curr_ind + 1 ): return True # Backtrack UpperCAmelCase = -1 return False def snake_case_ (_a : list[list[int]] , _a : int = 0 ): UpperCAmelCase = [-1] * (len(_a ) + 1) # initialize start and end of path with starting index UpperCAmelCase = UpperCAmelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_a , _a , 1 ) else []
34
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __a ): __a : int = ["""image_processor""", """tokenizer"""] __a : Union[str, Any] = """ChineseCLIPImageProcessor""" __a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase , lowercase ) UpperCAmelCase = self.image_processor def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : List[Any] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , ) return self.image_processor_class
34
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A =logging.get_logger(__name__) class _a ( __a ): __a : str = ["""pixel_values"""] def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase ) def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase ): UpperCAmelCase = target_sizes.numpy() UpperCAmelCase = [] for idx in range(len(lowercase ) ): UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase ) UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase = logits.argmax(dim=1 ) UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
34
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A =logging.get_logger(__name__) A ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __a ): __a : List[Any] = """marian""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class _a ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowercase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowercase , lowercase ) UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase ) UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
34
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _a ( unittest.TestCase ): def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = tempfile.mkdtemp() # fmt: off UpperCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] UpperCAmelCase = {'''unk_token''': '''<unk>'''} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase ) ) UpperCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } UpperCAmelCase = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowercase , lowercase ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase ) def A ( self : Optional[int] , **lowercase : str ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase ) def A ( self : Union[str, Any] , **lowercase : str ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Tuple ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = self.get_image_processor() UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase ) UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase ) self.assertIsInstance(processor_fast.tokenizer , lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase ) self.assertIsInstance(processor_fast.image_processor , lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase = self.get_image_processor(do_normalize=lowercase ) UpperCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(lowercase , return_tensors='''np''' ) UpperCAmelCase = processor(images=lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = processor(text=lowercase , return_tensors='''np''' ) UpperCAmelCase = tokenizer(lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A ( self : Any ): '''simple docstring''' UpperCAmelCase = '''google/owlvit-base-patch32''' UpperCAmelCase = OwlViTProcessor.from_pretrained(lowercase ) UpperCAmelCase = ['''cat''', '''nasa badge'''] UpperCAmelCase = processor(text=lowercase ) UpperCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A ( self : Any ): '''simple docstring''' UpperCAmelCase = '''google/owlvit-base-patch32''' UpperCAmelCase = OwlViTProcessor.from_pretrained(lowercase ) UpperCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] UpperCAmelCase = processor(text=lowercase ) UpperCAmelCase = 16 UpperCAmelCase = len(lowercase ) UpperCAmelCase = max([len(lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = '''google/owlvit-base-patch32''' UpperCAmelCase = OwlViTProcessor.from_pretrained(lowercase ) UpperCAmelCase = ['''cat''', '''nasa badge'''] UpperCAmelCase = processor(text=lowercase ) UpperCAmelCase = 16 UpperCAmelCase = inputs['''input_ids'''] UpperCAmelCase = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(images=lowercase , query_images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase = processor.batch_decode(lowercase ) UpperCAmelCase = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase )
34
'''simple docstring''' import os def snake_case_ (): UpperCAmelCase = os.path.join(os.path.dirname(_a ) , '''num.txt''' ) with open(_a ) as file_hand: return str(sum(int(_a ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
34
1
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) A ={ 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } A ={ 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def snake_case_ (_a : List[str] ): UpperCAmelCase = EfficientNetConfig() UpperCAmelCase = CONFIG_MAP[model_name]['''hidden_dim'''] UpperCAmelCase = CONFIG_MAP[model_name]['''width_coef'''] UpperCAmelCase = CONFIG_MAP[model_name]['''depth_coef'''] UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = CONFIG_MAP[model_name]['''dropout_rate'''] UpperCAmelCase = CONFIG_MAP[model_name]['''dw_padding'''] UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = 1_0_0_0 UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (): UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw ) return im def snake_case_ (_a : str ): UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_a , ) return preprocessor def snake_case_ (_a : Optional[Any] ): UpperCAmelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] UpperCAmelCase = sorted(set(_a ) ) UpperCAmelCase = len(_a ) UpperCAmelCase = {b: str(_a ) for b, i in zip(_a , range(_a ) )} UpperCAmelCase = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: UpperCAmelCase = block_name_mapping[b] rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase = '''efficientnet.''' + item[1] UpperCAmelCase = '''classifier.weight''' UpperCAmelCase = '''classifier.bias''' return key_mapping def snake_case_ (_a : Dict , _a : List[str] , _a : Dict ): for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase = torch.from_numpy(_a ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase = torch.from_numpy(_a ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase = torch.from_numpy(np.transpose(_a ) ) else: UpperCAmelCase = torch.from_numpy(_a ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_a ) @torch.no_grad() def snake_case_ (_a : Optional[Any] , _a : List[str] , _a : Optional[int] , _a : Dict ): UpperCAmelCase = model_classes[model_name]( include_top=_a , weights='''imagenet''' , input_tensor=_a , input_shape=_a , pooling=_a , classes=1_0_0_0 , classifier_activation='''softmax''' , ) UpperCAmelCase = original_model.trainable_variables UpperCAmelCase = original_model.non_trainable_variables UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase = param.numpy() UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase = get_efficientnet_config(_a ) UpperCAmelCase = EfficientNetForImageClassification(_a ).eval() UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) UpperCAmelCase = rename_keys(_a ) replace_params(_a , _a , _a ) # Initialize preprocessor and preprocess input image UpperCAmelCase = convert_image_processor(_a ) UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase = hf_model(**_a ) UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase = False UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase = image.img_to_array(_a ) UpperCAmelCase = np.expand_dims(_a , axis=0 ) UpperCAmelCase = original_model.predict(_a ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_a , _a , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_a ): os.mkdir(_a ) # Save converted model and image processor hf_model.save_pretrained(_a ) preprocessor.save_pretrained(_a ) if push_to_hub: # Push model and image processor to hub print(F"Pushing converted {model_name} to the hub..." ) UpperCAmelCase = F"efficientnet-{model_name}" preprocessor.push_to_hub(_a ) hf_model.push_to_hub(_a ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') A =parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
34
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A =logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') A ={ 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A ={ 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A =sorted(arg_to_scheduler.keys()) A ='{' + ', '.join(arg_to_scheduler_choices) + '}' class _a ( pl.LightningModule ): def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase ) UpperCAmelCase = 0 UpperCAmelCase = Path(self.hparams.output_dir ) UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , ) else: UpperCAmelCase = config UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase , lowercase ): assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , lowercase , getattr(self.hparams , lowercase ) ) if tokenizer is None: UpperCAmelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , ) else: UpperCAmelCase = tokenizer UpperCAmelCase = MODEL_MODES[mode] if model is None: UpperCAmelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , ) else: UpperCAmelCase = model def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] UpperCAmelCase = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase = Adafactor( lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase ) else: UpperCAmelCase = AdamW( lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase = optimizer UpperCAmelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def A ( self : List[Any] , lowercase : int , lowercase : List[str] ): '''simple docstring''' return self.validation_step(lowercase , lowercase ) def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' return self.validation_end(lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def A ( self : List[str] , lowercase : Any ): '''simple docstring''' if stage == "test": UpperCAmelCase = len(self.test_dataloader().dataset ) else: UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase ) UpperCAmelCase = len(self.train_dataloader().dataset ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def A ( self : Union[str, Any] ): '''simple docstring''' return self.train_loader def A ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : List[Any] ): '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : Any , lowercase : Union[str, Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def A ( self : List[str] , lowercase : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' ) UpperCAmelCase = self.step_count self.model.save_pretrained(lowercase ) self.tokenizer.save_pretrained(lowercase ) @staticmethod def A ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class _a ( pl.Callback ): def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase ) class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase ) def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log results for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log and save results to file UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase , '''w''' ) as writer: for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def snake_case_ (_a : int , _a : Optional[Any] ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ): pl.seed_everything(args.seed ) # init model UpperCAmelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_a ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_a ) if logging_callback is None: UpperCAmelCase = LoggingCallback() UpperCAmelCase = {} if args.fpaa: UpperCAmelCase = 1_6 if args.gpus > 1: UpperCAmelCase = '''auto''' UpperCAmelCase = '''ddp''' UpperCAmelCase = args.accumulate_grad_batches UpperCAmelCase = None UpperCAmelCase = '''auto''' UpperCAmelCase = pl.Trainer.from_argparse_args( _a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , ) if args.do_train: trainer.fit(_a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
34
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( __a ): def __init__( self : Optional[int] , *lowercase : Optional[Any] , lowercase : Optional[Any]=None , lowercase : Tuple=None , **lowercase : Dict ): '''simple docstring''' super().__init__(*lowercase , **lowercase ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function def A ( self : str , lowercase : List[Any]=None , lowercase : Tuple=None , lowercase : Optional[Any]=None , lowercase : str = "eval" ): '''simple docstring''' UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(lowercase ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( lowercase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase = self.post_process_function(lowercase , lowercase , output.predictions ) UpperCAmelCase = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): UpperCAmelCase = metrics.pop(lowercase ) metrics.update(output.metrics ) else: UpperCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase ) return metrics def A ( self : Optional[Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Optional[Any]=None , lowercase : str = "test" ): '''simple docstring''' UpperCAmelCase = self.get_test_dataloader(lowercase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( lowercase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(lowercase , lowercase , output.predictions , '''predict''' ) UpperCAmelCase = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): UpperCAmelCase = metrics.pop(lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase )
34
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue UpperCAmelCase = cst_fwd.get(_a , np.inf ) UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) UpperCAmelCase = new_cost_f UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ): UpperCAmelCase = -1 UpperCAmelCase = set() UpperCAmelCase = set() UpperCAmelCase = {source: 0} UpperCAmelCase = {destination: 0} UpperCAmelCase = {source: None} UpperCAmelCase = {destination: None} UpperCAmelCase = PriorityQueue() UpperCAmelCase = PriorityQueue() UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): UpperCAmelCase , UpperCAmelCase = queue_forward.get() visited_forward.add(_a ) UpperCAmelCase , UpperCAmelCase = queue_backward.get() visited_backward.add(_a ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: UpperCAmelCase = shortest_distance return shortest_path_distance A ={ 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } A ={ 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
34
1
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class _a : def __init__( self : Union[str, Any] , lowercase : int , lowercase : MutableSequence[float] ): '''simple docstring''' if len(lowercase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) UpperCAmelCase = list(lowercase ) UpperCAmelCase = degree def __add__( self : List[Any] , lowercase : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: UpperCAmelCase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowercase ) else: UpperCAmelCase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowercase ) def __sub__( self : str , lowercase : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Optional[int] ): '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : List[Any] , lowercase : Polynomial ): '''simple docstring''' UpperCAmelCase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowercase ) def A ( self : Optional[int] , lowercase : int | float ): '''simple docstring''' UpperCAmelCase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : str ): '''simple docstring''' UpperCAmelCase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase ) return polynomial def __repr__( self : List[Any] ): '''simple docstring''' return self.__str__() def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = [0] * self.degree for i in range(self.degree ): UpperCAmelCase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowercase ) def A ( self : str , lowercase : int | float = 0 ): '''simple docstring''' UpperCAmelCase = [0] * (self.degree + 2) UpperCAmelCase = constant for i in range(self.degree + 1 ): UpperCAmelCase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowercase ) def __eq__( self : List[Any] , lowercase : object ): '''simple docstring''' if not isinstance(lowercase , lowercase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , lowercase : object ): '''simple docstring''' return not self.__eq__(lowercase )
34
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) def snake_case_ (_a : List[str] ): UpperCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCAmelCase = 1_2_8 elif "12-12" in model_name: UpperCAmelCase = 1_2 UpperCAmelCase = 1_2 elif "14-14" in model_name: UpperCAmelCase = 1_4 UpperCAmelCase = 1_4 elif "16-16" in model_name: UpperCAmelCase = 1_6 UpperCAmelCase = 1_6 else: raise ValueError('''Model not supported''' ) UpperCAmelCase = '''huggingface/label-files''' if "speech-commands" in model_name: UpperCAmelCase = 3_5 UpperCAmelCase = '''speech-commands-v2-id2label.json''' else: UpperCAmelCase = 5_2_7 UpperCAmelCase = '''audioset-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (_a : Tuple ): if "module.v" in name: UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def snake_case_ (_a : Dict , _a : List[Any] ): for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(_a ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[3] ) UpperCAmelCase = config.hidden_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def snake_case_ (_a : Tuple ): UpperCAmelCase = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(_a , _a ) @torch.no_grad() def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ): UpperCAmelCase = get_audio_spectrogram_transformer_config(_a ) UpperCAmelCase = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict UpperCAmelCase = model_name_to_url[model_name] UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' ) # remove some keys remove_keys(_a ) # rename some keys UpperCAmelCase = convert_state_dict(_a , _a ) # load 🤗 model UpperCAmelCase = ASTForAudioClassification(_a ) model.eval() model.load_state_dict(_a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8 UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a ) if "speech-commands" in model_name: UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) UpperCAmelCase = dataset[0]['''audio''']['''array'''] else: UpperCAmelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a ) UpperCAmelCase = waveform.squeeze().numpy() UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**_a ) UpperCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(F"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_a ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F"MIT/{model_name}" ) feature_extractor.push_to_hub(F"MIT/{model_name}" ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
1
'''simple docstring''' import math def snake_case_ (_a : float , _a : float ): return math.pow(_a , 2 ) - a def snake_case_ (_a : float ): return 2 * x def snake_case_ (_a : float ): UpperCAmelCase = 2.0 while start <= a: UpperCAmelCase = math.pow(_a , 2 ) return start def snake_case_ (_a : float , _a : int = 9_9_9_9 , _a : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError('''math domain error''' ) UpperCAmelCase = get_initial_point(_a ) for _ in range(_a ): UpperCAmelCase = value UpperCAmelCase = value - fx(_a , _a ) / fx_derivative(_a ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
34
'''simple docstring''' from __future__ import annotations def snake_case_ (_a : Dict , _a : str , _a : Optional[Any] , _a : List[str] ): # noqa: E741 while r - l > 1: UpperCAmelCase = (l + r) // 2 if v[m] >= key: UpperCAmelCase = m else: UpperCAmelCase = m # noqa: E741 return r def snake_case_ (_a : list[int] ): if len(_a ) == 0: return 0 UpperCAmelCase = [0] * len(_a ) UpperCAmelCase = 1 UpperCAmelCase = v[0] for i in range(1 , len(_a ) ): if v[i] < tail[0]: UpperCAmelCase = v[i] elif v[i] > tail[length - 1]: UpperCAmelCase = v[i] length += 1 else: UpperCAmelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
34
1
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig A =logging.get_logger(__name__) # General docstring A ='PoolFormerConfig' # Base docstring A ='sail/poolformer_s12' A =[1, 5_12, 7, 7] # Image classification docstring A ='sail/poolformer_s12' A ='tabby, tabby cat' A =[ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def snake_case_ (_a : List[str] , _a : float = 0.0 , _a : bool = False ): if drop_prob == 0.0 or not training: return input UpperCAmelCase = 1 - drop_prob UpperCAmelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets UpperCAmelCase = keep_prob + torch.rand(_a , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize UpperCAmelCase = input.div(_a ) * random_tensor return output class _a ( nn.Module ): def __init__( self : str , lowercase : Optional[float] = None ): '''simple docstring''' super().__init__() UpperCAmelCase = drop_prob def A ( self : Union[str, Any] , lowercase : torch.Tensor ): '''simple docstring''' return drop_path(lowercase , self.drop_prob , self.training ) def A ( self : Optional[Any] ): '''simple docstring''' return "p={}".format(self.drop_prob ) class _a ( nn.Module ): def __init__( self : Optional[int] , lowercase : Optional[int] , lowercase : int , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : int , lowercase : Tuple=None ): '''simple docstring''' super().__init__() UpperCAmelCase = patch_size if isinstance(lowercase , collections.abc.Iterable ) else (patch_size, patch_size) UpperCAmelCase = stride if isinstance(lowercase , collections.abc.Iterable ) else (stride, stride) UpperCAmelCase = padding if isinstance(lowercase , collections.abc.Iterable ) else (padding, padding) UpperCAmelCase = nn.Convad(lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=lowercase ) UpperCAmelCase = norm_layer(lowercase ) if norm_layer else nn.Identity() def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.projection(lowercase ) UpperCAmelCase = self.norm(lowercase ) return embeddings class _a ( nn.GroupNorm ): def __init__( self : Optional[int] , lowercase : Optional[Any] , **lowercase : int ): '''simple docstring''' super().__init__(1 , lowercase , **lowercase ) class _a ( nn.Module ): def __init__( self : Dict , lowercase : Dict ): '''simple docstring''' super().__init__() UpperCAmelCase = nn.AvgPoolad(lowercase , stride=1 , padding=pool_size // 2 , count_include_pad=lowercase ) def A ( self : str , lowercase : Dict ): '''simple docstring''' return self.pool(lowercase ) - hidden_states class _a ( nn.Module ): def __init__( self : Any , lowercase : List[str] , lowercase : str , lowercase : Optional[int] , lowercase : Any ): '''simple docstring''' super().__init__() UpperCAmelCase = nn.Convad(lowercase , lowercase , 1 ) UpperCAmelCase = nn.Convad(lowercase , lowercase , 1 ) UpperCAmelCase = PoolFormerDropPath(lowercase ) if isinstance(config.hidden_act , lowercase ): UpperCAmelCase = ACTaFN[config.hidden_act] else: UpperCAmelCase = config.hidden_act def A ( self : List[str] , lowercase : int ): '''simple docstring''' UpperCAmelCase = self.conva(lowercase ) UpperCAmelCase = self.act_fn(lowercase ) UpperCAmelCase = self.drop(lowercase ) UpperCAmelCase = self.conva(lowercase ) UpperCAmelCase = self.drop(lowercase ) return hidden_states class _a ( nn.Module ): def __init__( self : Tuple , lowercase : Optional[int] , lowercase : List[Any] , lowercase : Dict , lowercase : List[Any] , lowercase : Any , lowercase : List[Any] ): '''simple docstring''' super().__init__() UpperCAmelCase = PoolFormerPooling(lowercase ) UpperCAmelCase = PoolFormerOutput(lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = PoolFormerGroupNorm(lowercase ) UpperCAmelCase = PoolFormerGroupNorm(lowercase ) # Useful for training neural nets UpperCAmelCase = PoolFormerDropPath(lowercase ) if drop_path > 0.0 else nn.Identity() UpperCAmelCase = config.use_layer_scale if config.use_layer_scale: UpperCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((lowercase) ) , requires_grad=lowercase ) UpperCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((lowercase) ) , requires_grad=lowercase ) def A ( self : Tuple , lowercase : str ): '''simple docstring''' if self.use_layer_scale: UpperCAmelCase = self.pooling(self.before_norm(lowercase ) ) UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection UpperCAmelCase = hidden_states + self.drop_path(lowercase ) UpperCAmelCase = () UpperCAmelCase = self.output(self.after_norm(lowercase ) ) UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection UpperCAmelCase = hidden_states + self.drop_path(lowercase ) UpperCAmelCase = (output,) + outputs return outputs else: UpperCAmelCase = self.drop_path(self.pooling(self.before_norm(lowercase ) ) ) # First residual connection UpperCAmelCase = pooling_output + hidden_states UpperCAmelCase = () # Second residual connection inside the PoolFormerOutput block UpperCAmelCase = self.drop_path(self.output(self.after_norm(lowercase ) ) ) UpperCAmelCase = hidden_states + layer_output UpperCAmelCase = (output,) + outputs return outputs class _a ( nn.Module ): def __init__( self : Optional[int] , lowercase : Tuple ): '''simple docstring''' super().__init__() UpperCAmelCase = config # stochastic depth decay rule UpperCAmelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings UpperCAmelCase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) UpperCAmelCase = nn.ModuleList(lowercase ) # Transformer blocks UpperCAmelCase = [] UpperCAmelCase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers UpperCAmelCase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( lowercase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(lowercase ) ) UpperCAmelCase = nn.ModuleList(lowercase ) def A ( self : Optional[Any] , lowercase : Optional[int] , lowercase : Union[str, Any]=False , lowercase : List[Any]=True ): '''simple docstring''' UpperCAmelCase = () if output_hidden_states else None UpperCAmelCase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): UpperCAmelCase , UpperCAmelCase = layers # Get patch embeddings from hidden_states UpperCAmelCase = embedding_layer(lowercase ) # Send the embeddings through the blocks for _, blk in enumerate(lowercase ): UpperCAmelCase = blk(lowercase ) UpperCAmelCase = layer_outputs[0] if output_hidden_states: UpperCAmelCase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) class _a ( __a ): __a : Optional[int] = PoolFormerConfig __a : Dict = """poolformer""" __a : Union[str, Any] = """pixel_values""" __a : Dict = True def A ( self : Tuple , lowercase : Any ): '''simple docstring''' if isinstance(lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowercase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def A ( self : str , lowercase : str , lowercase : Dict=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): UpperCAmelCase = value A =r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' A =r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , __a , ) class _a ( __a ): def __init__( self : str , lowercase : Optional[Any] ): '''simple docstring''' super().__init__(lowercase ) UpperCAmelCase = config UpperCAmelCase = PoolFormerEncoder(lowercase ) # Initialize weights and apply final processing self.post_init() def A ( self : int ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Tuple , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) UpperCAmelCase = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , ) UpperCAmelCase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=encoder_outputs.hidden_states , ) class _a ( nn.Module ): def __init__( self : Optional[int] , lowercase : str ): '''simple docstring''' super().__init__() UpperCAmelCase = nn.Linear(config.hidden_size , config.hidden_size ) def A ( self : str , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.dense(lowercase ) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """ , __a , ) class _a ( __a ): def __init__( self : str , lowercase : List[Any] ): '''simple docstring''' super().__init__(lowercase ) UpperCAmelCase = config.num_labels UpperCAmelCase = PoolFormerModel(lowercase ) # Final norm UpperCAmelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head UpperCAmelCase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : List[Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase = self.poolformer( lowercase , output_hidden_states=lowercase , return_dict=lowercase , ) UpperCAmelCase = outputs[0] UpperCAmelCase = self.classifier(self.norm(lowercase ).mean([-2, -1] ) ) UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase = '''single_label_classification''' else: UpperCAmelCase = '''multi_label_classification''' if self.config.problem_type == "regression": UpperCAmelCase = MSELoss() if self.num_labels == 1: UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase = CrossEntropyLoss() UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase = BCEWithLogitsLoss() UpperCAmelCase = loss_fct(lowercase , lowercase ) if not return_dict: UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
34
'''simple docstring''' def snake_case_ (_a : str , _a : str ): UpperCAmelCase = len(_a ) + 1 UpperCAmelCase = len(_a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase = [[0 for i in range(_a )] for j in range(_a )] # since string of zero length match pattern of zero length UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _a ): UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _a ): UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _a ): for j in range(1 , _a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase = dp[i - 1][j] else: UpperCAmelCase = 0 else: UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") A ='aab' A ='c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
34
1
'''simple docstring''' from __future__ import annotations def snake_case_ (_a : list[float] ): if len(_a ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) UpperCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
34
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A ='pt' elif is_tf_available(): A ='tf' else: A ='jax' class _a ( __a , unittest.TestCase ): __a : Optional[Any] = PerceiverTokenizer __a : str = False def A ( self : Union[str, Any] ): '''simple docstring''' super().setUp() UpperCAmelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : Optional[int] ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def A ( self : Union[str, Any] , **lowercase : int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ): '''simple docstring''' UpperCAmelCase = [] for i in range(len(lowercase ) ): try: UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) ) UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: UpperCAmelCase = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase = [t[0] for t in toks] # Ensure consistency UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: UpperCAmelCase = ''' ''' + output_txt UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = '''Unicode €.''' UpperCAmelCase = tokenizer(lowercase ) UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' ) UpperCAmelCase = tokenizer('''e è é ê ë''' ) UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": UpperCAmelCase = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowercase ) self.assertIn('''attention_mask''' , lowercase ) self.assertNotIn('''decoder_input_ids''' , lowercase ) self.assertNotIn('''decoder_attention_mask''' , lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = [ '''Summary of the text.''', '''Another summary.''', ] UpperCAmelCase = tokenizer( text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) UpperCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) UpperCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )] UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def A ( self : Union[str, Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : str ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
34
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class _a ( __a ): __a : Optional[int] = """falcon""" __a : Tuple = ["""past_key_values"""] def __init__( self : Dict , lowercase : str=65_024 , lowercase : Dict=4_544 , lowercase : Optional[int]=32 , lowercase : Any=71 , lowercase : List[Any]=1E-5 , lowercase : Union[str, Any]=0.02 , lowercase : int=True , lowercase : Union[str, Any]=0.0 , lowercase : str=0.0 , lowercase : List[Any]=None , lowercase : List[str]=False , lowercase : List[Any]=False , lowercase : List[str]=True , lowercase : Dict=True , lowercase : Tuple=False , lowercase : int=11 , lowercase : Any=11 , **lowercase : str , ): '''simple docstring''' UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase = kwargs.pop('''n_embed''' , lowercase ) UpperCAmelCase = hidden_size if n_embed is None else n_embed UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = use_cache UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase = alibi UpperCAmelCase = new_decoder_architecture UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase = parallel_attn UpperCAmelCase = bias super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) @property def A ( self : Any ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def A ( self : Union[str, Any] ): '''simple docstring''' return not self.alibi
34
'''simple docstring''' import os from distutils.util import strtobool def snake_case_ (_a : Union[str, Any] , _a : List[Any] ): for e in env_keys: UpperCAmelCase = int(os.environ.get(_a , -1 ) ) if val >= 0: return val return default def snake_case_ (_a : Dict , _a : Any=False ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return strtobool(_a ) == 1 # As its name indicates `strtobool` actually returns an int... def snake_case_ (_a : str , _a : Optional[Any]="no" ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return value
34
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : def __init__( self : Dict , lowercase : Optional[Any] , lowercase : Tuple=13 , lowercase : Optional[Any]=7 , lowercase : Any=True , lowercase : Union[str, Any]=True , lowercase : Optional[Any]=True , lowercase : str=True , lowercase : Optional[Any]=99 , lowercase : Dict=32 , lowercase : Tuple=2 , lowercase : Optional[int]=4 , lowercase : Optional[Any]=37 , lowercase : Optional[int]="gelu" , lowercase : Tuple=0.1 , lowercase : Union[str, Any]=0.1 , lowercase : List[Any]=512 , lowercase : Any=16 , lowercase : Optional[Any]=2 , lowercase : List[str]=0.02 , lowercase : Dict=3 , lowercase : List[Any]=4 , lowercase : str=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 99 UpperCAmelCase = 32 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 37 UpperCAmelCase = '''gelu''' UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 512 UpperCAmelCase = 16 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = None def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : List[str] , lowercase : str , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModel(config=lowercase ) UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : str , lowercase : Any , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase = True UpperCAmelCase = TFRoFormerForCausalLM(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A ( self : List[Any] , lowercase : Optional[int] , lowercase : List[str] , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Any , lowercase : str , lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerForMaskedLM(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , lowercase : Dict , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Any , lowercase : Tuple , lowercase : int ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = TFRoFormerForSequenceClassification(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = TFRoFormerForMultipleChoice(config=lowercase ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str , lowercase : List[str] , lowercase : Dict , lowercase : Dict , lowercase : Optional[int] , lowercase : Any , lowercase : Optional[int] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = TFRoFormerForTokenClassification(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Dict , lowercase : int , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = TFRoFormerForQuestionAnswering(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _a ( __a , __a , unittest.TestCase ): __a : Any = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __a : Tuple = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __a : List[Any] = False __a : Dict = False def A ( self : Union[str, Any] , lowercase : Any , lowercase : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(lowercase ) @require_tf class _a ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = model(lowercase )[0] # TODO Replace vocab size UpperCAmelCase = 50_000 UpperCAmelCase = [1, 6, vocab_size] self.assertEqual(output.shape , lowercase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCAmelCase = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 ) @require_tf class _a ( unittest.TestCase ): __a : List[Any] = 1e-4 def A ( self : str ): '''simple docstring''' UpperCAmelCase = tf.constant([[4, 10]] ) UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCAmelCase = emba(input_ids.shape ) UpperCAmelCase = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCAmelCase = emba.weight[:3, :5] tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance ) @require_tf class _a ( unittest.TestCase ): __a : Dict = 1e-4 def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCAmelCase = embed_positions([2, 16, 768] )[None, None, :, :] UpperCAmelCase , UpperCAmelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowercase , lowercase , lowercase ) UpperCAmelCase = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) UpperCAmelCase = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance )
34
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A =logging.getLogger(__name__) A ='Hello world! cécé herlolip' A =namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def snake_case_ (_a : List[Any] , _a : Any ): UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) UpperCAmelCase = torch.load(_a , lambda _a , _a : storage ) UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a ) original.eval() UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase = encoder_input_ids UpperCAmelCase = decoder_input_ids UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0] UpperCAmelCase = original.generator(_a ) UpperCAmelCase = new_model( _a , _a , _a , _a , _a )[0] UpperCAmelCase = new_model.generator(_a ) UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) A =parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
34
1
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _a ( __a ): def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = 8 # DPR tok UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(lowercase , exist_ok=lowercase ) UpperCAmelCase = os.path.join(lowercase , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase = {'''unk_token''': '''<unk>'''} UpperCAmelCase = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(lowercase , exist_ok=lowercase ) UpperCAmelCase = os.path.join(lowercase , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(lowercase , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase ) ) def A ( self : List[Any] ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A ( self : Dict ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def A ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) UpperCAmelCase = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) UpperCAmelCase = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowercase ) rag_tokenizer.save_pretrained(lowercase ) UpperCAmelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowercase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowercase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) UpperCAmelCase = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] UpperCAmelCase = tokenizer(lowercase ) self.assertIsNotNone(lowercase ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) UpperCAmelCase = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] UpperCAmelCase = tokenizer(lowercase ) self.assertIsNotNone(lowercase )
34
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : Any = ["""flax""", """transformers"""] def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] )
34
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A =['bert-base-uncased', 'bert-base-cased'] A ='hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class _a ( tf.keras.Model ): def __init__( self : Optional[int] , lowercase : List[Any] ): '''simple docstring''' super().__init__() UpperCAmelCase = tokenizer UpperCAmelCase = AutoConfig.from_pretrained(lowercase ) UpperCAmelCase = TFAutoModel.from_config(lowercase ) def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = self.tokenizer(lowercase ) UpperCAmelCase = self.bert(**lowercase ) return out["pooler_output"] @require_tf @require_tensorflow_text class _a ( unittest.TestCase ): def A ( self : Tuple ): '''simple docstring''' super().setUp() UpperCAmelCase = [ BertTokenizer.from_pretrained(lowercase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCAmelCase = [TFBertTokenizer.from_pretrained(lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(lowercase , use_fast_bert_tokenizer=lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def A ( self : Optional[int] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase = tokenizer(lowercase , return_tensors='''tf''' , padding='''longest''' ) UpperCAmelCase = tf_tokenizer(lowercase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf_tokenizer(self.paired_sentences ) UpperCAmelCase = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def A ( self : List[str] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf.function(lowercase ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase = tf.constant(lowercase ) UpperCAmelCase = compiled_tokenizer(lowercase ) UpperCAmelCase = tf_tokenizer(lowercase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def A ( self : List[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = ModelToSave(tokenizer=lowercase ) UpperCAmelCase = tf.convert_to_tensor(self.test_sentences ) UpperCAmelCase = model(lowercase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase = Path(lowercase ) / '''saved.model''' model.save(lowercase ) UpperCAmelCase = tf.keras.models.load_model(lowercase ) UpperCAmelCase = loaded_model(lowercase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
34
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) A ={ 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } A ={ 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def snake_case_ (_a : List[str] ): UpperCAmelCase = EfficientNetConfig() UpperCAmelCase = CONFIG_MAP[model_name]['''hidden_dim'''] UpperCAmelCase = CONFIG_MAP[model_name]['''width_coef'''] UpperCAmelCase = CONFIG_MAP[model_name]['''depth_coef'''] UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = CONFIG_MAP[model_name]['''dropout_rate'''] UpperCAmelCase = CONFIG_MAP[model_name]['''dw_padding'''] UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = 1_0_0_0 UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (): UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw ) return im def snake_case_ (_a : str ): UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_a , ) return preprocessor def snake_case_ (_a : Optional[Any] ): UpperCAmelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] UpperCAmelCase = sorted(set(_a ) ) UpperCAmelCase = len(_a ) UpperCAmelCase = {b: str(_a ) for b, i in zip(_a , range(_a ) )} UpperCAmelCase = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: UpperCAmelCase = block_name_mapping[b] rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase = '''efficientnet.''' + item[1] UpperCAmelCase = '''classifier.weight''' UpperCAmelCase = '''classifier.bias''' return key_mapping def snake_case_ (_a : Dict , _a : List[str] , _a : Dict ): for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase = torch.from_numpy(_a ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase = torch.from_numpy(_a ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase = torch.from_numpy(np.transpose(_a ) ) else: UpperCAmelCase = torch.from_numpy(_a ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_a ) @torch.no_grad() def snake_case_ (_a : Optional[Any] , _a : List[str] , _a : Optional[int] , _a : Dict ): UpperCAmelCase = model_classes[model_name]( include_top=_a , weights='''imagenet''' , input_tensor=_a , input_shape=_a , pooling=_a , classes=1_0_0_0 , classifier_activation='''softmax''' , ) UpperCAmelCase = original_model.trainable_variables UpperCAmelCase = original_model.non_trainable_variables UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase = param.numpy() UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase = get_efficientnet_config(_a ) UpperCAmelCase = EfficientNetForImageClassification(_a ).eval() UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) UpperCAmelCase = rename_keys(_a ) replace_params(_a , _a , _a ) # Initialize preprocessor and preprocess input image UpperCAmelCase = convert_image_processor(_a ) UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase = hf_model(**_a ) UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase = False UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase = image.img_to_array(_a ) UpperCAmelCase = np.expand_dims(_a , axis=0 ) UpperCAmelCase = original_model.predict(_a ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_a , _a , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_a ): os.mkdir(_a ) # Save converted model and image processor hf_model.save_pretrained(_a ) preprocessor.save_pretrained(_a ) if push_to_hub: # Push model and image processor to hub print(F"Pushing converted {model_name} to the hub..." ) UpperCAmelCase = F"efficientnet-{model_name}" preprocessor.push_to_hub(_a ) hf_model.push_to_hub(_a ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') A =parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
34
1
'''simple docstring''' from PIL import Image def snake_case_ (_a : Image , _a : int ): UpperCAmelCase = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(_a : int ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(_a ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 A =change_contrast(img, 1_70) cont_img.save('image_data/lena_high_contrast.png', format='png')
34
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A =input('Enter image url: ').strip() print(f"""Downloading image from {url} ...""") A =BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image A =soup.find('meta', {'property': 'og:image'})['content'] A =requests.get(image_url).content A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
34
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _a ( __a ): __a : Optional[Any] = (DEISMultistepScheduler,) __a : Any = (("""num_inference_steps""", 25),) def A ( self : Any , **lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**lowercase ) return config def A ( self : Union[str, Any] , lowercase : Optional[Any]=0 , **lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase ) new_scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase , UpperCAmelCase = sample, sample for t in range(lowercase , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : int ): '''simple docstring''' pass def A ( self : str , lowercase : Any=0 , **lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : Any , lowercase : List[str]=None , **lowercase : List[Any] ): '''simple docstring''' if scheduler is None: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase ).prev_sample return sample def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase , '''set_timesteps''' ): scheduler.set_timesteps(lowercase ) elif num_inference_steps is not None and not hasattr(lowercase , '''set_timesteps''' ): UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] UpperCAmelCase = scheduler.timesteps[5] UpperCAmelCase = scheduler.timesteps[6] UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCAmelCase = self.full_loop(scheduler=lowercase ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = self.full_loop(scheduler=lowercase ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 def A ( self : Dict ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowercase ) def A ( self : int ): '''simple docstring''' self.check_over_configs(thresholding=lowercase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase , prediction_type=lowercase , sample_max_value=lowercase , algorithm_type='''deis''' , solver_order=lowercase , solver_type=lowercase , ) def A ( self : Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def A ( self : Tuple ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , ) UpperCAmelCase = self.full_loop( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , ) assert not torch.isnan(lowercase ).any(), "Samples have nan numbers" def A ( self : int ): '''simple docstring''' self.check_over_configs(lower_order_final=lowercase ) self.check_over_configs(lower_order_final=lowercase ) def A ( self : List[Any] ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowercase , time_step=0 ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.full_loop() UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(thresholding=lowercase , dynamic_thresholding_ratio=0 ) UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase ).prev_sample assert sample.dtype == torch.floataa
34
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _a ( __a ): __a : str = ["""vqvae"""] def __init__( self : str , lowercase : AutoencoderKL , lowercase : UNetaDConditionModel , lowercase : Mel , lowercase : Union[DDIMScheduler, DDPMScheduler] , ): '''simple docstring''' super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' return 50 if isinstance(self.scheduler , lowercase ) else 1_000 @torch.no_grad() def __call__( self : Optional[Any] , lowercase : int = 1 , lowercase : str = None , lowercase : np.ndarray = None , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = None , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : float = 0 , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : torch.Tensor = None , lowercase : torch.Tensor = None , lowercase : Tuple=True , ): '''simple docstring''' UpperCAmelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCAmelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase , device=self.device , ) UpperCAmelCase = noise UpperCAmelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase , lowercase ) UpperCAmelCase = self.mel.audio_slice_to_image(lowercase ) UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) UpperCAmelCase = (input_image / 255) * 2 - 1 UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample( generator=lowercase )[0] UpperCAmelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] ) UpperCAmelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCAmelCase = int(mask_start_secs * pixels_per_second ) UpperCAmelCase = int(mask_end_secs * pixels_per_second ) UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase ): UpperCAmelCase = self.unet(lowercase , lowercase , lowercase )['''sample'''] else: UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] if isinstance(self.scheduler , lowercase ): UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )['''prev_sample'''] else: UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )['''prev_sample'''] if mask is not None: if mask_start > 0: UpperCAmelCase = mask[:, step, :, :mask_start] if mask_end > 0: UpperCAmelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images UpperCAmelCase = self.vqvae.decode(lowercase )['''sample'''] UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCAmelCase = (images * 255).round().astype('''uint8''' ) UpperCAmelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) ) UpperCAmelCase = [self.mel.image_to_audio(lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) ) @torch.no_grad() def A ( self : Dict , lowercase : List[Image.Image] , lowercase : int = 50 ): '''simple docstring''' assert isinstance(self.scheduler , lowercase ) self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) UpperCAmelCase = (sample / 255) * 2 - 1 UpperCAmelCase = torch.Tensor(lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCAmelCase = self.scheduler.alphas_cumprod[t] UpperCAmelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def A ( lowercase : torch.Tensor , lowercase : torch.Tensor , lowercase : float ): '''simple docstring''' UpperCAmelCase = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
34
1
'''simple docstring''' def snake_case_ (_a : float , _a : float , _a : float , _a : float , _a : float , ): UpperCAmelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation A =0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
34
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal A =logging.get_logger(__name__) A =TypeVar('DatasetType', Dataset, IterableDataset) def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) else: return _interleave_iterable_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a ) else: return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
34
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A ={'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
1
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class _a ( __a ): def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowercase , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(lowercase , '''num_encoder_blocks''' ) ) class _a : def __init__( self : Optional[Any] , lowercase : Any , lowercase : Optional[Any]=13 , lowercase : Any=64 , lowercase : Any=3 , lowercase : int=4 , lowercase : Any=[2, 2, 2, 2] , lowercase : Optional[int]=[8, 4, 2, 1] , lowercase : int=[16, 32, 64, 128] , lowercase : Dict=[1, 4, 8, 16] , lowercase : List[Any]=[1, 2, 4, 8] , lowercase : Optional[Any]=True , lowercase : Tuple=True , lowercase : Tuple="gelu" , lowercase : Any=0.1 , lowercase : Optional[int]=0.1 , lowercase : Optional[Any]=0.02 , lowercase : Optional[int]=3 , lowercase : Optional[int]=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = num_encoder_blocks UpperCAmelCase = sr_ratios UpperCAmelCase = depths UpperCAmelCase = hidden_sizes UpperCAmelCase = downsampling_rates UpperCAmelCase = num_attention_heads UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = scope def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def A ( self : List[str] ): '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A ( self : Any , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : Any ): '''simple docstring''' UpperCAmelCase = SegformerModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase ) UpperCAmelCase = UpperCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def A ( self : Optional[int] , lowercase : Dict , lowercase : Dict , lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = SegformerForSemanticSegmentation(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) UpperCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def A ( self : Dict , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = 1 UpperCAmelCase = SegformerForSemanticSegmentation(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowercase ) UpperCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertGreater(result.loss , 0.0 ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( __a , __a , unittest.TestCase ): __a : Optional[Any] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __a : Dict = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __a : Union[str, Any] = True __a : str = False __a : Dict = False __a : int = False def A ( self : int ): '''simple docstring''' UpperCAmelCase = SegformerModelTester(self ) UpperCAmelCase = SegformerConfigTester(self , config_class=lowercase ) def A ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowercase ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def A ( self : str ): '''simple docstring''' pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) UpperCAmelCase = outputs.attentions UpperCAmelCase = sum(self.model_tester.depths ) self.assertEqual(len(lowercase ) , lowercase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(lowercase ) , lowercase ) # verify the first attentions (first block, first layer) UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) UpperCAmelCase = (self.model_tester.image_size // 32) ** 2 UpperCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) UpperCAmelCase = len(lowercase ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + 1 , len(lowercase ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(lowercase ) , lowercase ) # verify the first attentions (first block, first layer) UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def A ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(lowercase : Dict , lowercase : List[str] , lowercase : Optional[Any] ): UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(lowercase ) , lowercase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowercase , lowercase , lowercase ) def A ( self : Any ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(lowercase ): continue UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.train() UpperCAmelCase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) UpperCAmelCase = model(**lowercase ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : Optional[Any] ): '''simple docstring''' pass @slow def A ( self : List[str] ): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = SegformerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def snake_case_ (): UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class _a ( unittest.TestCase ): @slow def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase ) UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( lowercase ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase , return_tensors='''pt''' ) UpperCAmelCase = encoded_inputs.pixel_values.to(lowercase ) with torch.no_grad(): UpperCAmelCase = model(lowercase ) UpperCAmelCase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowercase ) UpperCAmelCase = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase ) UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(lowercase ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase , return_tensors='''pt''' ) UpperCAmelCase = encoded_inputs.pixel_values.to(lowercase ) with torch.no_grad(): UpperCAmelCase = model(lowercase ) UpperCAmelCase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowercase ) UpperCAmelCase = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1E-1 ) ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase ) UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( lowercase ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase , return_tensors='''pt''' ) UpperCAmelCase = encoded_inputs.pixel_values.to(lowercase ) with torch.no_grad(): UpperCAmelCase = model(lowercase ) UpperCAmelCase = outputs.logits.detach().cpu() UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowercase , target_sizes=[(500, 300)] ) UpperCAmelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowercase ) UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowercase ) UpperCAmelCase = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , lowercase )
34
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def snake_case_ (_a : dict ): return (data["data"], data["target"]) def snake_case_ (_a : np.ndarray , _a : np.ndarray ): UpperCAmelCase = XGBClassifier() classifier.fit(_a , _a ) return classifier def snake_case_ (): UpperCAmelCase = load_iris() UpperCAmelCase , UpperCAmelCase = data_handling(_a ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_test_split( _a , _a , test_size=0.25 ) UpperCAmelCase = iris['''target_names'''] # Create an XGBoost Classifier from the training data UpperCAmelCase = xgboost(_a , _a ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _a , _a , _a , display_labels=_a , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
34
'''simple docstring''' class _a : def __init__( self : Any ): '''simple docstring''' UpperCAmelCase = {} # Mapping from char to TrieNode UpperCAmelCase = False def A ( self : int , lowercase : list[str] ): '''simple docstring''' for word in words: self.insert(lowercase ) def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: UpperCAmelCase = TrieNode() UpperCAmelCase = curr.nodes[char] UpperCAmelCase = True def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: return False UpperCAmelCase = curr.nodes[char] return curr.is_leaf def A ( self : str , lowercase : str ): '''simple docstring''' def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool: if index == len(lowercase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase = False return len(curr.nodes ) == 0 UpperCAmelCase = word[index] UpperCAmelCase = curr.nodes.get(lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase = _delete(lowercase , lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowercase , 0 ) def snake_case_ (_a : TrieNode , _a : str ): if node.is_leaf: print(_a , end=''' ''' ) for key, value in node.nodes.items(): print_words(_a , word + key ) def snake_case_ (): UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase = TrieNode() root.insert_many(_a ) # print_words(root, "") assert all(root.find(_a ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def snake_case_ (_a : str , _a : bool ): print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' ) def snake_case_ (): assert test_trie() def snake_case_ (): print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
34
1
'''simple docstring''' def snake_case_ (_a : Any ): UpperCAmelCase = 1 UpperCAmelCase = 2 while i * i <= n: UpperCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def snake_case_ (): UpperCAmelCase = 1 UpperCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(_a ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
34
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( __a ): __a : Union[str, Any] = """encodec""" def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowercase ) @property def A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A ( self : Optional[int] ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
34
1
'''simple docstring''' # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ (_a : int , _a : str , _a : List[str] , _a : List[str] ): UpperCAmelCase = multiprocessing.Manager() UpperCAmelCase = manager.list() UpperCAmelCase = multiprocessing.Process(target=_a , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ (_a : List[Any] , _a : int , _a : List[Any] ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase = shutil.rmtree UpperCAmelCase = os.rmdir UpperCAmelCase = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase = {} with swallow_io(): with time_limit(_a ): exec(_a , _a ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F"failed: {e}" ) # Needed for cleaning up. UpperCAmelCase = rmtree UpperCAmelCase = rmdir UpperCAmelCase = chdir @contextlib.contextmanager def snake_case_ (_a : int ): def signal_handler(_a : Optional[int] , _a : Optional[Any] ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , _a ) signal.signal(signal.SIGALRM , _a ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ (): UpperCAmelCase = WriteOnlyStringIO() with contextlib.redirect_stdout(_a ): with contextlib.redirect_stderr(_a ): with redirect_stdin(_a ): yield @contextlib.contextmanager def snake_case_ (): with tempfile.TemporaryDirectory() as dirname: with chdir(_a ): yield dirname class _a ( __a ): pass class _a ( io.StringIO ): def A ( self : List[Any] , *lowercase : Union[str, Any] , **lowercase : Tuple ): '''simple docstring''' raise OSError def A ( self : List[Any] , *lowercase : Any , **lowercase : Optional[Any] ): '''simple docstring''' raise OSError def A ( self : List[Any] , *lowercase : Any , **lowercase : int ): '''simple docstring''' raise OSError def A ( self : Union[str, Any] , *lowercase : Dict , **lowercase : int ): '''simple docstring''' return False class _a ( contextlib._RedirectStream ): # type: ignore __a : Union[str, Any] = """stdin""" @contextlib.contextmanager def snake_case_ (_a : Dict ): if root == ".": yield return UpperCAmelCase = os.getcwd() os.chdir(_a ) try: yield except BaseException as exc: raise exc finally: os.chdir(_a ) def snake_case_ (_a : Tuple=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase = None UpperCAmelCase = None import os UpperCAmelCase = '''1''' UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None import shutil UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None import subprocess UpperCAmelCase = None # type: ignore UpperCAmelCase = None import sys UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None
34
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A =logging.get_logger(__name__) class _a ( __a ): __a : str = ["""pixel_values"""] def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase ) def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase ): UpperCAmelCase = target_sizes.numpy() UpperCAmelCase = [] for idx in range(len(lowercase ) ): UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase ) UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase = logits.argmax(dim=1 ) UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
34
1
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging A =logging.get_logger(__name__) class _a ( __a ): __a : Dict = ["""pixel_values"""] def __init__( self : int , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : int = 8 , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_pad UpperCAmelCase = pad_size def A ( self : Any , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : str ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : int , lowercase : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = get_image_size(lowercase ) UpperCAmelCase = (old_height // size + 1) * size - old_height UpperCAmelCase = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=lowercase ) def A ( self : Union[str, Any] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[int] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Optional[Any] , ): '''simple docstring''' UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_pad if do_pad is not None else self.do_pad UpperCAmelCase = pad_size if pad_size is not None else self.pad_size UpperCAmelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: UpperCAmelCase = [self.pad(lowercase , size=lowercase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
34
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A =logging.getLogger(__name__) def snake_case_ (_a : Dict , _a : Union[str, Any] ): return (preds == labels).mean() @dataclass class _a : __a : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : __a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __a : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) __a : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _a ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase = processors[data_args.task_name]() UpperCAmelCase = processor.get_labels() UpperCAmelCase = len(_a ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_a : EvalPrediction ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_a , p.label_ids )} # Data collator UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_a , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _a , _a ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_a ) return results def snake_case_ (_a : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
34
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ (_a : Optional[int] , _a : Union[str, Any] , _a : List[str] , _a : List[str] ): UpperCAmelCase = s.rsplit(_a , _a ) return new.join(_a ) def snake_case_ (_a : Union[str, Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def snake_case_ (_a : Optional[Any] ): UpperCAmelCase = {} UpperCAmelCase = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: UpperCAmelCase = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: UpperCAmelCase = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): UpperCAmelCase = rreplace(_a , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): UpperCAmelCase = rreplace(_a , '''.b''' , '''.bias''' , 1 ) UpperCAmelCase = value.float() return upgrade @torch.no_grad() def snake_case_ (_a : Tuple , _a : Optional[int] , _a : Any=None , _a : Any=True ): from dall_e import Encoder UpperCAmelCase = Encoder() if os.path.exists(_a ): UpperCAmelCase = torch.load(_a ) else: UpperCAmelCase = torch.hub.load_state_dict_from_url(_a ) if isinstance(_a , _a ): UpperCAmelCase = ckpt.state_dict() encoder.load_state_dict(_a ) if config_path is not None: UpperCAmelCase = FlavaImageCodebookConfig.from_pretrained(_a ) else: UpperCAmelCase = FlavaImageCodebookConfig() UpperCAmelCase = FlavaImageCodebook(_a ).eval() UpperCAmelCase = encoder.state_dict() UpperCAmelCase = upgrade_state_dict(_a ) hf_model.load_state_dict(_a ) UpperCAmelCase = hf_model.state_dict() UpperCAmelCase = count_parameters(_a ) UpperCAmelCase = count_parameters(_a ) assert torch.allclose(_a , _a , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_a ) else: return hf_state_dict if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
34
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __a ): __a : int = ["""image_processor""", """tokenizer"""] __a : Union[str, Any] = """ChineseCLIPImageProcessor""" __a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase , lowercase ) UpperCAmelCase = self.image_processor def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : List[Any] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , ) return self.image_processor_class
34
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A ='pt' elif is_tf_available(): A ='tf' else: A ='jax' class _a ( __a , unittest.TestCase ): __a : Optional[Any] = PerceiverTokenizer __a : str = False def A ( self : Union[str, Any] ): '''simple docstring''' super().setUp() UpperCAmelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : Optional[int] ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def A ( self : Union[str, Any] , **lowercase : int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ): '''simple docstring''' UpperCAmelCase = [] for i in range(len(lowercase ) ): try: UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) ) UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: UpperCAmelCase = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase = [t[0] for t in toks] # Ensure consistency UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: UpperCAmelCase = ''' ''' + output_txt UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = '''Unicode €.''' UpperCAmelCase = tokenizer(lowercase ) UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' ) UpperCAmelCase = tokenizer('''e è é ê ë''' ) UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": UpperCAmelCase = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowercase ) self.assertIn('''attention_mask''' , lowercase ) self.assertNotIn('''decoder_input_ids''' , lowercase ) self.assertNotIn('''decoder_attention_mask''' , lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = [ '''Summary of the text.''', '''Another summary.''', ] UpperCAmelCase = tokenizer( text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) UpperCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) UpperCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )] UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def A ( self : Union[str, Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : str ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
34
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A =logging.get_logger(__name__) A ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __a ): __a : List[Any] = """marian""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class _a ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowercase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowercase , lowercase ) UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase ) UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
34
1
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py A ='.' if __name__ == "__main__": A =os.path.join(REPO_PATH, 'utils/documentation_tests.txt') A =[] A =[] with open(doctest_file_path) as fp: for line in fp: A =line.strip() A =os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: A ='\n'.join(non_existent_paths) raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
34
'''simple docstring''' import os def snake_case_ (): UpperCAmelCase = os.path.join(os.path.dirname(_a ) , '''num.txt''' ) with open(_a ) as file_hand: return str(sum(int(_a ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
34
1
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A =logging.get_logger(__name__) @add_end_docstrings(__a ) class _a ( __a ): def __init__( self : Tuple , *lowercase : str , **lowercase : Optional[Any] ): '''simple docstring''' super().__init__(*lowercase , **lowercase ) self.check_model_type(lowercase ) def A ( self : str , lowercase : Any=None , lowercase : List[str]=None , lowercase : Optional[int]=None , **lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = {}, {} if padding is not None: UpperCAmelCase = padding if truncation is not None: UpperCAmelCase = truncation if top_k is not None: UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , lowercase : Union["Image.Image", str] , lowercase : str = None , **lowercase : int ): '''simple docstring''' if isinstance(lowercase , (Image.Image, str) ) and isinstance(lowercase , lowercase ): UpperCAmelCase = {'''image''': image, '''question''': question} else: UpperCAmelCase = image UpperCAmelCase = super().__call__(lowercase , **lowercase ) return results def A ( self : Optional[Any] , lowercase : Union[str, Any] , lowercase : Dict=False , lowercase : List[Any]=False ): '''simple docstring''' UpperCAmelCase = load_image(inputs['''image'''] ) UpperCAmelCase = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=lowercase , truncation=lowercase ) UpperCAmelCase = self.image_processor(images=lowercase , return_tensors=self.framework ) model_inputs.update(lowercase ) return model_inputs def A ( self : int , lowercase : str ): '''simple docstring''' UpperCAmelCase = self.model(**lowercase ) return model_outputs def A ( self : Any , lowercase : List[Any] , lowercase : Optional[Any]=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.sigmoid()[0] UpperCAmelCase , UpperCAmelCase = probs.topk(lowercase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase , lowercase )]
34
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A =logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') A ={ 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A ={ 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A =sorted(arg_to_scheduler.keys()) A ='{' + ', '.join(arg_to_scheduler_choices) + '}' class _a ( pl.LightningModule ): def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase ) UpperCAmelCase = 0 UpperCAmelCase = Path(self.hparams.output_dir ) UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , ) else: UpperCAmelCase = config UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase , lowercase ): assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , lowercase , getattr(self.hparams , lowercase ) ) if tokenizer is None: UpperCAmelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , ) else: UpperCAmelCase = tokenizer UpperCAmelCase = MODEL_MODES[mode] if model is None: UpperCAmelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , ) else: UpperCAmelCase = model def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] UpperCAmelCase = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase = Adafactor( lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase ) else: UpperCAmelCase = AdamW( lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase = optimizer UpperCAmelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def A ( self : List[Any] , lowercase : int , lowercase : List[str] ): '''simple docstring''' return self.validation_step(lowercase , lowercase ) def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' return self.validation_end(lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def A ( self : List[str] , lowercase : Any ): '''simple docstring''' if stage == "test": UpperCAmelCase = len(self.test_dataloader().dataset ) else: UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase ) UpperCAmelCase = len(self.train_dataloader().dataset ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def A ( self : Union[str, Any] ): '''simple docstring''' return self.train_loader def A ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : List[Any] ): '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : Any , lowercase : Union[str, Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def A ( self : List[str] , lowercase : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' ) UpperCAmelCase = self.step_count self.model.save_pretrained(lowercase ) self.tokenizer.save_pretrained(lowercase ) @staticmethod def A ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class _a ( pl.Callback ): def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase ) class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase ) def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log results for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log and save results to file UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase , '''w''' ) as writer: for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def snake_case_ (_a : int , _a : Optional[Any] ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ): pl.seed_everything(args.seed ) # init model UpperCAmelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_a ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_a ) if logging_callback is None: UpperCAmelCase = LoggingCallback() UpperCAmelCase = {} if args.fpaa: UpperCAmelCase = 1_6 if args.gpus > 1: UpperCAmelCase = '''auto''' UpperCAmelCase = '''ddp''' UpperCAmelCase = args.accumulate_grad_batches UpperCAmelCase = None UpperCAmelCase = '''auto''' UpperCAmelCase = pl.Trainer.from_argparse_args( _a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , ) if args.do_train: trainer.fit(_a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
34
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( __a , __a , unittest.TestCase ): __a : str = StableDiffusionSAGPipeline __a : List[Any] = TEXT_TO_IMAGE_PARAMS __a : Dict = TEXT_TO_IMAGE_BATCH_PARAMS __a : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __a : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS __a : int = False def A ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCAmelCase = CLIPTextModel(lowercase ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : List[str] , lowercase : Dict , lowercase : Optional[int]=0 ): '''simple docstring''' if str(lowercase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowercase ) else: UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) UpperCAmelCase = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): def A ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) UpperCAmelCase = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = '''.''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sag_pipe( [prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = '''.''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sag_pipe( [prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = '''.''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sag_pipe( [prompt] , width=768 , height=512 , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) UpperCAmelCase = output.images assert image.shape == (1, 512, 768, 3)
34
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue UpperCAmelCase = cst_fwd.get(_a , np.inf ) UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) UpperCAmelCase = new_cost_f UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ): UpperCAmelCase = -1 UpperCAmelCase = set() UpperCAmelCase = set() UpperCAmelCase = {source: 0} UpperCAmelCase = {destination: 0} UpperCAmelCase = {source: None} UpperCAmelCase = {destination: None} UpperCAmelCase = PriorityQueue() UpperCAmelCase = PriorityQueue() UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): UpperCAmelCase , UpperCAmelCase = queue_forward.get() visited_forward.add(_a ) UpperCAmelCase , UpperCAmelCase = queue_backward.get() visited_backward.add(_a ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: UpperCAmelCase = shortest_distance return shortest_path_distance A ={ 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } A ={ 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
34
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( __a , unittest.TestCase ): __a : Dict = CTRLTokenizer __a : Optional[Any] = False __a : Any = False def A ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] UpperCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] UpperCAmelCase = {'''unk_token''': '''<unk>'''} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase ) ) def A ( self : Union[str, Any] , **lowercase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : str , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = '''adapt react readapt apt''' UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def A ( self : str ): '''simple docstring''' UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase = '''adapt react readapt apt''' UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() UpperCAmelCase = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase )
34
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) def snake_case_ (_a : List[str] ): UpperCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCAmelCase = 1_2_8 elif "12-12" in model_name: UpperCAmelCase = 1_2 UpperCAmelCase = 1_2 elif "14-14" in model_name: UpperCAmelCase = 1_4 UpperCAmelCase = 1_4 elif "16-16" in model_name: UpperCAmelCase = 1_6 UpperCAmelCase = 1_6 else: raise ValueError('''Model not supported''' ) UpperCAmelCase = '''huggingface/label-files''' if "speech-commands" in model_name: UpperCAmelCase = 3_5 UpperCAmelCase = '''speech-commands-v2-id2label.json''' else: UpperCAmelCase = 5_2_7 UpperCAmelCase = '''audioset-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (_a : Tuple ): if "module.v" in name: UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def snake_case_ (_a : Dict , _a : List[Any] ): for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(_a ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[3] ) UpperCAmelCase = config.hidden_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def snake_case_ (_a : Tuple ): UpperCAmelCase = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(_a , _a ) @torch.no_grad() def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ): UpperCAmelCase = get_audio_spectrogram_transformer_config(_a ) UpperCAmelCase = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict UpperCAmelCase = model_name_to_url[model_name] UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' ) # remove some keys remove_keys(_a ) # rename some keys UpperCAmelCase = convert_state_dict(_a , _a ) # load 🤗 model UpperCAmelCase = ASTForAudioClassification(_a ) model.eval() model.load_state_dict(_a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8 UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a ) if "speech-commands" in model_name: UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) UpperCAmelCase = dataset[0]['''audio''']['''array'''] else: UpperCAmelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a ) UpperCAmelCase = waveform.squeeze().numpy() UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**_a ) UpperCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(F"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_a ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F"MIT/{model_name}" ) feature_extractor.push_to_hub(F"MIT/{model_name}" ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A ={ 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
'''simple docstring''' from __future__ import annotations def snake_case_ (_a : Dict , _a : str , _a : Optional[Any] , _a : List[str] ): # noqa: E741 while r - l > 1: UpperCAmelCase = (l + r) // 2 if v[m] >= key: UpperCAmelCase = m else: UpperCAmelCase = m # noqa: E741 return r def snake_case_ (_a : list[int] ): if len(_a ) == 0: return 0 UpperCAmelCase = [0] * len(_a ) UpperCAmelCase = 1 UpperCAmelCase = v[0] for i in range(1 , len(_a ) ): if v[i] < tail[0]: UpperCAmelCase = v[i] elif v[i] > tail[length - 1]: UpperCAmelCase = v[i] length += 1 else: UpperCAmelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
34
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A ={ 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =['CLIPFeatureExtractor'] A =['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
'''simple docstring''' def snake_case_ (_a : str , _a : str ): UpperCAmelCase = len(_a ) + 1 UpperCAmelCase = len(_a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase = [[0 for i in range(_a )] for j in range(_a )] # since string of zero length match pattern of zero length UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _a ): UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _a ): UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _a ): for j in range(1 , _a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase = dp[i - 1][j] else: UpperCAmelCase = 0 else: UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") A ='aab' A ='c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
34
1
'''simple docstring''' from __future__ import annotations def snake_case_ (_a : list[int] , _a : list[int] , _a : int ): UpperCAmelCase = list(range(len(_a ) ) ) UpperCAmelCase = [v / w for v, w in zip(_a , _a )] index.sort(key=lambda _a : ratio[i] , reverse=_a ) UpperCAmelCase = 0 UpperCAmelCase = [0] * len(_a ) for i in index: if weight[i] <= capacity: UpperCAmelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
34
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A ='pt' elif is_tf_available(): A ='tf' else: A ='jax' class _a ( __a , unittest.TestCase ): __a : Optional[Any] = PerceiverTokenizer __a : str = False def A ( self : Union[str, Any] ): '''simple docstring''' super().setUp() UpperCAmelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : Optional[int] ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def A ( self : Union[str, Any] , **lowercase : int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ): '''simple docstring''' UpperCAmelCase = [] for i in range(len(lowercase ) ): try: UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) ) UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: UpperCAmelCase = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase = [t[0] for t in toks] # Ensure consistency UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: UpperCAmelCase = ''' ''' + output_txt UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = '''Unicode €.''' UpperCAmelCase = tokenizer(lowercase ) UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' ) UpperCAmelCase = tokenizer('''e è é ê ë''' ) UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": UpperCAmelCase = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowercase ) self.assertIn('''attention_mask''' , lowercase ) self.assertNotIn('''decoder_input_ids''' , lowercase ) self.assertNotIn('''decoder_attention_mask''' , lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = [ '''Summary of the text.''', '''Another summary.''', ] UpperCAmelCase = tokenizer( text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) UpperCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) UpperCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )] UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def A ( self : Union[str, Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : str ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
34
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _a ( unittest.TestCase ): def __init__( self : Union[str, Any] , lowercase : Optional[Any] , lowercase : Tuple=7 , lowercase : Tuple=3 , lowercase : Any=30 , lowercase : Tuple=400 , lowercase : List[Any]=True , lowercase : Optional[int]=None , lowercase : Any=0.9 , lowercase : int=None , lowercase : List[Any]=True , lowercase : Any=[0.5, 0.5, 0.5] , lowercase : Union[str, Any]=[0.5, 0.5, 0.5] , ): '''simple docstring''' UpperCAmelCase = size if size is not None else {'''shortest_edge''': 30} UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = num_channels UpperCAmelCase = min_resolution UpperCAmelCase = max_resolution UpperCAmelCase = do_resize_and_center_crop UpperCAmelCase = size UpperCAmelCase = crop_pct UpperCAmelCase = crop_size UpperCAmelCase = do_normalize UpperCAmelCase = image_mean UpperCAmelCase = image_std def A ( self : Union[str, Any] ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _a ( __a , unittest.TestCase ): __a : int = PoolFormerImageProcessor if is_vision_available() else None def A ( self : str ): '''simple docstring''' UpperCAmelCase = PoolFormerImageProcessingTester(self ) @property def A ( self : Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(lowercase , '''size''' ) ) self.assertTrue(hasattr(lowercase , '''crop_pct''' ) ) self.assertTrue(hasattr(lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(lowercase , '''image_std''' ) ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def A ( self : Union[str, Any] ): '''simple docstring''' pass def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase = image_processing(lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase = image_processing(lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase = image_processing(lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
34
'''simple docstring''' import os from distutils.util import strtobool def snake_case_ (_a : Union[str, Any] , _a : List[Any] ): for e in env_keys: UpperCAmelCase = int(os.environ.get(_a , -1 ) ) if val >= 0: return val return default def snake_case_ (_a : Dict , _a : Any=False ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return strtobool(_a ) == 1 # As its name indicates `strtobool` actually returns an int... def snake_case_ (_a : str , _a : Optional[Any]="no" ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return value
34
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _a ( __a ): __a : Optional[int] = """xlm-roberta-xl""" def __init__( self : Union[str, Any] , lowercase : str=250_880 , lowercase : Dict=2_560 , lowercase : str=36 , lowercase : Optional[Any]=32 , lowercase : List[str]=10_240 , lowercase : List[Any]="gelu" , lowercase : Optional[int]=0.1 , lowercase : Dict=0.1 , lowercase : List[str]=514 , lowercase : Dict=1 , lowercase : Optional[int]=0.02 , lowercase : Optional[int]=1E-05 , lowercase : Optional[Any]=1 , lowercase : str=0 , lowercase : int=2 , lowercase : int="absolute" , lowercase : Optional[int]=True , lowercase : List[str]=None , **lowercase : int , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = classifier_dropout class _a ( __a ): @property def A ( self : int ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
34
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A =logging.getLogger(__name__) A ='Hello world! cécé herlolip' A =namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def snake_case_ (_a : List[Any] , _a : Any ): UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) UpperCAmelCase = torch.load(_a , lambda _a , _a : storage ) UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a ) original.eval() UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase = encoder_input_ids UpperCAmelCase = decoder_input_ids UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0] UpperCAmelCase = original.generator(_a ) UpperCAmelCase = new_model( _a , _a , _a , _a , _a )[0] UpperCAmelCase = new_model.generator(_a ) UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) A =parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
34
1
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def snake_case_ (_a : Tuple , _a : Tuple , _a : Optional[int] ): if isinstance(_a , torch.Tensor ): return image elif isinstance(_a , PIL.Image.Image ): UpperCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCAmelCase = np.concatenate(_a , axis=0 ) UpperCAmelCase = np.array(_a ).astype(np.floataa ) / 255.0 UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase = 2.0 * image - 1.0 UpperCAmelCase = torch.from_numpy(_a ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase = torch.cat(_a , dim=0 ) return image def snake_case_ (_a : Optional[Any] , _a : int , _a : Union[str, Any] , _a : int=0.9995 ): if not isinstance(_a , np.ndarray ): UpperCAmelCase = True UpperCAmelCase = va.device UpperCAmelCase = va.cpu().numpy() UpperCAmelCase = va.cpu().numpy() UpperCAmelCase = np.sum(va * va / (np.linalg.norm(_a ) * np.linalg.norm(_a )) ) if np.abs(_a ) > DOT_THRESHOLD: UpperCAmelCase = (1 - t) * va + t * va else: UpperCAmelCase = np.arccos(_a ) UpperCAmelCase = np.sin(_a ) UpperCAmelCase = theta_a * t UpperCAmelCase = np.sin(_a ) UpperCAmelCase = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase = sin_theta_t / sin_theta_a UpperCAmelCase = sa * va + sa * va if inputs_are_torch: UpperCAmelCase = torch.from_numpy(_a ).to(_a ) return va def snake_case_ (_a : List[str] , _a : int ): UpperCAmelCase = F.normalize(_a , dim=-1 ) UpperCAmelCase = F.normalize(_a , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def snake_case_ (_a : Dict , _a : Optional[Any] ): for param in model.parameters(): UpperCAmelCase = value class _a ( __a ): def __init__( self : Optional[Any] , lowercase : AutoencoderKL , lowercase : CLIPTextModel , lowercase : CLIPModel , lowercase : CLIPTokenizer , lowercase : UNetaDConditionModel , lowercase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , lowercase : CLIPFeatureExtractor , lowercase : Union[str, Any]=None , lowercase : int=None , lowercase : Union[str, Any]=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=lowercase , text_encoder=lowercase , clip_model=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , feature_extractor=lowercase , coca_model=lowercase , coca_tokenizer=lowercase , coca_transform=lowercase , ) UpperCAmelCase = ( feature_extractor.size if isinstance(feature_extractor.size , lowercase ) else feature_extractor.size['''shortest_edge'''] ) UpperCAmelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowercase ) set_requires_grad(self.clip_model , lowercase ) def A ( self : str , lowercase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def A ( self : Any ): '''simple docstring''' self.enable_attention_slicing(lowercase ) def A ( self : Tuple ): '''simple docstring''' set_requires_grad(self.vae , lowercase ) def A ( self : str ): '''simple docstring''' set_requires_grad(self.vae , lowercase ) def A ( self : List[Any] ): '''simple docstring''' set_requires_grad(self.unet , lowercase ) def A ( self : Any ): '''simple docstring''' set_requires_grad(self.unet , lowercase ) def A ( self : Any , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : int ): '''simple docstring''' UpperCAmelCase = min(int(num_inference_steps * strength ) , lowercase ) UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def A ( self : Optional[Any] , lowercase : List[str] , lowercase : Tuple , lowercase : Any , lowercase : List[str] , lowercase : str , lowercase : Dict=None ): '''simple docstring''' if not isinstance(lowercase , torch.Tensor ): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(lowercase )}" ) UpperCAmelCase = image.to(device=lowercase , dtype=lowercase ) if isinstance(lowercase , lowercase ): UpperCAmelCase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase ) ] UpperCAmelCase = torch.cat(lowercase , dim=0 ) else: UpperCAmelCase = self.vae.encode(lowercase ).latent_dist.sample(lowercase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 0.1_8215 * init_latents UpperCAmelCase = init_latents.repeat_interleave(lowercase , dim=0 ) UpperCAmelCase = randn_tensor(init_latents.shape , generator=lowercase , device=lowercase , dtype=lowercase ) # get latents UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , lowercase ) UpperCAmelCase = init_latents return latents def A ( self : Union[str, Any] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = self.coca_transform(lowercase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCAmelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.feature_extractor.preprocess(lowercase ) UpperCAmelCase = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase = self.clip_model.get_image_features(lowercase ) UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowercase ) UpperCAmelCase = image_embeddings_clip.repeat_interleave(lowercase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def A ( self : Any , lowercase : List[str] , lowercase : Optional[Any] , lowercase : Dict , lowercase : Any , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : List[Any] , ): '''simple docstring''' UpperCAmelCase = latents.detach().requires_grad_() UpperCAmelCase = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual UpperCAmelCase = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase = torch.sqrt(lowercase ) UpperCAmelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowercase ): UpperCAmelCase = self.scheduler.sigmas[index] UpperCAmelCase = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 1 / 0.1_8215 * sample UpperCAmelCase = self.vae.decode(lowercase ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = transforms.Resize(self.feature_extractor_size )(lowercase ) UpperCAmelCase = self.normalize(lowercase ).to(latents.dtype ) UpperCAmelCase = self.clip_model.get_image_features(lowercase ) UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowercase ) UpperCAmelCase = spherical_dist_loss(lowercase , lowercase ).mean() * clip_guidance_scale UpperCAmelCase = -torch.autograd.grad(lowercase , lowercase )[0] if isinstance(self.scheduler , lowercase ): UpperCAmelCase = latents.detach() + grads * (sigma**2) UpperCAmelCase = noise_pred_original else: UpperCAmelCase = noise_pred_original - torch.sqrt(lowercase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : List[str] , lowercase : Union[torch.FloatTensor, PIL.Image.Image] , lowercase : Union[torch.FloatTensor, PIL.Image.Image] , lowercase : Optional[str] = None , lowercase : Optional[str] = None , lowercase : Optional[int] = 512 , lowercase : Optional[int] = 512 , lowercase : float = 0.6 , lowercase : Optional[int] = 50 , lowercase : Optional[float] = 7.5 , lowercase : Optional[int] = 1 , lowercase : float = 0.0 , lowercase : Optional[float] = 100 , lowercase : Optional[torch.Generator] = None , lowercase : Optional[str] = "pil" , lowercase : bool = True , lowercase : float = 0.8 , lowercase : float = 0.1 , lowercase : float = 0.1 , ): '''simple docstring''' if isinstance(lowercase , lowercase ) and len(lowercase ) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(lowercase )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(lowercase , torch.Generator ) and batch_size > 1: UpperCAmelCase = [generator] + [None] * (batch_size - 1) UpperCAmelCase = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] UpperCAmelCase = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase = ''', '''.join(lowercase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowercase ): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCAmelCase = self.get_image_description(lowercase ) if style_prompt is None: if len(lowercase ): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCAmelCase = self.get_image_description(lowercase ) # get prompt text embeddings for content and style UpperCAmelCase = self.tokenizer( lowercase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowercase , return_tensors='''pt''' , ) UpperCAmelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase = self.tokenizer( lowercase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowercase , return_tensors='''pt''' , ) UpperCAmelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase = slerp(lowercase , lowercase , lowercase ) # duplicate text embeddings for each generation per prompt UpperCAmelCase = text_embeddings.repeat_interleave(lowercase , dim=0 ) # set timesteps UpperCAmelCase = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase = {} if accepts_offset: UpperCAmelCase = 1 self.scheduler.set_timesteps(lowercase , **lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase , UpperCAmelCase = self.get_timesteps(lowercase , lowercase , self.device ) UpperCAmelCase = timesteps[:1].repeat(lowercase ) # Preprocess image UpperCAmelCase = preprocess(lowercase , lowercase , lowercase ) UpperCAmelCase = self.prepare_latents( lowercase , lowercase , lowercase , text_embeddings.dtype , self.device , lowercase ) UpperCAmelCase = preprocess(lowercase , lowercase , lowercase ) UpperCAmelCase = self.prepare_latents( lowercase , lowercase , lowercase , text_embeddings.dtype , self.device , lowercase ) UpperCAmelCase = slerp(lowercase , lowercase , lowercase ) if clip_guidance_scale > 0: UpperCAmelCase = self.get_clip_image_embeddings(lowercase , lowercase ) UpperCAmelCase = self.get_clip_image_embeddings(lowercase , lowercase ) UpperCAmelCase = slerp( lowercase , lowercase , lowercase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase = content_text_input.input_ids.shape[-1] UpperCAmelCase = self.tokenizer([''''''] , padding='''max_length''' , max_length=lowercase , return_tensors='''pt''' ) UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase = uncond_embeddings.repeat_interleave(lowercase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase = torch.randn(lowercase , generator=lowercase , device='''cpu''' , dtype=lowercase ).to( self.device ) else: UpperCAmelCase = torch.randn(lowercase , generator=lowercase , device=self.device , dtype=lowercase ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCAmelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase = {} if accepts_eta: UpperCAmelCase = eta # check if the scheduler accepts generator UpperCAmelCase = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase = generator with self.progress_bar(total=lowercase ): for i, t in enumerate(lowercase ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual UpperCAmelCase = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase , UpperCAmelCase = self.cond_fn( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 1 / 0.1_8215 * latents UpperCAmelCase = self.vae.decode(lowercase ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowercase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowercase , nsfw_content_detected=lowercase )
34
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : Any = ["""flax""", """transformers"""] def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] )
34
1
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def snake_case_ (_a : str ): def decorator(_a : str ): UpperCAmelCase = getattr(_a , '''handle_key''' , [] ) handle += [key] setattr(_a , '''handle_key''' , _a ) return func return decorator def snake_case_ (*_a : List[str] ): def decorator(_a : Optional[int] ): UpperCAmelCase = getattr(_a , '''handle_key''' , [] ) handle += keys setattr(_a , '''handle_key''' , _a ) return func return decorator class _a ( __a ): def __new__( cls : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = super().__new__(cls , lowercase , lowercase , lowercase ) if not hasattr(lowercase , '''key_handler''' ): setattr(lowercase , '''key_handler''' , {} ) setattr(lowercase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): UpperCAmelCase = getattr(lowercase , '''handle_key''' , [] ) for key in handled_keys: UpperCAmelCase = value return new_cls @staticmethod def A ( cls : List[str] ): '''simple docstring''' UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: UpperCAmelCase = ord(lowercase ) UpperCAmelCase = cls.key_handler.get(lowercase ) if handler: UpperCAmelCase = char return handler(cls ) else: return None def snake_case_ (cls : int ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
34
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) A ={ 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } A ={ 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def snake_case_ (_a : List[str] ): UpperCAmelCase = EfficientNetConfig() UpperCAmelCase = CONFIG_MAP[model_name]['''hidden_dim'''] UpperCAmelCase = CONFIG_MAP[model_name]['''width_coef'''] UpperCAmelCase = CONFIG_MAP[model_name]['''depth_coef'''] UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = CONFIG_MAP[model_name]['''dropout_rate'''] UpperCAmelCase = CONFIG_MAP[model_name]['''dw_padding'''] UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = 1_0_0_0 UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (): UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw ) return im def snake_case_ (_a : str ): UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_a , ) return preprocessor def snake_case_ (_a : Optional[Any] ): UpperCAmelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] UpperCAmelCase = sorted(set(_a ) ) UpperCAmelCase = len(_a ) UpperCAmelCase = {b: str(_a ) for b, i in zip(_a , range(_a ) )} UpperCAmelCase = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: UpperCAmelCase = block_name_mapping[b] rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase = '''efficientnet.''' + item[1] UpperCAmelCase = '''classifier.weight''' UpperCAmelCase = '''classifier.bias''' return key_mapping def snake_case_ (_a : Dict , _a : List[str] , _a : Dict ): for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase = torch.from_numpy(_a ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase = torch.from_numpy(_a ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase = torch.from_numpy(np.transpose(_a ) ) else: UpperCAmelCase = torch.from_numpy(_a ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_a ) @torch.no_grad() def snake_case_ (_a : Optional[Any] , _a : List[str] , _a : Optional[int] , _a : Dict ): UpperCAmelCase = model_classes[model_name]( include_top=_a , weights='''imagenet''' , input_tensor=_a , input_shape=_a , pooling=_a , classes=1_0_0_0 , classifier_activation='''softmax''' , ) UpperCAmelCase = original_model.trainable_variables UpperCAmelCase = original_model.non_trainable_variables UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase = param.numpy() UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase = get_efficientnet_config(_a ) UpperCAmelCase = EfficientNetForImageClassification(_a ).eval() UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) UpperCAmelCase = rename_keys(_a ) replace_params(_a , _a , _a ) # Initialize preprocessor and preprocess input image UpperCAmelCase = convert_image_processor(_a ) UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase = hf_model(**_a ) UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase = False UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase = image.img_to_array(_a ) UpperCAmelCase = np.expand_dims(_a , axis=0 ) UpperCAmelCase = original_model.predict(_a ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_a , _a , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_a ): os.mkdir(_a ) # Save converted model and image processor hf_model.save_pretrained(_a ) preprocessor.save_pretrained(_a ) if push_to_hub: # Push model and image processor to hub print(F"Pushing converted {model_name} to the hub..." ) UpperCAmelCase = F"efficientnet-{model_name}" preprocessor.push_to_hub(_a ) hf_model.push_to_hub(_a ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') A =parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
34
1
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np A =re.compile(r'\b(a|an|the)\b', re.UNICODE) A =None def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=_a , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=_a , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def snake_case_ (_a : List[str] ): UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def snake_case_ (_a : List[str] ): def remove_articles(_a : Optional[Any] ): return ARTICLES_REGEX.sub(''' ''' , _a ) def white_space_fix(_a : Any ): return " ".join(text.split() ) def remove_punc(_a : Dict ): UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_a : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_a ) ) ) ) def snake_case_ (_a : Union[str, Any] ): if not s: return [] return normalize_answer(_a ).split() def snake_case_ (_a : Dict , _a : int ): return int(normalize_answer(_a ) == normalize_answer(_a ) ) def snake_case_ (_a : Tuple , _a : Optional[int] ): UpperCAmelCase = get_tokens(_a ) UpperCAmelCase = get_tokens(_a ) UpperCAmelCase = collections.Counter(_a ) & collections.Counter(_a ) UpperCAmelCase = sum(common.values() ) if len(_a ) == 0 or len(_a ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCAmelCase = 1.0 * num_same / len(_a ) UpperCAmelCase = 1.0 * num_same / len(_a ) UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def snake_case_ (_a : Any , _a : str ): UpperCAmelCase = {} UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase = qa['''id'''] UpperCAmelCase = [t for t in qa['''answers''']['''text'''] if normalize_answer(_a )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCAmelCase = [''''''] if qid not in preds: print(F"Missing prediction for {qid}" ) continue UpperCAmelCase = preds[qid] # Take max over all gold answers UpperCAmelCase = max(compute_exact(_a , _a ) for a in gold_answers ) UpperCAmelCase = max(compute_fa(_a , _a ) for a in gold_answers ) return exact_scores, fa_scores def snake_case_ (_a : List[str] , _a : Dict , _a : int , _a : Optional[Any] ): UpperCAmelCase = {} for qid, s in scores.items(): UpperCAmelCase = na_probs[qid] > na_prob_thresh if pred_na: UpperCAmelCase = float(not qid_to_has_ans[qid] ) else: UpperCAmelCase = s return new_scores def snake_case_ (_a : int , _a : Dict , _a : Union[str, Any]=None ): if not qid_list: UpperCAmelCase = len(_a ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: UpperCAmelCase = len(_a ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def snake_case_ (_a : Dict , _a : Optional[Any] , _a : List[str] ): for k in new_eval: UpperCAmelCase = new_eval[k] def snake_case_ (_a : Any , _a : Union[str, Any] , _a : int , _a : List[Any] ): plt.step(_a , _a , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(_a , _a , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_a ) plt.savefig(_a ) plt.clf() def snake_case_ (_a : Union[str, Any] , _a : Dict , _a : Any , _a : Optional[Any] , _a : Optional[Any]=None , _a : Tuple=None ): UpperCAmelCase = sorted(_a , key=lambda _a : na_probs[k] ) UpperCAmelCase = 0.0 UpperCAmelCase = 1.0 UpperCAmelCase = 0.0 UpperCAmelCase = [1.0] UpperCAmelCase = [0.0] UpperCAmelCase = 0.0 for i, qid in enumerate(_a ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCAmelCase = true_pos / float(i + 1 ) UpperCAmelCase = true_pos / float(_a ) if i == len(_a ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_a ) recalls.append(_a ) if out_image: plot_pr_curve(_a , _a , _a , _a ) return {"ap": 100.0 * avg_prec} def snake_case_ (_a : Tuple , _a : List[str] , _a : Any , _a : Tuple , _a : Tuple , _a : List[str] ): if out_image_dir and not os.path.exists(_a ): os.makedirs(_a ) UpperCAmelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCAmelCase = make_precision_recall_eval( _a , _a , _a , _a , out_image=os.path.join(_a , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) UpperCAmelCase = make_precision_recall_eval( _a , _a , _a , _a , out_image=os.path.join(_a , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) UpperCAmelCase = {k: float(_a ) for k, v in qid_to_has_ans.items()} UpperCAmelCase = make_precision_recall_eval( _a , _a , _a , _a , out_image=os.path.join(_a , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(_a , _a , '''pr_exact''' ) merge_eval(_a , _a , '''pr_f1''' ) merge_eval(_a , _a , '''pr_oracle''' ) def snake_case_ (_a : Any , _a : str , _a : str , _a : List[Any] ): if not qid_list: return UpperCAmelCase = [na_probs[k] for k in qid_list] UpperCAmelCase = np.ones_like(_a ) / float(len(_a ) ) plt.hist(_a , weights=_a , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(_a , F"na_prob_hist_{name}.png" ) ) plt.clf() def snake_case_ (_a : Any , _a : Union[str, Any] , _a : List[Any] , _a : str ): UpperCAmelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCAmelCase = num_no_ans UpperCAmelCase = cur_score UpperCAmelCase = 0.0 UpperCAmelCase = sorted(_a , key=lambda _a : na_probs[k] ) for i, qid in enumerate(_a ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCAmelCase = scores[qid] else: if preds[qid]: UpperCAmelCase = -1 else: UpperCAmelCase = 0 cur_score += diff if cur_score > best_score: UpperCAmelCase = cur_score UpperCAmelCase = na_probs[qid] return 100.0 * best_score / len(_a ), best_thresh def snake_case_ (_a : str , _a : Dict , _a : List[Any] , _a : str , _a : int , _a : str ): UpperCAmelCase , UpperCAmelCase = find_best_thresh(_a , _a , _a , _a ) UpperCAmelCase , UpperCAmelCase = find_best_thresh(_a , _a , _a , _a ) UpperCAmelCase = best_exact UpperCAmelCase = exact_thresh UpperCAmelCase = best_fa UpperCAmelCase = fa_thresh def snake_case_ (): with open(OPTS.data_file ) as f: UpperCAmelCase = json.load(_a ) UpperCAmelCase = dataset_json['''data'''] with open(OPTS.pred_file ) as f: UpperCAmelCase = json.load(_a ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCAmelCase = json.load(_a ) else: UpperCAmelCase = {k: 0.0 for k in preds} UpperCAmelCase = make_qid_to_has_ans(_a ) # maps qid to True/False UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if v] UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if not v] UpperCAmelCase , UpperCAmelCase = get_raw_scores(_a , _a ) UpperCAmelCase = apply_no_ans_threshold(_a , _a , _a , OPTS.na_prob_thresh ) UpperCAmelCase = apply_no_ans_threshold(_a , _a , _a , OPTS.na_prob_thresh ) UpperCAmelCase = make_eval_dict(_a , _a ) if has_ans_qids: UpperCAmelCase = make_eval_dict(_a , _a , qid_list=_a ) merge_eval(_a , _a , '''HasAns''' ) if no_ans_qids: UpperCAmelCase = make_eval_dict(_a , _a , qid_list=_a ) merge_eval(_a , _a , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(_a , _a , _a , _a , _a , _a ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_a , _a , _a , _a , _a , OPTS.out_image_dir ) histogram_na_prob(_a , _a , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(_a , _a , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(_a , _a ) else: print(json.dumps(_a , indent=2 ) ) if __name__ == "__main__": A =parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
34
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A =input('Enter image url: ').strip() print(f"""Downloading image from {url} ...""") A =BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image A =soup.find('meta', {'property': 'og:image'})['content'] A =requests.get(image_url).content A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
34
1
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _a : def __init__( self : Dict , lowercase : Tuple , lowercase : Dict=13 , lowercase : Tuple=7 , lowercase : Optional[Any]=True , lowercase : Dict=True , lowercase : Tuple=False , lowercase : Any=True , lowercase : str=99 , lowercase : Any=64 , lowercase : Union[str, Any]=5 , lowercase : Optional[Any]=4 , lowercase : str=64 , lowercase : Any="gelu" , lowercase : Union[str, Any]=0.1 , lowercase : Tuple=0.1 , lowercase : int=512 , lowercase : List[Any]=16 , lowercase : int=2 , lowercase : Optional[Any]=0.02 , lowercase : int=3 , lowercase : str=4 , lowercase : Tuple=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def A ( self : Optional[Any] ): '''simple docstring''' return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[Any] ): '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A ( self : str , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : str ): '''simple docstring''' UpperCAmelCase = MPNetModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : str , lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Tuple , lowercase : Any , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = MPNetForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model( lowercase , attention_mask=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Optional[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = MPNetForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , lowercase : Any , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Tuple , lowercase : str , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = MPNetForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase , attention_mask=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = MPNetForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( __a , __a , unittest.TestCase ): __a : Union[str, Any] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __a : Any = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) __a : Optional[Any] = False __a : Optional[int] = True def A ( self : str ): '''simple docstring''' UpperCAmelCase = MPNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase ) @require_torch class _a ( unittest.TestCase ): @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase = model(lowercase )[0] UpperCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) UpperCAmelCase = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
34
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _a ( __a ): __a : str = ["""vqvae"""] def __init__( self : str , lowercase : AutoencoderKL , lowercase : UNetaDConditionModel , lowercase : Mel , lowercase : Union[DDIMScheduler, DDPMScheduler] , ): '''simple docstring''' super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' return 50 if isinstance(self.scheduler , lowercase ) else 1_000 @torch.no_grad() def __call__( self : Optional[Any] , lowercase : int = 1 , lowercase : str = None , lowercase : np.ndarray = None , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = None , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : float = 0 , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : torch.Tensor = None , lowercase : torch.Tensor = None , lowercase : Tuple=True , ): '''simple docstring''' UpperCAmelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCAmelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase , device=self.device , ) UpperCAmelCase = noise UpperCAmelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase , lowercase ) UpperCAmelCase = self.mel.audio_slice_to_image(lowercase ) UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) UpperCAmelCase = (input_image / 255) * 2 - 1 UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample( generator=lowercase )[0] UpperCAmelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] ) UpperCAmelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCAmelCase = int(mask_start_secs * pixels_per_second ) UpperCAmelCase = int(mask_end_secs * pixels_per_second ) UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase ): UpperCAmelCase = self.unet(lowercase , lowercase , lowercase )['''sample'''] else: UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] if isinstance(self.scheduler , lowercase ): UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )['''prev_sample'''] else: UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )['''prev_sample'''] if mask is not None: if mask_start > 0: UpperCAmelCase = mask[:, step, :, :mask_start] if mask_end > 0: UpperCAmelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images UpperCAmelCase = self.vqvae.decode(lowercase )['''sample'''] UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCAmelCase = (images * 255).round().astype('''uint8''' ) UpperCAmelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) ) UpperCAmelCase = [self.mel.image_to_audio(lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) ) @torch.no_grad() def A ( self : Dict , lowercase : List[Image.Image] , lowercase : int = 50 ): '''simple docstring''' assert isinstance(self.scheduler , lowercase ) self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) UpperCAmelCase = (sample / 255) * 2 - 1 UpperCAmelCase = torch.Tensor(lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCAmelCase = self.scheduler.alphas_cumprod[t] UpperCAmelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def A ( lowercase : torch.Tensor , lowercase : torch.Tensor , lowercase : float ): '''simple docstring''' UpperCAmelCase = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
34
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers A =[int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def snake_case_ (): UpperCAmelCase = os.path.dirname(os.path.realpath(_a ) ) UpperCAmelCase = os.path.join(_a , '''words.txt''' ) UpperCAmelCase = '''''' with open(_a ) as f: UpperCAmelCase = f.readline() UpperCAmelCase = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] UpperCAmelCase = [ word for word in [sum(ord(_a ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_a ) if __name__ == "__main__": print(solution())
34
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal A =logging.get_logger(__name__) A =TypeVar('DatasetType', Dataset, IterableDataset) def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) else: return _interleave_iterable_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a ) else: return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
34
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _a ( __a ): def __init__( self : int , lowercase : Union[str, Any]=0.01 , lowercase : Tuple=1_000 ): '''simple docstring''' UpperCAmelCase = p_stop UpperCAmelCase = max_length def __iter__( self : Any ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase = random.random() < self.p_stop class _a ( unittest.TestCase ): def A ( self : Optional[Any] , lowercase : Any , lowercase : Union[str, Any] , lowercase : Optional[int]=False , lowercase : Any=True ): '''simple docstring''' UpperCAmelCase = [ BatchSamplerShard(lowercase , 2 , lowercase , split_batches=lowercase , even_batches=lowercase ) for i in range(2 ) ] UpperCAmelCase = [list(lowercase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowercase ) for shard in batch_sampler_shards] , [len(lowercase ) for e in expected] ) self.assertListEqual(lowercase , lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase , lowercase ) UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowercase , lowercase ) UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowercase , lowercase ) UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowercase , lowercase ) UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is very small. UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowercase , lowercase ) UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is very small. UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is very small. UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is very small. UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase = [BatchSamplerShard(lowercase , 2 , lowercase , even_batches=lowercase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A ( self : List[str] , lowercase : Tuple , lowercase : Optional[int] , lowercase : int , lowercase : Dict=False , lowercase : str=2 , lowercase : Union[str, Any]=False ): '''simple docstring''' random.seed(lowercase ) UpperCAmelCase = list(lowercase ) UpperCAmelCase = [ IterableDatasetShard( lowercase , batch_size=lowercase , drop_last=lowercase , num_processes=lowercase , process_index=lowercase , split_batches=lowercase , ) for i in range(lowercase ) ] UpperCAmelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowercase ) iterable_dataset_lists.append(list(lowercase ) ) UpperCAmelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowercase ) , len(lowercase ) ) self.assertTrue(len(lowercase ) % shard_batch_size == 0 ) UpperCAmelCase = [] for idx in range(0 , len(lowercase ) , lowercase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowercase ) < len(lowercase ): reference += reference self.assertListEqual(lowercase , reference[: len(lowercase )] ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = 42 UpperCAmelCase = RandomIterableDataset() self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) # Edge case with a very small dataset UpperCAmelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = SkipBatchSampler(lowercase , 2 ) self.assertListEqual(list(lowercase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase = skip_first_batches(lowercase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A ( self : int ): '''simple docstring''' Accelerator() UpperCAmelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
34
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor A =logging.get_logger(__name__) class _a ( __a ): def __init__( self : Optional[Any] , *lowercase : Optional[Any] , **lowercase : Optional[int] ): '''simple docstring''' warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , lowercase , ) super().__init__(*lowercase , **lowercase )
34
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
1
'''simple docstring''' class _a : def __init__( self : Any ): '''simple docstring''' UpperCAmelCase = {} # Mapping from char to TrieNode UpperCAmelCase = False def A ( self : int , lowercase : list[str] ): '''simple docstring''' for word in words: self.insert(lowercase ) def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: UpperCAmelCase = TrieNode() UpperCAmelCase = curr.nodes[char] UpperCAmelCase = True def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: return False UpperCAmelCase = curr.nodes[char] return curr.is_leaf def A ( self : str , lowercase : str ): '''simple docstring''' def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool: if index == len(lowercase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase = False return len(curr.nodes ) == 0 UpperCAmelCase = word[index] UpperCAmelCase = curr.nodes.get(lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase = _delete(lowercase , lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowercase , 0 ) def snake_case_ (_a : TrieNode , _a : str ): if node.is_leaf: print(_a , end=''' ''' ) for key, value in node.nodes.items(): print_words(_a , word + key ) def snake_case_ (): UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase = TrieNode() root.insert_many(_a ) # print_words(root, "") assert all(root.find(_a ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def snake_case_ (_a : str , _a : bool ): print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' ) def snake_case_ (): assert test_trie() def snake_case_ (): print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
34
'''simple docstring''' class _a : def __init__( self : Any ): '''simple docstring''' UpperCAmelCase = {} # Mapping from char to TrieNode UpperCAmelCase = False def A ( self : int , lowercase : list[str] ): '''simple docstring''' for word in words: self.insert(lowercase ) def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: UpperCAmelCase = TrieNode() UpperCAmelCase = curr.nodes[char] UpperCAmelCase = True def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: return False UpperCAmelCase = curr.nodes[char] return curr.is_leaf def A ( self : str , lowercase : str ): '''simple docstring''' def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool: if index == len(lowercase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase = False return len(curr.nodes ) == 0 UpperCAmelCase = word[index] UpperCAmelCase = curr.nodes.get(lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase = _delete(lowercase , lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowercase , 0 ) def snake_case_ (_a : TrieNode , _a : str ): if node.is_leaf: print(_a , end=''' ''' ) for key, value in node.nodes.items(): print_words(_a , word + key ) def snake_case_ (): UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase = TrieNode() root.insert_many(_a ) # print_words(root, "") assert all(root.find(_a ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def snake_case_ (_a : str , _a : bool ): print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' ) def snake_case_ (): assert test_trie() def snake_case_ (): print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
34
1
'''simple docstring''' def snake_case_ (_a : int , _a : int ): return 1 if input_a == input_a else 0 def snake_case_ (): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
34
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( __a ): __a : Union[str, Any] = """encodec""" def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowercase ) @property def A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A ( self : Optional[int] ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
34
1
'''simple docstring''' def snake_case_ (_a : int ): UpperCAmelCase = (1 + 2_4 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ (_a : int = 5_0_0_0 ): UpperCAmelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , _a )] for i, pentagonal_i in enumerate(_a ): for j in range(_a , len(_a ) ): UpperCAmelCase = pentagonal_nums[j] UpperCAmelCase = pentagonal_i + pentagonal_j UpperCAmelCase = pentagonal_j - pentagonal_i if is_pentagonal(_a ) and is_pentagonal(_a ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
34
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A =logging.get_logger(__name__) class _a ( __a ): __a : str = ["""pixel_values"""] def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase ) def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase ): UpperCAmelCase = target_sizes.numpy() UpperCAmelCase = [] for idx in range(len(lowercase ) ): UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase ) UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase = logits.argmax(dim=1 ) UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
34
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def snake_case_ (_a : Union[str, Any] , _a : List[Any]=1_0_0_0 ): if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase = n - 1 UpperCAmelCase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase = 0 while count < prec: UpperCAmelCase = random.randint(2 , n - 1 ) UpperCAmelCase = bin_exp_mod(_a , _a , _a ) if b != 1: UpperCAmelCase = True for _ in range(_a ): if b == n - 1: UpperCAmelCase = False break UpperCAmelCase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A =abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
34
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A =logging.getLogger(__name__) def snake_case_ (_a : Dict , _a : Union[str, Any] ): return (preds == labels).mean() @dataclass class _a : __a : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : __a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __a : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) __a : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _a ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase = processors[data_args.task_name]() UpperCAmelCase = processor.get_labels() UpperCAmelCase = len(_a ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_a : EvalPrediction ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_a , p.label_ids )} # Data collator UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_a , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _a , _a ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_a ) return results def snake_case_ (_a : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
34
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) def snake_case_ (_a : str ): UpperCAmelCase = DPTConfig() if "large" in checkpoint_url: UpperCAmelCase = 1_0_2_4 UpperCAmelCase = 4_0_9_6 UpperCAmelCase = 2_4 UpperCAmelCase = 1_6 UpperCAmelCase = [5, 1_1, 1_7, 2_3] UpperCAmelCase = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] UpperCAmelCase = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 1_5_0 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def snake_case_ (_a : List[str] ): UpperCAmelCase = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_a , _a ) def snake_case_ (_a : Union[str, Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: UpperCAmelCase = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def snake_case_ (_a : Optional[int] , _a : Optional[int] ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def snake_case_ (): UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def snake_case_ (_a : Optional[int] , _a : Dict , _a : List[str] , _a : int ): UpperCAmelCase , UpperCAmelCase = get_dpt_config(_a ) # load original state_dict from URL UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_a ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(_a ) UpperCAmelCase = val # read in qkv matrices read_in_q_k_v(_a , _a ) # load HuggingFace model UpperCAmelCase = DPTForSemanticSegmentation(_a ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_a ) model.load_state_dict(_a ) model.eval() # Check outputs on an image UpperCAmelCase = 4_8_0 if '''ade''' in checkpoint_url else 3_8_4 UpperCAmelCase = DPTImageProcessor(size=_a ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(_a , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**_a ).logits if '''ade''' in checkpoint_url else model(**_a ).predicted_depth # Assert logits UpperCAmelCase = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: UpperCAmelCase = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(_a ) assert ( torch.allclose(outputs[0, 0, :3, :3] , _a , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _a ) ) Path(_a ).mkdir(exist_ok=_a ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_a ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(_a , _a ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_a , ) image_processor.push_to_hub( repo_path_or_name=Path(_a , _a ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_a , ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) A =parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
34
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __a ): __a : int = ["""image_processor""", """tokenizer"""] __a : Union[str, Any] = """ChineseCLIPImageProcessor""" __a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase , lowercase ) UpperCAmelCase = self.image_processor def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : List[Any] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , ) return self.image_processor_class
34
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _a ( __a ): __a : torch.FloatTensor class _a ( nn.Module ): def __init__( self : Dict , lowercase : Union[str, Any]=3 , lowercase : int=3 , lowercase : str=("DownEncoderBlock2D",) , lowercase : Tuple=(64,) , lowercase : Tuple=2 , lowercase : int=32 , lowercase : List[str]="silu" , lowercase : Tuple=True , ): '''simple docstring''' super().__init__() UpperCAmelCase = layers_per_block UpperCAmelCase = torch.nn.Convad( lowercase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase = None UpperCAmelCase = nn.ModuleList([] ) # down UpperCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(lowercase ): UpperCAmelCase = output_channel UpperCAmelCase = block_out_channels[i] UpperCAmelCase = i == len(lowercase ) - 1 UpperCAmelCase = get_down_block( lowercase , num_layers=self.layers_per_block , in_channels=lowercase , out_channels=lowercase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowercase , resnet_groups=lowercase , attention_head_dim=lowercase , temb_channels=lowercase , ) self.down_blocks.append(lowercase ) # mid UpperCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase , temb_channels=lowercase , ) # out UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowercase , eps=1E-6 ) UpperCAmelCase = nn.SiLU() UpperCAmelCase = 2 * out_channels if double_z else out_channels UpperCAmelCase = nn.Convad(block_out_channels[-1] , lowercase , 3 , padding=1 ) UpperCAmelCase = False def A ( self : str , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = x UpperCAmelCase = self.conv_in(lowercase ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase : Any ): def custom_forward(*lowercase : Dict ): return module(*lowercase ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase ) , lowercase , use_reentrant=lowercase ) # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase , use_reentrant=lowercase ) else: for down_block in self.down_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase ) , lowercase ) # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowercase ) else: # down for down_block in self.down_blocks: UpperCAmelCase = down_block(lowercase ) # middle UpperCAmelCase = self.mid_block(lowercase ) # post-process UpperCAmelCase = self.conv_norm_out(lowercase ) UpperCAmelCase = self.conv_act(lowercase ) UpperCAmelCase = self.conv_out(lowercase ) return sample class _a ( nn.Module ): def __init__( self : List[str] , lowercase : Union[str, Any]=3 , lowercase : str=3 , lowercase : Any=("UpDecoderBlock2D",) , lowercase : Optional[Any]=(64,) , lowercase : Any=2 , lowercase : Optional[int]=32 , lowercase : Optional[Any]="silu" , lowercase : int="group" , ): '''simple docstring''' super().__init__() UpperCAmelCase = layers_per_block UpperCAmelCase = nn.Convad( lowercase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase = None UpperCAmelCase = nn.ModuleList([] ) UpperCAmelCase = in_channels if norm_type == '''spatial''' else None # mid UpperCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase , temb_channels=lowercase , ) # up UpperCAmelCase = list(reversed(lowercase ) ) UpperCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowercase ): UpperCAmelCase = output_channel UpperCAmelCase = reversed_block_out_channels[i] UpperCAmelCase = i == len(lowercase ) - 1 UpperCAmelCase = get_up_block( lowercase , num_layers=self.layers_per_block + 1 , in_channels=lowercase , out_channels=lowercase , prev_output_channel=lowercase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowercase , resnet_groups=lowercase , attention_head_dim=lowercase , temb_channels=lowercase , resnet_time_scale_shift=lowercase , ) self.up_blocks.append(lowercase ) UpperCAmelCase = output_channel # out if norm_type == "spatial": UpperCAmelCase = SpatialNorm(block_out_channels[0] , lowercase ) else: UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowercase , eps=1E-6 ) UpperCAmelCase = nn.SiLU() UpperCAmelCase = nn.Convad(block_out_channels[0] , lowercase , 3 , padding=1 ) UpperCAmelCase = False def A ( self : str , lowercase : Optional[Any] , lowercase : List[Any]=None ): '''simple docstring''' UpperCAmelCase = z UpperCAmelCase = self.conv_in(lowercase ) UpperCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase : Optional[int] ): def custom_forward(*lowercase : Optional[int] ): return module(*lowercase ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase , lowercase , use_reentrant=lowercase ) UpperCAmelCase = sample.to(lowercase ) # up for up_block in self.up_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase ) , lowercase , lowercase , use_reentrant=lowercase ) else: # middle UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase , lowercase ) UpperCAmelCase = sample.to(lowercase ) # up for up_block in self.up_blocks: UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase ) , lowercase , lowercase ) else: # middle UpperCAmelCase = self.mid_block(lowercase , lowercase ) UpperCAmelCase = sample.to(lowercase ) # up for up_block in self.up_blocks: UpperCAmelCase = up_block(lowercase , lowercase ) # post-process if latent_embeds is None: UpperCAmelCase = self.conv_norm_out(lowercase ) else: UpperCAmelCase = self.conv_norm_out(lowercase , lowercase ) UpperCAmelCase = self.conv_act(lowercase ) UpperCAmelCase = self.conv_out(lowercase ) return sample class _a ( nn.Module ): def __init__( self : Tuple , lowercase : Tuple , lowercase : int , lowercase : List[Any] , lowercase : List[str]=None , lowercase : Union[str, Any]="random" , lowercase : List[Any]=False , lowercase : str=True ): '''simple docstring''' super().__init__() UpperCAmelCase = n_e UpperCAmelCase = vq_embed_dim UpperCAmelCase = beta UpperCAmelCase = legacy UpperCAmelCase = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase = self.used.shape[0] UpperCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase = self.re_embed UpperCAmelCase = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: UpperCAmelCase = n_e UpperCAmelCase = sane_index_shape def A ( self : Tuple , lowercase : Any ): '''simple docstring''' UpperCAmelCase = inds.shape assert len(lowercase ) > 1 UpperCAmelCase = inds.reshape(ishape[0] , -1 ) UpperCAmelCase = self.used.to(lowercase ) UpperCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase = match.argmax(-1 ) UpperCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase = self.unknown_index return new.reshape(lowercase ) def A ( self : Union[str, Any] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = inds.shape assert len(lowercase ) > 1 UpperCAmelCase = inds.reshape(ishape[0] , -1 ) UpperCAmelCase = self.used.to(lowercase ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase = 0 # simply set to zero UpperCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowercase ) return back.reshape(lowercase ) def A ( self : Tuple , lowercase : Any ): '''simple docstring''' UpperCAmelCase = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase = torch.argmin(torch.cdist(lowercase , self.embedding.weight ) , dim=1 ) UpperCAmelCase = self.embedding(lowercase ).view(z.shape ) UpperCAmelCase = None UpperCAmelCase = None # compute loss for embedding if not self.legacy: UpperCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase = self.remap_to_used(lowercase ) UpperCAmelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def A ( self : int , lowercase : str , lowercase : List[Any] ): '''simple docstring''' if self.remap is not None: UpperCAmelCase = indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase = self.unmap_to_all(lowercase ) UpperCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase = self.embedding(lowercase ) if shape is not None: UpperCAmelCase = z_q.view(lowercase ) # reshape back to match original input shape UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _a ( __a ): def __init__( self : List[Any] , lowercase : Dict , lowercase : List[Any]=False ): '''simple docstring''' UpperCAmelCase = parameters UpperCAmelCase , UpperCAmelCase = torch.chunk(lowercase , 2 , dim=1 ) UpperCAmelCase = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase = deterministic UpperCAmelCase = torch.exp(0.5 * self.logvar ) UpperCAmelCase = torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase = UpperCAmelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def A ( self : List[Any] , lowercase : Optional[torch.Generator] = None ): '''simple docstring''' UpperCAmelCase = randn_tensor( self.mean.shape , generator=lowercase , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase = self.mean + self.std * sample return x def A ( self : Optional[int] , lowercase : Dict=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def A ( self : List[str] , lowercase : List[Any] , lowercase : List[str]=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowercase ) def A ( self : List[Any] ): '''simple docstring''' return self.mean
34
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A =logging.get_logger(__name__) A ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __a ): __a : List[Any] = """marian""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class _a ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowercase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowercase , lowercase ) UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase ) UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
34
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A ={ 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
'''simple docstring''' import os def snake_case_ (): UpperCAmelCase = os.path.join(os.path.dirname(_a ) , '''num.txt''' ) with open(_a ) as file_hand: return str(sum(int(_a ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
34
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A =None A =logging.get_logger(__name__) A ='▁' A ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A ={ 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A ={ 'google/pegasus-xsum': 5_12, } class _a ( __a ): __a : Optional[Any] = VOCAB_FILES_NAMES __a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = PegasusTokenizer __a : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : str="<pad>" , lowercase : Union[str, Any]="</s>" , lowercase : List[Any]="<unk>" , lowercase : Tuple="<mask_2>" , lowercase : Any="<mask_1>" , lowercase : List[Any]=None , lowercase : Any=103 , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase = offset if additional_special_tokens is not None: if not isinstance(lowercase , lowercase ): raise TypeError( f"additional_special_tokens should be of type {type(lowercase )}, but is" f" {type(lowercase )}" ) UpperCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(lowercase ) , self.offset - 1 ) ] if len(set(lowercase ) ) != len(lowercase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) UpperCAmelCase = additional_special_tokens_extended else: UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( lowercase , tokenizer_file=lowercase , pad_token=lowercase , eos_token=lowercase , unk_token=lowercase , mask_token=lowercase , mask_token_sent=lowercase , offset=lowercase , additional_special_tokens=lowercase , **lowercase , ) UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def A ( self : List[Any] , lowercase : List , lowercase : Optional[List] = None , lowercase : bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowercase ) elif token_ids_a is None: return self._special_token_mask(lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def A ( self : List[str] , lowercase : Union[str, Any] , lowercase : List[Any]=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A ( self : Optional[int] , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase = os.path.join( lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
34
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A =logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') A ={ 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A ={ 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A =sorted(arg_to_scheduler.keys()) A ='{' + ', '.join(arg_to_scheduler_choices) + '}' class _a ( pl.LightningModule ): def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase ) UpperCAmelCase = 0 UpperCAmelCase = Path(self.hparams.output_dir ) UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , ) else: UpperCAmelCase = config UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase , lowercase ): assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , lowercase , getattr(self.hparams , lowercase ) ) if tokenizer is None: UpperCAmelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , ) else: UpperCAmelCase = tokenizer UpperCAmelCase = MODEL_MODES[mode] if model is None: UpperCAmelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , ) else: UpperCAmelCase = model def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] UpperCAmelCase = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase = Adafactor( lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase ) else: UpperCAmelCase = AdamW( lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase = optimizer UpperCAmelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def A ( self : List[Any] , lowercase : int , lowercase : List[str] ): '''simple docstring''' return self.validation_step(lowercase , lowercase ) def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' return self.validation_end(lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def A ( self : List[str] , lowercase : Any ): '''simple docstring''' if stage == "test": UpperCAmelCase = len(self.test_dataloader().dataset ) else: UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase ) UpperCAmelCase = len(self.train_dataloader().dataset ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def A ( self : Union[str, Any] ): '''simple docstring''' return self.train_loader def A ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : List[Any] ): '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : Any , lowercase : Union[str, Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def A ( self : List[str] , lowercase : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' ) UpperCAmelCase = self.step_count self.model.save_pretrained(lowercase ) self.tokenizer.save_pretrained(lowercase ) @staticmethod def A ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class _a ( pl.Callback ): def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase ) class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase ) def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log results for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log and save results to file UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase , '''w''' ) as writer: for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def snake_case_ (_a : int , _a : Optional[Any] ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ): pl.seed_everything(args.seed ) # init model UpperCAmelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_a ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_a ) if logging_callback is None: UpperCAmelCase = LoggingCallback() UpperCAmelCase = {} if args.fpaa: UpperCAmelCase = 1_6 if args.gpus > 1: UpperCAmelCase = '''auto''' UpperCAmelCase = '''ddp''' UpperCAmelCase = args.accumulate_grad_batches UpperCAmelCase = None UpperCAmelCase = '''auto''' UpperCAmelCase = pl.Trainer.from_argparse_args( _a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , ) if args.do_train: trainer.fit(_a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
34
1
'''simple docstring''' def snake_case_ (_a : Tuple ): UpperCAmelCase = [0] * len(_a ) UpperCAmelCase = [] UpperCAmelCase = [1] * len(_a ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCAmelCase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_a ) print(max(_a ) ) # Adjacency list of Graph A ={0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
34
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue UpperCAmelCase = cst_fwd.get(_a , np.inf ) UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) UpperCAmelCase = new_cost_f UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ): UpperCAmelCase = -1 UpperCAmelCase = set() UpperCAmelCase = set() UpperCAmelCase = {source: 0} UpperCAmelCase = {destination: 0} UpperCAmelCase = {source: None} UpperCAmelCase = {destination: None} UpperCAmelCase = PriorityQueue() UpperCAmelCase = PriorityQueue() UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): UpperCAmelCase , UpperCAmelCase = queue_forward.get() visited_forward.add(_a ) UpperCAmelCase , UpperCAmelCase = queue_backward.get() visited_backward.add(_a ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: UpperCAmelCase = shortest_distance return shortest_path_distance A ={ 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } A ={ 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
34
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _a ( __a ): __a : List[str] = """mobilenet_v1""" def __init__( self : str , lowercase : Dict=3 , lowercase : str=224 , lowercase : Tuple=1.0 , lowercase : Optional[int]=8 , lowercase : Optional[int]="relu6" , lowercase : Any=True , lowercase : Union[str, Any]=0.999 , lowercase : int=0.02 , lowercase : Optional[int]=0.001 , **lowercase : int , ): '''simple docstring''' super().__init__(**lowercase ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = depth_multiplier UpperCAmelCase = min_depth UpperCAmelCase = hidden_act UpperCAmelCase = tf_padding UpperCAmelCase = classifier_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps class _a ( __a ): __a : Tuple = version.parse("""1.11""" ) @property def A ( self : List[str] ): '''simple docstring''' return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def A ( self : List[str] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def A ( self : Union[str, Any] ): '''simple docstring''' return 1E-4
34
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) def snake_case_ (_a : List[str] ): UpperCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCAmelCase = 1_2_8 elif "12-12" in model_name: UpperCAmelCase = 1_2 UpperCAmelCase = 1_2 elif "14-14" in model_name: UpperCAmelCase = 1_4 UpperCAmelCase = 1_4 elif "16-16" in model_name: UpperCAmelCase = 1_6 UpperCAmelCase = 1_6 else: raise ValueError('''Model not supported''' ) UpperCAmelCase = '''huggingface/label-files''' if "speech-commands" in model_name: UpperCAmelCase = 3_5 UpperCAmelCase = '''speech-commands-v2-id2label.json''' else: UpperCAmelCase = 5_2_7 UpperCAmelCase = '''audioset-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (_a : Tuple ): if "module.v" in name: UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def snake_case_ (_a : Dict , _a : List[Any] ): for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(_a ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[3] ) UpperCAmelCase = config.hidden_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def snake_case_ (_a : Tuple ): UpperCAmelCase = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(_a , _a ) @torch.no_grad() def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ): UpperCAmelCase = get_audio_spectrogram_transformer_config(_a ) UpperCAmelCase = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict UpperCAmelCase = model_name_to_url[model_name] UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' ) # remove some keys remove_keys(_a ) # rename some keys UpperCAmelCase = convert_state_dict(_a , _a ) # load 🤗 model UpperCAmelCase = ASTForAudioClassification(_a ) model.eval() model.load_state_dict(_a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8 UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a ) if "speech-commands" in model_name: UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) UpperCAmelCase = dataset[0]['''audio''']['''array'''] else: UpperCAmelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a ) UpperCAmelCase = waveform.squeeze().numpy() UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**_a ) UpperCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(F"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_a ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F"MIT/{model_name}" ) feature_extractor.push_to_hub(F"MIT/{model_name}" ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
1
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal A =logging.get_logger(__name__) A =TypeVar('DatasetType', Dataset, IterableDataset) def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) else: return _interleave_iterable_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a ) else: return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
34
'''simple docstring''' from __future__ import annotations def snake_case_ (_a : Dict , _a : str , _a : Optional[Any] , _a : List[str] ): # noqa: E741 while r - l > 1: UpperCAmelCase = (l + r) // 2 if v[m] >= key: UpperCAmelCase = m else: UpperCAmelCase = m # noqa: E741 return r def snake_case_ (_a : list[int] ): if len(_a ) == 0: return 0 UpperCAmelCase = [0] * len(_a ) UpperCAmelCase = 1 UpperCAmelCase = v[0] for i in range(1 , len(_a ) ): if v[i] < tail[0]: UpperCAmelCase = v[i] elif v[i] > tail[length - 1]: UpperCAmelCase = v[i] length += 1 else: UpperCAmelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
34
1
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _a ( __a ): def __init__( self : List[str] , lowercase : Optional[Any] , lowercase : int=13 , lowercase : Dict=7 , lowercase : Any=True , lowercase : int=True , lowercase : Optional[int]=False , lowercase : List[str]=True , lowercase : str=99 , lowercase : int=32 , lowercase : Tuple=5 , lowercase : List[str]=4 , lowercase : Optional[Any]=37 , lowercase : Optional[int]="gelu" , lowercase : Optional[int]=0.1 , lowercase : str=0.1 , lowercase : Union[str, Any]=512 , lowercase : List[str]=16 , lowercase : Optional[Any]=2 , lowercase : str=0.02 , lowercase : str=3 , lowercase : List[Any]=4 , lowercase : Union[str, Any]=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[str] ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A ( self : Union[str, Any] , lowercase : int , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Any , lowercase : Any , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = DistilBertModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' UpperCAmelCase = DistilBertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , lowercase : int , lowercase : Tuple , lowercase : Optional[Any] , lowercase : str , lowercase : List[Any] , lowercase : str ): '''simple docstring''' UpperCAmelCase = DistilBertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model( lowercase , attention_mask=lowercase , start_positions=lowercase , end_positions=lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Tuple , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : int ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = DistilBertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Any , lowercase : str , lowercase : Optional[Any] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = DistilBertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Any , lowercase : Tuple , lowercase : List[str] , lowercase : Dict , lowercase : Union[str, Any] , lowercase : Any , lowercase : str ): '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = DistilBertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase , attention_mask=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( __a , __a , unittest.TestCase ): __a : int = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __a : Any = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) __a : List[str] = True __a : Optional[int] = True __a : Optional[Any] = True __a : Union[str, Any] = True def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = DistilBertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , dim=37 ) def A ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) @slow def A ( self : Tuple ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = DistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @slow @require_torch_gpu def A ( self : str ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return UpperCAmelCase = True UpperCAmelCase = model_class(config=lowercase ) UpperCAmelCase = self._prepare_for_class(lowercase , lowercase ) UpperCAmelCase = torch.jit.trace( lowercase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase , os.path.join(lowercase , '''traced_model.pt''' ) ) UpperCAmelCase = torch.jit.load(os.path.join(lowercase , '''traced_model.pt''' ) , map_location=lowercase ) loaded(inputs_dict['''input_ids'''].to(lowercase ) , inputs_dict['''attention_mask'''].to(lowercase ) ) @require_torch class _a ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(lowercase , attention_mask=lowercase )[0] UpperCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) UpperCAmelCase = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
34
'''simple docstring''' def snake_case_ (_a : str , _a : str ): UpperCAmelCase = len(_a ) + 1 UpperCAmelCase = len(_a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase = [[0 for i in range(_a )] for j in range(_a )] # since string of zero length match pattern of zero length UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _a ): UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _a ): UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _a ): for j in range(1 , _a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase = dp[i - 1][j] else: UpperCAmelCase = 0 else: UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") A ='aab' A ='c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
34
1
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _a ( __a ): __a : str = ["""vqvae"""] def __init__( self : str , lowercase : AutoencoderKL , lowercase : UNetaDConditionModel , lowercase : Mel , lowercase : Union[DDIMScheduler, DDPMScheduler] , ): '''simple docstring''' super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' return 50 if isinstance(self.scheduler , lowercase ) else 1_000 @torch.no_grad() def __call__( self : Optional[Any] , lowercase : int = 1 , lowercase : str = None , lowercase : np.ndarray = None , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = None , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : float = 0 , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : torch.Tensor = None , lowercase : torch.Tensor = None , lowercase : Tuple=True , ): '''simple docstring''' UpperCAmelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCAmelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase , device=self.device , ) UpperCAmelCase = noise UpperCAmelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase , lowercase ) UpperCAmelCase = self.mel.audio_slice_to_image(lowercase ) UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) UpperCAmelCase = (input_image / 255) * 2 - 1 UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample( generator=lowercase )[0] UpperCAmelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] ) UpperCAmelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCAmelCase = int(mask_start_secs * pixels_per_second ) UpperCAmelCase = int(mask_end_secs * pixels_per_second ) UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase ): UpperCAmelCase = self.unet(lowercase , lowercase , lowercase )['''sample'''] else: UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] if isinstance(self.scheduler , lowercase ): UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )['''prev_sample'''] else: UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )['''prev_sample'''] if mask is not None: if mask_start > 0: UpperCAmelCase = mask[:, step, :, :mask_start] if mask_end > 0: UpperCAmelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images UpperCAmelCase = self.vqvae.decode(lowercase )['''sample'''] UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCAmelCase = (images * 255).round().astype('''uint8''' ) UpperCAmelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) ) UpperCAmelCase = [self.mel.image_to_audio(lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) ) @torch.no_grad() def A ( self : Dict , lowercase : List[Image.Image] , lowercase : int = 50 ): '''simple docstring''' assert isinstance(self.scheduler , lowercase ) self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) UpperCAmelCase = (sample / 255) * 2 - 1 UpperCAmelCase = torch.Tensor(lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCAmelCase = self.scheduler.alphas_cumprod[t] UpperCAmelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def A ( lowercase : torch.Tensor , lowercase : torch.Tensor , lowercase : float ): '''simple docstring''' UpperCAmelCase = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
34
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A ='pt' elif is_tf_available(): A ='tf' else: A ='jax' class _a ( __a , unittest.TestCase ): __a : Optional[Any] = PerceiverTokenizer __a : str = False def A ( self : Union[str, Any] ): '''simple docstring''' super().setUp() UpperCAmelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : Optional[int] ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def A ( self : Union[str, Any] , **lowercase : int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ): '''simple docstring''' UpperCAmelCase = [] for i in range(len(lowercase ) ): try: UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) ) UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: UpperCAmelCase = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase = [t[0] for t in toks] # Ensure consistency UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: UpperCAmelCase = ''' ''' + output_txt UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = '''Unicode €.''' UpperCAmelCase = tokenizer(lowercase ) UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' ) UpperCAmelCase = tokenizer('''e è é ê ë''' ) UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": UpperCAmelCase = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowercase ) self.assertIn('''attention_mask''' , lowercase ) self.assertNotIn('''decoder_input_ids''' , lowercase ) self.assertNotIn('''decoder_attention_mask''' , lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = [ '''Summary of the text.''', '''Another summary.''', ] UpperCAmelCase = tokenizer( text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) UpperCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) UpperCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )] UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def A ( self : Union[str, Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : str ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
34
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A ={'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure)
34
'''simple docstring''' import os from distutils.util import strtobool def snake_case_ (_a : Union[str, Any] , _a : List[Any] ): for e in env_keys: UpperCAmelCase = int(os.environ.get(_a , -1 ) ) if val >= 0: return val return default def snake_case_ (_a : Dict , _a : Any=False ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return strtobool(_a ) == 1 # As its name indicates `strtobool` actually returns an int... def snake_case_ (_a : str , _a : Optional[Any]="no" ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return value
34
1
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f class _a ( __a ): def A ( self : int ): '''simple docstring''' UpperCAmelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase ) def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(lowercase , '''argv''' , lowercase ): UpperCAmelCase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase , 0.666 ) @slow @require_torch_non_multi_gpu def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(lowercase ) UpperCAmelCase = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(lowercase ) UpperCAmelCase = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(lowercase )
34
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A =logging.getLogger(__name__) A ='Hello world! cécé herlolip' A =namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def snake_case_ (_a : List[Any] , _a : Any ): UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) UpperCAmelCase = torch.load(_a , lambda _a , _a : storage ) UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a ) original.eval() UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase = encoder_input_ids UpperCAmelCase = decoder_input_ids UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0] UpperCAmelCase = original.generator(_a ) UpperCAmelCase = new_model( _a , _a , _a , _a , _a )[0] UpperCAmelCase = new_model.generator(_a ) UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) A =parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
34
1
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers A =float('nan') class _a : def __init__( self : List[str] , lowercase : str ): '''simple docstring''' UpperCAmelCase = sys.stdout UpperCAmelCase = open(lowercase , '''a''' ) def __getattr__( self : List[str] , lowercase : Union[str, Any] ): '''simple docstring''' return getattr(self.stdout , lowercase ) def A ( self : str , lowercase : str ): '''simple docstring''' self.stdout.write(lowercase ) # strip tqdm codes self.file.write(re.sub(R'''^.*\r''' , '''''' , lowercase , 0 , re.M ) ) def snake_case_ (_a : Dict=8_0 , _a : int=False ): UpperCAmelCase = [] # deal with critical env vars UpperCAmelCase = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: UpperCAmelCase = os.environ.get(_a , _a ) if val is not None: cmd.append(F"{key}={val}" ) # python executable (not always needed if the script is executable) UpperCAmelCase = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(_a ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes UpperCAmelCase = [] UpperCAmelCase = '''''' while len(_a ) > 0: current_line += F"{cmd.pop(0 )} " if len(_a ) == 0 or len(_a ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_a ) UpperCAmelCase = '''''' return "\\\n".join(_a ) def snake_case_ (_a : Optional[Any] , _a : Any ): # unwrap multi-line input UpperCAmelCase = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own UpperCAmelCase = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += F" --output_dir {output_dir}" # ensure we have --overwrite_output_dir UpperCAmelCase = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def snake_case_ (_a : List[str] , _a : int , _a : Dict , _a : str , _a : Optional[int] , _a : int , _a : Optional[Any] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_0_0 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) UpperCAmelCase = subprocess.run(_a , capture_output=_a , text=_a ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams UpperCAmelCase = variation.replace(''' ''' , '''-''' ) with open(Path(_a ) / F"log.{prefix}.stdout.txt" , '''w''' ) as f: f.write(result.stdout ) with open(Path(_a ) / F"log.{prefix}.stderr.txt" , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(F"{output_dir}/all_results.json" , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = json.load(_a ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def snake_case_ (_a : List[Any] , _a : Optional[int] , _a : Tuple , _a : Optional[Any] , _a : Optional[Any] , _a : Optional[int] , _a : Dict , _a : List[Any] , _a : Optional[Any] , _a : List[str] , ): UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = F"{id}: {variation:<{longest_variation_len}}" UpperCAmelCase = F"{preamble}: " UpperCAmelCase = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_a ) , desc=_a , leave=_a ): UpperCAmelCase = process_run_single( _a , _a , _a , _a , _a , _a , _a ) UpperCAmelCase = single_run_metrics[target_metric_key] if not math.isnan(_a ): metrics.append(_a ) results.append(_a ) outcome += "✓" else: outcome += "✘" UpperCAmelCase = F"\33[2K\r{outcome}" if len(_a ) > 0: UpperCAmelCase = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} UpperCAmelCase = round(mean_metrics[target_metric_key] , 2 ) UpperCAmelCase = F"{outcome} {mean_target}" if len(_a ) > 1: results_str += F" {tuple(round(_a , 2 ) for x in results )}" print(_a ) UpperCAmelCase = variation return mean_metrics else: print(_a ) return {variation_key: variation, target_metric_key: nan} def snake_case_ (): UpperCAmelCase = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return F"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**3_0:0.2f}GB\n" def snake_case_ (_a : int , _a : str , _a : List[Any] , _a : Union[str, Any] , _a : Optional[Any] ): UpperCAmelCase = pd.DataFrame(_a ) UpperCAmelCase = '''variation''' UpperCAmelCase = '''diff_%''' UpperCAmelCase = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan UpperCAmelCase = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_a ): # as a fallback, use the minimal value as the sentinel UpperCAmelCase = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_a ): UpperCAmelCase = df.apply( lambda _a : round(1_0_0 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns UpperCAmelCase = [variation_key, target_metric_key, diff_key, *report_metric_keys] UpperCAmelCase = df.reindex(_a , axis='''columns''' ) # reorder cols # capitalize UpperCAmelCase = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible UpperCAmelCase = df.rename(lambda _a : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) UpperCAmelCase = df.rename(lambda _a : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) UpperCAmelCase = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_a , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_a , floatfmt='''.2f''' )] print('''\n\n'''.join(_a ) ) def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=_a , type=_a , required=_a , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=_a , type=_a , nargs='''+''' , required=_a , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=_a , type=_a , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=_a , type=_a , required=_a , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=_a , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=_a , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=_a , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=_a , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.output_dir Path(_a ).mkdir(exist_ok=_a ) UpperCAmelCase = get_base_command(_a , _a ) # split each dimension into its --foo variations UpperCAmelCase = [list(map(str.strip , re.split(R'''\|''' , _a ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty UpperCAmelCase = list(map(str.strip , map(''' '''.join , itertools.product(*_a ) ) ) ) UpperCAmelCase = max(len(_a ) for x in variations ) # split wanted keys UpperCAmelCase = args.report_metric_keys.split() # capture prints into a log file for convenience UpperCAmelCase = F"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(F"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(F"and this script's output is also piped into {report_fn}" ) UpperCAmelCase = Tee(_a ) print(F"\n*** Running {len(_a )} benchmarks:" ) print(F"Base command: {' '.join(_a )}" ) UpperCAmelCase = '''variation''' UpperCAmelCase = [] for id, variation in enumerate(tqdm(_a , desc='''Total completion: ''' , leave=_a ) ): UpperCAmelCase = base_cmd + variation.split() results.append( process_run( id + 1 , _a , _a , _a , _a , args.target_metric_key , _a , args.repeat_times , _a , args.verbose , ) ) process_results(_a , args.target_metric_key , _a , args.base_variation , _a ) if __name__ == "__main__": main()
34
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : Any = ["""flax""", """transformers"""] def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] )
34
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __a ): __a : Optional[int] = ["""image_processor""", """tokenizer"""] __a : str = """CLIPImageProcessor""" __a : Optional[Any] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[int] , lowercase : int=None , lowercase : Tuple=None , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase , lowercase ) def __call__( self : int , lowercase : List[str]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : int ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A ( self : int , *lowercase : Any , **lowercase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Optional[Any] , *lowercase : Any , **lowercase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : List[Any] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , ) return self.image_processor_class @property def A ( self : Any ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase , ) return self.image_processor
34
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) A ={ 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } A ={ 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def snake_case_ (_a : List[str] ): UpperCAmelCase = EfficientNetConfig() UpperCAmelCase = CONFIG_MAP[model_name]['''hidden_dim'''] UpperCAmelCase = CONFIG_MAP[model_name]['''width_coef'''] UpperCAmelCase = CONFIG_MAP[model_name]['''depth_coef'''] UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = CONFIG_MAP[model_name]['''dropout_rate'''] UpperCAmelCase = CONFIG_MAP[model_name]['''dw_padding'''] UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = 1_0_0_0 UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (): UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw ) return im def snake_case_ (_a : str ): UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_a , ) return preprocessor def snake_case_ (_a : Optional[Any] ): UpperCAmelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] UpperCAmelCase = sorted(set(_a ) ) UpperCAmelCase = len(_a ) UpperCAmelCase = {b: str(_a ) for b, i in zip(_a , range(_a ) )} UpperCAmelCase = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: UpperCAmelCase = block_name_mapping[b] rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase = '''efficientnet.''' + item[1] UpperCAmelCase = '''classifier.weight''' UpperCAmelCase = '''classifier.bias''' return key_mapping def snake_case_ (_a : Dict , _a : List[str] , _a : Dict ): for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase = torch.from_numpy(_a ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase = torch.from_numpy(_a ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase = torch.from_numpy(np.transpose(_a ) ) else: UpperCAmelCase = torch.from_numpy(_a ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_a ) @torch.no_grad() def snake_case_ (_a : Optional[Any] , _a : List[str] , _a : Optional[int] , _a : Dict ): UpperCAmelCase = model_classes[model_name]( include_top=_a , weights='''imagenet''' , input_tensor=_a , input_shape=_a , pooling=_a , classes=1_0_0_0 , classifier_activation='''softmax''' , ) UpperCAmelCase = original_model.trainable_variables UpperCAmelCase = original_model.non_trainable_variables UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase = param.numpy() UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase = get_efficientnet_config(_a ) UpperCAmelCase = EfficientNetForImageClassification(_a ).eval() UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) UpperCAmelCase = rename_keys(_a ) replace_params(_a , _a , _a ) # Initialize preprocessor and preprocess input image UpperCAmelCase = convert_image_processor(_a ) UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase = hf_model(**_a ) UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase = False UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase = image.img_to_array(_a ) UpperCAmelCase = np.expand_dims(_a , axis=0 ) UpperCAmelCase = original_model.predict(_a ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_a , _a , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_a ): os.mkdir(_a ) # Save converted model and image processor hf_model.save_pretrained(_a ) preprocessor.save_pretrained(_a ) if push_to_hub: # Push model and image processor to hub print(F"Pushing converted {model_name} to the hub..." ) UpperCAmelCase = F"efficientnet-{model_name}" preprocessor.push_to_hub(_a ) hf_model.push_to_hub(_a ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') A =parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
34
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A =logging.get_logger(__name__) def snake_case_ (_a : List[Any] ): if isinstance(_a , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_a , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_a ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class _a ( __a ): __a : Optional[Any] = ["""pixel_values"""] def __init__( self : List[str] , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : str , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Any , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(lowercase , size['''shortest_edge'''] , default_to_square=lowercase ) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase ) def A ( self : Dict , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Tuple , ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : str , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ): '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A ( self : List[str] , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(lowercase ) if do_resize: UpperCAmelCase = self.resize(image=lowercase , size=lowercase , resample=lowercase ) if do_center_crop: UpperCAmelCase = self.center_crop(lowercase , size=lowercase ) if do_rescale: UpperCAmelCase = self.rescale(image=lowercase , scale=lowercase ) if do_normalize: UpperCAmelCase = self.normalize(image=lowercase , mean=lowercase , std=lowercase ) UpperCAmelCase = to_channel_dimension_format(lowercase , lowercase ) return image def A ( self : Optional[Any] , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase = make_batched(lowercase ) UpperCAmelCase = [ [ self._preprocess_image( image=lowercase , do_resize=lowercase , size=lowercase , resample=lowercase , do_center_crop=lowercase , crop_size=lowercase , do_rescale=lowercase , rescale_factor=lowercase , do_normalize=lowercase , image_mean=lowercase , image_std=lowercase , data_format=lowercase , ) for img in video ] for video in videos ] UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=lowercase , tensor_type=lowercase )
34
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A =input('Enter image url: ').strip() print(f"""Downloading image from {url} ...""") A =BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image A =soup.find('meta', {'property': 'og:image'})['content'] A =requests.get(image_url).content A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
34
1
'''simple docstring''' def snake_case_ (_a : int , _a : int ): while b: UpperCAmelCase , UpperCAmelCase = b, a % b return a def snake_case_ (_a : int , _a : int ): return a if b == 0 else euclidean_gcd_recursive(_a , a % b ) def snake_case_ (): print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
34
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _a ( __a ): __a : str = ["""vqvae"""] def __init__( self : str , lowercase : AutoencoderKL , lowercase : UNetaDConditionModel , lowercase : Mel , lowercase : Union[DDIMScheduler, DDPMScheduler] , ): '''simple docstring''' super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' return 50 if isinstance(self.scheduler , lowercase ) else 1_000 @torch.no_grad() def __call__( self : Optional[Any] , lowercase : int = 1 , lowercase : str = None , lowercase : np.ndarray = None , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = None , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : float = 0 , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : torch.Tensor = None , lowercase : torch.Tensor = None , lowercase : Tuple=True , ): '''simple docstring''' UpperCAmelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCAmelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase , device=self.device , ) UpperCAmelCase = noise UpperCAmelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase , lowercase ) UpperCAmelCase = self.mel.audio_slice_to_image(lowercase ) UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) UpperCAmelCase = (input_image / 255) * 2 - 1 UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample( generator=lowercase )[0] UpperCAmelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] ) UpperCAmelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCAmelCase = int(mask_start_secs * pixels_per_second ) UpperCAmelCase = int(mask_end_secs * pixels_per_second ) UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase ): UpperCAmelCase = self.unet(lowercase , lowercase , lowercase )['''sample'''] else: UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] if isinstance(self.scheduler , lowercase ): UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )['''prev_sample'''] else: UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )['''prev_sample'''] if mask is not None: if mask_start > 0: UpperCAmelCase = mask[:, step, :, :mask_start] if mask_end > 0: UpperCAmelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images UpperCAmelCase = self.vqvae.decode(lowercase )['''sample'''] UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCAmelCase = (images * 255).round().astype('''uint8''' ) UpperCAmelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) ) UpperCAmelCase = [self.mel.image_to_audio(lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) ) @torch.no_grad() def A ( self : Dict , lowercase : List[Image.Image] , lowercase : int = 50 ): '''simple docstring''' assert isinstance(self.scheduler , lowercase ) self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) UpperCAmelCase = (sample / 255) * 2 - 1 UpperCAmelCase = torch.Tensor(lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCAmelCase = self.scheduler.alphas_cumprod[t] UpperCAmelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def A ( lowercase : torch.Tensor , lowercase : torch.Tensor , lowercase : float ): '''simple docstring''' UpperCAmelCase = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
34
1
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def snake_case_ (_a : str ): UpperCAmelCase = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def snake_case_ (_a : Union[str, Any] , _a : str ): UpperCAmelCase = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def snake_case_ (_a : Union[str, Any] ): UpperCAmelCase = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') ) return token def snake_case_ (): UpperCAmelCase = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def snake_case_ (_a : Optional[Any] , _a : str , _a : Dict , _a : Optional[Any] ): UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = 1_0_0_0 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = num_labels UpperCAmelCase = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = UpperCAmelCase = CvtConfig(num_labels=_a , idalabel=_a , labelaid=_a ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": UpperCAmelCase = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": UpperCAmelCase = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCAmelCase = [2, 2, 2_0] UpperCAmelCase = [3, 1_2, 1_6] UpperCAmelCase = [1_9_2, 7_6_8, 1_0_2_4] UpperCAmelCase = CvtForImageClassification(_a ) UpperCAmelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) UpperCAmelCase = image_size UpperCAmelCase = torch.load(_a , map_location=torch.device('''cpu''' ) ) UpperCAmelCase = OrderedDict() UpperCAmelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCAmelCase = list_of_state_dict + cls_token(_a ) UpperCAmelCase = list_of_state_dict + embeddings(_a ) for cnt in range(config.depth[idx] ): UpperCAmelCase = list_of_state_dict + attention(_a , _a ) UpperCAmelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(_a ) for i in range(len(_a ) ): UpperCAmelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_a ) model.save_pretrained(_a ) image_processor.save_pretrained(_a ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_84, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A =parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
34
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal A =logging.get_logger(__name__) A =TypeVar('DatasetType', Dataset, IterableDataset) def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) else: return _interleave_iterable_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a ) else: return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
34
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A =TypeVar('T') A =TypeVar('U') class _a ( Generic[T, U] ): def __init__( self : str , lowercase : T | None , lowercase : U | None ): '''simple docstring''' UpperCAmelCase = key UpperCAmelCase = val UpperCAmelCase = None UpperCAmelCase = None def __repr__( self : Optional[int] ): '''simple docstring''' return ( f"Node: key: {self.key}, val: {self.val}, " f"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class _a ( Generic[T, U] ): def __init__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = DoubleLinkedListNode(lowercase , lowercase ) UpperCAmelCase = DoubleLinkedListNode(lowercase , lowercase ) UpperCAmelCase , UpperCAmelCase = self.rear, self.head def __repr__( self : Any ): '''simple docstring''' UpperCAmelCase = ['''DoubleLinkedList'''] UpperCAmelCase = self.head while node.next is not None: rep.append(str(lowercase ) ) UpperCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase ) def A ( self : Any , lowercase : DoubleLinkedListNode[T, U] ): '''simple docstring''' UpperCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCAmelCase = node UpperCAmelCase = previous UpperCAmelCase = node UpperCAmelCase = self.rear def A ( self : Any , lowercase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None UpperCAmelCase = node.next UpperCAmelCase = node.prev UpperCAmelCase = None UpperCAmelCase = None return node class _a ( Generic[T, U] ): __a : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : int , lowercase : int ): '''simple docstring''' UpperCAmelCase = DoubleLinkedList() UpperCAmelCase = capacity UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = {} def __repr__( self : Optional[int] ): '''simple docstring''' return ( f"CacheInfo(hits={self.hits}, misses={self.miss}, " f"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self : str , lowercase : T ): '''simple docstring''' return key in self.cache def A ( self : Union[str, Any] , lowercase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 UpperCAmelCase = self.cache[key] UpperCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase ) return node.val self.miss += 1 return None def A ( self : str , lowercase : T , lowercase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCAmelCase = DoubleLinkedListNode(lowercase , lowercase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCAmelCase = value self.list.add(lowercase ) @classmethod def A ( cls : Any , lowercase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowercase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase : T ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCAmelCase = LRUCache(lowercase ) UpperCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCAmelCase = func(*lowercase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase , '''cache_info''' , lowercase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
34
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
1
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A =logging.getLogger(__name__) A ='Hello world! cécé herlolip' A =namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def snake_case_ (_a : List[Any] , _a : Any ): UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) UpperCAmelCase = torch.load(_a , lambda _a , _a : storage ) UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a ) original.eval() UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase = encoder_input_ids UpperCAmelCase = decoder_input_ids UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0] UpperCAmelCase = original.generator(_a ) UpperCAmelCase = new_model( _a , _a , _a , _a , _a )[0] UpperCAmelCase = new_model.generator(_a ) UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) A =parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
34
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : Any = ["""flax""", """transformers"""] def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] )
34
'''simple docstring''' class _a : def __init__( self : Any ): '''simple docstring''' UpperCAmelCase = {} # Mapping from char to TrieNode UpperCAmelCase = False def A ( self : int , lowercase : list[str] ): '''simple docstring''' for word in words: self.insert(lowercase ) def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: UpperCAmelCase = TrieNode() UpperCAmelCase = curr.nodes[char] UpperCAmelCase = True def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: return False UpperCAmelCase = curr.nodes[char] return curr.is_leaf def A ( self : str , lowercase : str ): '''simple docstring''' def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool: if index == len(lowercase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase = False return len(curr.nodes ) == 0 UpperCAmelCase = word[index] UpperCAmelCase = curr.nodes.get(lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase = _delete(lowercase , lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowercase , 0 ) def snake_case_ (_a : TrieNode , _a : str ): if node.is_leaf: print(_a , end=''' ''' ) for key, value in node.nodes.items(): print_words(_a , word + key ) def snake_case_ (): UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase = TrieNode() root.insert_many(_a ) # print_words(root, "") assert all(root.find(_a ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def snake_case_ (_a : str , _a : bool ): print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' ) def snake_case_ (): assert test_trie() def snake_case_ (): print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
34
1
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class _a ( __a ): __a : List[str] = """align_text_model""" def __init__( self : Dict , lowercase : str=30_522 , lowercase : List[Any]=768 , lowercase : Union[str, Any]=12 , lowercase : Optional[Any]=12 , lowercase : Union[str, Any]=3_072 , lowercase : Tuple="gelu" , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : Optional[int]=512 , lowercase : Union[str, Any]=2 , lowercase : Dict=0.02 , lowercase : Tuple=1E-12 , lowercase : Any=0 , lowercase : Any="absolute" , lowercase : str=True , **lowercase : Any , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = pad_token_id @classmethod def A ( cls : Any , lowercase : Union[str, os.PathLike] , **lowercase : Dict ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCAmelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) class _a ( __a ): __a : Dict = """align_vision_model""" def __init__( self : int , lowercase : int = 3 , lowercase : int = 600 , lowercase : float = 2.0 , lowercase : float = 3.1 , lowercase : int = 8 , lowercase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowercase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowercase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowercase : List[int] = [] , lowercase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowercase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowercase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowercase : float = 0.25 , lowercase : str = "swish" , lowercase : int = 2_560 , lowercase : str = "mean" , lowercase : float = 0.02 , lowercase : float = 0.001 , lowercase : float = 0.99 , lowercase : float = 0.2 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = width_coefficient UpperCAmelCase = depth_coefficient UpperCAmelCase = depth_divisor UpperCAmelCase = kernel_sizes UpperCAmelCase = in_channels UpperCAmelCase = out_channels UpperCAmelCase = depthwise_padding UpperCAmelCase = strides UpperCAmelCase = num_block_repeats UpperCAmelCase = expand_ratios UpperCAmelCase = squeeze_expansion_ratio UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dim UpperCAmelCase = pooling_type UpperCAmelCase = initializer_range UpperCAmelCase = batch_norm_eps UpperCAmelCase = batch_norm_momentum UpperCAmelCase = drop_connect_rate UpperCAmelCase = sum(lowercase ) * 4 @classmethod def A ( cls : Optional[Any] , lowercase : Union[str, os.PathLike] , **lowercase : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCAmelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) class _a ( __a ): __a : List[Any] = """align""" __a : str = True def __init__( self : Optional[int] , lowercase : Optional[Any]=None , lowercase : Optional[int]=None , lowercase : List[Any]=640 , lowercase : Optional[int]=1.0 , lowercase : List[Any]=0.02 , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) if text_config is None: UpperCAmelCase = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: UpperCAmelCase = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) UpperCAmelCase = AlignTextConfig(**lowercase ) UpperCAmelCase = AlignVisionConfig(**lowercase ) UpperCAmelCase = projection_dim UpperCAmelCase = temperature_init_value UpperCAmelCase = initializer_range @classmethod def A ( cls : str , lowercase : AlignTextConfig , lowercase : AlignVisionConfig , **lowercase : List[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.text_config.to_dict() UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output
34
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( __a ): __a : Union[str, Any] = """encodec""" def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowercase ) @property def A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A ( self : Optional[int] ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
34
1
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig A =logging.getLogger(__name__) class _a ( __a ): __a : List[str] = """masked_bert""" def __init__( self : Any , lowercase : Any=30_522 , lowercase : Optional[Any]=768 , lowercase : Dict=12 , lowercase : str=12 , lowercase : Dict=3_072 , lowercase : List[Any]="gelu" , lowercase : int=0.1 , lowercase : Optional[int]=0.1 , lowercase : int=512 , lowercase : Optional[Any]=2 , lowercase : Dict=0.02 , lowercase : Any=1E-12 , lowercase : str=0 , lowercase : Dict="topK" , lowercase : int="constant" , lowercase : List[Any]=0.0 , **lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , **lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = pruning_method UpperCAmelCase = mask_init UpperCAmelCase = mask_scale
34
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A =logging.get_logger(__name__) class _a ( __a ): __a : str = ["""pixel_values"""] def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase ) def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase ): UpperCAmelCase = target_sizes.numpy() UpperCAmelCase = [] for idx in range(len(lowercase ) ): UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase ) UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase = logits.argmax(dim=1 ) UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
34
1
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
34
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A =logging.getLogger(__name__) def snake_case_ (_a : Dict , _a : Union[str, Any] ): return (preds == labels).mean() @dataclass class _a : __a : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : __a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __a : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) __a : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _a ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase = processors[data_args.task_name]() UpperCAmelCase = processor.get_labels() UpperCAmelCase = len(_a ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_a : EvalPrediction ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_a , p.label_ids )} # Data collator UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_a , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _a , _a ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_a ) return results def snake_case_ (_a : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
34
1
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __a ): __a : int = ["""image_processor""", """tokenizer"""] __a : Union[str, Any] = """ChineseCLIPImageProcessor""" __a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase , lowercase ) UpperCAmelCase = self.image_processor def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : List[Any] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , ) return self.image_processor_class
34
1
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def snake_case_ (_a : str = "" ): UpperCAmelCase = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' UpperCAmelCase = BeautifulSoup(requests.get(_a ).text , '''html.parser''' ) UpperCAmelCase = soup.find_all('''td''' , attrs='''titleColumn''' ) UpperCAmelCase = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_a , _a ) } def snake_case_ (_a : str = "IMDb_Top_250_Movies.csv" ): UpperCAmelCase = get_imdb_top_aaa_movies() with open(_a , '''w''' , newline='''''' ) as out_file: UpperCAmelCase = csv.writer(_a ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
34
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A =logging.get_logger(__name__) A ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __a ): __a : List[Any] = """marian""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class _a ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowercase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowercase , lowercase ) UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase ) UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
34
1
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _a ( __a ): def __init__( self : str , lowercase : Union[str, Any] , lowercase : Tuple=None , lowercase : Any=True , lowercase : Dict=None , **lowercase : int ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = config_class UpperCAmelCase = has_text_modality UpperCAmelCase = kwargs UpperCAmelCase = common_properties def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) UpperCAmelCase = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(lowercase , lowercase ) , msg=f"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(lowercase ): try: setattr(lowercase , lowercase , lowercase ) self.parent.assertEqual( getattr(lowercase , lowercase ) , lowercase , msg=f"`{name} value {idx} expected, but was {getattr(lowercase , lowercase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(lowercase ): try: UpperCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(lowercase , lowercase ) , lowercase , msg=f"`{name} value {idx} expected, but was {getattr(lowercase , lowercase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) UpperCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase = os.path.join(lowercase , '''config.json''' ) config_first.to_json_file(lowercase ) UpperCAmelCase = self.config_class.from_json_file(lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(lowercase ) UpperCAmelCase = self.config_class.from_pretrained(lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) UpperCAmelCase = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase = os.path.join(lowercase , lowercase ) config_first.save_pretrained(lowercase ) UpperCAmelCase = self.config_class.from_pretrained(lowercase , subfolder=lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) UpperCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def A ( self : Union[str, Any] ): '''simple docstring''' if self.config_class.is_composition: return UpperCAmelCase = self.config_class() self.parent.assertIsNotNone(lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = copy.deepcopy(lowercase ) UpperCAmelCase = self.config_class(**lowercase ) UpperCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(lowercase , lowercase ) != value: wrong_values.append((key, getattr(lowercase , lowercase ), value) ) if len(lowercase ) > 0: UpperCAmelCase = '''\n'''.join([f"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(f"The following keys were not properly set in the config:\n{errors}" ) def A ( self : Tuple ): '''simple docstring''' self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
34
'''simple docstring''' import os def snake_case_ (): UpperCAmelCase = os.path.join(os.path.dirname(_a ) , '''num.txt''' ) with open(_a ) as file_hand: return str(sum(int(_a ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
34
1
'''simple docstring''' import numpy as np def snake_case_ (_a : np.array ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
34
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A =logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') A ={ 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A ={ 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A =sorted(arg_to_scheduler.keys()) A ='{' + ', '.join(arg_to_scheduler_choices) + '}' class _a ( pl.LightningModule ): def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase ) UpperCAmelCase = 0 UpperCAmelCase = Path(self.hparams.output_dir ) UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , ) else: UpperCAmelCase = config UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase , lowercase ): assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , lowercase , getattr(self.hparams , lowercase ) ) if tokenizer is None: UpperCAmelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , ) else: UpperCAmelCase = tokenizer UpperCAmelCase = MODEL_MODES[mode] if model is None: UpperCAmelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , ) else: UpperCAmelCase = model def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] UpperCAmelCase = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase = Adafactor( lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase ) else: UpperCAmelCase = AdamW( lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase = optimizer UpperCAmelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def A ( self : List[Any] , lowercase : int , lowercase : List[str] ): '''simple docstring''' return self.validation_step(lowercase , lowercase ) def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' return self.validation_end(lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def A ( self : List[str] , lowercase : Any ): '''simple docstring''' if stage == "test": UpperCAmelCase = len(self.test_dataloader().dataset ) else: UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase ) UpperCAmelCase = len(self.train_dataloader().dataset ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def A ( self : Union[str, Any] ): '''simple docstring''' return self.train_loader def A ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : List[Any] ): '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : Any , lowercase : Union[str, Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def A ( self : List[str] , lowercase : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' ) UpperCAmelCase = self.step_count self.model.save_pretrained(lowercase ) self.tokenizer.save_pretrained(lowercase ) @staticmethod def A ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class _a ( pl.Callback ): def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase ) class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase ) def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log results for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log and save results to file UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase , '''w''' ) as writer: for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def snake_case_ (_a : int , _a : Optional[Any] ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ): pl.seed_everything(args.seed ) # init model UpperCAmelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_a ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_a ) if logging_callback is None: UpperCAmelCase = LoggingCallback() UpperCAmelCase = {} if args.fpaa: UpperCAmelCase = 1_6 if args.gpus > 1: UpperCAmelCase = '''auto''' UpperCAmelCase = '''ddp''' UpperCAmelCase = args.accumulate_grad_batches UpperCAmelCase = None UpperCAmelCase = '''auto''' UpperCAmelCase = pl.Trainer.from_argparse_args( _a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , ) if args.do_train: trainer.fit(_a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
34
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType A =logging.get_logger(__name__) A ={ 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _a ( __a ): __a : Any = """imagegpt""" __a : List[str] = ["""past_key_values"""] __a : str = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[int] , lowercase : List[str]=512 + 1 , lowercase : Optional[int]=32 * 32 , lowercase : Dict=512 , lowercase : List[str]=24 , lowercase : Optional[int]=8 , lowercase : Tuple=None , lowercase : List[str]="quick_gelu" , lowercase : Any=0.1 , lowercase : Any=0.1 , lowercase : str=0.1 , lowercase : str=1E-5 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=True , lowercase : int=True , lowercase : Optional[Any]=False , lowercase : List[Any]=False , lowercase : Optional[int]=False , **lowercase : List[Any] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = n_inner UpperCAmelCase = activation_function UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = scale_attn_weights UpperCAmelCase = use_cache UpperCAmelCase = scale_attn_by_inverse_layer_idx UpperCAmelCase = reorder_and_upcast_attn UpperCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=lowercase , **lowercase ) class _a ( __a ): @property def A ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def A ( self : List[Any] , lowercase : "FeatureExtractionMixin" , lowercase : int = 1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional["TensorType"] = None , lowercase : int = 3 , lowercase : int = 32 , lowercase : int = 32 , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_images(lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = dict(preprocessor(images=lowercase , return_tensors=lowercase ) ) return inputs
34
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue UpperCAmelCase = cst_fwd.get(_a , np.inf ) UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) UpperCAmelCase = new_cost_f UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ): UpperCAmelCase = -1 UpperCAmelCase = set() UpperCAmelCase = set() UpperCAmelCase = {source: 0} UpperCAmelCase = {destination: 0} UpperCAmelCase = {source: None} UpperCAmelCase = {destination: None} UpperCAmelCase = PriorityQueue() UpperCAmelCase = PriorityQueue() UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): UpperCAmelCase , UpperCAmelCase = queue_forward.get() visited_forward.add(_a ) UpperCAmelCase , UpperCAmelCase = queue_backward.get() visited_backward.add(_a ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: UpperCAmelCase = shortest_distance return shortest_path_distance A ={ 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } A ={ 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
34
1
'''simple docstring''' import numpy as np from transformers import Pipeline def snake_case_ (_a : str ): UpperCAmelCase = np.max(_a , axis=-1 , keepdims=_a ) UpperCAmelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_a ) class _a ( __a ): def A ( self : Tuple , **lowercase : Any ): '''simple docstring''' UpperCAmelCase = {} if "second_text" in kwargs: UpperCAmelCase = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def A ( self : Union[str, Any] , lowercase : Any , lowercase : Dict=None ): '''simple docstring''' return self.tokenizer(lowercase , text_pair=lowercase , return_tensors=self.framework ) def A ( self : str , lowercase : List[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Union[str, Any] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = model_outputs.logits[0].numpy() UpperCAmelCase = softmax(lowercase ) UpperCAmelCase = np.argmax(lowercase ) UpperCAmelCase = self.model.config.idalabel[best_class] UpperCAmelCase = probabilities[best_class].item() UpperCAmelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
34
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) def snake_case_ (_a : List[str] ): UpperCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCAmelCase = 1_2_8 elif "12-12" in model_name: UpperCAmelCase = 1_2 UpperCAmelCase = 1_2 elif "14-14" in model_name: UpperCAmelCase = 1_4 UpperCAmelCase = 1_4 elif "16-16" in model_name: UpperCAmelCase = 1_6 UpperCAmelCase = 1_6 else: raise ValueError('''Model not supported''' ) UpperCAmelCase = '''huggingface/label-files''' if "speech-commands" in model_name: UpperCAmelCase = 3_5 UpperCAmelCase = '''speech-commands-v2-id2label.json''' else: UpperCAmelCase = 5_2_7 UpperCAmelCase = '''audioset-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (_a : Tuple ): if "module.v" in name: UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def snake_case_ (_a : Dict , _a : List[Any] ): for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(_a ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[3] ) UpperCAmelCase = config.hidden_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def snake_case_ (_a : Tuple ): UpperCAmelCase = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(_a , _a ) @torch.no_grad() def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ): UpperCAmelCase = get_audio_spectrogram_transformer_config(_a ) UpperCAmelCase = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict UpperCAmelCase = model_name_to_url[model_name] UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' ) # remove some keys remove_keys(_a ) # rename some keys UpperCAmelCase = convert_state_dict(_a , _a ) # load 🤗 model UpperCAmelCase = ASTForAudioClassification(_a ) model.eval() model.load_state_dict(_a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8 UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a ) if "speech-commands" in model_name: UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) UpperCAmelCase = dataset[0]['''audio''']['''array'''] else: UpperCAmelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a ) UpperCAmelCase = waveform.squeeze().numpy() UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**_a ) UpperCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(F"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_a ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F"MIT/{model_name}" ) feature_extractor.push_to_hub(F"MIT/{model_name}" ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class _a ( __a ): __a : str = """fnet""" def __init__( self : List[str] , lowercase : List[Any]=32_000 , lowercase : Union[str, Any]=768 , lowercase : Any=12 , lowercase : Optional[Any]=3_072 , lowercase : List[str]="gelu_new" , lowercase : Any=0.1 , lowercase : Any=512 , lowercase : Any=4 , lowercase : Dict=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=False , lowercase : Union[str, Any]=512 , lowercase : Tuple=3 , lowercase : Union[str, Any]=1 , lowercase : Tuple=2 , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps UpperCAmelCase = use_tpu_fourier_optimizations UpperCAmelCase = tpu_short_seq_length
34
'''simple docstring''' from __future__ import annotations def snake_case_ (_a : Dict , _a : str , _a : Optional[Any] , _a : List[str] ): # noqa: E741 while r - l > 1: UpperCAmelCase = (l + r) // 2 if v[m] >= key: UpperCAmelCase = m else: UpperCAmelCase = m # noqa: E741 return r def snake_case_ (_a : list[int] ): if len(_a ) == 0: return 0 UpperCAmelCase = [0] * len(_a ) UpperCAmelCase = 1 UpperCAmelCase = v[0] for i in range(1 , len(_a ) ): if v[i] < tail[0]: UpperCAmelCase = v[i] elif v[i] > tail[length - 1]: UpperCAmelCase = v[i] length += 1 else: UpperCAmelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
34
1
'''simple docstring''' def snake_case_ (_a : int ): if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
34
'''simple docstring''' def snake_case_ (_a : str , _a : str ): UpperCAmelCase = len(_a ) + 1 UpperCAmelCase = len(_a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase = [[0 for i in range(_a )] for j in range(_a )] # since string of zero length match pattern of zero length UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _a ): UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _a ): UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _a ): for j in range(1 , _a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase = dp[i - 1][j] else: UpperCAmelCase = 0 else: UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") A ='aab' A ='c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
34
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''swin2sr''' __snake_case = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : int , __UpperCAmelCase : int=64 , __UpperCAmelCase : int=1 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Dict=180 , __UpperCAmelCase : Union[str, Any]=[6, 6, 6, 6, 6, 6] , __UpperCAmelCase : Optional[Any]=[6, 6, 6, 6, 6, 6] , __UpperCAmelCase : Union[str, Any]=8 , __UpperCAmelCase : Union[str, Any]=2.0 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : str=False , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Optional[Any]=1e-5 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Union[str, Any]=1.0 , __UpperCAmelCase : List[Any]="1conv" , __UpperCAmelCase : int="pixelshuffle" , **__UpperCAmelCase : str , ) ->Tuple: """simple docstring""" super().__init__(**__UpperCAmelCase ) a = image_size a = patch_size a = num_channels a = embed_dim a = depths a = len(__UpperCAmelCase ) a = num_heads a = window_size a = mlp_ratio a = qkv_bias a = hidden_dropout_prob a = attention_probs_dropout_prob a = drop_path_rate a = hidden_act a = use_absolute_embeddings a = layer_norm_eps a = initializer_range a = upscale a = img_range a = resi_connection a = upsampler
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A ='pt' elif is_tf_available(): A ='tf' else: A ='jax' class _a ( __a , unittest.TestCase ): __a : Optional[Any] = PerceiverTokenizer __a : str = False def A ( self : Union[str, Any] ): '''simple docstring''' super().setUp() UpperCAmelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : Optional[int] ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def A ( self : Union[str, Any] , **lowercase : int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ): '''simple docstring''' UpperCAmelCase = [] for i in range(len(lowercase ) ): try: UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) ) UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: UpperCAmelCase = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase = [t[0] for t in toks] # Ensure consistency UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: UpperCAmelCase = ''' ''' + output_txt UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = '''Unicode €.''' UpperCAmelCase = tokenizer(lowercase ) UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' ) UpperCAmelCase = tokenizer('''e è é ê ë''' ) UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": UpperCAmelCase = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowercase ) self.assertIn('''attention_mask''' , lowercase ) self.assertNotIn('''decoder_input_ids''' , lowercase ) self.assertNotIn('''decoder_attention_mask''' , lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = [ '''Summary of the text.''', '''Another summary.''', ] UpperCAmelCase = tokenizer( text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) UpperCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) UpperCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )] UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def A ( self : Union[str, Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : str ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
34
0
'''simple docstring''' from math import sqrt def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 for i in range(1 , int(sqrt(snake_case_ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case_ ): total += i + n // i elif i == sqrt(snake_case_ ): total += i return total - n def lowerCAmelCase_ ( snake_case_ : int = 1_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = sum( i for i in range(1 , snake_case_ ) if sum_of_divisors(sum_of_divisors(snake_case_ ) ) == i and sum_of_divisors(snake_case_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
1
'''simple docstring''' import os from distutils.util import strtobool def snake_case_ (_a : Union[str, Any] , _a : List[Any] ): for e in env_keys: UpperCAmelCase = int(os.environ.get(_a , -1 ) ) if val >= 0: return val return default def snake_case_ (_a : Dict , _a : Any=False ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return strtobool(_a ) == 1 # As its name indicates `strtobool` actually returns an int... def snake_case_ (_a : str , _a : Optional[Any]="no" ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return value
34
0
'''simple docstring''' from __future__ import annotations class __lowerCAmelCase : '''simple docstring''' def __init__(self : Any , UpperCamelCase : int = 0 ): '''simple docstring''' lowercase__ = key def UpperCamelCase__ (self : str , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) lowercase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(UpperCamelCase ) ^ key ) for ch in content] def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) lowercase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(UpperCamelCase ) ^ key ) for ch in content] def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : int = 0 ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) lowercase__ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowercase__ = '''''' for ch in content: ans += chr(ord(UpperCamelCase ) ^ key ) return ans def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : int = 0 ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) lowercase__ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowercase__ = '''''' for ch in content: ans += chr(ord(UpperCamelCase ) ^ key ) return ans def UpperCamelCase__ (self : str , UpperCamelCase : str , UpperCamelCase : int = 0 ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) try: with open(UpperCamelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(UpperCamelCase , UpperCamelCase ) ) except OSError: return False return True def UpperCamelCase__ (self : Dict , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) try: with open(UpperCamelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(UpperCamelCase , UpperCamelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
2
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A =logging.getLogger(__name__) A ='Hello world! cécé herlolip' A =namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def snake_case_ (_a : List[Any] , _a : Any ): UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) UpperCAmelCase = torch.load(_a , lambda _a , _a : storage ) UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a ) original.eval() UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase = encoder_input_ids UpperCAmelCase = decoder_input_ids UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0] UpperCAmelCase = original.generator(_a ) UpperCAmelCase = new_model( _a , _a , _a , _a , _a )[0] UpperCAmelCase = new_model.generator(_a ) UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) A =parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
34
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase : Optional[int] = 16 lowercase : Optional[Any] = 32 def lowerCAmelCase_ ( snake_case__ , snake_case__ = 16 ): '''simple docstring''' A : int = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A : Optional[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) A : Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A : Optional[int] = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A : Dict = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. A : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A : List[Any] = 16 elif accelerator.mixed_precision != "no": A : Dict = 8 else: A : Tuple = None return tokenizer.pad( snake_case__ , padding='''longest''' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='''pt''' , ) # Instantiate dataloaders. A : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ , drop_last=snake_case__ ) A : int = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : Optional[Any] = config['''lr'''] A : Dict = int(config['''num_epochs'''] ) A : List[str] = int(config['''seed'''] ) A : Optional[int] = int(config['''batch_size'''] ) A : Tuple = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A : str = batch_size // MAX_GPU_BATCH_SIZE A : int = MAX_GPU_BATCH_SIZE set_seed(snake_case__ ) A, A : Optional[Any] = get_dataloaders(snake_case__ , snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A : int = model.to(accelerator.device ) # Instantiate optimizer A : List[Any] = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler A : Any = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A, A, A, A, A : Tuple = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A : Optional[Any] = model(**snake_case__ ) A : Optional[Any] = outputs.loss A : Dict = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A : str = model(**snake_case__ ) A : str = outputs.logits.argmax(dim=-1 ) A, A : List[str] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) A : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , snake_case__ ) def lowerCAmelCase_ ( ): '''simple docstring''' A : str = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case__ , default=snake_case__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A : int = parser.parse_args() A : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
3
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : Any = ["""flax""", """transformers"""] def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] )
34
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=__lowercase ): lowerCamelCase : Tuple = ['''flax''', '''transformers'''] def __init__( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Dict ) -> Dict: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : Dict , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Optional[Any] ) -> str: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class UpperCAmelCase_ ( metaclass=__lowercase ): lowerCamelCase : int = ['''flax''', '''transformers'''] def __init__( self : Tuple , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : Dict , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Tuple ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['flax', 'transformers'] ) class UpperCAmelCase_ ( metaclass=__lowercase ): lowerCamelCase : List[Any] = ['''flax''', '''transformers'''] def __init__( self : str , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Optional[int] ) -> Tuple: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : List[str] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : List[Any] ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : str , *UpperCAmelCase__ : int , **UpperCAmelCase__ : int ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) class UpperCAmelCase_ ( metaclass=__lowercase ): lowerCamelCase : Any = ['''flax''', '''transformers'''] def __init__( self : Any , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Any ) -> Optional[int]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : int , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int ) -> str: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : Tuple , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] )
4
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) A ={ 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } A ={ 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def snake_case_ (_a : List[str] ): UpperCAmelCase = EfficientNetConfig() UpperCAmelCase = CONFIG_MAP[model_name]['''hidden_dim'''] UpperCAmelCase = CONFIG_MAP[model_name]['''width_coef'''] UpperCAmelCase = CONFIG_MAP[model_name]['''depth_coef'''] UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = CONFIG_MAP[model_name]['''dropout_rate'''] UpperCAmelCase = CONFIG_MAP[model_name]['''dw_padding'''] UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = 1_0_0_0 UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (): UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw ) return im def snake_case_ (_a : str ): UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_a , ) return preprocessor def snake_case_ (_a : Optional[Any] ): UpperCAmelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] UpperCAmelCase = sorted(set(_a ) ) UpperCAmelCase = len(_a ) UpperCAmelCase = {b: str(_a ) for b, i in zip(_a , range(_a ) )} UpperCAmelCase = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: UpperCAmelCase = block_name_mapping[b] rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase = '''efficientnet.''' + item[1] UpperCAmelCase = '''classifier.weight''' UpperCAmelCase = '''classifier.bias''' return key_mapping def snake_case_ (_a : Dict , _a : List[str] , _a : Dict ): for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase = torch.from_numpy(_a ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase = torch.from_numpy(_a ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase = torch.from_numpy(np.transpose(_a ) ) else: UpperCAmelCase = torch.from_numpy(_a ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_a ) @torch.no_grad() def snake_case_ (_a : Optional[Any] , _a : List[str] , _a : Optional[int] , _a : Dict ): UpperCAmelCase = model_classes[model_name]( include_top=_a , weights='''imagenet''' , input_tensor=_a , input_shape=_a , pooling=_a , classes=1_0_0_0 , classifier_activation='''softmax''' , ) UpperCAmelCase = original_model.trainable_variables UpperCAmelCase = original_model.non_trainable_variables UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase = param.numpy() UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase = get_efficientnet_config(_a ) UpperCAmelCase = EfficientNetForImageClassification(_a ).eval() UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) UpperCAmelCase = rename_keys(_a ) replace_params(_a , _a , _a ) # Initialize preprocessor and preprocess input image UpperCAmelCase = convert_image_processor(_a ) UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase = hf_model(**_a ) UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase = False UpperCAmelCase = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase = image.img_to_array(_a ) UpperCAmelCase = np.expand_dims(_a , axis=0 ) UpperCAmelCase = original_model.predict(_a ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_a , _a , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_a ): os.mkdir(_a ) # Save converted model and image processor hf_model.save_pretrained(_a ) preprocessor.save_pretrained(_a ) if push_to_hub: # Push model and image processor to hub print(F"Pushing converted {model_name} to the hub..." ) UpperCAmelCase = F"efficientnet-{model_name}" preprocessor.push_to_hub(_a ) hf_model.push_to_hub(_a ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') A =parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
34
0
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> bool: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =len(__snake_case ) _lowercase =[[False for _ in range(m + 1 )] for _ in range(n + 1 )] _lowercase =True for i in range(__snake_case ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _lowercase =True if a[i].islower(): _lowercase =True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A =input('Enter image url: ').strip() print(f"""Downloading image from {url} ...""") A =BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image A =soup.find('meta', {'property': 'og:image'})['content'] A =requests.get(image_url).content A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
34
0
def __lowerCAmelCase ( a__ , a__ = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis __a = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __a = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(a__ , 1 ): if n < _p: # then we have our last prime to check __a = primes[:idx] break __a , __a = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __a = False for r in range(a__ ): __a = pow(a__ , d * 2**r , a__ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __a = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
6
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _a ( __a ): __a : str = ["""vqvae"""] def __init__( self : str , lowercase : AutoencoderKL , lowercase : UNetaDConditionModel , lowercase : Mel , lowercase : Union[DDIMScheduler, DDPMScheduler] , ): '''simple docstring''' super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' return 50 if isinstance(self.scheduler , lowercase ) else 1_000 @torch.no_grad() def __call__( self : Optional[Any] , lowercase : int = 1 , lowercase : str = None , lowercase : np.ndarray = None , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = None , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : float = 0 , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : torch.Tensor = None , lowercase : torch.Tensor = None , lowercase : Tuple=True , ): '''simple docstring''' UpperCAmelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCAmelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase , device=self.device , ) UpperCAmelCase = noise UpperCAmelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase , lowercase ) UpperCAmelCase = self.mel.audio_slice_to_image(lowercase ) UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) UpperCAmelCase = (input_image / 255) * 2 - 1 UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample( generator=lowercase )[0] UpperCAmelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] ) UpperCAmelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCAmelCase = int(mask_start_secs * pixels_per_second ) UpperCAmelCase = int(mask_end_secs * pixels_per_second ) UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase ): UpperCAmelCase = self.unet(lowercase , lowercase , lowercase )['''sample'''] else: UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] if isinstance(self.scheduler , lowercase ): UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )['''prev_sample'''] else: UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )['''prev_sample'''] if mask is not None: if mask_start > 0: UpperCAmelCase = mask[:, step, :, :mask_start] if mask_end > 0: UpperCAmelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images UpperCAmelCase = self.vqvae.decode(lowercase )['''sample'''] UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCAmelCase = (images * 255).round().astype('''uint8''' ) UpperCAmelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) ) UpperCAmelCase = [self.mel.image_to_audio(lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) ) @torch.no_grad() def A ( self : Dict , lowercase : List[Image.Image] , lowercase : int = 50 ): '''simple docstring''' assert isinstance(self.scheduler , lowercase ) self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) UpperCAmelCase = (sample / 255) * 2 - 1 UpperCAmelCase = torch.Tensor(lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCAmelCase = self.scheduler.alphas_cumprod[t] UpperCAmelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def A ( lowercase : torch.Tensor , lowercase : torch.Tensor , lowercase : float ): '''simple docstring''' UpperCAmelCase = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
34
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]: '''simple docstring''' output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) else: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple: '''simple docstring''' A__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A__ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A__ = 'cpu' A__ = Path(SCREAMING_SNAKE_CASE__ ) # VAE DECODER A__ = AutoencoderKL.from_pretrained(model_path + '/vae' ) A__ = vae_decoder.config.latent_channels # forward only through the decoder part A__ = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE__ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE__ , ) del vae_decoder if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowercase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
7
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal A =logging.get_logger(__name__) A =TypeVar('DatasetType', Dataset, IterableDataset) def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) else: return _interleave_iterable_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a ) else: return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
34
0
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) snake_case_ = snake_case_ = snake_case_ = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # update the maximum and minimum subarray products snake_case_ = numbers[i] if number < 0: snake_case_, snake_case_ = min_till_now, max_till_now snake_case_ = max(SCREAMING_SNAKE_CASE__ , max_till_now * number ) snake_case_ = min(SCREAMING_SNAKE_CASE__ , min_till_now * number ) # update the maximum product found till now snake_case_ = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return max_prod
8
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowerCAmelCase : int =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Union[str, Any] , *lowerCAmelCase__ :Tuple , **lowerCAmelCase__ :Tuple ) -> None: warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
9
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
0
import datasets __A = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" __A = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" __A = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def lowerCAmelCase_ ( __a , __a ) -> List[str]: """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), }) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]) ->Union[str, Any]: '''simple docstring''' return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_)}
10
'''simple docstring''' class _a : def __init__( self : Any ): '''simple docstring''' UpperCAmelCase = {} # Mapping from char to TrieNode UpperCAmelCase = False def A ( self : int , lowercase : list[str] ): '''simple docstring''' for word in words: self.insert(lowercase ) def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: UpperCAmelCase = TrieNode() UpperCAmelCase = curr.nodes[char] UpperCAmelCase = True def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: return False UpperCAmelCase = curr.nodes[char] return curr.is_leaf def A ( self : str , lowercase : str ): '''simple docstring''' def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool: if index == len(lowercase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase = False return len(curr.nodes ) == 0 UpperCAmelCase = word[index] UpperCAmelCase = curr.nodes.get(lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase = _delete(lowercase , lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowercase , 0 ) def snake_case_ (_a : TrieNode , _a : str ): if node.is_leaf: print(_a , end=''' ''' ) for key, value in node.nodes.items(): print_words(_a , word + key ) def snake_case_ (): UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase = TrieNode() root.insert_many(_a ) # print_words(root, "") assert all(root.find(_a ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def snake_case_ (_a : str , _a : bool ): print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' ) def snake_case_ (): assert test_trie() def snake_case_ (): print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
34
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "git_vision_model" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase="quick_gelu" , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , **__lowerCamelCase , ) -> Any: super().__init__(**__lowerCamelCase) _A : int = hidden_size _A : int = intermediate_size _A : int = num_hidden_layers _A : Dict = num_attention_heads _A : Dict = num_channels _A : List[Any] = patch_size _A : str = image_size _A : str = initializer_range _A : int = attention_dropout _A : Tuple = layer_norm_eps _A : Dict = hidden_act @classmethod def _lowerCamelCase ( cls , __lowerCamelCase , **__lowerCamelCase) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase) _A , _A : Union[str, Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type") == "git": _A : Optional[int] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(__lowerCamelCase , **__lowerCamelCase) class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "git" def __init__( self , __lowerCamelCase=None , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=6 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=1_0_1 , __lowerCamelCase=1_0_2 , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , pad_token_id=__lowerCamelCase , **__lowerCamelCase) if vision_config is None: _A : List[str] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values.") _A : str = GitVisionConfig(**__lowerCamelCase) _A : Tuple = vocab_size _A : str = hidden_size _A : Optional[int] = num_hidden_layers _A : List[str] = num_attention_heads _A : Optional[Any] = hidden_act _A : str = intermediate_size _A : Tuple = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : int = max_position_embeddings _A : List[Any] = initializer_range _A : List[Any] = layer_norm_eps _A : Union[str, Any] = position_embedding_type _A : Union[str, Any] = use_cache _A : int = tie_word_embeddings _A : int = num_image_with_embedding _A : Optional[Any] = bos_token_id _A : str = eos_token_id def _lowerCamelCase ( self) -> Dict: _A : str = copy.deepcopy(self.__dict__) _A : Any = self.vision_config.to_dict() _A : Tuple = self.__class__.model_type return output
11
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( __a ): __a : Union[str, Any] = """encodec""" def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowercase ) @property def A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A ( self : Optional[int] ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
34
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = 'deberta-v2' def __init__( self: Optional[Any] , UpperCamelCase_: Union[str, Any]=12_81_00 , UpperCamelCase_: Optional[int]=15_36 , UpperCamelCase_: str=24 , UpperCamelCase_: Optional[Any]=24 , UpperCamelCase_: int=61_44 , UpperCamelCase_: Dict="gelu" , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: List[Any]=0 , UpperCamelCase_: Any=0.02 , UpperCamelCase_: Tuple=1E-7 , UpperCamelCase_: List[Any]=False , UpperCamelCase_: Any=-1 , UpperCamelCase_: Tuple=0 , UpperCamelCase_: str=True , UpperCamelCase_: Any=None , UpperCamelCase_: List[Any]=0 , UpperCamelCase_: str="gelu" , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = relative_attention __lowerCamelCase = max_relative_positions __lowerCamelCase = pad_token_id __lowerCamelCase = position_biased_input # Backwards compatibility if type(UpperCamelCase_ ) == str: __lowerCamelCase = [x.strip() for x in pos_att_type.lower().split("""|""" )] __lowerCamelCase = pos_att_type __lowerCamelCase = vocab_size __lowerCamelCase = layer_norm_eps __lowerCamelCase = kwargs.get("""pooler_hidden_size""" , UpperCamelCase_ ) __lowerCamelCase = pooler_dropout __lowerCamelCase = pooler_hidden_act class lowerCamelCase__( __lowerCamelCase): @property def lowerCAmelCase__ ( self: int ): if self.task == "multiple-choice": __lowerCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCamelCase = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowerCAmelCase__ ( self: Any ): return 12 def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional["TensorType"] = None , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 40 , UpperCamelCase_: int = 40 , UpperCamelCase_: "PreTrainedTokenizerBase" = None , ): __lowerCamelCase = super().generate_dummy_inputs(preprocessor=UpperCamelCase_ , framework=UpperCamelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
12
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A =logging.get_logger(__name__) class _a ( __a ): __a : str = ["""pixel_values"""] def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase ) def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase ): UpperCAmelCase = target_sizes.numpy() UpperCAmelCase = [] for idx in range(len(lowercase ) ): UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase ) UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase = logits.argmax(dim=1 ) UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
34
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase : Optional[int] = logging.getLogger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=None): super().__init__( lowerCAmelCase__ , question_encoder_tokenizer=lowerCAmelCase__ , generator_tokenizer=lowerCAmelCase__ , index=lowerCAmelCase__ , init_retrieval=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = None def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : int): logger.info("initializing retrieval") # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized") # needs to be set manually SCREAMING_SNAKE_CASE_: Dict = self._infer_socket_ifname() # avoid clash with the NCCL port SCREAMING_SNAKE_CASE_: List[Any] = str(distributed_port + 1) SCREAMING_SNAKE_CASE_: int = dist.new_group(ranks=lowerCAmelCase__ , backend="gloo") # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main") self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return dist.get_rank(group=self.process_group) == 0 def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=torch.floataa): SCREAMING_SNAKE_CASE_: str = torch.empty(lowerCAmelCase__ , dtype=lowerCAmelCase__) dist.scatter(lowerCAmelCase__ , src=0 , scatter_list=lowerCAmelCase__ , group=self.process_group) return target_tensor def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names SCREAMING_SNAKE_CASE_: Any = next((addr for addr in addrs if addr.startswith("e")) , lowerCAmelCase__) return ifname def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int): # single GPU training if not dist.is_initialized(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._main_retrieve(lowerCAmelCase__ , lowerCAmelCase__) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase__) # distributed training SCREAMING_SNAKE_CASE_: Dict = dist.get_world_size(group=self.process_group) # gather logic SCREAMING_SNAKE_CASE_: Optional[Any] = None if self._is_main(): SCREAMING_SNAKE_CASE_: Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowerCAmelCase__)] dist.gather(torch.tensor(lowerCAmelCase__) , dst=0 , gather_list=lowerCAmelCase__ , group=self.process_group) # scatter logic SCREAMING_SNAKE_CASE_: Optional[Any] = question_hidden_states.shape[0] SCREAMING_SNAKE_CASE_: Dict = [] SCREAMING_SNAKE_CASE_: List[Any] = [] if self._is_main(): assert len(lowerCAmelCase__) == world_size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._main_retrieve(torch.cat(lowerCAmelCase__).numpy() , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = torch.tensor(lowerCAmelCase__), torch.tensor(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._scattered(lowerCAmelCase__ , [n_queries, n_docs] , target_type=torch.intaa) SCREAMING_SNAKE_CASE_: int = self._scattered(lowerCAmelCase__ , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase__)
13
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A =logging.getLogger(__name__) def snake_case_ (_a : Dict , _a : Union[str, Any] ): return (preds == labels).mean() @dataclass class _a : __a : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : __a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __a : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) __a : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _a ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase = processors[data_args.task_name]() UpperCAmelCase = processor.get_labels() UpperCAmelCase = len(_a ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_a : EvalPrediction ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_a , p.label_ids )} # Data collator UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_a , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _a , _a ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_a ) return results def snake_case_ (_a : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
34
0
from statistics import mean import numpy as np def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list: """simple docstring""" A__ = 0 # Number of processes finished A__ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. A__ = [0] * no_of_process # List to include calculation results A__ = [0] * no_of_process # Sort by arrival time. A__ = [burst_time[i] for i in np.argsort(lowercase_ )] A__ = [process_name[i] for i in np.argsort(lowercase_ )] arrival_time.sort() while no_of_process > finished_process_count: A__ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: A__ = arrival_time[i] A__ = 0 # Index showing the location of the process being performed A__ = 0 # Saves the current response ratio. A__ = 0 for i in range(0 , lowercase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: A__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: A__ = temp A__ = i # Calculate the turn around time A__ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. A__ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list: """simple docstring""" A__ = [0] * no_of_process for i in range(0 , lowercase_ ): A__ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _lowerCamelCase : List[Any] = 5 _lowerCamelCase : Any = ["""A""", """B""", """C""", """D""", """E"""] _lowerCamelCase : Optional[int] = [1, 2, 3, 4, 5] _lowerCamelCase : Optional[int] = [1, 2, 3, 4, 5] _lowerCamelCase : Union[str, Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _lowerCamelCase : Tuple = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
14
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __a ): __a : int = ["""image_processor""", """tokenizer"""] __a : Union[str, Any] = """ChineseCLIPImageProcessor""" __a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase , lowercase ) UpperCAmelCase = self.image_processor def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase ) @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : List[Any] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , ) return self.image_processor_class
34
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) __A = MaskFormerConfig(backbone_config=a_ ) __A = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok __A = 8_4_7 __A = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok __A = 1_5_0 __A = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok __A = 1_7_1 __A = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO __A = 1_3_3 __A = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok __A = 1_9 __A = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok __A = 6_5 __A = "mapillary-vistas-id2label.json" __A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) ) __A = {int(a_ ): v for k, v in idalabel.items()} return config def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" __A = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = dct.pop(a_ ) __A = val def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" __A = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __A = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __A = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __A = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __A = in_proj_weight[:dim, :] __A = in_proj_bias[: dim] __A = in_proj_weight[ dim : dim * 2, : ] __A = in_proj_bias[ dim : dim * 2 ] __A = in_proj_weight[ -dim :, : ] __A = in_proj_bias[-dim :] # fmt: on def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" __A = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) __A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __A = in_proj_weight[: hidden_size, :] __A = in_proj_bias[:config.hidden_size] __A = in_proj_weight[hidden_size : hidden_size * 2, :] __A = in_proj_bias[hidden_size : hidden_size * 2] __A = in_proj_weight[-hidden_size :, :] __A = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) __A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __A = in_proj_weight[: hidden_size, :] __A = in_proj_bias[:config.hidden_size] __A = in_proj_weight[hidden_size : hidden_size * 2, :] __A = in_proj_bias[hidden_size : hidden_size * 2] __A = in_proj_weight[-hidden_size :, :] __A = in_proj_bias[-hidden_size :] # fmt: on def UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" __A = "http://images.cocodataset.org/val2017/000000039769.jpg" __A = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ , a_ , a_ = False ) -> Union[str, Any]: """simple docstring""" __A = get_maskformer_config(a_ ) # load original state_dict with open(a_ , "rb" ) as f: __A = pickle.load(a_ ) __A = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __A = create_rename_keys(a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) read_in_swin_q_k_v(a_ , config.backbone_config ) read_in_decoder_q_k_v(a_ , a_ ) # update to torch tensors for key, value in state_dict.items(): __A = torch.from_numpy(a_ ) # load 🤗 model __A = MaskFormerForInstanceSegmentation(a_ ) model.eval() for name, param in model.named_parameters(): print(a_ , param.shape ) __A , __A = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(a_ ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results __A = prepare_img() if "vistas" in model_name: __A = 6_5 elif "cityscapes" in model_name: __A = 6_5_5_3_5 else: __A = 2_5_5 __A = True if "ade" in model_name else False __A = MaskFormerImageProcessor(ignore_index=a_ , reduce_labels=a_ ) __A = image_processor(a_ , return_tensors="pt" ) __A = model(**a_ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __A = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , a_ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
15
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A =logging.get_logger(__name__) A ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __a ): __a : List[Any] = """marian""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class _a ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowercase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowercase , lowercase ) UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase ) UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
34
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='''utf-8''' ,check=_snake_case ,) assert hasattr(self ,'''env''' ) def UpperCAmelCase ( self : List[Any] ,_snake_case : Any=1 ) -> Any: """simple docstring""" return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=f"""{self.env.base_job_name}-single""" ,instance_count=_snake_case ,instance_type=self.instance_type ,debugger_hook_config=_snake_case ,hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,py_version='''py36''' ,) def UpperCAmelCase ( self : Tuple ,_snake_case : List[Any] ) -> List[Any]: """simple docstring""" TrainingJobAnalytics(_snake_case ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = self.create_estimator() # run training estimator.fit() # result dataframe lowercase__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase__ : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowercase__ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase__ : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' ,999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" ,'''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} ,_snake_case )
16
'''simple docstring''' import os def snake_case_ (): UpperCAmelCase = os.path.join(os.path.dirname(_a ) , '''num.txt''' ) with open(_a ) as file_hand: return str(sum(int(_a ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
34
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _a = logging.get_logger(__name__) def _A ( UpperCamelCase_ : str) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(UpperCamelCase_, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(UpperCamelCase_, (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(UpperCamelCase_): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""") class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = ["pixel_values"] def __init__( self : Optional[int], UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, **UpperCAmelCase__ : Any, ): super().__init__(**UpperCAmelCase__ ) __lowercase = size if size is not None else {"shortest_edge": 2_2_4} __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) __lowercase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowercase = get_size_dict(UpperCAmelCase__, param_name="crop_size" ) __lowercase = do_resize __lowercase = size __lowercase = do_center_crop __lowercase = crop_size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : int, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Optional[int], ): __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) if "shortest_edge" in size: __lowercase = get_resize_output_image_size(UpperCAmelCase__, size["shortest_edge"], default_to_square=UpperCAmelCase__ ) elif "height" in size and "width" in size: __lowercase = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : int, ): __lowercase = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(UpperCAmelCase__, size=(size["height"], size["width"]), data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Union[int, float], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Optional[Any], ): return rescale(UpperCAmelCase__, scale=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : int, ): return normalize(UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : float = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST, ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __lowercase = to_numpy_array(UpperCAmelCase__ ) if do_resize: __lowercase = self.resize(image=UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__ ) if do_center_crop: __lowercase = self.center_crop(UpperCAmelCase__, size=UpperCAmelCase__ ) if do_rescale: __lowercase = self.rescale(image=UpperCAmelCase__, scale=UpperCAmelCase__ ) if do_normalize: __lowercase = self.normalize(image=UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__ ) __lowercase = to_channel_dimension_format(UpperCAmelCase__, UpperCAmelCase__ ) return image def _lowercase ( self : List[str], UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : float = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST, **UpperCAmelCase__ : Optional[Any], ): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = size if size is not None else self.size __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(UpperCAmelCase__, param_name="crop_size" ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) __lowercase = make_batched(UpperCAmelCase__ ) __lowercase = [ [ self._preprocess_image( image=UpperCAmelCase__, do_resize=UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__, do_center_crop=UpperCAmelCase__, crop_size=UpperCAmelCase__, do_rescale=UpperCAmelCase__, rescale_factor=UpperCAmelCase__, do_normalize=UpperCAmelCase__, image_mean=UpperCAmelCase__, image_std=UpperCAmelCase__, data_format=UpperCAmelCase__, ) for img in video ] for video in videos ] __lowercase = {"pixel_values": videos} return BatchFeature(data=UpperCAmelCase__, tensor_type=UpperCAmelCase__ )
17
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A =logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') A ={ 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A ={ 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A =sorted(arg_to_scheduler.keys()) A ='{' + ', '.join(arg_to_scheduler_choices) + '}' class _a ( pl.LightningModule ): def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase ) UpperCAmelCase = 0 UpperCAmelCase = Path(self.hparams.output_dir ) UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , ) else: UpperCAmelCase = config UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase , lowercase ): assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , lowercase , getattr(self.hparams , lowercase ) ) if tokenizer is None: UpperCAmelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , ) else: UpperCAmelCase = tokenizer UpperCAmelCase = MODEL_MODES[mode] if model is None: UpperCAmelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , ) else: UpperCAmelCase = model def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] UpperCAmelCase = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase = Adafactor( lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase ) else: UpperCAmelCase = AdamW( lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase = optimizer UpperCAmelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def A ( self : List[Any] , lowercase : int , lowercase : List[str] ): '''simple docstring''' return self.validation_step(lowercase , lowercase ) def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' return self.validation_end(lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def A ( self : List[str] , lowercase : Any ): '''simple docstring''' if stage == "test": UpperCAmelCase = len(self.test_dataloader().dataset ) else: UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase ) UpperCAmelCase = len(self.train_dataloader().dataset ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def A ( self : Union[str, Any] ): '''simple docstring''' return self.train_loader def A ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : List[Any] ): '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : Any , lowercase : Union[str, Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def A ( self : List[str] , lowercase : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' ) UpperCAmelCase = self.step_count self.model.save_pretrained(lowercase ) self.tokenizer.save_pretrained(lowercase ) @staticmethod def A ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class _a ( pl.Callback ): def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase ) class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase ) def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log results for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log and save results to file UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase , '''w''' ) as writer: for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def snake_case_ (_a : int , _a : Optional[Any] ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ): pl.seed_everything(args.seed ) # init model UpperCAmelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_a ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_a ) if logging_callback is None: UpperCAmelCase = LoggingCallback() UpperCAmelCase = {} if args.fpaa: UpperCAmelCase = 1_6 if args.gpus > 1: UpperCAmelCase = '''auto''' UpperCAmelCase = '''ddp''' UpperCAmelCase = args.accumulate_grad_batches UpperCAmelCase = None UpperCAmelCase = '''auto''' UpperCAmelCase = pl.Trainer.from_argparse_args( _a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , ) if args.do_train: trainer.fit(_a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
34
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = 99 SCREAMING_SNAKE_CASE_ : Tuple = 384 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : str = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE_ : Dict = 512 SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Any = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Dict = 128 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Tuple = 9 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Any = None def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : int = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Any = True if hasattr(_A,"use_cache" ): SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A,saved_model=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" ) SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ : str = model(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"] self.assertEqual(len(_A ),_A ) SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ),_A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],) self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A ) SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A ) def check_decoder_attentions_output(_A : Dict ): SCREAMING_SNAKE_CASE_ : int = len(_A ) self.assertEqual(out_len % 2,0 ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],) def check_encoder_attentions_output(_A : Tuple ): SCREAMING_SNAKE_CASE_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) ) SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = model_class(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = model_class(_A ) SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) ) self.assertEqual(model.config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768] self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
18
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue UpperCAmelCase = cst_fwd.get(_a , np.inf ) UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) UpperCAmelCase = new_cost_f UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ): UpperCAmelCase = -1 UpperCAmelCase = set() UpperCAmelCase = set() UpperCAmelCase = {source: 0} UpperCAmelCase = {destination: 0} UpperCAmelCase = {source: None} UpperCAmelCase = {destination: None} UpperCAmelCase = PriorityQueue() UpperCAmelCase = PriorityQueue() UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): UpperCAmelCase , UpperCAmelCase = queue_forward.get() visited_forward.add(_a ) UpperCAmelCase , UpperCAmelCase = queue_backward.get() visited_backward.add(_a ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: UpperCAmelCase = shortest_distance return shortest_path_distance A ={ 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } A ={ 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
34
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowerCamelCase_ ( lowerCamelCase__=None ): if subparsers is not None: lowerCamelCase_ = subparsers.add_parser("test" ) else: lowerCamelCase_ = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=lowerCamelCase__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase__ ) return parser def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: lowerCamelCase_ = script_name else: lowerCamelCase_ = F'--config_file={args.config_file} {script_name}' lowerCamelCase_ = ["accelerate-launch"] + test_args.split() lowerCamelCase_ = execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def lowerCamelCase_ ( ): lowerCamelCase_ = test_command_parser() lowerCamelCase_ = parser.parse_args() test_command(lowerCamelCase__ ) if __name__ == "__main__": main()
19
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) def snake_case_ (_a : List[str] ): UpperCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCAmelCase = 1_2_8 elif "12-12" in model_name: UpperCAmelCase = 1_2 UpperCAmelCase = 1_2 elif "14-14" in model_name: UpperCAmelCase = 1_4 UpperCAmelCase = 1_4 elif "16-16" in model_name: UpperCAmelCase = 1_6 UpperCAmelCase = 1_6 else: raise ValueError('''Model not supported''' ) UpperCAmelCase = '''huggingface/label-files''' if "speech-commands" in model_name: UpperCAmelCase = 3_5 UpperCAmelCase = '''speech-commands-v2-id2label.json''' else: UpperCAmelCase = 5_2_7 UpperCAmelCase = '''audioset-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (_a : Tuple ): if "module.v" in name: UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def snake_case_ (_a : Dict , _a : List[Any] ): for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(_a ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[3] ) UpperCAmelCase = config.hidden_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def snake_case_ (_a : Tuple ): UpperCAmelCase = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(_a , _a ) @torch.no_grad() def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ): UpperCAmelCase = get_audio_spectrogram_transformer_config(_a ) UpperCAmelCase = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict UpperCAmelCase = model_name_to_url[model_name] UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' ) # remove some keys remove_keys(_a ) # rename some keys UpperCAmelCase = convert_state_dict(_a , _a ) # load 🤗 model UpperCAmelCase = ASTForAudioClassification(_a ) model.eval() model.load_state_dict(_a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8 UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a ) if "speech-commands" in model_name: UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) UpperCAmelCase = dataset[0]['''audio''']['''array'''] else: UpperCAmelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a ) UpperCAmelCase = waveform.squeeze().numpy() UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**_a ) UpperCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(F"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_a ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F"MIT/{model_name}" ) feature_extractor.push_to_hub(F"MIT/{model_name}" ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
0