code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class _a ( unittest.TestCase ):
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = get_activation('''swish''' )
self.assertIsInstance(lowercase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = get_activation('''silu''' )
self.assertIsInstance(lowercase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = get_activation('''mish''' )
self.assertIsInstance(lowercase , nn.Mish )
self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = get_activation('''gelu''' )
self.assertIsInstance(lowercase , nn.GELU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 34
|
'''simple docstring'''
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def snake_case_ (_a : Tuple ):
return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def snake_case_ ():
UpperCAmelCase = ArgumentParser(
'''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a )
UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(_a )
EnvironmentCommand.register_subcommand(_a )
TestCommand.register_subcommand(_a )
RunBeamCommand.register_subcommand(_a )
DummyDataCommand.register_subcommand(_a )
# Parse args
UpperCAmelCase , UpperCAmelCase = parser.parse_known_args()
if not hasattr(_a , '''func''' ):
parser.print_help()
exit(1 )
UpperCAmelCase = parse_unknown_args(_a )
# Run
UpperCAmelCase = args.func(_a , **_a )
service.run()
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def snake_case_ (_a : Any=None ):
if subparsers is not None:
UpperCAmelCase = subparsers.add_parser('''test''' )
else:
UpperCAmelCase = argparse.ArgumentParser('''Accelerate test command''' )
parser.add_argument(
'''--config_file''' , default=_a , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=_a )
return parser
def snake_case_ (_a : Tuple ):
UpperCAmelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] )
if args.config_file is None:
UpperCAmelCase = script_name
else:
UpperCAmelCase = F"--config_file={args.config_file} {script_name}"
UpperCAmelCase = ['''accelerate-launch'''] + test_args.split()
UpperCAmelCase = execute_subprocess_async(_a , env=os.environ.copy() )
if result.returncode == 0:
print('''Test is a success! You are ready for your distributed training!''' )
def snake_case_ ():
UpperCAmelCase = test_command_parser()
UpperCAmelCase = parser.parse_args()
test_command(_a )
if __name__ == "__main__":
main()
| 34
|
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
A =[
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
A =logging.getLogger()
def snake_case_ ():
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
UpperCAmelCase = parser.parse_args()
return args.f
def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ):
UpperCAmelCase = os.path.join(_a , F"{split}_results.json" )
if os.path.exists(_a ):
with open(_a , '''r''' ) as f:
return json.load(_a )
raise ValueError(F"can't find {path}" )
A =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( __a ):
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_glue.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_clm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_summarization_flax.main()
UpperCAmelCase = get_results(lowercase , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_ta_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = 7 if get_gpu_count() > 1 else 2
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_ner.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_qa.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 34
| 1
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
A =logging.getLogger(__name__)
def snake_case_ (_a : Dict , _a : Union[str, Any] ):
return (preds == labels).mean()
@dataclass
class _a :
__a : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class _a :
__a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
__a : str = field(metadata={"""help""": """Should contain the data files for the task."""} )
__a : int = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__a : bool = field(
default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def snake_case_ ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , _a )
# Set seed
set_seed(training_args.seed )
try:
UpperCAmelCase = processors[data_args.task_name]()
UpperCAmelCase = processor.get_labels()
UpperCAmelCase = len(_a )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , )
# Get datasets
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_a : EvalPrediction ) -> Dict:
UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_a , p.label_ids )}
# Data collator
UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
UpperCAmelCase = Trainer(
model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase = trainer.evaluate()
UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(_a , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , _a , _a )
writer.write('''%s = %s\n''' % (key, value) )
results.update(_a )
return results
def snake_case_ (_a : Optional[int] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 34
|
'''simple docstring'''
class _a :
def __init__( self : Any ):
'''simple docstring'''
UpperCAmelCase = {} # Mapping from char to TrieNode
UpperCAmelCase = False
def A ( self : int , lowercase : list[str] ):
'''simple docstring'''
for word in words:
self.insert(lowercase )
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
UpperCAmelCase = TrieNode()
UpperCAmelCase = curr.nodes[char]
UpperCAmelCase = True
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
return False
UpperCAmelCase = curr.nodes[char]
return curr.is_leaf
def A ( self : str , lowercase : str ):
'''simple docstring'''
def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool:
if index == len(lowercase ):
# If word does not exist
if not curr.is_leaf:
return False
UpperCAmelCase = False
return len(curr.nodes ) == 0
UpperCAmelCase = word[index]
UpperCAmelCase = curr.nodes.get(lowercase )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
UpperCAmelCase = _delete(lowercase , lowercase , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , lowercase , 0 )
def snake_case_ (_a : TrieNode , _a : str ):
if node.is_leaf:
print(_a , end=''' ''' )
for key, value in node.nodes.items():
print_words(_a , word + key )
def snake_case_ ():
UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split()
UpperCAmelCase = TrieNode()
root.insert_many(_a )
# print_words(root, "")
assert all(root.find(_a ) for word in words )
assert root.find('''banana''' )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
assert root.find('''apple''' )
assert root.find('''all''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def snake_case_ (_a : str , _a : bool ):
print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' )
def snake_case_ ():
assert test_trie()
def snake_case_ ():
print_results('''Testing trie functionality''' , test_trie() )
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
def snake_case_ (_a : Optional[int]=2_8_1_2_3 ):
UpperCAmelCase = [1] * (limit + 1)
for i in range(2 , int(limit**0.5 ) + 1 ):
sum_divs[i * i] += i
for k in range(i + 1 , limit // i + 1 ):
sum_divs[k * i] += k + i
UpperCAmelCase = set()
UpperCAmelCase = 0
for n in range(1 , limit + 1 ):
if sum_divs[n] > n:
abundants.add(_a )
if not any((n - a in abundants) for a in abundants ):
res += n
return res
if __name__ == "__main__":
print(solution())
| 34
|
'''simple docstring'''
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json',
'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json',
}
class _a ( __a ):
__a : Union[str, Any] = """encodec"""
def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase = target_bandwidths
UpperCAmelCase = sampling_rate
UpperCAmelCase = audio_channels
UpperCAmelCase = normalize
UpperCAmelCase = chunk_length_s
UpperCAmelCase = overlap
UpperCAmelCase = hidden_size
UpperCAmelCase = num_filters
UpperCAmelCase = num_residual_layers
UpperCAmelCase = upsampling_ratios
UpperCAmelCase = norm_type
UpperCAmelCase = kernel_size
UpperCAmelCase = last_kernel_size
UpperCAmelCase = residual_kernel_size
UpperCAmelCase = dilation_growth_rate
UpperCAmelCase = use_causal_conv
UpperCAmelCase = pad_mode
UpperCAmelCase = compress
UpperCAmelCase = num_lstm_layers
UpperCAmelCase = trim_right_ratio
UpperCAmelCase = codebook_size
UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size
UpperCAmelCase = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" )
super().__init__(**lowercase )
@property
def A ( self : Dict ):
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def A ( self : Union[str, Any] ):
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 34
| 1
|
'''simple docstring'''
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json',
'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json',
'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json',
}
class _a ( __a ):
__a : Optional[int] = """owlvit_text_model"""
def __init__( self : Tuple , lowercase : Union[str, Any]=49_408 , lowercase : str=512 , lowercase : int=2_048 , lowercase : Optional[Any]=12 , lowercase : Any=8 , lowercase : Optional[int]=16 , lowercase : Union[str, Any]="quick_gelu" , lowercase : Dict=1E-5 , lowercase : Tuple=0.0 , lowercase : str=0.02 , lowercase : Dict=1.0 , lowercase : str=0 , lowercase : List[str]=49_406 , lowercase : int=49_407 , **lowercase : List[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = intermediate_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = hidden_act
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = attention_dropout
UpperCAmelCase = initializer_range
UpperCAmelCase = initializer_factor
@classmethod
def A ( cls : int , lowercase : Union[str, os.PathLike] , **lowercase : List[Any] ):
'''simple docstring'''
cls._set_token_in_kwargs(lowercase )
UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get('''model_type''' ) == "owlvit":
UpperCAmelCase = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(lowercase , **lowercase )
class _a ( __a ):
__a : Dict = """owlvit_vision_model"""
def __init__( self : Tuple , lowercase : str=768 , lowercase : Dict=3_072 , lowercase : int=12 , lowercase : Tuple=12 , lowercase : Optional[int]=3 , lowercase : Optional[int]=768 , lowercase : Optional[int]=32 , lowercase : Union[str, Any]="quick_gelu" , lowercase : Dict=1E-5 , lowercase : List[Any]=0.0 , lowercase : List[Any]=0.02 , lowercase : str=1.0 , **lowercase : str , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = hidden_size
UpperCAmelCase = intermediate_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = num_channels
UpperCAmelCase = image_size
UpperCAmelCase = patch_size
UpperCAmelCase = hidden_act
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = attention_dropout
UpperCAmelCase = initializer_range
UpperCAmelCase = initializer_factor
@classmethod
def A ( cls : Optional[Any] , lowercase : Union[str, os.PathLike] , **lowercase : int ):
'''simple docstring'''
cls._set_token_in_kwargs(lowercase )
UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get('''model_type''' ) == "owlvit":
UpperCAmelCase = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(lowercase , **lowercase )
class _a ( __a ):
__a : Dict = """owlvit"""
__a : Optional[Any] = True
def __init__( self : Tuple , lowercase : Tuple=None , lowercase : Optional[Any]=None , lowercase : List[str]=512 , lowercase : Any=2.6592 , lowercase : List[Any]=True , **lowercase : str , ):
'''simple docstring'''
super().__init__(**lowercase )
if text_config is None:
UpperCAmelCase = {}
logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' )
if vision_config is None:
UpperCAmelCase = {}
logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' )
UpperCAmelCase = OwlViTTextConfig(**lowercase )
UpperCAmelCase = OwlViTVisionConfig(**lowercase )
UpperCAmelCase = projection_dim
UpperCAmelCase = logit_scale_init_value
UpperCAmelCase = return_dict
UpperCAmelCase = 1.0
@classmethod
def A ( cls : Tuple , lowercase : Union[str, os.PathLike] , **lowercase : List[str] ):
'''simple docstring'''
cls._set_token_in_kwargs(lowercase )
UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase )
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(lowercase , **lowercase )
@classmethod
def A ( cls : List[str] , lowercase : Dict , lowercase : Dict , **lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = {}
UpperCAmelCase = text_config
UpperCAmelCase = vision_config
return cls.from_dict(lowercase , **lowercase )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = copy.deepcopy(self.__dict__ )
UpperCAmelCase = self.text_config.to_dict()
UpperCAmelCase = self.vision_config.to_dict()
UpperCAmelCase = self.__class__.model_type
return output
class _a ( __a ):
@property
def A ( self : Optional[Any] ):
'''simple docstring'''
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''attention_mask''', {0: '''batch''', 1: '''sequence'''}),
] )
@property
def A ( self : str ):
'''simple docstring'''
return OrderedDict(
[
('''logits_per_image''', {0: '''batch'''}),
('''logits_per_text''', {0: '''batch'''}),
('''text_embeds''', {0: '''batch'''}),
('''image_embeds''', {0: '''batch'''}),
] )
@property
def A ( self : Any ):
'''simple docstring'''
return 1E-4
def A ( self : Tuple , lowercase : "ProcessorMixin" , lowercase : int = -1 , lowercase : int = -1 , lowercase : Optional["TensorType"] = None , ):
'''simple docstring'''
UpperCAmelCase = super().generate_dummy_inputs(
processor.tokenizer , batch_size=lowercase , seq_length=lowercase , framework=lowercase )
UpperCAmelCase = super().generate_dummy_inputs(
processor.image_processor , batch_size=lowercase , framework=lowercase )
return {**text_input_dict, **image_input_dict}
@property
def A ( self : List[Any] ):
'''simple docstring'''
return 14
| 34
|
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
A =logging.get_logger(__name__)
class _a ( __a ):
__a : str = ["""pixel_values"""]
def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = resample
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" )
UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase )
return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase )
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" )
return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase )
def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ):
'''simple docstring'''
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ):
'''simple docstring'''
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(lowercase ) for image in images]
if do_resize:
UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images]
if do_center_crop:
UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_normalize:
UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=lowercase , tensor_type=lowercase )
def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ):
'''simple docstring'''
UpperCAmelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase ) != len(lowercase ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowercase ):
UpperCAmelCase = target_sizes.numpy()
UpperCAmelCase = []
for idx in range(len(lowercase ) ):
UpperCAmelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase )
UpperCAmelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase )
else:
UpperCAmelCase = logits.argmax(dim=1 )
UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 34
| 1
|
'''simple docstring'''
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def snake_case_ (_a : Tuple , _a : Tuple , _a : Any ):
# Initialise PyTorch model
UpperCAmelCase = LxmertConfig.from_json_file(_a )
print(F"Building PyTorch model from configuration: {config}" )
UpperCAmelCase = LxmertForPreTraining(_a )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(_a , _a , _a )
# Save pytorch-model
print(F"Save PyTorch model to {pytorch_dump_path}" )
torch.save(model.state_dict() , _a )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
A =parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 34
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
A =logging.getLogger(__name__)
def snake_case_ (_a : Dict , _a : Union[str, Any] ):
return (preds == labels).mean()
@dataclass
class _a :
__a : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class _a :
__a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
__a : str = field(metadata={"""help""": """Should contain the data files for the task."""} )
__a : int = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__a : bool = field(
default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def snake_case_ ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , _a )
# Set seed
set_seed(training_args.seed )
try:
UpperCAmelCase = processors[data_args.task_name]()
UpperCAmelCase = processor.get_labels()
UpperCAmelCase = len(_a )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , )
# Get datasets
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_a : EvalPrediction ) -> Dict:
UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_a , p.label_ids )}
# Data collator
UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
UpperCAmelCase = Trainer(
model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase = trainer.evaluate()
UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(_a , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , _a , _a )
writer.write('''%s = %s\n''' % (key, value) )
results.update(_a )
return results
def snake_case_ (_a : Optional[int] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
def snake_case_ (_a : list[list[int]] , _a : int , _a : int , _a : list[int] ):
# 1. Validate that path exists between current and next vertices
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def snake_case_ (_a : list[list[int]] , _a : list[int] , _a : int ):
# Base Case
if curr_ind == len(_a ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0 , len(_a ) ):
if valid_connection(_a , _a , _a , _a ):
# Insert current vertex into path as next transition
UpperCAmelCase = next_ver
# Validate created path
if util_hamilton_cycle(_a , _a , curr_ind + 1 ):
return True
# Backtrack
UpperCAmelCase = -1
return False
def snake_case_ (_a : list[list[int]] , _a : int = 0 ):
UpperCAmelCase = [-1] * (len(_a ) + 1)
# initialize start and end of path with starting index
UpperCAmelCase = UpperCAmelCase = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(_a , _a , 1 ) else []
| 34
|
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _a ( __a ):
__a : int = ["""image_processor""", """tokenizer"""]
__a : Union[str, Any] = """ChineseCLIPImageProcessor"""
__a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , lowercase , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowercase , lowercase )
UpperCAmelCase = self.image_processor
def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase )
if images is not None:
UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase )
def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase , **lowercase )
def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ):
'''simple docstring'''
return self.tokenizer.decode(*lowercase , **lowercase )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A ( self : List[Any] ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , )
return self.image_processor_class
| 34
| 1
|
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
A =logging.get_logger(__name__)
class _a ( __a ):
__a : str = ["""pixel_values"""]
def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = resample
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" )
UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase )
return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase )
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" )
return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase )
def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ):
'''simple docstring'''
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ):
'''simple docstring'''
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(lowercase ) for image in images]
if do_resize:
UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images]
if do_center_crop:
UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_normalize:
UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=lowercase , tensor_type=lowercase )
def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ):
'''simple docstring'''
UpperCAmelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase ) != len(lowercase ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowercase ):
UpperCAmelCase = target_sizes.numpy()
UpperCAmelCase = []
for idx in range(len(lowercase ) ):
UpperCAmelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase )
UpperCAmelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase )
else:
UpperCAmelCase = logits.argmax(dim=1 )
UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 34
|
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
A =logging.get_logger(__name__)
A ={
'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json',
# See all Marian models at https://huggingface.co/models?filter=marian
}
class _a ( __a ):
__a : List[Any] = """marian"""
__a : Union[str, Any] = ["""past_key_values"""]
__a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase = vocab_size
UpperCAmelCase = decoder_vocab_size or vocab_size
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = d_model
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , )
class _a ( __a ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def A ( self : int ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowercase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase , UpperCAmelCase = self.num_layers
for i in range(lowercase ):
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def A ( self : Any ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = super().outputs
else:
UpperCAmelCase = super(lowercase , self ).outputs
if self.use_past:
UpperCAmelCase , UpperCAmelCase = self.num_layers
for i in range(lowercase ):
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
# Generate decoder inputs
UpperCAmelCase = seq_length if not self.use_past else 1
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
UpperCAmelCase = dict(**lowercase , **lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape
UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1]
UpperCAmelCase , UpperCAmelCase = self.num_attention_heads
UpperCAmelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase = decoder_seq_length + 3
UpperCAmelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
UpperCAmelCase = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 )
UpperCAmelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
UpperCAmelCase , UpperCAmelCase = self.num_layers
UpperCAmelCase = min(lowercase , lowercase )
UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers
UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(lowercase ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
) )
# TODO: test this.
UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(lowercase , lowercase ):
common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) )
return common_inputs
def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase = seqlen + 2
UpperCAmelCase , UpperCAmelCase = self.num_layers
UpperCAmelCase , UpperCAmelCase = self.num_attention_heads
UpperCAmelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase = common_inputs['''attention_mask'''].dtype
UpperCAmelCase = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 )
UpperCAmelCase = [
(torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase )
]
return common_inputs
def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase )
UpperCAmelCase = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase )
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) )
return common_inputs
def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
else:
UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
return common_inputs
def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase )
else:
UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_(
lowercase , lowercase , lowercase , lowercase )
@property
def A ( self : Any ):
'''simple docstring'''
return 1E-4
| 34
| 1
|
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class _a ( unittest.TestCase ):
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = tempfile.mkdtemp()
# fmt: off
UpperCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
UpperCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) )
UpperCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
UpperCAmelCase = {'''unk_token''': '''<unk>'''}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowercase ) )
UpperCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073],
'''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
UpperCAmelCase = os.path.join(self.tmpdirname , lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(lowercase , lowercase )
def A ( self : Optional[Any] , **lowercase : Optional[Any] ):
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase )
def A ( self : Optional[int] , **lowercase : str ):
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase )
def A ( self : Union[str, Any] , **lowercase : str ):
'''simple docstring'''
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase )
def A ( self : Tuple ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
UpperCAmelCase = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = self.get_image_processor()
UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
processor_slow.save_pretrained(self.tmpdirname )
UpperCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase )
UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
processor_fast.save_pretrained(self.tmpdirname )
UpperCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , lowercase )
self.assertIsInstance(processor_fast.tokenizer , lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , lowercase )
self.assertIsInstance(processor_fast.image_processor , lowercase )
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
UpperCAmelCase = self.get_image_processor(do_normalize=lowercase )
UpperCAmelCase = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.get_image_processor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
UpperCAmelCase = self.prepare_image_inputs()
UpperCAmelCase = image_processor(lowercase , return_tensors='''np''' )
UpperCAmelCase = processor(images=lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.get_image_processor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
UpperCAmelCase = '''lower newer'''
UpperCAmelCase = processor(text=lowercase , return_tensors='''np''' )
UpperCAmelCase = tokenizer(lowercase , return_tensors='''np''' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.get_image_processor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
UpperCAmelCase = '''lower newer'''
UpperCAmelCase = self.prepare_image_inputs()
UpperCAmelCase = processor(text=lowercase , images=lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(lowercase ):
processor()
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = '''google/owlvit-base-patch32'''
UpperCAmelCase = OwlViTProcessor.from_pretrained(lowercase )
UpperCAmelCase = ['''cat''', '''nasa badge''']
UpperCAmelCase = processor(text=lowercase )
UpperCAmelCase = 16
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(lowercase ):
processor()
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = '''google/owlvit-base-patch32'''
UpperCAmelCase = OwlViTProcessor.from_pretrained(lowercase )
UpperCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']]
UpperCAmelCase = processor(text=lowercase )
UpperCAmelCase = 16
UpperCAmelCase = len(lowercase )
UpperCAmelCase = max([len(lowercase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(lowercase ):
processor()
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = '''google/owlvit-base-patch32'''
UpperCAmelCase = OwlViTProcessor.from_pretrained(lowercase )
UpperCAmelCase = ['''cat''', '''nasa badge''']
UpperCAmelCase = processor(text=lowercase )
UpperCAmelCase = 16
UpperCAmelCase = inputs['''input_ids''']
UpperCAmelCase = [
[49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_image_processor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
UpperCAmelCase = self.prepare_image_inputs()
UpperCAmelCase = self.prepare_image_inputs()
UpperCAmelCase = processor(images=lowercase , query_images=lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(lowercase ):
processor()
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.get_image_processor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase )
UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCAmelCase = processor.batch_decode(lowercase )
UpperCAmelCase = tokenizer.batch_decode(lowercase )
self.assertListEqual(lowercase , lowercase )
| 34
|
'''simple docstring'''
import os
def snake_case_ ():
UpperCAmelCase = os.path.join(os.path.dirname(_a ) , '''num.txt''' )
with open(_a ) as file_hand:
return str(sum(int(_a ) for line in file_hand ) )[:1_0]
if __name__ == "__main__":
print(solution())
| 34
| 1
|
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
A ={
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
A ={
'b0': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 2_24,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 2_40,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 14_08,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 2_60,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 15_36,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 3_00,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 17_92,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 3_80,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 20_48,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 4_56,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 23_04,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 5_28,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 25_60,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 6_00,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def snake_case_ (_a : List[str] ):
UpperCAmelCase = EfficientNetConfig()
UpperCAmelCase = CONFIG_MAP[model_name]['''hidden_dim''']
UpperCAmelCase = CONFIG_MAP[model_name]['''width_coef''']
UpperCAmelCase = CONFIG_MAP[model_name]['''depth_coef''']
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = CONFIG_MAP[model_name]['''dropout_rate''']
UpperCAmelCase = CONFIG_MAP[model_name]['''dw_padding''']
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''imagenet-1k-id2label.json'''
UpperCAmelCase = 1_0_0_0
UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ ():
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw )
return im
def snake_case_ (_a : str ):
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_a , )
return preprocessor
def snake_case_ (_a : Optional[Any] ):
UpperCAmelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
UpperCAmelCase = sorted(set(_a ) )
UpperCAmelCase = len(_a )
UpperCAmelCase = {b: str(_a ) for b, i in zip(_a , range(_a ) )}
UpperCAmelCase = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
UpperCAmelCase = block_name_mapping[b]
rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") )
rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") )
rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") )
rename_keys.append(
(F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") )
rename_keys.append(
(F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") )
rename_keys.append(
(F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") )
rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") )
rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") )
rename_keys.append(
(F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") )
rename_keys.append(
(F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") )
rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") )
rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") )
rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") )
rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") )
rename_keys.append(
(F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") )
rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") )
rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") )
rename_keys.append(
(F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") )
rename_keys.append(
(F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
UpperCAmelCase = {}
for item in rename_keys:
if item[0] in original_param_names:
UpperCAmelCase = '''efficientnet.''' + item[1]
UpperCAmelCase = '''classifier.weight'''
UpperCAmelCase = '''classifier.bias'''
return key_mapping
def snake_case_ (_a : Dict , _a : List[str] , _a : Dict ):
for key, value in tf_params.items():
if "normalization" in key:
continue
UpperCAmelCase = key_mapping[key]
if "_conv" in key and "kernel" in key:
UpperCAmelCase = torch.from_numpy(_a ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
UpperCAmelCase = torch.from_numpy(_a ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
UpperCAmelCase = torch.from_numpy(np.transpose(_a ) )
else:
UpperCAmelCase = torch.from_numpy(_a )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_a )
@torch.no_grad()
def snake_case_ (_a : Optional[Any] , _a : List[str] , _a : Optional[int] , _a : Dict ):
UpperCAmelCase = model_classes[model_name](
include_top=_a , weights='''imagenet''' , input_tensor=_a , input_shape=_a , pooling=_a , classes=1_0_0_0 , classifier_activation='''softmax''' , )
UpperCAmelCase = original_model.trainable_variables
UpperCAmelCase = original_model.non_trainable_variables
UpperCAmelCase = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
UpperCAmelCase = param.numpy()
UpperCAmelCase = list(tf_params.keys() )
# Load HuggingFace model
UpperCAmelCase = get_efficientnet_config(_a )
UpperCAmelCase = EfficientNetForImageClassification(_a ).eval()
UpperCAmelCase = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
UpperCAmelCase = rename_keys(_a )
replace_params(_a , _a , _a )
# Initialize preprocessor and preprocess input image
UpperCAmelCase = convert_image_processor(_a )
UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
UpperCAmelCase = hf_model(**_a )
UpperCAmelCase = outputs.logits.detach().numpy()
# Original model inference
UpperCAmelCase = False
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
UpperCAmelCase = image.img_to_array(_a )
UpperCAmelCase = np.expand_dims(_a , axis=0 )
UpperCAmelCase = original_model.predict(_a )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_a , _a , atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(_a ):
os.mkdir(_a )
# Save converted model and image processor
hf_model.save_pretrained(_a )
preprocessor.save_pretrained(_a )
if push_to_hub:
# Push model and image processor to hub
print(F"Pushing converted {model_name} to the hub..." )
UpperCAmelCase = F"efficientnet-{model_name}"
preprocessor.push_to_hub(_a )
hf_model.push_to_hub(_a )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
A =parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 34
|
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
A =logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
A ={
'base': AutoModel,
'sequence-classification': AutoModelForSequenceClassification,
'question-answering': AutoModelForQuestionAnswering,
'pretraining': AutoModelForPreTraining,
'token-classification': AutoModelForTokenClassification,
'language-modeling': AutoModelWithLMHead,
'summarization': AutoModelForSeqaSeqLM,
'translation': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
A ={
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
A =sorted(arg_to_scheduler.keys())
A ='{' + ', '.join(arg_to_scheduler_choices) + '}'
class _a ( pl.LightningModule ):
def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ):
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowercase )
UpperCAmelCase = 0
UpperCAmelCase = Path(self.hparams.output_dir )
UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
UpperCAmelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , )
else:
UpperCAmelCase = config
UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , lowercase , lowercase ):
assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute"
setattr(self.config , lowercase , getattr(self.hparams , lowercase ) )
if tokenizer is None:
UpperCAmelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , )
else:
UpperCAmelCase = tokenizer
UpperCAmelCase = MODEL_MODES[mode]
if model is None:
UpperCAmelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , )
else:
UpperCAmelCase = model
def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase )
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler]
UpperCAmelCase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.model
UpperCAmelCase = ['''bias''', '''LayerNorm.weight''']
UpperCAmelCase = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
UpperCAmelCase = Adafactor(
lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase )
else:
UpperCAmelCase = AdamW(
lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
UpperCAmelCase = optimizer
UpperCAmelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def A ( self : List[Any] , lowercase : int , lowercase : List[str] ):
'''simple docstring'''
return self.validation_step(lowercase , lowercase )
def A ( self : List[Any] , lowercase : Tuple ):
'''simple docstring'''
return self.validation_end(lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def A ( self : List[str] , lowercase : Any ):
'''simple docstring'''
if stage == "test":
UpperCAmelCase = len(self.test_dataloader().dataset )
else:
UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase )
UpperCAmelCase = len(self.train_dataloader().dataset )
def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ):
'''simple docstring'''
raise NotImplementedError('''You must implement this for your task''' )
def A ( self : Union[str, Any] ):
'''simple docstring'''
return self.train_loader
def A ( self : Optional[Any] ):
'''simple docstring'''
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase )
def A ( self : Any , lowercase : Union[str, Any] ):
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def A ( self : List[str] , lowercase : Dict[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' )
UpperCAmelCase = self.step_count
self.model.save_pretrained(lowercase )
self.tokenizer.save_pretrained(lowercase )
@staticmethod
def A ( lowercase : Optional[int] , lowercase : List[str] ):
'''simple docstring'''
parser.add_argument(
'''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase )
parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase )
parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class _a ( pl.Callback ):
def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ):
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _a ( pl.Callback ):
def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ):
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowercase )
class _a ( pl.Callback ):
def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler''']
UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowercase )
def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info('''***** Validation results *****''' )
UpperCAmelCase = trainer.callback_metrics
# Log results
for key in sorted(lowercase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info('''***** Test results *****''' )
UpperCAmelCase = trainer.callback_metrics
# Log and save results to file
UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(lowercase , '''w''' ) as writer:
for key in sorted(lowercase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
def snake_case_ (_a : int , _a : Optional[Any] ):
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=_a , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ):
pl.seed_everything(args.seed )
# init model
UpperCAmelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_a )
# add custom checkpoints
if checkpoint_callback is None:
UpperCAmelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_a )
if logging_callback is None:
UpperCAmelCase = LoggingCallback()
UpperCAmelCase = {}
if args.fpaa:
UpperCAmelCase = 1_6
if args.gpus > 1:
UpperCAmelCase = '''auto'''
UpperCAmelCase = '''ddp'''
UpperCAmelCase = args.accumulate_grad_batches
UpperCAmelCase = None
UpperCAmelCase = '''auto'''
UpperCAmelCase = pl.Trainer.from_argparse_args(
_a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , )
if args.do_train:
trainer.fit(_a )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 34
| 1
|
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _a ( __a ):
def __init__( self : Optional[int] , *lowercase : Optional[Any] , lowercase : Optional[Any]=None , lowercase : Tuple=None , **lowercase : Dict ):
'''simple docstring'''
super().__init__(*lowercase , **lowercase )
UpperCAmelCase = eval_examples
UpperCAmelCase = post_process_function
def A ( self : str , lowercase : List[Any]=None , lowercase : Tuple=None , lowercase : Optional[Any]=None , lowercase : str = "eval" ):
'''simple docstring'''
UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset
UpperCAmelCase = self.get_eval_dataloader(lowercase )
UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase = self.compute_metrics
UpperCAmelCase = None
UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
UpperCAmelCase = time.time()
try:
UpperCAmelCase = eval_loop(
lowercase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , )
finally:
UpperCAmelCase = compute_metrics
UpperCAmelCase = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
UpperCAmelCase = self.post_process_function(lowercase , lowercase , output.predictions )
UpperCAmelCase = self.compute_metrics(lowercase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
UpperCAmelCase = metrics.pop(lowercase )
metrics.update(output.metrics )
else:
UpperCAmelCase = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowercase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase )
return metrics
def A ( self : Optional[Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Optional[Any]=None , lowercase : str = "test" ):
'''simple docstring'''
UpperCAmelCase = self.get_test_dataloader(lowercase )
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase = self.compute_metrics
UpperCAmelCase = None
UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
UpperCAmelCase = time.time()
try:
UpperCAmelCase = eval_loop(
lowercase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , )
finally:
UpperCAmelCase = compute_metrics
UpperCAmelCase = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
UpperCAmelCase = self.post_process_function(lowercase , lowercase , output.predictions , '''predict''' )
UpperCAmelCase = self.compute_metrics(lowercase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
UpperCAmelCase = metrics.pop(lowercase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase )
| 34
|
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ):
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
UpperCAmelCase = cst_fwd.get(_a , np.inf )
UpperCAmelCase = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
UpperCAmelCase = new_cost_f
UpperCAmelCase = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ):
UpperCAmelCase = -1
UpperCAmelCase = set()
UpperCAmelCase = set()
UpperCAmelCase = {source: 0}
UpperCAmelCase = {destination: 0}
UpperCAmelCase = {source: None}
UpperCAmelCase = {destination: None}
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
UpperCAmelCase , UpperCAmelCase = queue_forward.get()
visited_forward.add(_a )
UpperCAmelCase , UpperCAmelCase = queue_backward.get()
visited_backward.add(_a )
UpperCAmelCase = pass_and_relaxation(
_a , _a , _a , _a , _a , _a , _a , _a , _a , )
UpperCAmelCase = pass_and_relaxation(
_a , _a , _a , _a , _a , _a , _a , _a , _a , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
UpperCAmelCase = shortest_distance
return shortest_path_distance
A ={
'B': [['C', 1]],
'C': [['D', 1]],
'D': [['F', 1]],
'E': [['B', 1], ['G', 2]],
'F': [],
'G': [['F', 1]],
}
A ={
'B': [['E', 1]],
'C': [['B', 1]],
'D': [['C', 1]],
'F': [['D', 1], ['G', 1]],
'E': [[None, np.inf]],
'G': [['E', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
| 1
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import MutableSequence
class _a :
def __init__( self : Union[str, Any] , lowercase : int , lowercase : MutableSequence[float] ):
'''simple docstring'''
if len(lowercase ) != degree + 1:
raise ValueError(
'''The number of coefficients should be equal to the degree + 1.''' )
UpperCAmelCase = list(lowercase )
UpperCAmelCase = degree
def __add__( self : List[Any] , lowercase : Polynomial ):
'''simple docstring'''
if self.degree > polynomial_a.degree:
UpperCAmelCase = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , lowercase )
else:
UpperCAmelCase = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , lowercase )
def __sub__( self : str , lowercase : Polynomial ):
'''simple docstring'''
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self : Optional[int] ):
'''simple docstring'''
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self : List[Any] , lowercase : Polynomial ):
'''simple docstring'''
UpperCAmelCase = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , lowercase )
def A ( self : Optional[int] , lowercase : int | float ):
'''simple docstring'''
UpperCAmelCase = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self : str ):
'''simple docstring'''
UpperCAmelCase = ''''''
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase )
return polynomial
def __repr__( self : List[Any] ):
'''simple docstring'''
return self.__str__()
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = [0] * self.degree
for i in range(self.degree ):
UpperCAmelCase = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , lowercase )
def A ( self : str , lowercase : int | float = 0 ):
'''simple docstring'''
UpperCAmelCase = [0] * (self.degree + 2)
UpperCAmelCase = constant
for i in range(self.degree + 1 ):
UpperCAmelCase = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , lowercase )
def __eq__( self : List[Any] , lowercase : object ):
'''simple docstring'''
if not isinstance(lowercase , lowercase ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self : Tuple , lowercase : object ):
'''simple docstring'''
return not self.__eq__(lowercase )
| 34
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
def snake_case_ (_a : List[str] ):
UpperCAmelCase = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
UpperCAmelCase = 1_2_8
elif "12-12" in model_name:
UpperCAmelCase = 1_2
UpperCAmelCase = 1_2
elif "14-14" in model_name:
UpperCAmelCase = 1_4
UpperCAmelCase = 1_4
elif "16-16" in model_name:
UpperCAmelCase = 1_6
UpperCAmelCase = 1_6
else:
raise ValueError('''Model not supported''' )
UpperCAmelCase = '''huggingface/label-files'''
if "speech-commands" in model_name:
UpperCAmelCase = 3_5
UpperCAmelCase = '''speech-commands-v2-id2label.json'''
else:
UpperCAmelCase = 5_2_7
UpperCAmelCase = '''audioset-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ (_a : Tuple ):
if "module.v" in name:
UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "dist_token" in name:
UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
# transformer blocks
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' )
# classifier head
if "module.mlp_head.0" in name:
UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' )
if "module.mlp_head.1" in name:
UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' )
return name
def snake_case_ (_a : Dict , _a : List[Any] ):
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(_a )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[3] )
UpperCAmelCase = config.hidden_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[dim : dim * 2, :]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def snake_case_ (_a : Tuple ):
UpperCAmelCase = [
'''module.v.head.weight''',
'''module.v.head.bias''',
'''module.v.head_dist.weight''',
'''module.v.head_dist.bias''',
]
for k in ignore_keys:
state_dict.pop(_a , _a )
@torch.no_grad()
def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ):
UpperCAmelCase = get_audio_spectrogram_transformer_config(_a )
UpperCAmelCase = {
'''ast-finetuned-audioset-10-10-0.4593''': (
'''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.450''': (
'''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448''': (
'''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448-v2''': (
'''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'''
),
'''ast-finetuned-audioset-12-12-0.447''': (
'''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'''
),
'''ast-finetuned-audioset-14-14-0.443''': (
'''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'''
),
'''ast-finetuned-audioset-16-16-0.442''': (
'''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'''
),
'''ast-finetuned-speech-commands-v2''': (
'''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'''
),
}
# load original state_dict
UpperCAmelCase = model_name_to_url[model_name]
UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' )
# remove some keys
remove_keys(_a )
# rename some keys
UpperCAmelCase = convert_state_dict(_a , _a )
# load 🤗 model
UpperCAmelCase = ASTForAudioClassification(_a )
model.eval()
model.load_state_dict(_a )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978
UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526
UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8
UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a )
if "speech-commands" in model_name:
UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' )
UpperCAmelCase = dataset[0]['''audio''']['''array''']
else:
UpperCAmelCase = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , )
UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a )
UpperCAmelCase = waveform.squeeze().numpy()
UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' )
# forward pass
UpperCAmelCase = model(**_a )
UpperCAmelCase = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError('''Unknown model name''' )
if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ):
raise ValueError('''Logits don\'t match''' )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(_a ).mkdir(exist_ok=_a )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_a )
print(F"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(_a )
if push_to_hub:
print('''Pushing model and feature extractor to the hub...''' )
model.push_to_hub(F"MIT/{model_name}" )
feature_extractor.push_to_hub(F"MIT/{model_name}" )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
A =parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 34
| 1
|
'''simple docstring'''
import math
def snake_case_ (_a : float , _a : float ):
return math.pow(_a , 2 ) - a
def snake_case_ (_a : float ):
return 2 * x
def snake_case_ (_a : float ):
UpperCAmelCase = 2.0
while start <= a:
UpperCAmelCase = math.pow(_a , 2 )
return start
def snake_case_ (_a : float , _a : int = 9_9_9_9 , _a : float = 0.00_0000_0000_0001 ):
if a < 0:
raise ValueError('''math domain error''' )
UpperCAmelCase = get_initial_point(_a )
for _ in range(_a ):
UpperCAmelCase = value
UpperCAmelCase = value - fx(_a , _a ) / fx_derivative(_a )
if abs(prev_value - value ) < tolerance:
return value
return value
if __name__ == "__main__":
from doctest import testmod
testmod()
| 34
|
'''simple docstring'''
from __future__ import annotations
def snake_case_ (_a : Dict , _a : str , _a : Optional[Any] , _a : List[str] ): # noqa: E741
while r - l > 1:
UpperCAmelCase = (l + r) // 2
if v[m] >= key:
UpperCAmelCase = m
else:
UpperCAmelCase = m # noqa: E741
return r
def snake_case_ (_a : list[int] ):
if len(_a ) == 0:
return 0
UpperCAmelCase = [0] * len(_a )
UpperCAmelCase = 1
UpperCAmelCase = v[0]
for i in range(1 , len(_a ) ):
if v[i] < tail[0]:
UpperCAmelCase = v[i]
elif v[i] > tail[length - 1]:
UpperCAmelCase = v[i]
length += 1
else:
UpperCAmelCase = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
| 1
|
'''simple docstring'''
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
A =logging.get_logger(__name__)
# General docstring
A ='PoolFormerConfig'
# Base docstring
A ='sail/poolformer_s12'
A =[1, 5_12, 7, 7]
# Image classification docstring
A ='sail/poolformer_s12'
A ='tabby, tabby cat'
A =[
'sail/poolformer_s12',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def snake_case_ (_a : List[str] , _a : float = 0.0 , _a : bool = False ):
if drop_prob == 0.0 or not training:
return input
UpperCAmelCase = 1 - drop_prob
UpperCAmelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
UpperCAmelCase = keep_prob + torch.rand(_a , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
UpperCAmelCase = input.div(_a ) * random_tensor
return output
class _a ( nn.Module ):
def __init__( self : str , lowercase : Optional[float] = None ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = drop_prob
def A ( self : Union[str, Any] , lowercase : torch.Tensor ):
'''simple docstring'''
return drop_path(lowercase , self.drop_prob , self.training )
def A ( self : Optional[Any] ):
'''simple docstring'''
return "p={}".format(self.drop_prob )
class _a ( nn.Module ):
def __init__( self : Optional[int] , lowercase : Optional[int] , lowercase : int , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : int , lowercase : Tuple=None ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = patch_size if isinstance(lowercase , collections.abc.Iterable ) else (patch_size, patch_size)
UpperCAmelCase = stride if isinstance(lowercase , collections.abc.Iterable ) else (stride, stride)
UpperCAmelCase = padding if isinstance(lowercase , collections.abc.Iterable ) else (padding, padding)
UpperCAmelCase = nn.Convad(lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=lowercase )
UpperCAmelCase = norm_layer(lowercase ) if norm_layer else nn.Identity()
def A ( self : int , lowercase : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.projection(lowercase )
UpperCAmelCase = self.norm(lowercase )
return embeddings
class _a ( nn.GroupNorm ):
def __init__( self : Optional[int] , lowercase : Optional[Any] , **lowercase : int ):
'''simple docstring'''
super().__init__(1 , lowercase , **lowercase )
class _a ( nn.Module ):
def __init__( self : Dict , lowercase : Dict ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = nn.AvgPoolad(lowercase , stride=1 , padding=pool_size // 2 , count_include_pad=lowercase )
def A ( self : str , lowercase : Dict ):
'''simple docstring'''
return self.pool(lowercase ) - hidden_states
class _a ( nn.Module ):
def __init__( self : Any , lowercase : List[str] , lowercase : str , lowercase : Optional[int] , lowercase : Any ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = nn.Convad(lowercase , lowercase , 1 )
UpperCAmelCase = nn.Convad(lowercase , lowercase , 1 )
UpperCAmelCase = PoolFormerDropPath(lowercase )
if isinstance(config.hidden_act , lowercase ):
UpperCAmelCase = ACTaFN[config.hidden_act]
else:
UpperCAmelCase = config.hidden_act
def A ( self : List[str] , lowercase : int ):
'''simple docstring'''
UpperCAmelCase = self.conva(lowercase )
UpperCAmelCase = self.act_fn(lowercase )
UpperCAmelCase = self.drop(lowercase )
UpperCAmelCase = self.conva(lowercase )
UpperCAmelCase = self.drop(lowercase )
return hidden_states
class _a ( nn.Module ):
def __init__( self : Tuple , lowercase : Optional[int] , lowercase : List[Any] , lowercase : Dict , lowercase : List[Any] , lowercase : Any , lowercase : List[Any] ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = PoolFormerPooling(lowercase )
UpperCAmelCase = PoolFormerOutput(lowercase , lowercase , lowercase , lowercase )
UpperCAmelCase = PoolFormerGroupNorm(lowercase )
UpperCAmelCase = PoolFormerGroupNorm(lowercase )
# Useful for training neural nets
UpperCAmelCase = PoolFormerDropPath(lowercase ) if drop_path > 0.0 else nn.Identity()
UpperCAmelCase = config.use_layer_scale
if config.use_layer_scale:
UpperCAmelCase = nn.Parameter(
config.layer_scale_init_value * torch.ones((lowercase) ) , requires_grad=lowercase )
UpperCAmelCase = nn.Parameter(
config.layer_scale_init_value * torch.ones((lowercase) ) , requires_grad=lowercase )
def A ( self : Tuple , lowercase : str ):
'''simple docstring'''
if self.use_layer_scale:
UpperCAmelCase = self.pooling(self.before_norm(lowercase ) )
UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
UpperCAmelCase = hidden_states + self.drop_path(lowercase )
UpperCAmelCase = ()
UpperCAmelCase = self.output(self.after_norm(lowercase ) )
UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
UpperCAmelCase = hidden_states + self.drop_path(lowercase )
UpperCAmelCase = (output,) + outputs
return outputs
else:
UpperCAmelCase = self.drop_path(self.pooling(self.before_norm(lowercase ) ) )
# First residual connection
UpperCAmelCase = pooling_output + hidden_states
UpperCAmelCase = ()
# Second residual connection inside the PoolFormerOutput block
UpperCAmelCase = self.drop_path(self.output(self.after_norm(lowercase ) ) )
UpperCAmelCase = hidden_states + layer_output
UpperCAmelCase = (output,) + outputs
return outputs
class _a ( nn.Module ):
def __init__( self : Optional[int] , lowercase : Tuple ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = config
# stochastic depth decay rule
UpperCAmelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
UpperCAmelCase = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
UpperCAmelCase = nn.ModuleList(lowercase )
# Transformer blocks
UpperCAmelCase = []
UpperCAmelCase = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
UpperCAmelCase = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
lowercase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(lowercase ) )
UpperCAmelCase = nn.ModuleList(lowercase )
def A ( self : Optional[Any] , lowercase : Optional[int] , lowercase : Union[str, Any]=False , lowercase : List[Any]=True ):
'''simple docstring'''
UpperCAmelCase = () if output_hidden_states else None
UpperCAmelCase = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
UpperCAmelCase , UpperCAmelCase = layers
# Get patch embeddings from hidden_states
UpperCAmelCase = embedding_layer(lowercase )
# Send the embeddings through the blocks
for _, blk in enumerate(lowercase ):
UpperCAmelCase = blk(lowercase )
UpperCAmelCase = layer_outputs[0]
if output_hidden_states:
UpperCAmelCase = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase )
class _a ( __a ):
__a : Optional[int] = PoolFormerConfig
__a : Dict = """poolformer"""
__a : Union[str, Any] = """pixel_values"""
__a : Dict = True
def A ( self : Tuple , lowercase : Any ):
'''simple docstring'''
if isinstance(lowercase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(lowercase , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def A ( self : str , lowercase : str , lowercase : Dict=False ):
'''simple docstring'''
if isinstance(lowercase , lowercase ):
UpperCAmelCase = value
A =r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
A =r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n'
@add_start_docstrings(
"""The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , __a , )
class _a ( __a ):
def __init__( self : str , lowercase : Optional[Any] ):
'''simple docstring'''
super().__init__(lowercase )
UpperCAmelCase = config
UpperCAmelCase = PoolFormerEncoder(lowercase )
# Initialize weights and apply final processing
self.post_init()
def A ( self : int ):
'''simple docstring'''
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(lowercase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def A ( self : Tuple , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ):
'''simple docstring'''
UpperCAmelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('''You have to specify pixel_values''' )
UpperCAmelCase = self.encoder(
lowercase , output_hidden_states=lowercase , return_dict=lowercase , )
UpperCAmelCase = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=lowercase , hidden_states=encoder_outputs.hidden_states , )
class _a ( nn.Module ):
def __init__( self : Optional[int] , lowercase : str ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = nn.Linear(config.hidden_size , config.hidden_size )
def A ( self : str , lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.dense(lowercase )
return output
@add_start_docstrings(
"""
PoolFormer Model transformer with an image classification head on top
""" , __a , )
class _a ( __a ):
def __init__( self : str , lowercase : List[Any] ):
'''simple docstring'''
super().__init__(lowercase )
UpperCAmelCase = config.num_labels
UpperCAmelCase = PoolFormerModel(lowercase )
# Final norm
UpperCAmelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
UpperCAmelCase = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowercase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def A ( self : List[Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ):
'''simple docstring'''
UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase = self.poolformer(
lowercase , output_hidden_states=lowercase , return_dict=lowercase , )
UpperCAmelCase = outputs[0]
UpperCAmelCase = self.classifier(self.norm(lowercase ).mean([-2, -1] ) )
UpperCAmelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
UpperCAmelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
UpperCAmelCase = '''single_label_classification'''
else:
UpperCAmelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
UpperCAmelCase = MSELoss()
if self.num_labels == 1:
UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
UpperCAmelCase = loss_fct(lowercase , lowercase )
elif self.config.problem_type == "single_label_classification":
UpperCAmelCase = CrossEntropyLoss()
UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
UpperCAmelCase = BCEWithLogitsLoss()
UpperCAmelCase = loss_fct(lowercase , lowercase )
if not return_dict:
UpperCAmelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
| 34
|
'''simple docstring'''
def snake_case_ (_a : str , _a : str ):
UpperCAmelCase = len(_a ) + 1
UpperCAmelCase = len(_a ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
UpperCAmelCase = [[0 for i in range(_a )] for j in range(_a )]
# since string of zero length match pattern of zero length
UpperCAmelCase = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _a ):
UpperCAmelCase = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _a ):
UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _a ):
for j in range(1 , _a ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
UpperCAmelCase = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
UpperCAmelCase = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
UpperCAmelCase = dp[i - 1][j]
else:
UpperCAmelCase = 0
else:
UpperCAmelCase = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
A ='aab'
A ='c*a*b'
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(f"""{input_string} matches the given pattern {pattern}""")
else:
print(f"""{input_string} does not match with the given pattern {pattern}""")
| 34
| 1
|
'''simple docstring'''
from __future__ import annotations
def snake_case_ (_a : list[float] ):
if len(_a ) < 2:
raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' )
if any(i <= 0 for i in nums ):
raise ValueError('''All values must be greater than 0''' )
UpperCAmelCase = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
|
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
A ='pt'
elif is_tf_available():
A ='tf'
else:
A ='jax'
class _a ( __a , unittest.TestCase ):
__a : Optional[Any] = PerceiverTokenizer
__a : str = False
def A ( self : Union[str, Any] ):
'''simple docstring'''
super().setUp()
UpperCAmelCase = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def A ( self : Optional[int] ):
'''simple docstring'''
return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' )
def A ( self : Union[str, Any] , **lowercase : int ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase )
def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ):
'''simple docstring'''
UpperCAmelCase = []
for i in range(len(lowercase ) ):
try:
UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) )
UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) )
if max_length is not None and len(lowercase ) > max_length:
UpperCAmelCase = toks[:max_length]
if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0:
while len(lowercase ) < min_length:
UpperCAmelCase = toks + toks
# toks_str = [t[1] for t in toks]
UpperCAmelCase = [t[0] for t in toks]
# Ensure consistency
UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase )
if " " not in output_txt and len(lowercase ) > 1:
UpperCAmelCase = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase )
)
if with_prefix_space:
UpperCAmelCase = ''' ''' + output_txt
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
return output_txt, output_ids
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = '''Unicode €.'''
UpperCAmelCase = tokenizer(lowercase )
UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['''input_ids'''] , lowercase )
# decoding
UpperCAmelCase = tokenizer.decode(lowercase )
self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' )
UpperCAmelCase = tokenizer('''e è é ê ë''' )
UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['''input_ids'''] , lowercase )
# decoding
UpperCAmelCase = tokenizer.decode(lowercase )
self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
# fmt: off
UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase )
self.assertIsInstance(lowercase , lowercase )
if FRAMEWORK != "jax":
UpperCAmelCase = list(batch.input_ids.numpy()[0] )
else:
UpperCAmelCase = list(batch.input_ids.tolist()[0] )
self.assertListEqual(lowercase , lowercase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('''input_ids''' , lowercase )
self.assertIn('''attention_mask''' , lowercase )
self.assertNotIn('''decoder_input_ids''' , lowercase )
self.assertNotIn('''decoder_attention_mask''' , lowercase )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = [
'''Summary of the text.''',
'''Another summary.''',
]
UpperCAmelCase = tokenizer(
text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase )
UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
shutil.rmtree(lowercase )
UpperCAmelCase = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
tokenizer.add_tokens(['''bim''', '''bambam'''] )
UpperCAmelCase = tokenizer.additional_special_tokens
additional_special_tokens.append('''new_additional_special_token''' )
tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} )
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase )
UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(lowercase )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(lowercase )
with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file:
UpperCAmelCase = json.load(lowercase )
with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file:
UpperCAmelCase = json.load(lowercase )
UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )]
UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(lowercase , lowercase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase = tokenizer_class.from_pretrained(
lowercase , )
self.assertIn(
'''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )]
UpperCAmelCase = tokenizer_class.from_pretrained(
lowercase , additional_special_tokens=lowercase , )
self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens )
self.assertEqual(
['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , '''�''' )
def A ( self : Union[str, Any] ):
'''simple docstring'''
pass
def A ( self : Any ):
'''simple docstring'''
pass
def A ( self : Dict ):
'''simple docstring'''
pass
def A ( self : str ):
'''simple docstring'''
pass
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]''']
UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase )
self.assertIsInstance(lowercase , lowercase )
| 34
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json',
'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json',
}
class _a ( __a ):
__a : Optional[int] = """falcon"""
__a : Tuple = ["""past_key_values"""]
def __init__( self : Dict , lowercase : str=65_024 , lowercase : Dict=4_544 , lowercase : Optional[int]=32 , lowercase : Any=71 , lowercase : List[Any]=1E-5 , lowercase : Union[str, Any]=0.02 , lowercase : int=True , lowercase : Union[str, Any]=0.0 , lowercase : str=0.0 , lowercase : List[Any]=None , lowercase : List[str]=False , lowercase : List[Any]=False , lowercase : List[str]=True , lowercase : Dict=True , lowercase : Tuple=False , lowercase : int=11 , lowercase : Any=11 , **lowercase : str , ):
'''simple docstring'''
UpperCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
UpperCAmelCase = kwargs.pop('''n_embed''' , lowercase )
UpperCAmelCase = hidden_size if n_embed is None else n_embed
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = layer_norm_epsilon
UpperCAmelCase = initializer_range
UpperCAmelCase = use_cache
UpperCAmelCase = hidden_dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = bos_token_id
UpperCAmelCase = eos_token_id
UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
UpperCAmelCase = alibi
UpperCAmelCase = new_decoder_architecture
UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True
UpperCAmelCase = parallel_attn
UpperCAmelCase = bias
super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
@property
def A ( self : Any ):
'''simple docstring'''
return self.hidden_size // self.num_attention_heads
@property
def A ( self : Union[str, Any] ):
'''simple docstring'''
return not self.alibi
| 34
|
'''simple docstring'''
import os
from distutils.util import strtobool
def snake_case_ (_a : Union[str, Any] , _a : List[Any] ):
for e in env_keys:
UpperCAmelCase = int(os.environ.get(_a , -1 ) )
if val >= 0:
return val
return default
def snake_case_ (_a : Dict , _a : Any=False ):
UpperCAmelCase = os.environ.get(_a , str(_a ) )
return strtobool(_a ) == 1 # As its name indicates `strtobool` actually returns an int...
def snake_case_ (_a : str , _a : Optional[Any]="no" ):
UpperCAmelCase = os.environ.get(_a , str(_a ) )
return value
| 34
| 1
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class _a :
def __init__( self : Dict , lowercase : Optional[Any] , lowercase : Tuple=13 , lowercase : Optional[Any]=7 , lowercase : Any=True , lowercase : Union[str, Any]=True , lowercase : Optional[Any]=True , lowercase : str=True , lowercase : Optional[Any]=99 , lowercase : Dict=32 , lowercase : Tuple=2 , lowercase : Optional[int]=4 , lowercase : Optional[Any]=37 , lowercase : Optional[int]="gelu" , lowercase : Tuple=0.1 , lowercase : Union[str, Any]=0.1 , lowercase : List[Any]=512 , lowercase : Any=16 , lowercase : Optional[Any]=2 , lowercase : List[str]=0.02 , lowercase : Dict=3 , lowercase : List[Any]=4 , lowercase : str=None , ):
'''simple docstring'''
UpperCAmelCase = parent
UpperCAmelCase = 13
UpperCAmelCase = 7
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = 99
UpperCAmelCase = 32
UpperCAmelCase = 2
UpperCAmelCase = 4
UpperCAmelCase = 37
UpperCAmelCase = '''gelu'''
UpperCAmelCase = 0.1
UpperCAmelCase = 0.1
UpperCAmelCase = 512
UpperCAmelCase = 16
UpperCAmelCase = 2
UpperCAmelCase = 0.02
UpperCAmelCase = 3
UpperCAmelCase = 4
UpperCAmelCase = None
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
if self.use_token_type_ids:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : List[str] , lowercase : str , lowercase : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = TFRoFormerModel(config=lowercase )
UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
UpperCAmelCase = [input_ids, input_mask]
UpperCAmelCase = model(lowercase )
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : str , lowercase : Any , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] , lowercase : Optional[int] , lowercase : List[Any] ):
'''simple docstring'''
UpperCAmelCase = True
UpperCAmelCase = TFRoFormerForCausalLM(config=lowercase )
UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase = model(lowercase )['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def A ( self : List[Any] , lowercase : Optional[int] , lowercase : List[str] , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Any , lowercase : str , lowercase : List[Any] ):
'''simple docstring'''
UpperCAmelCase = TFRoFormerForMaskedLM(config=lowercase )
UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self : List[Any] , lowercase : Dict , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Any , lowercase : Tuple , lowercase : int ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = TFRoFormerForSequenceClassification(config=lowercase )
UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : List[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self.num_choices
UpperCAmelCase = TFRoFormerForMultipleChoice(config=lowercase )
UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self : str , lowercase : List[str] , lowercase : Dict , lowercase : Dict , lowercase : Optional[int] , lowercase : Any , lowercase : Optional[int] , lowercase : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = TFRoFormerForTokenClassification(config=lowercase )
UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self : Dict , lowercase : int , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = TFRoFormerForQuestionAnswering(config=lowercase )
UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) = config_and_inputs
UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class _a ( __a , __a , unittest.TestCase ):
__a : Any = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
__a : Tuple = (
{
"""feature-extraction""": TFRoFormerModel,
"""fill-mask""": TFRoFormerForMaskedLM,
"""question-answering""": TFRoFormerForQuestionAnswering,
"""text-classification""": TFRoFormerForSequenceClassification,
"""text-generation""": TFRoFormerForCausalLM,
"""token-classification""": TFRoFormerForTokenClassification,
"""zero-shot""": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
__a : List[Any] = False
__a : Dict = False
def A ( self : Union[str, Any] , lowercase : Any , lowercase : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Dict ):
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = TFRoFormerModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 )
def A ( self : Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase )
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*lowercase )
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase )
@slow
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' )
self.assertIsNotNone(lowercase )
@require_tf
class _a ( unittest.TestCase ):
@slow
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase = model(lowercase )[0]
# TODO Replace vocab size
UpperCAmelCase = 50_000
UpperCAmelCase = [1, 6, vocab_size]
self.assertEqual(output.shape , lowercase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
UpperCAmelCase = tf.constant(
[
[
[-0.1205_3341, -1.026_4901, 0.2922_1946],
[-1.513_3783, 0.19_7433, 0.1519_0607],
[-5.013_5403, -3.90_0256, -0.8403_8764],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
@require_tf
class _a ( unittest.TestCase ):
__a : List[Any] = 1e-4
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = tf.constant([[4, 10]] )
UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
UpperCAmelCase = emba(input_ids.shape )
UpperCAmelCase = tf.constant(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] )
tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance )
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = tf.constant(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
] )
UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 )
emba([2, 16, 512] )
UpperCAmelCase = emba.weight[:3, :5]
tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance )
@require_tf
class _a ( unittest.TestCase ):
__a : Dict = 1e-4
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
UpperCAmelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
UpperCAmelCase = embed_positions([2, 16, 768] )[None, None, :, :]
UpperCAmelCase , UpperCAmelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
lowercase , lowercase , lowercase )
UpperCAmelCase = tf.constant(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
] )
UpperCAmelCase = tf.constant(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance )
| 34
|
'''simple docstring'''
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
A =logging.getLogger(__name__)
A ='Hello world! cécé herlolip'
A =namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def snake_case_ (_a : List[Any] , _a : Any ):
UpperCAmelCase = BertAbsConfig(
temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , )
UpperCAmelCase = torch.load(_a , lambda _a , _a : storage )
UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a )
original.eval()
UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('''convert the model''' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('''Make sure that the models\' outputs are identical''' )
UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
# prepare the model inputs
UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
UpperCAmelCase = encoder_input_ids
UpperCAmelCase = decoder_input_ids
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0]
UpperCAmelCase = original.generator(_a )
UpperCAmelCase = new_model(
_a , _a , _a , _a , _a )[0]
UpperCAmelCase = new_model.generator(_a )
UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 )
if are_identical:
logging.info('''all weights are equal up to 1e-3''' )
else:
raise ValueError('''the weights are different. The new model is likely different from the original one.''' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('''saving the model\'s state dictionary''' )
torch.save(
new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' )
if __name__ == "__main__":
A =argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
A =parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 34
| 1
|
'''simple docstring'''
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class _a ( __a ):
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = 8
# DPR tok
UpperCAmelCase = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
UpperCAmelCase = os.path.join(self.tmpdirname , '''dpr_tokenizer''' )
os.makedirs(lowercase , exist_ok=lowercase )
UpperCAmelCase = os.path.join(lowercase , DPR_VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
# BART tok
UpperCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
UpperCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) )
UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
UpperCAmelCase = {'''unk_token''': '''<unk>'''}
UpperCAmelCase = os.path.join(self.tmpdirname , '''bart_tokenizer''' )
os.makedirs(lowercase , exist_ok=lowercase )
UpperCAmelCase = os.path.join(lowercase , BART_VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase = os.path.join(lowercase , BART_VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowercase ) )
def A ( self : List[Any] ):
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def A ( self : Dict ):
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) )
def A ( self : Optional[Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
@require_tokenizers
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = os.path.join(self.tmpdirname , '''rag_tokenizer''' )
UpperCAmelCase = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() )
UpperCAmelCase = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() )
rag_config.save_pretrained(lowercase )
rag_tokenizer.save_pretrained(lowercase )
UpperCAmelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase )
self.assertIsInstance(new_rag_tokenizer.question_encoder , lowercase )
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() )
self.assertIsInstance(new_rag_tokenizer.generator , lowercase )
self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' )
UpperCAmelCase = [
'''who got the first nobel prize in physics''',
'''when is the next deadpool movie being released''',
'''which mode is used for short wave broadcast service''',
'''who is the owner of reading football club''',
'''when is the next scandal episode coming out''',
'''when is the last time the philadelphia won the superbowl''',
'''what is the most current adobe flash player version''',
'''how many episodes are there in dragon ball z''',
'''what is the first step in the evolution of the eye''',
'''where is gall bladder situated in human body''',
'''what is the main mineral in lithium batteries''',
'''who is the president of usa right now''',
'''where do the greasers live in the outsiders''',
'''panda is a national animal of which country''',
'''what is the name of manchester united stadium''',
]
UpperCAmelCase = tokenizer(lowercase )
self.assertIsNotNone(lowercase )
@slow
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' )
UpperCAmelCase = [
'''who got the first nobel prize in physics''',
'''when is the next deadpool movie being released''',
'''which mode is used for short wave broadcast service''',
'''who is the owner of reading football club''',
'''when is the next scandal episode coming out''',
'''when is the last time the philadelphia won the superbowl''',
'''what is the most current adobe flash player version''',
'''how many episodes are there in dragon ball z''',
'''what is the first step in the evolution of the eye''',
'''where is gall bladder situated in human body''',
'''what is the main mineral in lithium batteries''',
'''who is the president of usa right now''',
'''where do the greasers live in the outsiders''',
'''panda is a national animal of which country''',
'''what is the name of manchester united stadium''',
]
UpperCAmelCase = tokenizer(lowercase )
self.assertIsNotNone(lowercase )
| 34
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : Any = ["""flax""", """transformers"""]
def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
| 34
| 1
|
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
A =['bert-base-uncased', 'bert-base-cased']
A ='hf-internal-testing/tiny-bert-tf-only'
if is_tf_available():
class _a ( tf.keras.Model ):
def __init__( self : Optional[int] , lowercase : List[Any] ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = tokenizer
UpperCAmelCase = AutoConfig.from_pretrained(lowercase )
UpperCAmelCase = TFAutoModel.from_config(lowercase )
def A ( self : List[str] , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = self.tokenizer(lowercase )
UpperCAmelCase = self.bert(**lowercase )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class _a ( unittest.TestCase ):
def A ( self : Tuple ):
'''simple docstring'''
super().setUp()
UpperCAmelCase = [
BertTokenizer.from_pretrained(lowercase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
UpperCAmelCase = [TFBertTokenizer.from_pretrained(lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(lowercase , use_fast_bert_tokenizer=lowercase )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCAmelCase = [
'''This is a straightforward English test sentence.''',
'''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''',
'''Now we\'re going to add some Chinese: 一 二 三 一二三''',
'''And some much more rare Chinese: 齉 堃 齉堃''',
'''Je vais aussi écrire en français pour tester les accents''',
'''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''',
]
UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def A ( self : Optional[int] ):
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCAmelCase = tokenizer(lowercase , return_tensors='''tf''' , padding='''longest''' )
UpperCAmelCase = tf_tokenizer(lowercase )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def A ( self : Union[str, Any] ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase = tf_tokenizer(self.paired_sentences )
UpperCAmelCase = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def A ( self : List[str] ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase = tf.function(lowercase )
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCAmelCase = tf.constant(lowercase )
UpperCAmelCase = compiled_tokenizer(lowercase )
UpperCAmelCase = tf_tokenizer(lowercase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def A ( self : List[Any] ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase = ModelToSave(tokenizer=lowercase )
UpperCAmelCase = tf.convert_to_tensor(self.test_sentences )
UpperCAmelCase = model(lowercase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCAmelCase = Path(lowercase ) / '''saved.model'''
model.save(lowercase )
UpperCAmelCase = tf.keras.models.load_model(lowercase )
UpperCAmelCase = loaded_model(lowercase )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
| 34
|
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
A ={
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
A ={
'b0': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 2_24,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 2_40,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 14_08,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 2_60,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 15_36,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 3_00,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 17_92,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 3_80,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 20_48,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 4_56,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 23_04,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 5_28,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 25_60,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 6_00,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def snake_case_ (_a : List[str] ):
UpperCAmelCase = EfficientNetConfig()
UpperCAmelCase = CONFIG_MAP[model_name]['''hidden_dim''']
UpperCAmelCase = CONFIG_MAP[model_name]['''width_coef''']
UpperCAmelCase = CONFIG_MAP[model_name]['''depth_coef''']
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = CONFIG_MAP[model_name]['''dropout_rate''']
UpperCAmelCase = CONFIG_MAP[model_name]['''dw_padding''']
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''imagenet-1k-id2label.json'''
UpperCAmelCase = 1_0_0_0
UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ ():
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw )
return im
def snake_case_ (_a : str ):
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_a , )
return preprocessor
def snake_case_ (_a : Optional[Any] ):
UpperCAmelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
UpperCAmelCase = sorted(set(_a ) )
UpperCAmelCase = len(_a )
UpperCAmelCase = {b: str(_a ) for b, i in zip(_a , range(_a ) )}
UpperCAmelCase = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
UpperCAmelCase = block_name_mapping[b]
rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") )
rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") )
rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") )
rename_keys.append(
(F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") )
rename_keys.append(
(F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") )
rename_keys.append(
(F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") )
rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") )
rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") )
rename_keys.append(
(F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") )
rename_keys.append(
(F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") )
rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") )
rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") )
rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") )
rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") )
rename_keys.append(
(F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") )
rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") )
rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") )
rename_keys.append(
(F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") )
rename_keys.append(
(F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
UpperCAmelCase = {}
for item in rename_keys:
if item[0] in original_param_names:
UpperCAmelCase = '''efficientnet.''' + item[1]
UpperCAmelCase = '''classifier.weight'''
UpperCAmelCase = '''classifier.bias'''
return key_mapping
def snake_case_ (_a : Dict , _a : List[str] , _a : Dict ):
for key, value in tf_params.items():
if "normalization" in key:
continue
UpperCAmelCase = key_mapping[key]
if "_conv" in key and "kernel" in key:
UpperCAmelCase = torch.from_numpy(_a ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
UpperCAmelCase = torch.from_numpy(_a ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
UpperCAmelCase = torch.from_numpy(np.transpose(_a ) )
else:
UpperCAmelCase = torch.from_numpy(_a )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_a )
@torch.no_grad()
def snake_case_ (_a : Optional[Any] , _a : List[str] , _a : Optional[int] , _a : Dict ):
UpperCAmelCase = model_classes[model_name](
include_top=_a , weights='''imagenet''' , input_tensor=_a , input_shape=_a , pooling=_a , classes=1_0_0_0 , classifier_activation='''softmax''' , )
UpperCAmelCase = original_model.trainable_variables
UpperCAmelCase = original_model.non_trainable_variables
UpperCAmelCase = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
UpperCAmelCase = param.numpy()
UpperCAmelCase = list(tf_params.keys() )
# Load HuggingFace model
UpperCAmelCase = get_efficientnet_config(_a )
UpperCAmelCase = EfficientNetForImageClassification(_a ).eval()
UpperCAmelCase = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
UpperCAmelCase = rename_keys(_a )
replace_params(_a , _a , _a )
# Initialize preprocessor and preprocess input image
UpperCAmelCase = convert_image_processor(_a )
UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
UpperCAmelCase = hf_model(**_a )
UpperCAmelCase = outputs.logits.detach().numpy()
# Original model inference
UpperCAmelCase = False
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
UpperCAmelCase = image.img_to_array(_a )
UpperCAmelCase = np.expand_dims(_a , axis=0 )
UpperCAmelCase = original_model.predict(_a )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_a , _a , atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(_a ):
os.mkdir(_a )
# Save converted model and image processor
hf_model.save_pretrained(_a )
preprocessor.save_pretrained(_a )
if push_to_hub:
# Push model and image processor to hub
print(F"Pushing converted {model_name} to the hub..." )
UpperCAmelCase = F"efficientnet-{model_name}"
preprocessor.push_to_hub(_a )
hf_model.push_to_hub(_a )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
A =parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 34
| 1
|
'''simple docstring'''
from PIL import Image
def snake_case_ (_a : Image , _a : int ):
UpperCAmelCase = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level))
def contrast(_a : int ) -> int:
return int(1_2_8 + factor * (c - 1_2_8) )
return img.point(_a )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change contrast to 170
A =change_contrast(img, 1_70)
cont_img.save('image_data/lena_high_contrast.png', format='png')
| 34
|
'''simple docstring'''
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
A =input('Enter image url: ').strip()
print(f"""Downloading image from {url} ...""")
A =BeautifulSoup(requests.get(url).content, 'html.parser')
# The image URL is in the content field of the first meta tag with property og:image
A =soup.find('meta', {'property': 'og:image'})['content']
A =requests.get(image_url).content
A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, 'wb') as fp:
fp.write(image_data)
print(f"""Done. Image saved to disk as {file_name}.""")
| 34
| 1
|
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class _a ( __a ):
__a : Optional[Any] = (DEISMultistepScheduler,)
__a : Any = (("""num_inference_steps""", 25),)
def A ( self : Any , **lowercase : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = {
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
}
config.update(**lowercase )
return config
def A ( self : Union[str, Any] , lowercase : Optional[Any]=0 , **lowercase : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = dict(self.forward_default_kwargs )
UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase )
UpperCAmelCase = self.dummy_sample
UpperCAmelCase = 0.1 * sample
UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase = self.get_scheduler_config(**lowercase )
UpperCAmelCase = scheduler_class(**lowercase )
scheduler.set_timesteps(lowercase )
# copy over dummy past residuals
UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase )
UpperCAmelCase = scheduler_class.from_pretrained(lowercase )
new_scheduler.set_timesteps(lowercase )
# copy over dummy past residuals
UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase , UpperCAmelCase = sample, sample
for t in range(lowercase , time_step + scheduler.config.solver_order + 1 ):
UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample
UpperCAmelCase = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def A ( self : int ):
'''simple docstring'''
pass
def A ( self : str , lowercase : Any=0 , **lowercase : Tuple ):
'''simple docstring'''
UpperCAmelCase = dict(self.forward_default_kwargs )
UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase )
UpperCAmelCase = self.dummy_sample
UpperCAmelCase = 0.1 * sample
UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**lowercase )
scheduler.set_timesteps(lowercase )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase )
UpperCAmelCase = scheduler_class.from_pretrained(lowercase )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample
UpperCAmelCase = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def A ( self : Any , lowercase : List[str]=None , **lowercase : List[Any] ):
'''simple docstring'''
if scheduler is None:
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(**lowercase )
UpperCAmelCase = scheduler_class(**lowercase )
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(**lowercase )
UpperCAmelCase = scheduler_class(**lowercase )
UpperCAmelCase = 10
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(lowercase )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = model(lowercase , lowercase )
UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase ).prev_sample
return sample
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = dict(self.forward_default_kwargs )
UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**lowercase )
UpperCAmelCase = self.dummy_sample
UpperCAmelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase , '''set_timesteps''' ):
scheduler.set_timesteps(lowercase )
elif num_inference_steps is not None and not hasattr(lowercase , '''set_timesteps''' ):
UpperCAmelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
UpperCAmelCase = scheduler.timesteps[5]
UpperCAmelCase = scheduler.timesteps[6]
UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample
UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() )
UpperCAmelCase = self.full_loop(scheduler=lowercase )
UpperCAmelCase = torch.mean(torch.abs(lowercase ) )
assert abs(result_mean.item() - 0.2_3916 ) < 1E-3
UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase = self.full_loop(scheduler=lowercase )
UpperCAmelCase = torch.mean(torch.abs(lowercase ) )
assert abs(result_mean.item() - 0.2_3916 ) < 1E-3
def A ( self : Dict ):
'''simple docstring'''
for timesteps in [25, 50, 100, 999, 1_000]:
self.check_over_configs(num_train_timesteps=lowercase )
def A ( self : int ):
'''simple docstring'''
self.check_over_configs(thresholding=lowercase )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=lowercase , prediction_type=lowercase , sample_max_value=lowercase , algorithm_type='''deis''' , solver_order=lowercase , solver_type=lowercase , )
def A ( self : Optional[int] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase )
def A ( self : Tuple ):
'''simple docstring'''
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , )
UpperCAmelCase = self.full_loop(
solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , )
assert not torch.isnan(lowercase ).any(), "Samples have nan numbers"
def A ( self : int ):
'''simple docstring'''
self.check_over_configs(lower_order_final=lowercase )
self.check_over_configs(lower_order_final=lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]:
self.check_over_forward(num_inference_steps=lowercase , time_step=0 )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.full_loop()
UpperCAmelCase = torch.mean(torch.abs(lowercase ) )
assert abs(result_mean.item() - 0.2_3916 ) < 1E-3
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' )
UpperCAmelCase = torch.mean(torch.abs(lowercase ) )
assert abs(result_mean.item() - 0.091 ) < 1E-3
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(thresholding=lowercase , dynamic_thresholding_ratio=0 )
UpperCAmelCase = scheduler_class(**lowercase )
UpperCAmelCase = 10
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(lowercase )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = model(lowercase , lowercase )
UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase ).prev_sample
assert sample.dtype == torch.floataa
| 34
|
'''simple docstring'''
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class _a ( __a ):
__a : str = ["""vqvae"""]
def __init__( self : str , lowercase : AutoencoderKL , lowercase : UNetaDConditionModel , lowercase : Mel , lowercase : Union[DDIMScheduler, DDPMScheduler] , ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
return 50 if isinstance(self.scheduler , lowercase ) else 1_000
@torch.no_grad()
def __call__( self : Optional[Any] , lowercase : int = 1 , lowercase : str = None , lowercase : np.ndarray = None , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = None , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : float = 0 , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : torch.Tensor = None , lowercase : torch.Tensor = None , lowercase : Tuple=True , ):
'''simple docstring'''
UpperCAmelCase = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowercase )
UpperCAmelCase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
UpperCAmelCase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowercase , device=self.device , )
UpperCAmelCase = noise
UpperCAmelCase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowercase , lowercase )
UpperCAmelCase = self.mel.audio_slice_to_image(lowercase )
UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape(
(input_image.height, input_image.width) )
UpperCAmelCase = (input_image / 255) * 2 - 1
UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample(
generator=lowercase )[0]
UpperCAmelCase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] )
UpperCAmelCase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
UpperCAmelCase = int(mask_start_secs * pixels_per_second )
UpperCAmelCase = int(mask_end_secs * pixels_per_second )
UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowercase ):
UpperCAmelCase = self.unet(lowercase , lowercase , lowercase )['''sample''']
else:
UpperCAmelCase = self.unet(lowercase , lowercase )['''sample''']
if isinstance(self.scheduler , lowercase ):
UpperCAmelCase = self.scheduler.step(
model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )['''prev_sample''']
else:
UpperCAmelCase = self.scheduler.step(
model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )['''prev_sample''']
if mask is not None:
if mask_start > 0:
UpperCAmelCase = mask[:, step, :, :mask_start]
if mask_end > 0:
UpperCAmelCase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images
UpperCAmelCase = self.vqvae.decode(lowercase )['''sample''']
UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
UpperCAmelCase = (images * 255).round().astype('''uint8''' )
UpperCAmelCase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) )
UpperCAmelCase = [self.mel.image_to_audio(lowercase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) )
@torch.no_grad()
def A ( self : Dict , lowercase : List[Image.Image] , lowercase : int = 50 ):
'''simple docstring'''
assert isinstance(self.scheduler , lowercase )
self.scheduler.set_timesteps(lowercase )
UpperCAmelCase = np.array(
[np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] )
UpperCAmelCase = (sample / 255) * 2 - 1
UpperCAmelCase = torch.Tensor(lowercase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
UpperCAmelCase = self.scheduler.alphas_cumprod[t]
UpperCAmelCase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
UpperCAmelCase = 1 - alpha_prod_t
UpperCAmelCase = self.unet(lowercase , lowercase )['''sample''']
UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def A ( lowercase : torch.Tensor , lowercase : torch.Tensor , lowercase : float ):
'''simple docstring'''
UpperCAmelCase = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) )
return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
| 34
| 1
|
'''simple docstring'''
def snake_case_ (_a : float , _a : float , _a : float , _a : float , _a : float , ):
UpperCAmelCase = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError('''All input parameters must be positive''' )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError('''Relative densities cannot be greater than one''' )
else:
UpperCAmelCase = 1 - (matter_density + radiation_density + dark_energy)
UpperCAmelCase = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
UpperCAmelCase = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
A =0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1E-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 34
|
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
A =logging.get_logger(__name__)
A =TypeVar('DatasetType', Dataset, IterableDataset)
def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ):
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('''Unable to interleave an empty list of datasets.''' )
for i, dataset in enumerate(_a ):
if not isinstance(_a , (Dataset, IterableDataset) ):
if isinstance(_a , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'''is an empty dataset dictionary.''' )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(_a )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." )
if i == 0:
UpperCAmelCase , UpperCAmelCase = (
(Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset)
)
elif not isinstance(_a , _a ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
_a , _a , _a , info=_a , split=_a , stopping_strategy=_a )
else:
return _interleave_iterable_datasets(
_a , _a , _a , info=_a , split=_a , stopping_strategy=_a )
def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ):
if not dsets:
raise ValueError('''Unable to concatenate an empty list of datasets.''' )
for i, dataset in enumerate(_a ):
if not isinstance(_a , (Dataset, IterableDataset) ):
if isinstance(_a , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'''is an empty dataset dictionary.''' )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(_a )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." )
if i == 0:
UpperCAmelCase , UpperCAmelCase = (
(Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset)
)
elif not isinstance(_a , _a ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a )
else:
return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
| 34
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A ={'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'IBertForMaskedLM',
'IBertForMultipleChoice',
'IBertForQuestionAnswering',
'IBertForSequenceClassification',
'IBertForTokenClassification',
'IBertModel',
'IBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 34
|
'''simple docstring'''
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def snake_case_ (_a : Tuple ):
return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def snake_case_ ():
UpperCAmelCase = ArgumentParser(
'''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a )
UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(_a )
EnvironmentCommand.register_subcommand(_a )
TestCommand.register_subcommand(_a )
RunBeamCommand.register_subcommand(_a )
DummyDataCommand.register_subcommand(_a )
# Parse args
UpperCAmelCase , UpperCAmelCase = parser.parse_known_args()
if not hasattr(_a , '''func''' ):
parser.print_help()
exit(1 )
UpperCAmelCase = parse_unknown_args(_a )
# Run
UpperCAmelCase = args.func(_a , **_a )
service.run()
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class _a ( __a ):
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(lowercase , '''hidden_sizes''' ) )
self.parent.assertTrue(hasattr(lowercase , '''num_attention_heads''' ) )
self.parent.assertTrue(hasattr(lowercase , '''num_encoder_blocks''' ) )
class _a :
def __init__( self : Optional[Any] , lowercase : Any , lowercase : Optional[Any]=13 , lowercase : Any=64 , lowercase : Any=3 , lowercase : int=4 , lowercase : Any=[2, 2, 2, 2] , lowercase : Optional[int]=[8, 4, 2, 1] , lowercase : int=[16, 32, 64, 128] , lowercase : Dict=[1, 4, 8, 16] , lowercase : List[Any]=[1, 2, 4, 8] , lowercase : Optional[Any]=True , lowercase : Tuple=True , lowercase : Tuple="gelu" , lowercase : Any=0.1 , lowercase : Optional[int]=0.1 , lowercase : Optional[Any]=0.02 , lowercase : Optional[int]=3 , lowercase : Optional[int]=None , ):
'''simple docstring'''
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = image_size
UpperCAmelCase = num_channels
UpperCAmelCase = num_encoder_blocks
UpperCAmelCase = sr_ratios
UpperCAmelCase = depths
UpperCAmelCase = hidden_sizes
UpperCAmelCase = downsampling_rates
UpperCAmelCase = num_attention_heads
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = scope
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def A ( self : List[str] ):
'''simple docstring'''
return SegformerConfig(
image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def A ( self : Any , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : Any ):
'''simple docstring'''
UpperCAmelCase = SegformerModel(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase )
UpperCAmelCase = UpperCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) )
def A ( self : Optional[int] , lowercase : Dict , lowercase : Dict , lowercase : List[Any] ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = SegformerForSemanticSegmentation(lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
UpperCAmelCase = model(lowercase , labels=lowercase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
self.parent.assertGreater(result.loss , 0.0 )
def A ( self : Dict , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = 1
UpperCAmelCase = SegformerForSemanticSegmentation(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowercase )
UpperCAmelCase = model(lowercase , labels=lowercase )
self.parent.assertGreater(result.loss , 0.0 )
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs
UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _a ( __a , __a , unittest.TestCase ):
__a : Optional[Any] = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
__a : Dict = (
{
"""feature-extraction""": SegformerModel,
"""image-classification""": SegformerForImageClassification,
"""image-segmentation""": SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = True
__a : str = False
__a : Dict = False
__a : int = False
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = SegformerModelTester(self )
UpperCAmelCase = SegformerConfigTester(self , config_class=lowercase )
def A ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*lowercase )
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*lowercase )
@unittest.skip('''SegFormer does not use inputs_embeds''' )
def A ( self : str ):
'''simple docstring'''
pass
@unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' )
def A ( self : Optional[int] ):
'''simple docstring'''
pass
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(lowercase )
UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase = [*signature.parameters.keys()]
UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase )
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = True
for model_class in self.all_model_classes:
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = True
UpperCAmelCase = model_class(lowercase )
model.to(lowercase )
model.eval()
with torch.no_grad():
UpperCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) )
UpperCAmelCase = outputs.attentions
UpperCAmelCase = sum(self.model_tester.depths )
self.assertEqual(len(lowercase ) , lowercase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase = True
UpperCAmelCase = model_class(lowercase )
model.to(lowercase )
model.eval()
with torch.no_grad():
UpperCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) )
UpperCAmelCase = outputs.attentions
self.assertEqual(len(lowercase ) , lowercase )
# verify the first attentions (first block, first layer)
UpperCAmelCase = (self.model_tester.image_size // 4) ** 2
UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
# verify the last attentions (last block, last layer)
UpperCAmelCase = (self.model_tester.image_size // 32) ** 2
UpperCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , )
UpperCAmelCase = len(lowercase )
# Check attention is always last and order is fine
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = model_class(lowercase )
model.to(lowercase )
model.eval()
with torch.no_grad():
UpperCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) )
self.assertEqual(out_len + 1 , len(lowercase ) )
UpperCAmelCase = outputs.attentions
self.assertEqual(len(lowercase ) , lowercase )
# verify the first attentions (first block, first layer)
UpperCAmelCase = (self.model_tester.image_size // 4) ** 2
UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
def A ( self : Union[str, Any] ):
'''simple docstring'''
def check_hidden_states_output(lowercase : Dict , lowercase : List[str] , lowercase : Optional[Any] ):
UpperCAmelCase = model_class(lowercase )
model.to(lowercase )
model.eval()
with torch.no_grad():
UpperCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) )
UpperCAmelCase = outputs.hidden_states
UpperCAmelCase = self.model_tester.num_encoder_blocks
self.assertEqual(len(lowercase ) , lowercase )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = True
check_hidden_states_output(lowercase , lowercase , lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase = True
check_hidden_states_output(lowercase , lowercase , lowercase )
def A ( self : Any ):
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = True
for model_class in self.all_model_classes:
if model_class in get_values(lowercase ):
continue
UpperCAmelCase = model_class(lowercase )
model.to(lowercase )
model.train()
UpperCAmelCase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase )
UpperCAmelCase = model(**lowercase ).loss
loss.backward()
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def A ( self : Optional[Any] ):
'''simple docstring'''
pass
@slow
def A ( self : List[str] ):
'''simple docstring'''
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = SegformerModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
def snake_case_ ():
UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
class _a ( unittest.TestCase ):
@slow
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase )
UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to(
lowercase )
UpperCAmelCase = prepare_img()
UpperCAmelCase = image_processor(images=lowercase , return_tensors='''pt''' )
UpperCAmelCase = encoded_inputs.pixel_values.to(lowercase )
with torch.no_grad():
UpperCAmelCase = model(lowercase )
UpperCAmelCase = torch.Size((1, model.config.num_labels, 128, 128) )
self.assertEqual(outputs.logits.shape , lowercase )
UpperCAmelCase = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
] ).to(lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1E-4 ) )
@slow
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase )
UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained(
'''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(lowercase )
UpperCAmelCase = prepare_img()
UpperCAmelCase = image_processor(images=lowercase , return_tensors='''pt''' )
UpperCAmelCase = encoded_inputs.pixel_values.to(lowercase )
with torch.no_grad():
UpperCAmelCase = model(lowercase )
UpperCAmelCase = torch.Size((1, model.config.num_labels, 128, 128) )
self.assertEqual(outputs.logits.shape , lowercase )
UpperCAmelCase = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
] ).to(lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1E-1 ) )
@slow
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase )
UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to(
lowercase )
UpperCAmelCase = prepare_img()
UpperCAmelCase = image_processor(images=lowercase , return_tensors='''pt''' )
UpperCAmelCase = encoded_inputs.pixel_values.to(lowercase )
with torch.no_grad():
UpperCAmelCase = model(lowercase )
UpperCAmelCase = outputs.logits.detach().cpu()
UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowercase , target_sizes=[(500, 300)] )
UpperCAmelCase = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , lowercase )
UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowercase )
UpperCAmelCase = torch.Size((128, 128) )
self.assertEqual(segmentation[0].shape , lowercase )
| 34
|
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
A =[
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
A =logging.getLogger()
def snake_case_ ():
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
UpperCAmelCase = parser.parse_args()
return args.f
def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ):
UpperCAmelCase = os.path.join(_a , F"{split}_results.json" )
if os.path.exists(_a ):
with open(_a , '''r''' ) as f:
return json.load(_a )
raise ValueError(F"can't find {path}" )
A =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( __a ):
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_glue.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_clm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_summarization_flax.main()
UpperCAmelCase = get_results(lowercase , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_ta_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = 7 if get_gpu_count() > 1 else 2
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_ner.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_qa.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 34
| 1
|
'''simple docstring'''
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def snake_case_ (_a : dict ):
return (data["data"], data["target"])
def snake_case_ (_a : np.ndarray , _a : np.ndarray ):
UpperCAmelCase = XGBClassifier()
classifier.fit(_a , _a )
return classifier
def snake_case_ ():
UpperCAmelCase = load_iris()
UpperCAmelCase , UpperCAmelCase = data_handling(_a )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_test_split(
_a , _a , test_size=0.25 )
UpperCAmelCase = iris['''target_names''']
# Create an XGBoost Classifier from the training data
UpperCAmelCase = xgboost(_a , _a )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
_a , _a , _a , display_labels=_a , cmap='''Blues''' , normalize='''true''' , )
plt.title('''Normalized Confusion Matrix - IRIS Dataset''' )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 34
|
'''simple docstring'''
class _a :
def __init__( self : Any ):
'''simple docstring'''
UpperCAmelCase = {} # Mapping from char to TrieNode
UpperCAmelCase = False
def A ( self : int , lowercase : list[str] ):
'''simple docstring'''
for word in words:
self.insert(lowercase )
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
UpperCAmelCase = TrieNode()
UpperCAmelCase = curr.nodes[char]
UpperCAmelCase = True
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
return False
UpperCAmelCase = curr.nodes[char]
return curr.is_leaf
def A ( self : str , lowercase : str ):
'''simple docstring'''
def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool:
if index == len(lowercase ):
# If word does not exist
if not curr.is_leaf:
return False
UpperCAmelCase = False
return len(curr.nodes ) == 0
UpperCAmelCase = word[index]
UpperCAmelCase = curr.nodes.get(lowercase )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
UpperCAmelCase = _delete(lowercase , lowercase , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , lowercase , 0 )
def snake_case_ (_a : TrieNode , _a : str ):
if node.is_leaf:
print(_a , end=''' ''' )
for key, value in node.nodes.items():
print_words(_a , word + key )
def snake_case_ ():
UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split()
UpperCAmelCase = TrieNode()
root.insert_many(_a )
# print_words(root, "")
assert all(root.find(_a ) for word in words )
assert root.find('''banana''' )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
assert root.find('''apple''' )
assert root.find('''all''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def snake_case_ (_a : str , _a : bool ):
print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' )
def snake_case_ ():
assert test_trie()
def snake_case_ ():
print_results('''Testing trie functionality''' , test_trie() )
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
def snake_case_ (_a : Any ):
UpperCAmelCase = 1
UpperCAmelCase = 2
while i * i <= n:
UpperCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def snake_case_ ():
UpperCAmelCase = 1
UpperCAmelCase = 1
while True:
i += 1
t_num += i
if count_divisors(_a ) > 5_0_0:
break
return t_num
if __name__ == "__main__":
print(solution())
| 34
|
'''simple docstring'''
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json',
'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json',
}
class _a ( __a ):
__a : Union[str, Any] = """encodec"""
def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase = target_bandwidths
UpperCAmelCase = sampling_rate
UpperCAmelCase = audio_channels
UpperCAmelCase = normalize
UpperCAmelCase = chunk_length_s
UpperCAmelCase = overlap
UpperCAmelCase = hidden_size
UpperCAmelCase = num_filters
UpperCAmelCase = num_residual_layers
UpperCAmelCase = upsampling_ratios
UpperCAmelCase = norm_type
UpperCAmelCase = kernel_size
UpperCAmelCase = last_kernel_size
UpperCAmelCase = residual_kernel_size
UpperCAmelCase = dilation_growth_rate
UpperCAmelCase = use_causal_conv
UpperCAmelCase = pad_mode
UpperCAmelCase = compress
UpperCAmelCase = num_lstm_layers
UpperCAmelCase = trim_right_ratio
UpperCAmelCase = codebook_size
UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size
UpperCAmelCase = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" )
super().__init__(**lowercase )
@property
def A ( self : Dict ):
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def A ( self : Union[str, Any] ):
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 34
| 1
|
'''simple docstring'''
# This code is adapted from OpenAI's release
# https://github.com/openai/human-eval/blob/master/human_eval/execution.py
import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile
def snake_case_ (_a : int , _a : str , _a : List[str] , _a : List[str] ):
UpperCAmelCase = multiprocessing.Manager()
UpperCAmelCase = manager.list()
UpperCAmelCase = multiprocessing.Process(target=_a , args=(check_program, result, timeout) )
p.start()
p.join(timeout=timeout + 1 )
if p.is_alive():
p.kill()
if not result:
result.append('''timed out''' )
return {
"task_id": task_id,
"passed": result[0] == "passed",
"result": result[0],
"completion_id": completion_id,
}
def snake_case_ (_a : List[Any] , _a : int , _a : List[Any] ):
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
UpperCAmelCase = shutil.rmtree
UpperCAmelCase = os.rmdir
UpperCAmelCase = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard()
# Run program.
try:
UpperCAmelCase = {}
with swallow_io():
with time_limit(_a ):
exec(_a , _a )
result.append('''passed''' )
except TimeoutException:
result.append('''timed out''' )
except BaseException as e:
result.append(F"failed: {e}" )
# Needed for cleaning up.
UpperCAmelCase = rmtree
UpperCAmelCase = rmdir
UpperCAmelCase = chdir
@contextlib.contextmanager
def snake_case_ (_a : int ):
def signal_handler(_a : Optional[int] , _a : Optional[Any] ):
raise TimeoutException('''Timed out!''' )
signal.setitimer(signal.ITIMER_REAL , _a )
signal.signal(signal.SIGALRM , _a )
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL , 0 )
@contextlib.contextmanager
def snake_case_ ():
UpperCAmelCase = WriteOnlyStringIO()
with contextlib.redirect_stdout(_a ):
with contextlib.redirect_stderr(_a ):
with redirect_stdin(_a ):
yield
@contextlib.contextmanager
def snake_case_ ():
with tempfile.TemporaryDirectory() as dirname:
with chdir(_a ):
yield dirname
class _a ( __a ):
pass
class _a ( io.StringIO ):
def A ( self : List[Any] , *lowercase : Union[str, Any] , **lowercase : Tuple ):
'''simple docstring'''
raise OSError
def A ( self : List[Any] , *lowercase : Any , **lowercase : Optional[Any] ):
'''simple docstring'''
raise OSError
def A ( self : List[Any] , *lowercase : Any , **lowercase : int ):
'''simple docstring'''
raise OSError
def A ( self : Union[str, Any] , *lowercase : Dict , **lowercase : int ):
'''simple docstring'''
return False
class _a ( contextlib._RedirectStream ): # type: ignore
__a : Union[str, Any] = """stdin"""
@contextlib.contextmanager
def snake_case_ (_a : Dict ):
if root == ".":
yield
return
UpperCAmelCase = os.getcwd()
os.chdir(_a )
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(_a )
def snake_case_ (_a : Tuple=None ):
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) )
resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) )
if not platform.uname().system == "Darwin":
resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) )
faulthandler.disable()
import builtins
UpperCAmelCase = None
UpperCAmelCase = None
import os
UpperCAmelCase = '''1'''
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
import shutil
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
import subprocess
UpperCAmelCase = None # type: ignore
UpperCAmelCase = None
import sys
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
| 34
|
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
A =logging.get_logger(__name__)
class _a ( __a ):
__a : str = ["""pixel_values"""]
def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = resample
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" )
UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase )
return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase )
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" )
return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase )
def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ):
'''simple docstring'''
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ):
'''simple docstring'''
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(lowercase ) for image in images]
if do_resize:
UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images]
if do_center_crop:
UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_normalize:
UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=lowercase , tensor_type=lowercase )
def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ):
'''simple docstring'''
UpperCAmelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase ) != len(lowercase ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowercase ):
UpperCAmelCase = target_sizes.numpy()
UpperCAmelCase = []
for idx in range(len(lowercase ) ):
UpperCAmelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase )
UpperCAmelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase )
else:
UpperCAmelCase = logits.argmax(dim=1 )
UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 34
| 1
|
'''simple docstring'''
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
A =logging.get_logger(__name__)
class _a ( __a ):
__a : Dict = ["""pixel_values"""]
def __init__( self : int , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : int = 8 , **lowercase : Optional[int] , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_pad
UpperCAmelCase = pad_size
def A ( self : Any , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : str ):
'''simple docstring'''
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : int , lowercase : Optional[Union[str, ChannelDimension]] = None ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase = get_image_size(lowercase )
UpperCAmelCase = (old_height // size + 1) * size - old_height
UpperCAmelCase = (old_width // size + 1) * size - old_width
return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=lowercase )
def A ( self : Union[str, Any] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[int] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Optional[Any] , ):
'''simple docstring'''
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_pad if do_pad is not None else self.do_pad
UpperCAmelCase = pad_size if pad_size is not None else self.pad_size
UpperCAmelCase = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(lowercase ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_pad:
UpperCAmelCase = [self.pad(lowercase , size=lowercase ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=lowercase , tensor_type=lowercase )
| 34
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
A =logging.getLogger(__name__)
def snake_case_ (_a : Dict , _a : Union[str, Any] ):
return (preds == labels).mean()
@dataclass
class _a :
__a : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class _a :
__a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
__a : str = field(metadata={"""help""": """Should contain the data files for the task."""} )
__a : int = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__a : bool = field(
default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def snake_case_ ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , _a )
# Set seed
set_seed(training_args.seed )
try:
UpperCAmelCase = processors[data_args.task_name]()
UpperCAmelCase = processor.get_labels()
UpperCAmelCase = len(_a )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , )
# Get datasets
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_a : EvalPrediction ) -> Dict:
UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_a , p.label_ids )}
# Data collator
UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
UpperCAmelCase = Trainer(
model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase = trainer.evaluate()
UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(_a , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , _a , _a )
writer.write('''%s = %s\n''' % (key, value) )
results.update(_a )
return results
def snake_case_ (_a : Optional[int] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def snake_case_ (_a : Optional[int] , _a : Union[str, Any] , _a : List[str] , _a : List[str] ):
UpperCAmelCase = s.rsplit(_a , _a )
return new.join(_a )
def snake_case_ (_a : Union[str, Any] ):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def snake_case_ (_a : Optional[Any] ):
UpperCAmelCase = {}
UpperCAmelCase = ['''group_1''', '''group_2''', '''group_3''', '''group_4''']
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
UpperCAmelCase = key.replace(F"{group_key}." , F"{group_key}.group." )
if "res_path" in key:
UpperCAmelCase = key.replace('''res_path.''' , '''res_path.path.''' )
if key.endswith('''.w''' ):
UpperCAmelCase = rreplace(_a , '''.w''' , '''.weight''' , 1 )
if key.endswith('''.b''' ):
UpperCAmelCase = rreplace(_a , '''.b''' , '''.bias''' , 1 )
UpperCAmelCase = value.float()
return upgrade
@torch.no_grad()
def snake_case_ (_a : Tuple , _a : Optional[int] , _a : Any=None , _a : Any=True ):
from dall_e import Encoder
UpperCAmelCase = Encoder()
if os.path.exists(_a ):
UpperCAmelCase = torch.load(_a )
else:
UpperCAmelCase = torch.hub.load_state_dict_from_url(_a )
if isinstance(_a , _a ):
UpperCAmelCase = ckpt.state_dict()
encoder.load_state_dict(_a )
if config_path is not None:
UpperCAmelCase = FlavaImageCodebookConfig.from_pretrained(_a )
else:
UpperCAmelCase = FlavaImageCodebookConfig()
UpperCAmelCase = FlavaImageCodebook(_a ).eval()
UpperCAmelCase = encoder.state_dict()
UpperCAmelCase = upgrade_state_dict(_a )
hf_model.load_state_dict(_a )
UpperCAmelCase = hf_model.state_dict()
UpperCAmelCase = count_parameters(_a )
UpperCAmelCase = count_parameters(_a )
assert torch.allclose(_a , _a , atol=1E-3 )
if save_checkpoint:
hf_model.save_pretrained(_a )
else:
return hf_state_dict
if __name__ == "__main__":
A =argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
A =parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 34
|
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _a ( __a ):
__a : int = ["""image_processor""", """tokenizer"""]
__a : Union[str, Any] = """ChineseCLIPImageProcessor"""
__a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , lowercase , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowercase , lowercase )
UpperCAmelCase = self.image_processor
def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase )
if images is not None:
UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase )
def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase , **lowercase )
def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ):
'''simple docstring'''
return self.tokenizer.decode(*lowercase , **lowercase )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A ( self : List[Any] ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , )
return self.image_processor_class
| 34
| 1
|
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
A ='pt'
elif is_tf_available():
A ='tf'
else:
A ='jax'
class _a ( __a , unittest.TestCase ):
__a : Optional[Any] = PerceiverTokenizer
__a : str = False
def A ( self : Union[str, Any] ):
'''simple docstring'''
super().setUp()
UpperCAmelCase = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def A ( self : Optional[int] ):
'''simple docstring'''
return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' )
def A ( self : Union[str, Any] , **lowercase : int ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase )
def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ):
'''simple docstring'''
UpperCAmelCase = []
for i in range(len(lowercase ) ):
try:
UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) )
UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) )
if max_length is not None and len(lowercase ) > max_length:
UpperCAmelCase = toks[:max_length]
if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0:
while len(lowercase ) < min_length:
UpperCAmelCase = toks + toks
# toks_str = [t[1] for t in toks]
UpperCAmelCase = [t[0] for t in toks]
# Ensure consistency
UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase )
if " " not in output_txt and len(lowercase ) > 1:
UpperCAmelCase = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase )
)
if with_prefix_space:
UpperCAmelCase = ''' ''' + output_txt
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
return output_txt, output_ids
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = '''Unicode €.'''
UpperCAmelCase = tokenizer(lowercase )
UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['''input_ids'''] , lowercase )
# decoding
UpperCAmelCase = tokenizer.decode(lowercase )
self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' )
UpperCAmelCase = tokenizer('''e è é ê ë''' )
UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['''input_ids'''] , lowercase )
# decoding
UpperCAmelCase = tokenizer.decode(lowercase )
self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
# fmt: off
UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase )
self.assertIsInstance(lowercase , lowercase )
if FRAMEWORK != "jax":
UpperCAmelCase = list(batch.input_ids.numpy()[0] )
else:
UpperCAmelCase = list(batch.input_ids.tolist()[0] )
self.assertListEqual(lowercase , lowercase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('''input_ids''' , lowercase )
self.assertIn('''attention_mask''' , lowercase )
self.assertNotIn('''decoder_input_ids''' , lowercase )
self.assertNotIn('''decoder_attention_mask''' , lowercase )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = [
'''Summary of the text.''',
'''Another summary.''',
]
UpperCAmelCase = tokenizer(
text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase )
UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
shutil.rmtree(lowercase )
UpperCAmelCase = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
tokenizer.add_tokens(['''bim''', '''bambam'''] )
UpperCAmelCase = tokenizer.additional_special_tokens
additional_special_tokens.append('''new_additional_special_token''' )
tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} )
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase )
UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(lowercase )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(lowercase )
with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file:
UpperCAmelCase = json.load(lowercase )
with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file:
UpperCAmelCase = json.load(lowercase )
UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )]
UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(lowercase , lowercase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase = tokenizer_class.from_pretrained(
lowercase , )
self.assertIn(
'''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )]
UpperCAmelCase = tokenizer_class.from_pretrained(
lowercase , additional_special_tokens=lowercase , )
self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens )
self.assertEqual(
['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , '''�''' )
def A ( self : Union[str, Any] ):
'''simple docstring'''
pass
def A ( self : Any ):
'''simple docstring'''
pass
def A ( self : Dict ):
'''simple docstring'''
pass
def A ( self : str ):
'''simple docstring'''
pass
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]''']
UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase )
self.assertIsInstance(lowercase , lowercase )
| 34
|
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
A =logging.get_logger(__name__)
A ={
'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json',
# See all Marian models at https://huggingface.co/models?filter=marian
}
class _a ( __a ):
__a : List[Any] = """marian"""
__a : Union[str, Any] = ["""past_key_values"""]
__a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase = vocab_size
UpperCAmelCase = decoder_vocab_size or vocab_size
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = d_model
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , )
class _a ( __a ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def A ( self : int ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowercase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase , UpperCAmelCase = self.num_layers
for i in range(lowercase ):
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def A ( self : Any ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = super().outputs
else:
UpperCAmelCase = super(lowercase , self ).outputs
if self.use_past:
UpperCAmelCase , UpperCAmelCase = self.num_layers
for i in range(lowercase ):
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
# Generate decoder inputs
UpperCAmelCase = seq_length if not self.use_past else 1
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
UpperCAmelCase = dict(**lowercase , **lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape
UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1]
UpperCAmelCase , UpperCAmelCase = self.num_attention_heads
UpperCAmelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase = decoder_seq_length + 3
UpperCAmelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
UpperCAmelCase = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 )
UpperCAmelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
UpperCAmelCase , UpperCAmelCase = self.num_layers
UpperCAmelCase = min(lowercase , lowercase )
UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers
UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(lowercase ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
) )
# TODO: test this.
UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(lowercase , lowercase ):
common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) )
return common_inputs
def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase = seqlen + 2
UpperCAmelCase , UpperCAmelCase = self.num_layers
UpperCAmelCase , UpperCAmelCase = self.num_attention_heads
UpperCAmelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase = common_inputs['''attention_mask'''].dtype
UpperCAmelCase = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 )
UpperCAmelCase = [
(torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase )
]
return common_inputs
def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase )
UpperCAmelCase = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase )
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) )
return common_inputs
def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
else:
UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
return common_inputs
def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase )
else:
UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_(
lowercase , lowercase , lowercase , lowercase )
@property
def A ( self : Any ):
'''simple docstring'''
return 1E-4
| 34
| 1
|
'''simple docstring'''
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
A ='.'
if __name__ == "__main__":
A =os.path.join(REPO_PATH, 'utils/documentation_tests.txt')
A =[]
A =[]
with open(doctest_file_path) as fp:
for line in fp:
A =line.strip()
A =os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
A ='\n'.join(non_existent_paths)
raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""")
if all_paths != sorted(all_paths):
raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
| 34
|
'''simple docstring'''
import os
def snake_case_ ():
UpperCAmelCase = os.path.join(os.path.dirname(_a ) , '''num.txt''' )
with open(_a ) as file_hand:
return str(sum(int(_a ) for line in file_hand ) )[:1_0]
if __name__ == "__main__":
print(solution())
| 34
| 1
|
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
A =logging.get_logger(__name__)
@add_end_docstrings(__a )
class _a ( __a ):
def __init__( self : Tuple , *lowercase : str , **lowercase : Optional[Any] ):
'''simple docstring'''
super().__init__(*lowercase , **lowercase )
self.check_model_type(lowercase )
def A ( self : str , lowercase : Any=None , lowercase : List[str]=None , lowercase : Optional[int]=None , **lowercase : Optional[int] ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase = {}, {}
if padding is not None:
UpperCAmelCase = padding
if truncation is not None:
UpperCAmelCase = truncation
if top_k is not None:
UpperCAmelCase = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : List[Any] , lowercase : Union["Image.Image", str] , lowercase : str = None , **lowercase : int ):
'''simple docstring'''
if isinstance(lowercase , (Image.Image, str) ) and isinstance(lowercase , lowercase ):
UpperCAmelCase = {'''image''': image, '''question''': question}
else:
UpperCAmelCase = image
UpperCAmelCase = super().__call__(lowercase , **lowercase )
return results
def A ( self : Optional[Any] , lowercase : Union[str, Any] , lowercase : Dict=False , lowercase : List[Any]=False ):
'''simple docstring'''
UpperCAmelCase = load_image(inputs['''image'''] )
UpperCAmelCase = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=lowercase , truncation=lowercase )
UpperCAmelCase = self.image_processor(images=lowercase , return_tensors=self.framework )
model_inputs.update(lowercase )
return model_inputs
def A ( self : int , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self.model(**lowercase )
return model_outputs
def A ( self : Any , lowercase : List[Any] , lowercase : Optional[Any]=5 ):
'''simple docstring'''
if top_k > self.model.config.num_labels:
UpperCAmelCase = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase = model_outputs.logits.sigmoid()[0]
UpperCAmelCase , UpperCAmelCase = probs.topk(lowercase )
else:
raise ValueError(f"Unsupported framework: {self.framework}" )
UpperCAmelCase = scores.tolist()
UpperCAmelCase = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase , lowercase )]
| 34
|
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
A =logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
A ={
'base': AutoModel,
'sequence-classification': AutoModelForSequenceClassification,
'question-answering': AutoModelForQuestionAnswering,
'pretraining': AutoModelForPreTraining,
'token-classification': AutoModelForTokenClassification,
'language-modeling': AutoModelWithLMHead,
'summarization': AutoModelForSeqaSeqLM,
'translation': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
A ={
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
A =sorted(arg_to_scheduler.keys())
A ='{' + ', '.join(arg_to_scheduler_choices) + '}'
class _a ( pl.LightningModule ):
def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ):
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowercase )
UpperCAmelCase = 0
UpperCAmelCase = Path(self.hparams.output_dir )
UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
UpperCAmelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , )
else:
UpperCAmelCase = config
UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , lowercase , lowercase ):
assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute"
setattr(self.config , lowercase , getattr(self.hparams , lowercase ) )
if tokenizer is None:
UpperCAmelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , )
else:
UpperCAmelCase = tokenizer
UpperCAmelCase = MODEL_MODES[mode]
if model is None:
UpperCAmelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , )
else:
UpperCAmelCase = model
def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase )
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler]
UpperCAmelCase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.model
UpperCAmelCase = ['''bias''', '''LayerNorm.weight''']
UpperCAmelCase = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
UpperCAmelCase = Adafactor(
lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase )
else:
UpperCAmelCase = AdamW(
lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
UpperCAmelCase = optimizer
UpperCAmelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def A ( self : List[Any] , lowercase : int , lowercase : List[str] ):
'''simple docstring'''
return self.validation_step(lowercase , lowercase )
def A ( self : List[Any] , lowercase : Tuple ):
'''simple docstring'''
return self.validation_end(lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def A ( self : List[str] , lowercase : Any ):
'''simple docstring'''
if stage == "test":
UpperCAmelCase = len(self.test_dataloader().dataset )
else:
UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase )
UpperCAmelCase = len(self.train_dataloader().dataset )
def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ):
'''simple docstring'''
raise NotImplementedError('''You must implement this for your task''' )
def A ( self : Union[str, Any] ):
'''simple docstring'''
return self.train_loader
def A ( self : Optional[Any] ):
'''simple docstring'''
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase )
def A ( self : Any , lowercase : Union[str, Any] ):
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def A ( self : List[str] , lowercase : Dict[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' )
UpperCAmelCase = self.step_count
self.model.save_pretrained(lowercase )
self.tokenizer.save_pretrained(lowercase )
@staticmethod
def A ( lowercase : Optional[int] , lowercase : List[str] ):
'''simple docstring'''
parser.add_argument(
'''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase )
parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase )
parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class _a ( pl.Callback ):
def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ):
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _a ( pl.Callback ):
def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ):
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowercase )
class _a ( pl.Callback ):
def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler''']
UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowercase )
def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info('''***** Validation results *****''' )
UpperCAmelCase = trainer.callback_metrics
# Log results
for key in sorted(lowercase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info('''***** Test results *****''' )
UpperCAmelCase = trainer.callback_metrics
# Log and save results to file
UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(lowercase , '''w''' ) as writer:
for key in sorted(lowercase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
def snake_case_ (_a : int , _a : Optional[Any] ):
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=_a , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ):
pl.seed_everything(args.seed )
# init model
UpperCAmelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_a )
# add custom checkpoints
if checkpoint_callback is None:
UpperCAmelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_a )
if logging_callback is None:
UpperCAmelCase = LoggingCallback()
UpperCAmelCase = {}
if args.fpaa:
UpperCAmelCase = 1_6
if args.gpus > 1:
UpperCAmelCase = '''auto'''
UpperCAmelCase = '''ddp'''
UpperCAmelCase = args.accumulate_grad_batches
UpperCAmelCase = None
UpperCAmelCase = '''auto'''
UpperCAmelCase = pl.Trainer.from_argparse_args(
_a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , )
if args.do_train:
trainer.fit(_a )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 34
| 1
|
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( __a , __a , unittest.TestCase ):
__a : str = StableDiffusionSAGPipeline
__a : List[Any] = TEXT_TO_IMAGE_PARAMS
__a : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
__a : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__a : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS
__a : int = False
def A ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
UpperCAmelCase = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowercase , set_alpha_to_one=lowercase , )
torch.manual_seed(0 )
UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
UpperCAmelCase = CLIPTextModel(lowercase )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def A ( self : List[str] , lowercase : Dict , lowercase : Optional[int]=0 ):
'''simple docstring'''
if str(lowercase ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(lowercase )
else:
UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase )
UpperCAmelCase = {
'''prompt''': '''.''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 1.0,
'''sag_scale''': 1.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : List[str] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
def A ( self : Any ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
UpperCAmelCase = sag_pipe.to(lowercase )
sag_pipe.set_progress_bar_config(disable=lowercase )
UpperCAmelCase = '''.'''
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = sag_pipe(
[prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
UpperCAmelCase = output.images
UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
UpperCAmelCase = sag_pipe.to(lowercase )
sag_pipe.set_progress_bar_config(disable=lowercase )
UpperCAmelCase = '''.'''
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = sag_pipe(
[prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
UpperCAmelCase = output.images
UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
UpperCAmelCase = sag_pipe.to(lowercase )
sag_pipe.set_progress_bar_config(disable=lowercase )
UpperCAmelCase = '''.'''
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = sag_pipe(
[prompt] , width=768 , height=512 , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , )
UpperCAmelCase = output.images
assert image.shape == (1, 512, 768, 3)
| 34
|
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ):
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
UpperCAmelCase = cst_fwd.get(_a , np.inf )
UpperCAmelCase = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
UpperCAmelCase = new_cost_f
UpperCAmelCase = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ):
UpperCAmelCase = -1
UpperCAmelCase = set()
UpperCAmelCase = set()
UpperCAmelCase = {source: 0}
UpperCAmelCase = {destination: 0}
UpperCAmelCase = {source: None}
UpperCAmelCase = {destination: None}
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
UpperCAmelCase , UpperCAmelCase = queue_forward.get()
visited_forward.add(_a )
UpperCAmelCase , UpperCAmelCase = queue_backward.get()
visited_backward.add(_a )
UpperCAmelCase = pass_and_relaxation(
_a , _a , _a , _a , _a , _a , _a , _a , _a , )
UpperCAmelCase = pass_and_relaxation(
_a , _a , _a , _a , _a , _a , _a , _a , _a , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
UpperCAmelCase = shortest_distance
return shortest_path_distance
A ={
'B': [['C', 1]],
'C': [['D', 1]],
'D': [['F', 1]],
'E': [['B', 1], ['G', 2]],
'F': [],
'G': [['F', 1]],
}
A ={
'B': [['E', 1]],
'C': [['B', 1]],
'D': [['C', 1]],
'F': [['D', 1], ['G', 1]],
'E': [[None, np.inf]],
'G': [['E', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
| 1
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _a ( __a , unittest.TestCase ):
__a : Dict = CTRLTokenizer
__a : Optional[Any] = False
__a : Any = False
def A ( self : Union[str, Any] ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>''']
UpperCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) )
UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', '''''']
UpperCAmelCase = {'''unk_token''': '''<unk>'''}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowercase ) )
def A ( self : Union[str, Any] , **lowercase : int ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowercase )
def A ( self : str , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = '''adapt react readapt apt'''
UpperCAmelCase = '''adapt react readapt apt'''
return input_text, output_text
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase = '''adapt react readapt apt'''
UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split()
UpperCAmelCase = tokenizer.tokenize(lowercase )
self.assertListEqual(lowercase , lowercase )
UpperCAmelCase = tokens + [tokenizer.unk_token]
UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase )
| 34
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
def snake_case_ (_a : List[str] ):
UpperCAmelCase = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
UpperCAmelCase = 1_2_8
elif "12-12" in model_name:
UpperCAmelCase = 1_2
UpperCAmelCase = 1_2
elif "14-14" in model_name:
UpperCAmelCase = 1_4
UpperCAmelCase = 1_4
elif "16-16" in model_name:
UpperCAmelCase = 1_6
UpperCAmelCase = 1_6
else:
raise ValueError('''Model not supported''' )
UpperCAmelCase = '''huggingface/label-files'''
if "speech-commands" in model_name:
UpperCAmelCase = 3_5
UpperCAmelCase = '''speech-commands-v2-id2label.json'''
else:
UpperCAmelCase = 5_2_7
UpperCAmelCase = '''audioset-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ (_a : Tuple ):
if "module.v" in name:
UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "dist_token" in name:
UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
# transformer blocks
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' )
# classifier head
if "module.mlp_head.0" in name:
UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' )
if "module.mlp_head.1" in name:
UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' )
return name
def snake_case_ (_a : Dict , _a : List[Any] ):
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(_a )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[3] )
UpperCAmelCase = config.hidden_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[dim : dim * 2, :]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def snake_case_ (_a : Tuple ):
UpperCAmelCase = [
'''module.v.head.weight''',
'''module.v.head.bias''',
'''module.v.head_dist.weight''',
'''module.v.head_dist.bias''',
]
for k in ignore_keys:
state_dict.pop(_a , _a )
@torch.no_grad()
def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ):
UpperCAmelCase = get_audio_spectrogram_transformer_config(_a )
UpperCAmelCase = {
'''ast-finetuned-audioset-10-10-0.4593''': (
'''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.450''': (
'''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448''': (
'''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448-v2''': (
'''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'''
),
'''ast-finetuned-audioset-12-12-0.447''': (
'''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'''
),
'''ast-finetuned-audioset-14-14-0.443''': (
'''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'''
),
'''ast-finetuned-audioset-16-16-0.442''': (
'''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'''
),
'''ast-finetuned-speech-commands-v2''': (
'''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'''
),
}
# load original state_dict
UpperCAmelCase = model_name_to_url[model_name]
UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' )
# remove some keys
remove_keys(_a )
# rename some keys
UpperCAmelCase = convert_state_dict(_a , _a )
# load 🤗 model
UpperCAmelCase = ASTForAudioClassification(_a )
model.eval()
model.load_state_dict(_a )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978
UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526
UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8
UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a )
if "speech-commands" in model_name:
UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' )
UpperCAmelCase = dataset[0]['''audio''']['''array''']
else:
UpperCAmelCase = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , )
UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a )
UpperCAmelCase = waveform.squeeze().numpy()
UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' )
# forward pass
UpperCAmelCase = model(**_a )
UpperCAmelCase = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError('''Unknown model name''' )
if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ):
raise ValueError('''Logits don\'t match''' )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(_a ).mkdir(exist_ok=_a )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_a )
print(F"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(_a )
if push_to_hub:
print('''Pushing model and feature extractor to the hub...''' )
model.push_to_hub(F"MIT/{model_name}" )
feature_extractor.push_to_hub(F"MIT/{model_name}" )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
A =parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 34
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A ={
'configuration_distilbert': [
'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'DistilBertConfig',
'DistilBertOnnxConfig',
],
'tokenization_distilbert': ['DistilBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =['DistilBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'DistilBertForMaskedLM',
'DistilBertForMultipleChoice',
'DistilBertForQuestionAnswering',
'DistilBertForSequenceClassification',
'DistilBertForTokenClassification',
'DistilBertModel',
'DistilBertPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDistilBertForMaskedLM',
'TFDistilBertForMultipleChoice',
'TFDistilBertForQuestionAnswering',
'TFDistilBertForSequenceClassification',
'TFDistilBertForTokenClassification',
'TFDistilBertMainLayer',
'TFDistilBertModel',
'TFDistilBertPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'FlaxDistilBertForMaskedLM',
'FlaxDistilBertForMultipleChoice',
'FlaxDistilBertForQuestionAnswering',
'FlaxDistilBertForSequenceClassification',
'FlaxDistilBertForTokenClassification',
'FlaxDistilBertModel',
'FlaxDistilBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 34
|
'''simple docstring'''
from __future__ import annotations
def snake_case_ (_a : Dict , _a : str , _a : Optional[Any] , _a : List[str] ): # noqa: E741
while r - l > 1:
UpperCAmelCase = (l + r) // 2
if v[m] >= key:
UpperCAmelCase = m
else:
UpperCAmelCase = m # noqa: E741
return r
def snake_case_ (_a : list[int] ):
if len(_a ) == 0:
return 0
UpperCAmelCase = [0] * len(_a )
UpperCAmelCase = 1
UpperCAmelCase = v[0]
for i in range(1 , len(_a ) ):
if v[i] < tail[0]:
UpperCAmelCase = v[i]
elif v[i] > tail[length - 1]:
UpperCAmelCase = v[i]
length += 1
else:
UpperCAmelCase = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
A ={
'configuration_clip': [
'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'CLIPConfig',
'CLIPOnnxConfig',
'CLIPTextConfig',
'CLIPVisionConfig',
],
'processing_clip': ['CLIPProcessor'],
'tokenization_clip': ['CLIPTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =['CLIPTokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =['CLIPFeatureExtractor']
A =['CLIPImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'CLIPModel',
'CLIPPreTrainedModel',
'CLIPTextModel',
'CLIPTextModelWithProjection',
'CLIPVisionModel',
'CLIPVisionModelWithProjection',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFCLIPModel',
'TFCLIPPreTrainedModel',
'TFCLIPTextModel',
'TFCLIPVisionModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'FlaxCLIPModel',
'FlaxCLIPPreTrainedModel',
'FlaxCLIPTextModel',
'FlaxCLIPTextPreTrainedModel',
'FlaxCLIPVisionModel',
'FlaxCLIPVisionPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 34
|
'''simple docstring'''
def snake_case_ (_a : str , _a : str ):
UpperCAmelCase = len(_a ) + 1
UpperCAmelCase = len(_a ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
UpperCAmelCase = [[0 for i in range(_a )] for j in range(_a )]
# since string of zero length match pattern of zero length
UpperCAmelCase = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _a ):
UpperCAmelCase = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _a ):
UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _a ):
for j in range(1 , _a ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
UpperCAmelCase = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
UpperCAmelCase = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
UpperCAmelCase = dp[i - 1][j]
else:
UpperCAmelCase = 0
else:
UpperCAmelCase = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
A ='aab'
A ='c*a*b'
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(f"""{input_string} matches the given pattern {pattern}""")
else:
print(f"""{input_string} does not match with the given pattern {pattern}""")
| 34
| 1
|
'''simple docstring'''
from __future__ import annotations
def snake_case_ (_a : list[int] , _a : list[int] , _a : int ):
UpperCAmelCase = list(range(len(_a ) ) )
UpperCAmelCase = [v / w for v, w in zip(_a , _a )]
index.sort(key=lambda _a : ratio[i] , reverse=_a )
UpperCAmelCase = 0
UpperCAmelCase = [0] * len(_a )
for i in index:
if weight[i] <= capacity:
UpperCAmelCase = 1
max_value += value[i]
capacity -= weight[i]
else:
UpperCAmelCase = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
|
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
A ='pt'
elif is_tf_available():
A ='tf'
else:
A ='jax'
class _a ( __a , unittest.TestCase ):
__a : Optional[Any] = PerceiverTokenizer
__a : str = False
def A ( self : Union[str, Any] ):
'''simple docstring'''
super().setUp()
UpperCAmelCase = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def A ( self : Optional[int] ):
'''simple docstring'''
return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' )
def A ( self : Union[str, Any] , **lowercase : int ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase )
def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ):
'''simple docstring'''
UpperCAmelCase = []
for i in range(len(lowercase ) ):
try:
UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) )
UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) )
if max_length is not None and len(lowercase ) > max_length:
UpperCAmelCase = toks[:max_length]
if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0:
while len(lowercase ) < min_length:
UpperCAmelCase = toks + toks
# toks_str = [t[1] for t in toks]
UpperCAmelCase = [t[0] for t in toks]
# Ensure consistency
UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase )
if " " not in output_txt and len(lowercase ) > 1:
UpperCAmelCase = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase )
)
if with_prefix_space:
UpperCAmelCase = ''' ''' + output_txt
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
return output_txt, output_ids
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = '''Unicode €.'''
UpperCAmelCase = tokenizer(lowercase )
UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['''input_ids'''] , lowercase )
# decoding
UpperCAmelCase = tokenizer.decode(lowercase )
self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' )
UpperCAmelCase = tokenizer('''e è é ê ë''' )
UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['''input_ids'''] , lowercase )
# decoding
UpperCAmelCase = tokenizer.decode(lowercase )
self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
# fmt: off
UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase )
self.assertIsInstance(lowercase , lowercase )
if FRAMEWORK != "jax":
UpperCAmelCase = list(batch.input_ids.numpy()[0] )
else:
UpperCAmelCase = list(batch.input_ids.tolist()[0] )
self.assertListEqual(lowercase , lowercase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('''input_ids''' , lowercase )
self.assertIn('''attention_mask''' , lowercase )
self.assertNotIn('''decoder_input_ids''' , lowercase )
self.assertNotIn('''decoder_attention_mask''' , lowercase )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = [
'''Summary of the text.''',
'''Another summary.''',
]
UpperCAmelCase = tokenizer(
text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase )
UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
shutil.rmtree(lowercase )
UpperCAmelCase = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
tokenizer.add_tokens(['''bim''', '''bambam'''] )
UpperCAmelCase = tokenizer.additional_special_tokens
additional_special_tokens.append('''new_additional_special_token''' )
tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} )
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase )
UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(lowercase )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(lowercase )
with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file:
UpperCAmelCase = json.load(lowercase )
with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file:
UpperCAmelCase = json.load(lowercase )
UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )]
UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(lowercase , lowercase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase = tokenizer_class.from_pretrained(
lowercase , )
self.assertIn(
'''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )]
UpperCAmelCase = tokenizer_class.from_pretrained(
lowercase , additional_special_tokens=lowercase , )
self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens )
self.assertEqual(
['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , '''�''' )
def A ( self : Union[str, Any] ):
'''simple docstring'''
pass
def A ( self : Any ):
'''simple docstring'''
pass
def A ( self : Dict ):
'''simple docstring'''
pass
def A ( self : str ):
'''simple docstring'''
pass
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]''']
UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase )
self.assertIsInstance(lowercase , lowercase )
| 34
| 1
|
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _a ( unittest.TestCase ):
def __init__( self : Union[str, Any] , lowercase : Optional[Any] , lowercase : Tuple=7 , lowercase : Tuple=3 , lowercase : Any=30 , lowercase : Tuple=400 , lowercase : List[Any]=True , lowercase : Optional[int]=None , lowercase : Any=0.9 , lowercase : int=None , lowercase : List[Any]=True , lowercase : Any=[0.5, 0.5, 0.5] , lowercase : Union[str, Any]=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 30}
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30}
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = num_channels
UpperCAmelCase = min_resolution
UpperCAmelCase = max_resolution
UpperCAmelCase = do_resize_and_center_crop
UpperCAmelCase = size
UpperCAmelCase = crop_pct
UpperCAmelCase = crop_size
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean
UpperCAmelCase = image_std
def A ( self : Union[str, Any] ):
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _a ( __a , unittest.TestCase ):
__a : int = PoolFormerImageProcessor if is_vision_available() else None
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = PoolFormerImageProcessingTester(self )
@property
def A ( self : Optional[Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase , '''do_resize_and_center_crop''' ) )
self.assertTrue(hasattr(lowercase , '''size''' ) )
self.assertTrue(hasattr(lowercase , '''crop_pct''' ) )
self.assertTrue(hasattr(lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(lowercase , '''image_mean''' ) )
self.assertTrue(hasattr(lowercase , '''image_std''' ) )
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 30} )
self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} )
UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def A ( self : Union[str, Any] ):
'''simple docstring'''
pass
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , Image.Image )
# Test not batched input
UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase = image_processing(lowercase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , np.ndarray )
# Test not batched input
UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase = image_processing(lowercase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , torch.Tensor )
# Test not batched input
UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
UpperCAmelCase = image_processing(lowercase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 34
|
'''simple docstring'''
import os
from distutils.util import strtobool
def snake_case_ (_a : Union[str, Any] , _a : List[Any] ):
for e in env_keys:
UpperCAmelCase = int(os.environ.get(_a , -1 ) )
if val >= 0:
return val
return default
def snake_case_ (_a : Dict , _a : Any=False ):
UpperCAmelCase = os.environ.get(_a , str(_a ) )
return strtobool(_a ) == 1 # As its name indicates `strtobool` actually returns an int...
def snake_case_ (_a : str , _a : Optional[Any]="no" ):
UpperCAmelCase = os.environ.get(_a , str(_a ) )
return value
| 34
| 1
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json',
'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json',
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class _a ( __a ):
__a : Optional[int] = """xlm-roberta-xl"""
def __init__( self : Union[str, Any] , lowercase : str=250_880 , lowercase : Dict=2_560 , lowercase : str=36 , lowercase : Optional[Any]=32 , lowercase : List[str]=10_240 , lowercase : List[Any]="gelu" , lowercase : Optional[int]=0.1 , lowercase : Dict=0.1 , lowercase : List[str]=514 , lowercase : Dict=1 , lowercase : Optional[int]=0.02 , lowercase : Optional[int]=1E-05 , lowercase : Optional[Any]=1 , lowercase : str=0 , lowercase : int=2 , lowercase : int="absolute" , lowercase : Optional[int]=True , lowercase : List[str]=None , **lowercase : int , ):
'''simple docstring'''
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
UpperCAmelCase = classifier_dropout
class _a ( __a ):
@property
def A ( self : int ):
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 34
|
'''simple docstring'''
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
A =logging.getLogger(__name__)
A ='Hello world! cécé herlolip'
A =namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def snake_case_ (_a : List[Any] , _a : Any ):
UpperCAmelCase = BertAbsConfig(
temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , )
UpperCAmelCase = torch.load(_a , lambda _a , _a : storage )
UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a )
original.eval()
UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('''convert the model''' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('''Make sure that the models\' outputs are identical''' )
UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
# prepare the model inputs
UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
UpperCAmelCase = encoder_input_ids
UpperCAmelCase = decoder_input_ids
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0]
UpperCAmelCase = original.generator(_a )
UpperCAmelCase = new_model(
_a , _a , _a , _a , _a )[0]
UpperCAmelCase = new_model.generator(_a )
UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 )
if are_identical:
logging.info('''all weights are equal up to 1e-3''' )
else:
raise ValueError('''the weights are different. The new model is likely different from the original one.''' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('''saving the model\'s state dictionary''' )
torch.save(
new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' )
if __name__ == "__main__":
A =argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
A =parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 34
| 1
|
'''simple docstring'''
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def snake_case_ (_a : Tuple , _a : Tuple , _a : Optional[int] ):
if isinstance(_a , torch.Tensor ):
return image
elif isinstance(_a , PIL.Image.Image ):
UpperCAmelCase = [image]
if isinstance(image[0] , PIL.Image.Image ):
UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
UpperCAmelCase = np.concatenate(_a , axis=0 )
UpperCAmelCase = np.array(_a ).astype(np.floataa ) / 255.0
UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 )
UpperCAmelCase = 2.0 * image - 1.0
UpperCAmelCase = torch.from_numpy(_a )
elif isinstance(image[0] , torch.Tensor ):
UpperCAmelCase = torch.cat(_a , dim=0 )
return image
def snake_case_ (_a : Optional[Any] , _a : int , _a : Union[str, Any] , _a : int=0.9995 ):
if not isinstance(_a , np.ndarray ):
UpperCAmelCase = True
UpperCAmelCase = va.device
UpperCAmelCase = va.cpu().numpy()
UpperCAmelCase = va.cpu().numpy()
UpperCAmelCase = np.sum(va * va / (np.linalg.norm(_a ) * np.linalg.norm(_a )) )
if np.abs(_a ) > DOT_THRESHOLD:
UpperCAmelCase = (1 - t) * va + t * va
else:
UpperCAmelCase = np.arccos(_a )
UpperCAmelCase = np.sin(_a )
UpperCAmelCase = theta_a * t
UpperCAmelCase = np.sin(_a )
UpperCAmelCase = np.sin(theta_a - theta_t ) / sin_theta_a
UpperCAmelCase = sin_theta_t / sin_theta_a
UpperCAmelCase = sa * va + sa * va
if inputs_are_torch:
UpperCAmelCase = torch.from_numpy(_a ).to(_a )
return va
def snake_case_ (_a : List[str] , _a : int ):
UpperCAmelCase = F.normalize(_a , dim=-1 )
UpperCAmelCase = F.normalize(_a , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def snake_case_ (_a : Dict , _a : Optional[Any] ):
for param in model.parameters():
UpperCAmelCase = value
class _a ( __a ):
def __init__( self : Optional[Any] , lowercase : AutoencoderKL , lowercase : CLIPTextModel , lowercase : CLIPModel , lowercase : CLIPTokenizer , lowercase : UNetaDConditionModel , lowercase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , lowercase : CLIPFeatureExtractor , lowercase : Union[str, Any]=None , lowercase : int=None , lowercase : Union[str, Any]=None , ):
'''simple docstring'''
super().__init__()
self.register_modules(
vae=lowercase , text_encoder=lowercase , clip_model=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , feature_extractor=lowercase , coca_model=lowercase , coca_tokenizer=lowercase , coca_transform=lowercase , )
UpperCAmelCase = (
feature_extractor.size
if isinstance(feature_extractor.size , lowercase )
else feature_extractor.size['''shortest_edge''']
)
UpperCAmelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , lowercase )
set_requires_grad(self.clip_model , lowercase )
def A ( self : str , lowercase : Optional[Union[str, int]] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowercase )
def A ( self : Any ):
'''simple docstring'''
self.enable_attention_slicing(lowercase )
def A ( self : Tuple ):
'''simple docstring'''
set_requires_grad(self.vae , lowercase )
def A ( self : str ):
'''simple docstring'''
set_requires_grad(self.vae , lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
set_requires_grad(self.unet , lowercase )
def A ( self : Any ):
'''simple docstring'''
set_requires_grad(self.unet , lowercase )
def A ( self : Any , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : int ):
'''simple docstring'''
UpperCAmelCase = min(int(num_inference_steps * strength ) , lowercase )
UpperCAmelCase = max(num_inference_steps - init_timestep , 0 )
UpperCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def A ( self : Optional[Any] , lowercase : List[str] , lowercase : Tuple , lowercase : Any , lowercase : List[str] , lowercase : str , lowercase : Dict=None ):
'''simple docstring'''
if not isinstance(lowercase , torch.Tensor ):
raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(lowercase )}" )
UpperCAmelCase = image.to(device=lowercase , dtype=lowercase )
if isinstance(lowercase , lowercase ):
UpperCAmelCase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase )
]
UpperCAmelCase = torch.cat(lowercase , dim=0 )
else:
UpperCAmelCase = self.vae.encode(lowercase ).latent_dist.sample(lowercase )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
UpperCAmelCase = 0.1_8215 * init_latents
UpperCAmelCase = init_latents.repeat_interleave(lowercase , dim=0 )
UpperCAmelCase = randn_tensor(init_latents.shape , generator=lowercase , device=lowercase , dtype=lowercase )
# get latents
UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , lowercase )
UpperCAmelCase = init_latents
return latents
def A ( self : Union[str, Any] , lowercase : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.coca_transform(lowercase ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
UpperCAmelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
UpperCAmelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' )
def A ( self : Union[str, Any] , lowercase : Tuple , lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.feature_extractor.preprocess(lowercase )
UpperCAmelCase = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half()
UpperCAmelCase = self.clip_model.get_image_features(lowercase )
UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowercase )
UpperCAmelCase = image_embeddings_clip.repeat_interleave(lowercase , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def A ( self : Any , lowercase : List[str] , lowercase : Optional[Any] , lowercase : Dict , lowercase : Any , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : List[Any] , ):
'''simple docstring'''
UpperCAmelCase = latents.detach().requires_grad_()
UpperCAmelCase = self.scheduler.scale_model_input(lowercase , lowercase )
# predict the noise residual
UpperCAmelCase = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
UpperCAmelCase = self.scheduler.alphas_cumprod[timestep]
UpperCAmelCase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
UpperCAmelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
UpperCAmelCase = torch.sqrt(lowercase )
UpperCAmelCase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , lowercase ):
UpperCAmelCase = self.scheduler.sigmas[index]
UpperCAmelCase = latents - sigma * noise_pred
else:
raise ValueError(f"scheduler type {type(self.scheduler )} not supported" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
UpperCAmelCase = 1 / 0.1_8215 * sample
UpperCAmelCase = self.vae.decode(lowercase ).sample
UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase = transforms.Resize(self.feature_extractor_size )(lowercase )
UpperCAmelCase = self.normalize(lowercase ).to(latents.dtype )
UpperCAmelCase = self.clip_model.get_image_features(lowercase )
UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowercase )
UpperCAmelCase = spherical_dist_loss(lowercase , lowercase ).mean() * clip_guidance_scale
UpperCAmelCase = -torch.autograd.grad(lowercase , lowercase )[0]
if isinstance(self.scheduler , lowercase ):
UpperCAmelCase = latents.detach() + grads * (sigma**2)
UpperCAmelCase = noise_pred_original
else:
UpperCAmelCase = noise_pred_original - torch.sqrt(lowercase ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : List[str] , lowercase : Union[torch.FloatTensor, PIL.Image.Image] , lowercase : Union[torch.FloatTensor, PIL.Image.Image] , lowercase : Optional[str] = None , lowercase : Optional[str] = None , lowercase : Optional[int] = 512 , lowercase : Optional[int] = 512 , lowercase : float = 0.6 , lowercase : Optional[int] = 50 , lowercase : Optional[float] = 7.5 , lowercase : Optional[int] = 1 , lowercase : float = 0.0 , lowercase : Optional[float] = 100 , lowercase : Optional[torch.Generator] = None , lowercase : Optional[str] = "pil" , lowercase : bool = True , lowercase : float = 0.8 , lowercase : float = 0.1 , lowercase : float = 0.1 , ):
'''simple docstring'''
if isinstance(lowercase , lowercase ) and len(lowercase ) != batch_size:
raise ValueError(f"You have passed {batch_size} batch_size, but only {len(lowercase )} generators." )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." )
if isinstance(lowercase , torch.Generator ) and batch_size > 1:
UpperCAmelCase = [generator] + [None] * (batch_size - 1)
UpperCAmelCase = [
('''model''', self.coca_model is None),
('''tokenizer''', self.coca_tokenizer is None),
('''transform''', self.coca_transform is None),
]
UpperCAmelCase = [x[0] for x in coca_is_none if x[1]]
UpperCAmelCase = ''', '''.join(lowercase )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(lowercase ):
raise ValueError(
f"Content prompt is None and CoCa [{coca_is_none_str}] is None."
f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." )
UpperCAmelCase = self.get_image_description(lowercase )
if style_prompt is None:
if len(lowercase ):
raise ValueError(
f"Style prompt is None and CoCa [{coca_is_none_str}] is None."
f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." )
UpperCAmelCase = self.get_image_description(lowercase )
# get prompt text embeddings for content and style
UpperCAmelCase = self.tokenizer(
lowercase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowercase , return_tensors='''pt''' , )
UpperCAmelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
UpperCAmelCase = self.tokenizer(
lowercase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowercase , return_tensors='''pt''' , )
UpperCAmelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
UpperCAmelCase = slerp(lowercase , lowercase , lowercase )
# duplicate text embeddings for each generation per prompt
UpperCAmelCase = text_embeddings.repeat_interleave(lowercase , dim=0 )
# set timesteps
UpperCAmelCase = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
UpperCAmelCase = {}
if accepts_offset:
UpperCAmelCase = 1
self.scheduler.set_timesteps(lowercase , **lowercase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
UpperCAmelCase , UpperCAmelCase = self.get_timesteps(lowercase , lowercase , self.device )
UpperCAmelCase = timesteps[:1].repeat(lowercase )
# Preprocess image
UpperCAmelCase = preprocess(lowercase , lowercase , lowercase )
UpperCAmelCase = self.prepare_latents(
lowercase , lowercase , lowercase , text_embeddings.dtype , self.device , lowercase )
UpperCAmelCase = preprocess(lowercase , lowercase , lowercase )
UpperCAmelCase = self.prepare_latents(
lowercase , lowercase , lowercase , text_embeddings.dtype , self.device , lowercase )
UpperCAmelCase = slerp(lowercase , lowercase , lowercase )
if clip_guidance_scale > 0:
UpperCAmelCase = self.get_clip_image_embeddings(lowercase , lowercase )
UpperCAmelCase = self.get_clip_image_embeddings(lowercase , lowercase )
UpperCAmelCase = slerp(
lowercase , lowercase , lowercase )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
UpperCAmelCase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
UpperCAmelCase = content_text_input.input_ids.shape[-1]
UpperCAmelCase = self.tokenizer([''''''] , padding='''max_length''' , max_length=lowercase , return_tensors='''pt''' )
UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
UpperCAmelCase = uncond_embeddings.repeat_interleave(lowercase , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
UpperCAmelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
UpperCAmelCase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
UpperCAmelCase = torch.randn(lowercase , generator=lowercase , device='''cpu''' , dtype=lowercase ).to(
self.device )
else:
UpperCAmelCase = torch.randn(lowercase , generator=lowercase , device=self.device , dtype=lowercase )
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" )
UpperCAmelCase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
UpperCAmelCase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
UpperCAmelCase = {}
if accepts_eta:
UpperCAmelCase = eta
# check if the scheduler accepts generator
UpperCAmelCase = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
UpperCAmelCase = generator
with self.progress_bar(total=lowercase ):
for i, t in enumerate(lowercase ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase = self.scheduler.scale_model_input(lowercase , lowercase )
# predict the noise residual
UpperCAmelCase = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 )
UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
UpperCAmelCase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
UpperCAmelCase , UpperCAmelCase = self.cond_fn(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase = self.scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
UpperCAmelCase = 1 / 0.1_8215 * latents
UpperCAmelCase = self.vae.decode(lowercase ).sample
UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase = self.numpy_to_pil(lowercase )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=lowercase , nsfw_content_detected=lowercase )
| 34
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : Any = ["""flax""", """transformers"""]
def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
| 34
| 1
|
'''simple docstring'''
from typing import List
from .keymap import KEYMAP, get_character
def snake_case_ (_a : str ):
def decorator(_a : str ):
UpperCAmelCase = getattr(_a , '''handle_key''' , [] )
handle += [key]
setattr(_a , '''handle_key''' , _a )
return func
return decorator
def snake_case_ (*_a : List[str] ):
def decorator(_a : Optional[int] ):
UpperCAmelCase = getattr(_a , '''handle_key''' , [] )
handle += keys
setattr(_a , '''handle_key''' , _a )
return func
return decorator
class _a ( __a ):
def __new__( cls : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = super().__new__(cls , lowercase , lowercase , lowercase )
if not hasattr(lowercase , '''key_handler''' ):
setattr(lowercase , '''key_handler''' , {} )
setattr(lowercase , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
UpperCAmelCase = getattr(lowercase , '''handle_key''' , [] )
for key in handled_keys:
UpperCAmelCase = value
return new_cls
@staticmethod
def A ( cls : List[str] ):
'''simple docstring'''
UpperCAmelCase = get_character()
if char != KEYMAP["undefined"]:
UpperCAmelCase = ord(lowercase )
UpperCAmelCase = cls.key_handler.get(lowercase )
if handler:
UpperCAmelCase = char
return handler(cls )
else:
return None
def snake_case_ (cls : int ):
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 34
|
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
A ={
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
A ={
'b0': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 2_24,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 2_40,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 14_08,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 2_60,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 15_36,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 3_00,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 17_92,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 3_80,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 20_48,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 4_56,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 23_04,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 5_28,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 25_60,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 6_00,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def snake_case_ (_a : List[str] ):
UpperCAmelCase = EfficientNetConfig()
UpperCAmelCase = CONFIG_MAP[model_name]['''hidden_dim''']
UpperCAmelCase = CONFIG_MAP[model_name]['''width_coef''']
UpperCAmelCase = CONFIG_MAP[model_name]['''depth_coef''']
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = CONFIG_MAP[model_name]['''dropout_rate''']
UpperCAmelCase = CONFIG_MAP[model_name]['''dw_padding''']
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''imagenet-1k-id2label.json'''
UpperCAmelCase = 1_0_0_0
UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ ():
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw )
return im
def snake_case_ (_a : str ):
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_a , )
return preprocessor
def snake_case_ (_a : Optional[Any] ):
UpperCAmelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
UpperCAmelCase = sorted(set(_a ) )
UpperCAmelCase = len(_a )
UpperCAmelCase = {b: str(_a ) for b, i in zip(_a , range(_a ) )}
UpperCAmelCase = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
UpperCAmelCase = block_name_mapping[b]
rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") )
rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") )
rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") )
rename_keys.append(
(F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") )
rename_keys.append(
(F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") )
rename_keys.append(
(F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") )
rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") )
rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") )
rename_keys.append(
(F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") )
rename_keys.append(
(F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") )
rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") )
rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") )
rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") )
rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") )
rename_keys.append(
(F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") )
rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") )
rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") )
rename_keys.append(
(F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") )
rename_keys.append(
(F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
UpperCAmelCase = {}
for item in rename_keys:
if item[0] in original_param_names:
UpperCAmelCase = '''efficientnet.''' + item[1]
UpperCAmelCase = '''classifier.weight'''
UpperCAmelCase = '''classifier.bias'''
return key_mapping
def snake_case_ (_a : Dict , _a : List[str] , _a : Dict ):
for key, value in tf_params.items():
if "normalization" in key:
continue
UpperCAmelCase = key_mapping[key]
if "_conv" in key and "kernel" in key:
UpperCAmelCase = torch.from_numpy(_a ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
UpperCAmelCase = torch.from_numpy(_a ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
UpperCAmelCase = torch.from_numpy(np.transpose(_a ) )
else:
UpperCAmelCase = torch.from_numpy(_a )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_a )
@torch.no_grad()
def snake_case_ (_a : Optional[Any] , _a : List[str] , _a : Optional[int] , _a : Dict ):
UpperCAmelCase = model_classes[model_name](
include_top=_a , weights='''imagenet''' , input_tensor=_a , input_shape=_a , pooling=_a , classes=1_0_0_0 , classifier_activation='''softmax''' , )
UpperCAmelCase = original_model.trainable_variables
UpperCAmelCase = original_model.non_trainable_variables
UpperCAmelCase = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
UpperCAmelCase = param.numpy()
UpperCAmelCase = list(tf_params.keys() )
# Load HuggingFace model
UpperCAmelCase = get_efficientnet_config(_a )
UpperCAmelCase = EfficientNetForImageClassification(_a ).eval()
UpperCAmelCase = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
UpperCAmelCase = rename_keys(_a )
replace_params(_a , _a , _a )
# Initialize preprocessor and preprocess input image
UpperCAmelCase = convert_image_processor(_a )
UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
UpperCAmelCase = hf_model(**_a )
UpperCAmelCase = outputs.logits.detach().numpy()
# Original model inference
UpperCAmelCase = False
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
UpperCAmelCase = image.img_to_array(_a )
UpperCAmelCase = np.expand_dims(_a , axis=0 )
UpperCAmelCase = original_model.predict(_a )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_a , _a , atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(_a ):
os.mkdir(_a )
# Save converted model and image processor
hf_model.save_pretrained(_a )
preprocessor.save_pretrained(_a )
if push_to_hub:
# Push model and image processor to hub
print(F"Pushing converted {model_name} to the hub..." )
UpperCAmelCase = F"efficientnet-{model_name}"
preprocessor.push_to_hub(_a )
hf_model.push_to_hub(_a )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
A =parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 34
| 1
|
'''simple docstring'''
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
A =re.compile(r'\b(a|an|the)\b', re.UNICODE)
A =None
def snake_case_ ():
UpperCAmelCase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' )
parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' )
parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' )
parser.add_argument(
'''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' )
parser.add_argument(
'''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' )
parser.add_argument(
'''--na-prob-thresh''' , '''-t''' , type=_a , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , )
parser.add_argument(
'''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=_a , help='''Save precision-recall curves to directory.''' )
parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def snake_case_ (_a : List[str] ):
UpperCAmelCase = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
UpperCAmelCase = bool(qa['''answers''']['''text'''] )
return qid_to_has_ans
def snake_case_ (_a : List[str] ):
def remove_articles(_a : Optional[Any] ):
return ARTICLES_REGEX.sub(''' ''' , _a )
def white_space_fix(_a : Any ):
return " ".join(text.split() )
def remove_punc(_a : Dict ):
UpperCAmelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_a : Tuple ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_a ) ) ) )
def snake_case_ (_a : Union[str, Any] ):
if not s:
return []
return normalize_answer(_a ).split()
def snake_case_ (_a : Dict , _a : int ):
return int(normalize_answer(_a ) == normalize_answer(_a ) )
def snake_case_ (_a : Tuple , _a : Optional[int] ):
UpperCAmelCase = get_tokens(_a )
UpperCAmelCase = get_tokens(_a )
UpperCAmelCase = collections.Counter(_a ) & collections.Counter(_a )
UpperCAmelCase = sum(common.values() )
if len(_a ) == 0 or len(_a ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
UpperCAmelCase = 1.0 * num_same / len(_a )
UpperCAmelCase = 1.0 * num_same / len(_a )
UpperCAmelCase = (2 * precision * recall) / (precision + recall)
return fa
def snake_case_ (_a : Any , _a : str ):
UpperCAmelCase = {}
UpperCAmelCase = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
UpperCAmelCase = qa['''id''']
UpperCAmelCase = [t for t in qa['''answers''']['''text'''] if normalize_answer(_a )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
UpperCAmelCase = ['''''']
if qid not in preds:
print(F"Missing prediction for {qid}" )
continue
UpperCAmelCase = preds[qid]
# Take max over all gold answers
UpperCAmelCase = max(compute_exact(_a , _a ) for a in gold_answers )
UpperCAmelCase = max(compute_fa(_a , _a ) for a in gold_answers )
return exact_scores, fa_scores
def snake_case_ (_a : List[str] , _a : Dict , _a : int , _a : Optional[Any] ):
UpperCAmelCase = {}
for qid, s in scores.items():
UpperCAmelCase = na_probs[qid] > na_prob_thresh
if pred_na:
UpperCAmelCase = float(not qid_to_has_ans[qid] )
else:
UpperCAmelCase = s
return new_scores
def snake_case_ (_a : int , _a : Dict , _a : Union[str, Any]=None ):
if not qid_list:
UpperCAmelCase = len(_a )
return collections.OrderedDict(
[
('''exact''', 100.0 * sum(exact_scores.values() ) / total),
('''f1''', 100.0 * sum(fa_scores.values() ) / total),
('''total''', total),
] )
else:
UpperCAmelCase = len(_a )
return collections.OrderedDict(
[
('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total),
('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total),
('''total''', total),
] )
def snake_case_ (_a : Dict , _a : Optional[Any] , _a : List[str] ):
for k in new_eval:
UpperCAmelCase = new_eval[k]
def snake_case_ (_a : Any , _a : Union[str, Any] , _a : int , _a : List[Any] ):
plt.step(_a , _a , color='''b''' , alpha=0.2 , where='''post''' )
plt.fill_between(_a , _a , step='''post''' , alpha=0.2 , color='''b''' )
plt.xlabel('''Recall''' )
plt.ylabel('''Precision''' )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(_a )
plt.savefig(_a )
plt.clf()
def snake_case_ (_a : Union[str, Any] , _a : Dict , _a : Any , _a : Optional[Any] , _a : Optional[Any]=None , _a : Tuple=None ):
UpperCAmelCase = sorted(_a , key=lambda _a : na_probs[k] )
UpperCAmelCase = 0.0
UpperCAmelCase = 1.0
UpperCAmelCase = 0.0
UpperCAmelCase = [1.0]
UpperCAmelCase = [0.0]
UpperCAmelCase = 0.0
for i, qid in enumerate(_a ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
UpperCAmelCase = true_pos / float(i + 1 )
UpperCAmelCase = true_pos / float(_a )
if i == len(_a ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(_a )
recalls.append(_a )
if out_image:
plot_pr_curve(_a , _a , _a , _a )
return {"ap": 100.0 * avg_prec}
def snake_case_ (_a : Tuple , _a : List[str] , _a : Any , _a : Tuple , _a : Tuple , _a : List[str] ):
if out_image_dir and not os.path.exists(_a ):
os.makedirs(_a )
UpperCAmelCase = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
UpperCAmelCase = make_precision_recall_eval(
_a , _a , _a , _a , out_image=os.path.join(_a , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , )
UpperCAmelCase = make_precision_recall_eval(
_a , _a , _a , _a , out_image=os.path.join(_a , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , )
UpperCAmelCase = {k: float(_a ) for k, v in qid_to_has_ans.items()}
UpperCAmelCase = make_precision_recall_eval(
_a , _a , _a , _a , out_image=os.path.join(_a , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , )
merge_eval(_a , _a , '''pr_exact''' )
merge_eval(_a , _a , '''pr_f1''' )
merge_eval(_a , _a , '''pr_oracle''' )
def snake_case_ (_a : Any , _a : str , _a : str , _a : List[Any] ):
if not qid_list:
return
UpperCAmelCase = [na_probs[k] for k in qid_list]
UpperCAmelCase = np.ones_like(_a ) / float(len(_a ) )
plt.hist(_a , weights=_a , bins=2_0 , range=(0.0, 1.0) )
plt.xlabel('''Model probability of no-answer''' )
plt.ylabel('''Proportion of dataset''' )
plt.title(F"Histogram of no-answer probability: {name}" )
plt.savefig(os.path.join(_a , F"na_prob_hist_{name}.png" ) )
plt.clf()
def snake_case_ (_a : Any , _a : Union[str, Any] , _a : List[Any] , _a : str ):
UpperCAmelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
UpperCAmelCase = num_no_ans
UpperCAmelCase = cur_score
UpperCAmelCase = 0.0
UpperCAmelCase = sorted(_a , key=lambda _a : na_probs[k] )
for i, qid in enumerate(_a ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
UpperCAmelCase = scores[qid]
else:
if preds[qid]:
UpperCAmelCase = -1
else:
UpperCAmelCase = 0
cur_score += diff
if cur_score > best_score:
UpperCAmelCase = cur_score
UpperCAmelCase = na_probs[qid]
return 100.0 * best_score / len(_a ), best_thresh
def snake_case_ (_a : str , _a : Dict , _a : List[Any] , _a : str , _a : int , _a : str ):
UpperCAmelCase , UpperCAmelCase = find_best_thresh(_a , _a , _a , _a )
UpperCAmelCase , UpperCAmelCase = find_best_thresh(_a , _a , _a , _a )
UpperCAmelCase = best_exact
UpperCAmelCase = exact_thresh
UpperCAmelCase = best_fa
UpperCAmelCase = fa_thresh
def snake_case_ ():
with open(OPTS.data_file ) as f:
UpperCAmelCase = json.load(_a )
UpperCAmelCase = dataset_json['''data''']
with open(OPTS.pred_file ) as f:
UpperCAmelCase = json.load(_a )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
UpperCAmelCase = json.load(_a )
else:
UpperCAmelCase = {k: 0.0 for k in preds}
UpperCAmelCase = make_qid_to_has_ans(_a ) # maps qid to True/False
UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if v]
UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if not v]
UpperCAmelCase , UpperCAmelCase = get_raw_scores(_a , _a )
UpperCAmelCase = apply_no_ans_threshold(_a , _a , _a , OPTS.na_prob_thresh )
UpperCAmelCase = apply_no_ans_threshold(_a , _a , _a , OPTS.na_prob_thresh )
UpperCAmelCase = make_eval_dict(_a , _a )
if has_ans_qids:
UpperCAmelCase = make_eval_dict(_a , _a , qid_list=_a )
merge_eval(_a , _a , '''HasAns''' )
if no_ans_qids:
UpperCAmelCase = make_eval_dict(_a , _a , qid_list=_a )
merge_eval(_a , _a , '''NoAns''' )
if OPTS.na_prob_file:
find_all_best_thresh(_a , _a , _a , _a , _a , _a )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(_a , _a , _a , _a , _a , OPTS.out_image_dir )
histogram_na_prob(_a , _a , OPTS.out_image_dir , '''hasAns''' )
histogram_na_prob(_a , _a , OPTS.out_image_dir , '''noAns''' )
if OPTS.out_file:
with open(OPTS.out_file , '''w''' ) as f:
json.dump(_a , _a )
else:
print(json.dumps(_a , indent=2 ) )
if __name__ == "__main__":
A =parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
main()
| 34
|
'''simple docstring'''
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
A =input('Enter image url: ').strip()
print(f"""Downloading image from {url} ...""")
A =BeautifulSoup(requests.get(url).content, 'html.parser')
# The image URL is in the content field of the first meta tag with property og:image
A =soup.find('meta', {'property': 'og:image'})['content']
A =requests.get(image_url).content
A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, 'wb') as fp:
fp.write(image_data)
print(f"""Done. Image saved to disk as {file_name}.""")
| 34
| 1
|
'''simple docstring'''
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class _a :
def __init__( self : Dict , lowercase : Tuple , lowercase : Dict=13 , lowercase : Tuple=7 , lowercase : Optional[Any]=True , lowercase : Dict=True , lowercase : Tuple=False , lowercase : Any=True , lowercase : str=99 , lowercase : Any=64 , lowercase : Union[str, Any]=5 , lowercase : Optional[Any]=4 , lowercase : str=64 , lowercase : Any="gelu" , lowercase : Union[str, Any]=0.1 , lowercase : Tuple=0.1 , lowercase : int=512 , lowercase : List[Any]=16 , lowercase : int=2 , lowercase : Optional[Any]=0.02 , lowercase : int=3 , lowercase : str=4 , lowercase : Tuple=None , ):
'''simple docstring'''
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = scope
def A ( self : Optional[Any] ):
'''simple docstring'''
return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' )
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : Optional[Any] ):
'''simple docstring'''
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def A ( self : str , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = MPNetModel(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , lowercase )
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def A ( self : str , lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Tuple , lowercase : Any , lowercase : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = MPNetForQuestionAnswering(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(
lowercase , attention_mask=lowercase , start_positions=lowercase , end_positions=lowercase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self : Optional[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : str , lowercase : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = MPNetForSequenceClassification(lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : Tuple , lowercase : Any , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Tuple , lowercase : str , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = self.num_choices
UpperCAmelCase = MPNetForMultipleChoice(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = model(
lowercase , attention_mask=lowercase , labels=lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self : Dict , lowercase : str , lowercase : int , lowercase : List[str] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = MPNetForTokenClassification(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.prepare_config_and_inputs()
((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = config_and_inputs
UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _a ( __a , __a , unittest.TestCase ):
__a : Union[str, Any] = (
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"""feature-extraction""": MPNetModel,
"""fill-mask""": MPNetForMaskedLM,
"""question-answering""": MPNetForQuestionAnswering,
"""text-classification""": MPNetForSequenceClassification,
"""token-classification""": MPNetForTokenClassification,
"""zero-shot""": MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Optional[Any] = False
__a : Optional[int] = True
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = MPNetModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 )
def A ( self : Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*lowercase )
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase )
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase )
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase )
@require_torch
class _a ( unittest.TestCase ):
@slow
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = MPNetModel.from_pretrained('''microsoft/mpnet-base''' )
UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
UpperCAmelCase = model(lowercase )[0]
UpperCAmelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , lowercase )
UpperCAmelCase = torch.tensor(
[[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
| 34
|
'''simple docstring'''
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class _a ( __a ):
__a : str = ["""vqvae"""]
def __init__( self : str , lowercase : AutoencoderKL , lowercase : UNetaDConditionModel , lowercase : Mel , lowercase : Union[DDIMScheduler, DDPMScheduler] , ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
return 50 if isinstance(self.scheduler , lowercase ) else 1_000
@torch.no_grad()
def __call__( self : Optional[Any] , lowercase : int = 1 , lowercase : str = None , lowercase : np.ndarray = None , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = None , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : float = 0 , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : torch.Tensor = None , lowercase : torch.Tensor = None , lowercase : Tuple=True , ):
'''simple docstring'''
UpperCAmelCase = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowercase )
UpperCAmelCase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
UpperCAmelCase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowercase , device=self.device , )
UpperCAmelCase = noise
UpperCAmelCase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowercase , lowercase )
UpperCAmelCase = self.mel.audio_slice_to_image(lowercase )
UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape(
(input_image.height, input_image.width) )
UpperCAmelCase = (input_image / 255) * 2 - 1
UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample(
generator=lowercase )[0]
UpperCAmelCase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] )
UpperCAmelCase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
UpperCAmelCase = int(mask_start_secs * pixels_per_second )
UpperCAmelCase = int(mask_end_secs * pixels_per_second )
UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowercase ):
UpperCAmelCase = self.unet(lowercase , lowercase , lowercase )['''sample''']
else:
UpperCAmelCase = self.unet(lowercase , lowercase )['''sample''']
if isinstance(self.scheduler , lowercase ):
UpperCAmelCase = self.scheduler.step(
model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )['''prev_sample''']
else:
UpperCAmelCase = self.scheduler.step(
model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )['''prev_sample''']
if mask is not None:
if mask_start > 0:
UpperCAmelCase = mask[:, step, :, :mask_start]
if mask_end > 0:
UpperCAmelCase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images
UpperCAmelCase = self.vqvae.decode(lowercase )['''sample''']
UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
UpperCAmelCase = (images * 255).round().astype('''uint8''' )
UpperCAmelCase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) )
UpperCAmelCase = [self.mel.image_to_audio(lowercase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) )
@torch.no_grad()
def A ( self : Dict , lowercase : List[Image.Image] , lowercase : int = 50 ):
'''simple docstring'''
assert isinstance(self.scheduler , lowercase )
self.scheduler.set_timesteps(lowercase )
UpperCAmelCase = np.array(
[np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] )
UpperCAmelCase = (sample / 255) * 2 - 1
UpperCAmelCase = torch.Tensor(lowercase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
UpperCAmelCase = self.scheduler.alphas_cumprod[t]
UpperCAmelCase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
UpperCAmelCase = 1 - alpha_prod_t
UpperCAmelCase = self.unet(lowercase , lowercase )['''sample''']
UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def A ( lowercase : torch.Tensor , lowercase : torch.Tensor , lowercase : float ):
'''simple docstring'''
UpperCAmelCase = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) )
return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
| 34
| 1
|
'''simple docstring'''
import os
# Precomputes a list of the 100 first triangular numbers
A =[int(0.5 * n * (n + 1)) for n in range(1, 1_01)]
def snake_case_ ():
UpperCAmelCase = os.path.dirname(os.path.realpath(_a ) )
UpperCAmelCase = os.path.join(_a , '''words.txt''' )
UpperCAmelCase = ''''''
with open(_a ) as f:
UpperCAmelCase = f.readline()
UpperCAmelCase = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )]
UpperCAmelCase = [
word
for word in [sum(ord(_a ) - 6_4 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(_a )
if __name__ == "__main__":
print(solution())
| 34
|
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
A =logging.get_logger(__name__)
A =TypeVar('DatasetType', Dataset, IterableDataset)
def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ):
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('''Unable to interleave an empty list of datasets.''' )
for i, dataset in enumerate(_a ):
if not isinstance(_a , (Dataset, IterableDataset) ):
if isinstance(_a , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'''is an empty dataset dictionary.''' )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(_a )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." )
if i == 0:
UpperCAmelCase , UpperCAmelCase = (
(Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset)
)
elif not isinstance(_a , _a ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
_a , _a , _a , info=_a , split=_a , stopping_strategy=_a )
else:
return _interleave_iterable_datasets(
_a , _a , _a , info=_a , split=_a , stopping_strategy=_a )
def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ):
if not dsets:
raise ValueError('''Unable to concatenate an empty list of datasets.''' )
for i, dataset in enumerate(_a ):
if not isinstance(_a , (Dataset, IterableDataset) ):
if isinstance(_a , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'''is an empty dataset dictionary.''' )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(_a )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." )
if i == 0:
UpperCAmelCase , UpperCAmelCase = (
(Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset)
)
elif not isinstance(_a , _a ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a )
else:
return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
| 34
| 1
|
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class _a ( __a ):
def __init__( self : int , lowercase : Union[str, Any]=0.01 , lowercase : Tuple=1_000 ):
'''simple docstring'''
UpperCAmelCase = p_stop
UpperCAmelCase = max_length
def __iter__( self : Any ):
'''simple docstring'''
UpperCAmelCase = 0
UpperCAmelCase = False
while not stop and count < self.max_length:
yield count
count += 1
UpperCAmelCase = random.random() < self.p_stop
class _a ( unittest.TestCase ):
def A ( self : Optional[Any] , lowercase : Any , lowercase : Union[str, Any] , lowercase : Optional[int]=False , lowercase : Any=True ):
'''simple docstring'''
UpperCAmelCase = [
BatchSamplerShard(lowercase , 2 , lowercase , split_batches=lowercase , even_batches=lowercase )
for i in range(2 )
]
UpperCAmelCase = [list(lowercase ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(lowercase ) for shard in batch_sampler_shards] , [len(lowercase ) for e in expected] )
self.assertListEqual(lowercase , lowercase )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase , lowercase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
# Check the shards when the dataset is very small.
UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(lowercase , lowercase )
UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [[], []]
self.check_batch_sampler_shards(lowercase , lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
# Check the shards when the dataset is very small.
UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [[], []]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
# Check the shards when the dataset is very small.
UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [[[0, 1]], []]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase )
UpperCAmelCase = [[], []]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
# Check the shards when the dataset is very small.
UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [[[0, 1]], []]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = [[], []]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
UpperCAmelCase = [BatchSamplerShard(lowercase , 2 , lowercase , even_batches=lowercase ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def A ( self : List[str] , lowercase : Tuple , lowercase : Optional[int] , lowercase : int , lowercase : Dict=False , lowercase : str=2 , lowercase : Union[str, Any]=False ):
'''simple docstring'''
random.seed(lowercase )
UpperCAmelCase = list(lowercase )
UpperCAmelCase = [
IterableDatasetShard(
lowercase , batch_size=lowercase , drop_last=lowercase , num_processes=lowercase , process_index=lowercase , split_batches=lowercase , )
for i in range(lowercase )
]
UpperCAmelCase = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(lowercase )
iterable_dataset_lists.append(list(lowercase ) )
UpperCAmelCase = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
UpperCAmelCase = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(lowercase ) , len(lowercase ) )
self.assertTrue(len(lowercase ) % shard_batch_size == 0 )
UpperCAmelCase = []
for idx in range(0 , len(lowercase ) , lowercase ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(lowercase ) < len(lowercase ):
reference += reference
self.assertListEqual(lowercase , reference[: len(lowercase )] )
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = 42
UpperCAmelCase = RandomIterableDataset()
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
# Edge case with a very small dataset
UpperCAmelCase = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowercase )
UpperCAmelCase = SkipBatchSampler(lowercase , 2 )
self.assertListEqual(list(lowercase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = DataLoader(list(range(16 ) ) , batch_size=4 )
UpperCAmelCase = skip_first_batches(lowercase , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(lowercase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(lowercase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def A ( self : int ):
'''simple docstring'''
Accelerator()
UpperCAmelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(lowercase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(lowercase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 34
|
'''simple docstring'''
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def snake_case_ (_a : Tuple ):
return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def snake_case_ ():
UpperCAmelCase = ArgumentParser(
'''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a )
UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(_a )
EnvironmentCommand.register_subcommand(_a )
TestCommand.register_subcommand(_a )
RunBeamCommand.register_subcommand(_a )
DummyDataCommand.register_subcommand(_a )
# Parse args
UpperCAmelCase , UpperCAmelCase = parser.parse_known_args()
if not hasattr(_a , '''func''' ):
parser.print_help()
exit(1 )
UpperCAmelCase = parse_unknown_args(_a )
# Run
UpperCAmelCase = args.func(_a , **_a )
service.run()
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
A =logging.get_logger(__name__)
class _a ( __a ):
def __init__( self : Optional[Any] , *lowercase : Optional[Any] , **lowercase : Optional[int] ):
'''simple docstring'''
warnings.warn(
'''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use LayoutLMv2ImageProcessor instead.''' , lowercase , )
super().__init__(*lowercase , **lowercase )
| 34
|
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
A =[
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
A =logging.getLogger()
def snake_case_ ():
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
UpperCAmelCase = parser.parse_args()
return args.f
def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ):
UpperCAmelCase = os.path.join(_a , F"{split}_results.json" )
if os.path.exists(_a ):
with open(_a , '''r''' ) as f:
return json.load(_a )
raise ValueError(F"can't find {path}" )
A =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( __a ):
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_glue.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_clm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_summarization_flax.main()
UpperCAmelCase = get_results(lowercase , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_ta_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = 7 if get_gpu_count() > 1 else 2
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_ner.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_qa.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 34
| 1
|
'''simple docstring'''
class _a :
def __init__( self : Any ):
'''simple docstring'''
UpperCAmelCase = {} # Mapping from char to TrieNode
UpperCAmelCase = False
def A ( self : int , lowercase : list[str] ):
'''simple docstring'''
for word in words:
self.insert(lowercase )
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
UpperCAmelCase = TrieNode()
UpperCAmelCase = curr.nodes[char]
UpperCAmelCase = True
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
return False
UpperCAmelCase = curr.nodes[char]
return curr.is_leaf
def A ( self : str , lowercase : str ):
'''simple docstring'''
def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool:
if index == len(lowercase ):
# If word does not exist
if not curr.is_leaf:
return False
UpperCAmelCase = False
return len(curr.nodes ) == 0
UpperCAmelCase = word[index]
UpperCAmelCase = curr.nodes.get(lowercase )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
UpperCAmelCase = _delete(lowercase , lowercase , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , lowercase , 0 )
def snake_case_ (_a : TrieNode , _a : str ):
if node.is_leaf:
print(_a , end=''' ''' )
for key, value in node.nodes.items():
print_words(_a , word + key )
def snake_case_ ():
UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split()
UpperCAmelCase = TrieNode()
root.insert_many(_a )
# print_words(root, "")
assert all(root.find(_a ) for word in words )
assert root.find('''banana''' )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
assert root.find('''apple''' )
assert root.find('''all''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def snake_case_ (_a : str , _a : bool ):
print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' )
def snake_case_ ():
assert test_trie()
def snake_case_ ():
print_results('''Testing trie functionality''' , test_trie() )
if __name__ == "__main__":
main()
| 34
|
'''simple docstring'''
class _a :
def __init__( self : Any ):
'''simple docstring'''
UpperCAmelCase = {} # Mapping from char to TrieNode
UpperCAmelCase = False
def A ( self : int , lowercase : list[str] ):
'''simple docstring'''
for word in words:
self.insert(lowercase )
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
UpperCAmelCase = TrieNode()
UpperCAmelCase = curr.nodes[char]
UpperCAmelCase = True
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
return False
UpperCAmelCase = curr.nodes[char]
return curr.is_leaf
def A ( self : str , lowercase : str ):
'''simple docstring'''
def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool:
if index == len(lowercase ):
# If word does not exist
if not curr.is_leaf:
return False
UpperCAmelCase = False
return len(curr.nodes ) == 0
UpperCAmelCase = word[index]
UpperCAmelCase = curr.nodes.get(lowercase )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
UpperCAmelCase = _delete(lowercase , lowercase , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , lowercase , 0 )
def snake_case_ (_a : TrieNode , _a : str ):
if node.is_leaf:
print(_a , end=''' ''' )
for key, value in node.nodes.items():
print_words(_a , word + key )
def snake_case_ ():
UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split()
UpperCAmelCase = TrieNode()
root.insert_many(_a )
# print_words(root, "")
assert all(root.find(_a ) for word in words )
assert root.find('''banana''' )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
assert root.find('''apple''' )
assert root.find('''all''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def snake_case_ (_a : str , _a : bool ):
print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' )
def snake_case_ ():
assert test_trie()
def snake_case_ ():
print_results('''Testing trie functionality''' , test_trie() )
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
def snake_case_ (_a : int , _a : int ):
return 1 if input_a == input_a else 0
def snake_case_ ():
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 34
|
'''simple docstring'''
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json',
'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json',
}
class _a ( __a ):
__a : Union[str, Any] = """encodec"""
def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase = target_bandwidths
UpperCAmelCase = sampling_rate
UpperCAmelCase = audio_channels
UpperCAmelCase = normalize
UpperCAmelCase = chunk_length_s
UpperCAmelCase = overlap
UpperCAmelCase = hidden_size
UpperCAmelCase = num_filters
UpperCAmelCase = num_residual_layers
UpperCAmelCase = upsampling_ratios
UpperCAmelCase = norm_type
UpperCAmelCase = kernel_size
UpperCAmelCase = last_kernel_size
UpperCAmelCase = residual_kernel_size
UpperCAmelCase = dilation_growth_rate
UpperCAmelCase = use_causal_conv
UpperCAmelCase = pad_mode
UpperCAmelCase = compress
UpperCAmelCase = num_lstm_layers
UpperCAmelCase = trim_right_ratio
UpperCAmelCase = codebook_size
UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size
UpperCAmelCase = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" )
super().__init__(**lowercase )
@property
def A ( self : Dict ):
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def A ( self : Union[str, Any] ):
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 34
| 1
|
'''simple docstring'''
def snake_case_ (_a : int ):
UpperCAmelCase = (1 + 2_4 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def snake_case_ (_a : int = 5_0_0_0 ):
UpperCAmelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , _a )]
for i, pentagonal_i in enumerate(_a ):
for j in range(_a , len(_a ) ):
UpperCAmelCase = pentagonal_nums[j]
UpperCAmelCase = pentagonal_i + pentagonal_j
UpperCAmelCase = pentagonal_j - pentagonal_i
if is_pentagonal(_a ) and is_pentagonal(_a ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 34
|
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
A =logging.get_logger(__name__)
class _a ( __a ):
__a : str = ["""pixel_values"""]
def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = resample
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" )
UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase )
return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase )
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" )
return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase )
def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ):
'''simple docstring'''
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ):
'''simple docstring'''
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(lowercase ) for image in images]
if do_resize:
UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images]
if do_center_crop:
UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_normalize:
UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=lowercase , tensor_type=lowercase )
def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ):
'''simple docstring'''
UpperCAmelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase ) != len(lowercase ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowercase ):
UpperCAmelCase = target_sizes.numpy()
UpperCAmelCase = []
for idx in range(len(lowercase ) ):
UpperCAmelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase )
UpperCAmelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase )
else:
UpperCAmelCase = logits.argmax(dim=1 )
UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 34
| 1
|
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def snake_case_ (_a : Union[str, Any] , _a : List[Any]=1_0_0_0 ):
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
UpperCAmelCase = n - 1
UpperCAmelCase = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
UpperCAmelCase = 0
while count < prec:
UpperCAmelCase = random.randint(2 , n - 1 )
UpperCAmelCase = bin_exp_mod(_a , _a , _a )
if b != 1:
UpperCAmelCase = True
for _ in range(_a ):
if b == n - 1:
UpperCAmelCase = False
break
UpperCAmelCase = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
A =abs(int(input('Enter bound : ').strip()))
print('Here\'s the list of primes:')
print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 34
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
A =logging.getLogger(__name__)
def snake_case_ (_a : Dict , _a : Union[str, Any] ):
return (preds == labels).mean()
@dataclass
class _a :
__a : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class _a :
__a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
__a : str = field(metadata={"""help""": """Should contain the data files for the task."""} )
__a : int = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__a : bool = field(
default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def snake_case_ ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , _a )
# Set seed
set_seed(training_args.seed )
try:
UpperCAmelCase = processors[data_args.task_name]()
UpperCAmelCase = processor.get_labels()
UpperCAmelCase = len(_a )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , )
# Get datasets
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_a : EvalPrediction ) -> Dict:
UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_a , p.label_ids )}
# Data collator
UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
UpperCAmelCase = Trainer(
model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase = trainer.evaluate()
UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(_a , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , _a , _a )
writer.write('''%s = %s\n''' % (key, value) )
results.update(_a )
return results
def snake_case_ (_a : Optional[int] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
def snake_case_ (_a : str ):
UpperCAmelCase = DPTConfig()
if "large" in checkpoint_url:
UpperCAmelCase = 1_0_2_4
UpperCAmelCase = 4_0_9_6
UpperCAmelCase = 2_4
UpperCAmelCase = 1_6
UpperCAmelCase = [5, 1_1, 1_7, 2_3]
UpperCAmelCase = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4]
UpperCAmelCase = (1, 3_8_4, 3_8_4)
if "ade" in checkpoint_url:
UpperCAmelCase = True
UpperCAmelCase = 1_5_0
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''ade20k-id2label.json'''
UpperCAmelCase = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type='''dataset''' ) ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
UpperCAmelCase = [1, 1_5_0, 4_8_0, 4_8_0]
return config, expected_shape
def snake_case_ (_a : List[str] ):
UpperCAmelCase = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(_a , _a )
def snake_case_ (_a : Union[str, Any] ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
UpperCAmelCase = name.replace('''patch_embed''' , '''patch_embeddings''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
UpperCAmelCase = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
UpperCAmelCase = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
UpperCAmelCase = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
UpperCAmelCase = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
UpperCAmelCase = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
UpperCAmelCase = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
UpperCAmelCase = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
UpperCAmelCase = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" )
if "out_conv" in name:
UpperCAmelCase = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
UpperCAmelCase = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
UpperCAmelCase = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
UpperCAmelCase = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
UpperCAmelCase = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
UpperCAmelCase = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
UpperCAmelCase = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
UpperCAmelCase = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
UpperCAmelCase = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
UpperCAmelCase = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
return name
def snake_case_ (_a : Optional[int] , _a : Optional[int] ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" )
UpperCAmelCase = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase = in_proj_bias[: config.hidden_size]
UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def snake_case_ ():
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw )
return im
@torch.no_grad()
def snake_case_ (_a : Optional[int] , _a : Dict , _a : List[str] , _a : int ):
UpperCAmelCase , UpperCAmelCase = get_dpt_config(_a )
# load original state_dict from URL
UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(_a )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase = state_dict.pop(_a )
UpperCAmelCase = val
# read in qkv matrices
read_in_q_k_v(_a , _a )
# load HuggingFace model
UpperCAmelCase = DPTForSemanticSegmentation(_a ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_a )
model.load_state_dict(_a )
model.eval()
# Check outputs on an image
UpperCAmelCase = 4_8_0 if '''ade''' in checkpoint_url else 3_8_4
UpperCAmelCase = DPTImageProcessor(size=_a )
UpperCAmelCase = prepare_img()
UpperCAmelCase = image_processor(_a , return_tensors='''pt''' )
# forward pass
UpperCAmelCase = model(**_a ).logits if '''ade''' in checkpoint_url else model(**_a ).predicted_depth
# Assert logits
UpperCAmelCase = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] )
if "ade" in checkpoint_url:
UpperCAmelCase = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] )
assert outputs.shape == torch.Size(_a )
assert (
torch.allclose(outputs[0, 0, :3, :3] , _a , atol=1E-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , _a )
)
Path(_a ).mkdir(exist_ok=_a )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(_a )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(_a )
if push_to_hub:
print('''Pushing model to hub...''' )
model.push_to_hub(
repo_path_or_name=Path(_a , _a ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_a , )
image_processor.push_to_hub(
repo_path_or_name=Path(_a , _a ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_a , )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
A =parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 34
|
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _a ( __a ):
__a : int = ["""image_processor""", """tokenizer"""]
__a : Union[str, Any] = """ChineseCLIPImageProcessor"""
__a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , lowercase , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowercase , lowercase )
UpperCAmelCase = self.image_processor
def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase )
if images is not None:
UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase )
def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase , **lowercase )
def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ):
'''simple docstring'''
return self.tokenizer.decode(*lowercase , **lowercase )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A ( self : List[Any] ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , )
return self.image_processor_class
| 34
| 1
|
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class _a ( __a ):
__a : torch.FloatTensor
class _a ( nn.Module ):
def __init__( self : Dict , lowercase : Union[str, Any]=3 , lowercase : int=3 , lowercase : str=("DownEncoderBlock2D",) , lowercase : Tuple=(64,) , lowercase : Tuple=2 , lowercase : int=32 , lowercase : List[str]="silu" , lowercase : Tuple=True , ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = layers_per_block
UpperCAmelCase = torch.nn.Convad(
lowercase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
UpperCAmelCase = None
UpperCAmelCase = nn.ModuleList([] )
# down
UpperCAmelCase = block_out_channels[0]
for i, down_block_type in enumerate(lowercase ):
UpperCAmelCase = output_channel
UpperCAmelCase = block_out_channels[i]
UpperCAmelCase = i == len(lowercase ) - 1
UpperCAmelCase = get_down_block(
lowercase , num_layers=self.layers_per_block , in_channels=lowercase , out_channels=lowercase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowercase , resnet_groups=lowercase , attention_head_dim=lowercase , temb_channels=lowercase , )
self.down_blocks.append(lowercase )
# mid
UpperCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase , temb_channels=lowercase , )
# out
UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowercase , eps=1E-6 )
UpperCAmelCase = nn.SiLU()
UpperCAmelCase = 2 * out_channels if double_z else out_channels
UpperCAmelCase = nn.Convad(block_out_channels[-1] , lowercase , 3 , padding=1 )
UpperCAmelCase = False
def A ( self : str , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = x
UpperCAmelCase = self.conv_in(lowercase )
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowercase : Any ):
def custom_forward(*lowercase : Dict ):
return module(*lowercase )
return custom_forward
# down
if is_torch_version('''>=''' , '''1.11.0''' ):
for down_block in self.down_blocks:
UpperCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowercase ) , lowercase , use_reentrant=lowercase )
# middle
UpperCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase , use_reentrant=lowercase )
else:
for down_block in self.down_blocks:
UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase ) , lowercase )
# middle
UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowercase )
else:
# down
for down_block in self.down_blocks:
UpperCAmelCase = down_block(lowercase )
# middle
UpperCAmelCase = self.mid_block(lowercase )
# post-process
UpperCAmelCase = self.conv_norm_out(lowercase )
UpperCAmelCase = self.conv_act(lowercase )
UpperCAmelCase = self.conv_out(lowercase )
return sample
class _a ( nn.Module ):
def __init__( self : List[str] , lowercase : Union[str, Any]=3 , lowercase : str=3 , lowercase : Any=("UpDecoderBlock2D",) , lowercase : Optional[Any]=(64,) , lowercase : Any=2 , lowercase : Optional[int]=32 , lowercase : Optional[Any]="silu" , lowercase : int="group" , ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = layers_per_block
UpperCAmelCase = nn.Convad(
lowercase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
UpperCAmelCase = None
UpperCAmelCase = nn.ModuleList([] )
UpperCAmelCase = in_channels if norm_type == '''spatial''' else None
# mid
UpperCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase , temb_channels=lowercase , )
# up
UpperCAmelCase = list(reversed(lowercase ) )
UpperCAmelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(lowercase ):
UpperCAmelCase = output_channel
UpperCAmelCase = reversed_block_out_channels[i]
UpperCAmelCase = i == len(lowercase ) - 1
UpperCAmelCase = get_up_block(
lowercase , num_layers=self.layers_per_block + 1 , in_channels=lowercase , out_channels=lowercase , prev_output_channel=lowercase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowercase , resnet_groups=lowercase , attention_head_dim=lowercase , temb_channels=lowercase , resnet_time_scale_shift=lowercase , )
self.up_blocks.append(lowercase )
UpperCAmelCase = output_channel
# out
if norm_type == "spatial":
UpperCAmelCase = SpatialNorm(block_out_channels[0] , lowercase )
else:
UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowercase , eps=1E-6 )
UpperCAmelCase = nn.SiLU()
UpperCAmelCase = nn.Convad(block_out_channels[0] , lowercase , 3 , padding=1 )
UpperCAmelCase = False
def A ( self : str , lowercase : Optional[Any] , lowercase : List[Any]=None ):
'''simple docstring'''
UpperCAmelCase = z
UpperCAmelCase = self.conv_in(lowercase )
UpperCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowercase : Optional[int] ):
def custom_forward(*lowercase : Optional[int] ):
return module(*lowercase )
return custom_forward
if is_torch_version('''>=''' , '''1.11.0''' ):
# middle
UpperCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase , lowercase , use_reentrant=lowercase )
UpperCAmelCase = sample.to(lowercase )
# up
for up_block in self.up_blocks:
UpperCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowercase ) , lowercase , lowercase , use_reentrant=lowercase )
else:
# middle
UpperCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase , lowercase )
UpperCAmelCase = sample.to(lowercase )
# up
for up_block in self.up_blocks:
UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase ) , lowercase , lowercase )
else:
# middle
UpperCAmelCase = self.mid_block(lowercase , lowercase )
UpperCAmelCase = sample.to(lowercase )
# up
for up_block in self.up_blocks:
UpperCAmelCase = up_block(lowercase , lowercase )
# post-process
if latent_embeds is None:
UpperCAmelCase = self.conv_norm_out(lowercase )
else:
UpperCAmelCase = self.conv_norm_out(lowercase , lowercase )
UpperCAmelCase = self.conv_act(lowercase )
UpperCAmelCase = self.conv_out(lowercase )
return sample
class _a ( nn.Module ):
def __init__( self : Tuple , lowercase : Tuple , lowercase : int , lowercase : List[Any] , lowercase : List[str]=None , lowercase : Union[str, Any]="random" , lowercase : List[Any]=False , lowercase : str=True ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = n_e
UpperCAmelCase = vq_embed_dim
UpperCAmelCase = beta
UpperCAmelCase = legacy
UpperCAmelCase = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
UpperCAmelCase = remap
if self.remap is not None:
self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) )
UpperCAmelCase = self.used.shape[0]
UpperCAmelCase = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
UpperCAmelCase = self.re_embed
UpperCAmelCase = self.re_embed + 1
print(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices." )
else:
UpperCAmelCase = n_e
UpperCAmelCase = sane_index_shape
def A ( self : Tuple , lowercase : Any ):
'''simple docstring'''
UpperCAmelCase = inds.shape
assert len(lowercase ) > 1
UpperCAmelCase = inds.reshape(ishape[0] , -1 )
UpperCAmelCase = self.used.to(lowercase )
UpperCAmelCase = (inds[:, :, None] == used[None, None, ...]).long()
UpperCAmelCase = match.argmax(-1 )
UpperCAmelCase = match.sum(2 ) < 1
if self.unknown_index == "random":
UpperCAmelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
UpperCAmelCase = self.unknown_index
return new.reshape(lowercase )
def A ( self : Union[str, Any] , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = inds.shape
assert len(lowercase ) > 1
UpperCAmelCase = inds.reshape(ishape[0] , -1 )
UpperCAmelCase = self.used.to(lowercase )
if self.re_embed > self.used.shape[0]: # extra token
UpperCAmelCase = 0 # simply set to zero
UpperCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowercase )
return back.reshape(lowercase )
def A ( self : Tuple , lowercase : Any ):
'''simple docstring'''
UpperCAmelCase = z.permute(0 , 2 , 3 , 1 ).contiguous()
UpperCAmelCase = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
UpperCAmelCase = torch.argmin(torch.cdist(lowercase , self.embedding.weight ) , dim=1 )
UpperCAmelCase = self.embedding(lowercase ).view(z.shape )
UpperCAmelCase = None
UpperCAmelCase = None
# compute loss for embedding
if not self.legacy:
UpperCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
UpperCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
UpperCAmelCase = z + (z_q - z).detach()
# reshape back to match original input shape
UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
UpperCAmelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
UpperCAmelCase = self.remap_to_used(lowercase )
UpperCAmelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
UpperCAmelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def A ( self : int , lowercase : str , lowercase : List[Any] ):
'''simple docstring'''
if self.remap is not None:
UpperCAmelCase = indices.reshape(shape[0] , -1 ) # add batch axis
UpperCAmelCase = self.unmap_to_all(lowercase )
UpperCAmelCase = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
UpperCAmelCase = self.embedding(lowercase )
if shape is not None:
UpperCAmelCase = z_q.view(lowercase )
# reshape back to match original input shape
UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class _a ( __a ):
def __init__( self : List[Any] , lowercase : Dict , lowercase : List[Any]=False ):
'''simple docstring'''
UpperCAmelCase = parameters
UpperCAmelCase , UpperCAmelCase = torch.chunk(lowercase , 2 , dim=1 )
UpperCAmelCase = torch.clamp(self.logvar , -30.0 , 20.0 )
UpperCAmelCase = deterministic
UpperCAmelCase = torch.exp(0.5 * self.logvar )
UpperCAmelCase = torch.exp(self.logvar )
if self.deterministic:
UpperCAmelCase = UpperCAmelCase = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def A ( self : List[Any] , lowercase : Optional[torch.Generator] = None ):
'''simple docstring'''
UpperCAmelCase = randn_tensor(
self.mean.shape , generator=lowercase , device=self.parameters.device , dtype=self.parameters.dtype )
UpperCAmelCase = self.mean + self.std * sample
return x
def A ( self : Optional[int] , lowercase : Dict=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def A ( self : List[str] , lowercase : List[Any] , lowercase : List[str]=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
UpperCAmelCase = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
return self.mean
| 34
|
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
A =logging.get_logger(__name__)
A ={
'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json',
# See all Marian models at https://huggingface.co/models?filter=marian
}
class _a ( __a ):
__a : List[Any] = """marian"""
__a : Union[str, Any] = ["""past_key_values"""]
__a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase = vocab_size
UpperCAmelCase = decoder_vocab_size or vocab_size
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = d_model
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , )
class _a ( __a ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def A ( self : int ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowercase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase , UpperCAmelCase = self.num_layers
for i in range(lowercase ):
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def A ( self : Any ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = super().outputs
else:
UpperCAmelCase = super(lowercase , self ).outputs
if self.use_past:
UpperCAmelCase , UpperCAmelCase = self.num_layers
for i in range(lowercase ):
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
# Generate decoder inputs
UpperCAmelCase = seq_length if not self.use_past else 1
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
UpperCAmelCase = dict(**lowercase , **lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape
UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1]
UpperCAmelCase , UpperCAmelCase = self.num_attention_heads
UpperCAmelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase = decoder_seq_length + 3
UpperCAmelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
UpperCAmelCase = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 )
UpperCAmelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
UpperCAmelCase , UpperCAmelCase = self.num_layers
UpperCAmelCase = min(lowercase , lowercase )
UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers
UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(lowercase ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
) )
# TODO: test this.
UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(lowercase , lowercase ):
common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) )
return common_inputs
def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase = seqlen + 2
UpperCAmelCase , UpperCAmelCase = self.num_layers
UpperCAmelCase , UpperCAmelCase = self.num_attention_heads
UpperCAmelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase = common_inputs['''attention_mask'''].dtype
UpperCAmelCase = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 )
UpperCAmelCase = [
(torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase )
]
return common_inputs
def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase )
UpperCAmelCase = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase )
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) )
return common_inputs
def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
else:
UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
return common_inputs
def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase )
else:
UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_(
lowercase , lowercase , lowercase , lowercase )
@property
def A ( self : Any ):
'''simple docstring'''
return 1E-4
| 34
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A ={
'configuration_time_series_transformer': [
'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TimeSeriesTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TimeSeriesTransformerForPrediction',
'TimeSeriesTransformerModel',
'TimeSeriesTransformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 34
|
'''simple docstring'''
import os
def snake_case_ ():
UpperCAmelCase = os.path.join(os.path.dirname(_a ) , '''num.txt''' )
with open(_a ) as file_hand:
return str(sum(int(_a ) for line in file_hand ) )[:1_0]
if __name__ == "__main__":
print(solution())
| 34
| 1
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
A =None
A =logging.get_logger(__name__)
A ='▁'
A ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
A ={
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'},
'tokenizer_file': {
'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json'
},
}
A ={
'google/pegasus-xsum': 5_12,
}
class _a ( __a ):
__a : Optional[Any] = VOCAB_FILES_NAMES
__a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Union[str, Any] = PegasusTokenizer
__a : List[str] = ["""input_ids""", """attention_mask"""]
def __init__( self : List[Any] , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : str="<pad>" , lowercase : Union[str, Any]="</s>" , lowercase : List[Any]="<unk>" , lowercase : Tuple="<mask_2>" , lowercase : Any="<mask_1>" , lowercase : List[Any]=None , lowercase : Any=103 , **lowercase : Dict , ):
'''simple docstring'''
UpperCAmelCase = offset
if additional_special_tokens is not None:
if not isinstance(lowercase , lowercase ):
raise TypeError(
f"additional_special_tokens should be of type {type(lowercase )}, but is"
f" {type(lowercase )}" )
UpperCAmelCase = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"<unk_{i}>" for i in range(len(lowercase ) , self.offset - 1 )
]
if len(set(lowercase ) ) != len(lowercase ):
raise ValueError(
'''Please make sure that the provided additional_special_tokens do not contain an incorrectly'''
f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." )
UpperCAmelCase = additional_special_tokens_extended
else:
UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )]
super().__init__(
lowercase , tokenizer_file=lowercase , pad_token=lowercase , eos_token=lowercase , unk_token=lowercase , mask_token=lowercase , mask_token_sent=lowercase , offset=lowercase , additional_special_tokens=lowercase , **lowercase , )
UpperCAmelCase = vocab_file
UpperCAmelCase = False if not self.vocab_file else True
def A ( self : List[Any] , lowercase : Tuple ):
'''simple docstring'''
UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
'''There should be 3 special tokens: mask_token, pad_token, and eos_token +'''
f" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" )
return [1 if x in all_special_ids else 0 for x in seq]
def A ( self : List[Any] , lowercase : List , lowercase : Optional[List] = None , lowercase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return self._special_token_mask(lowercase )
elif token_ids_a is None:
return self._special_token_mask(lowercase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def A ( self : List[str] , lowercase : Union[str, Any] , lowercase : List[Any]=None ):
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def A ( self : Optional[int] , lowercase : str , lowercase : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(lowercase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase = os.path.join(
lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ):
copyfile(self.vocab_file , lowercase )
return (out_vocab_file,)
| 34
|
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
A =logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
A ={
'base': AutoModel,
'sequence-classification': AutoModelForSequenceClassification,
'question-answering': AutoModelForQuestionAnswering,
'pretraining': AutoModelForPreTraining,
'token-classification': AutoModelForTokenClassification,
'language-modeling': AutoModelWithLMHead,
'summarization': AutoModelForSeqaSeqLM,
'translation': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
A ={
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
A =sorted(arg_to_scheduler.keys())
A ='{' + ', '.join(arg_to_scheduler_choices) + '}'
class _a ( pl.LightningModule ):
def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ):
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowercase )
UpperCAmelCase = 0
UpperCAmelCase = Path(self.hparams.output_dir )
UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
UpperCAmelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , )
else:
UpperCAmelCase = config
UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , lowercase , lowercase ):
assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute"
setattr(self.config , lowercase , getattr(self.hparams , lowercase ) )
if tokenizer is None:
UpperCAmelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , )
else:
UpperCAmelCase = tokenizer
UpperCAmelCase = MODEL_MODES[mode]
if model is None:
UpperCAmelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , )
else:
UpperCAmelCase = model
def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase )
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler]
UpperCAmelCase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.model
UpperCAmelCase = ['''bias''', '''LayerNorm.weight''']
UpperCAmelCase = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
UpperCAmelCase = Adafactor(
lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase )
else:
UpperCAmelCase = AdamW(
lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
UpperCAmelCase = optimizer
UpperCAmelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def A ( self : List[Any] , lowercase : int , lowercase : List[str] ):
'''simple docstring'''
return self.validation_step(lowercase , lowercase )
def A ( self : List[Any] , lowercase : Tuple ):
'''simple docstring'''
return self.validation_end(lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def A ( self : List[str] , lowercase : Any ):
'''simple docstring'''
if stage == "test":
UpperCAmelCase = len(self.test_dataloader().dataset )
else:
UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase )
UpperCAmelCase = len(self.train_dataloader().dataset )
def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ):
'''simple docstring'''
raise NotImplementedError('''You must implement this for your task''' )
def A ( self : Union[str, Any] ):
'''simple docstring'''
return self.train_loader
def A ( self : Optional[Any] ):
'''simple docstring'''
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase )
def A ( self : Any , lowercase : Union[str, Any] ):
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def A ( self : List[str] , lowercase : Dict[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' )
UpperCAmelCase = self.step_count
self.model.save_pretrained(lowercase )
self.tokenizer.save_pretrained(lowercase )
@staticmethod
def A ( lowercase : Optional[int] , lowercase : List[str] ):
'''simple docstring'''
parser.add_argument(
'''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase )
parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase )
parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class _a ( pl.Callback ):
def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ):
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _a ( pl.Callback ):
def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ):
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowercase )
class _a ( pl.Callback ):
def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler''']
UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowercase )
def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info('''***** Validation results *****''' )
UpperCAmelCase = trainer.callback_metrics
# Log results
for key in sorted(lowercase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info('''***** Test results *****''' )
UpperCAmelCase = trainer.callback_metrics
# Log and save results to file
UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(lowercase , '''w''' ) as writer:
for key in sorted(lowercase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
def snake_case_ (_a : int , _a : Optional[Any] ):
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=_a , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ):
pl.seed_everything(args.seed )
# init model
UpperCAmelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_a )
# add custom checkpoints
if checkpoint_callback is None:
UpperCAmelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_a )
if logging_callback is None:
UpperCAmelCase = LoggingCallback()
UpperCAmelCase = {}
if args.fpaa:
UpperCAmelCase = 1_6
if args.gpus > 1:
UpperCAmelCase = '''auto'''
UpperCAmelCase = '''ddp'''
UpperCAmelCase = args.accumulate_grad_batches
UpperCAmelCase = None
UpperCAmelCase = '''auto'''
UpperCAmelCase = pl.Trainer.from_argparse_args(
_a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , )
if args.do_train:
trainer.fit(_a )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 34
| 1
|
'''simple docstring'''
def snake_case_ (_a : Tuple ):
UpperCAmelCase = [0] * len(_a )
UpperCAmelCase = []
UpperCAmelCase = [1] * len(_a )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_a ) ):
if indegree[i] == 0:
queue.append(_a )
while queue:
UpperCAmelCase = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
UpperCAmelCase = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(_a )
print(max(_a ) )
# Adjacency list of Graph
A ={0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 34
|
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ):
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
UpperCAmelCase = cst_fwd.get(_a , np.inf )
UpperCAmelCase = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
UpperCAmelCase = new_cost_f
UpperCAmelCase = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ):
UpperCAmelCase = -1
UpperCAmelCase = set()
UpperCAmelCase = set()
UpperCAmelCase = {source: 0}
UpperCAmelCase = {destination: 0}
UpperCAmelCase = {source: None}
UpperCAmelCase = {destination: None}
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
UpperCAmelCase , UpperCAmelCase = queue_forward.get()
visited_forward.add(_a )
UpperCAmelCase , UpperCAmelCase = queue_backward.get()
visited_backward.add(_a )
UpperCAmelCase = pass_and_relaxation(
_a , _a , _a , _a , _a , _a , _a , _a , _a , )
UpperCAmelCase = pass_and_relaxation(
_a , _a , _a , _a , _a , _a , _a , _a , _a , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
UpperCAmelCase = shortest_distance
return shortest_path_distance
A ={
'B': [['C', 1]],
'C': [['D', 1]],
'D': [['F', 1]],
'E': [['B', 1], ['G', 2]],
'F': [],
'G': [['F', 1]],
}
A ={
'B': [['E', 1]],
'C': [['B', 1]],
'D': [['C', 1]],
'F': [['D', 1], ['G', 1]],
'E': [[None, np.inf]],
'G': [['E', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
| 1
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json',
'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class _a ( __a ):
__a : List[str] = """mobilenet_v1"""
def __init__( self : str , lowercase : Dict=3 , lowercase : str=224 , lowercase : Tuple=1.0 , lowercase : Optional[int]=8 , lowercase : Optional[int]="relu6" , lowercase : Any=True , lowercase : Union[str, Any]=0.999 , lowercase : int=0.02 , lowercase : Optional[int]=0.001 , **lowercase : int , ):
'''simple docstring'''
super().__init__(**lowercase )
if depth_multiplier <= 0:
raise ValueError('''depth_multiplier must be greater than zero.''' )
UpperCAmelCase = num_channels
UpperCAmelCase = image_size
UpperCAmelCase = depth_multiplier
UpperCAmelCase = min_depth
UpperCAmelCase = hidden_act
UpperCAmelCase = tf_padding
UpperCAmelCase = classifier_dropout_prob
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
class _a ( __a ):
__a : Tuple = version.parse("""1.11""" )
@property
def A ( self : List[str] ):
'''simple docstring'''
return OrderedDict([('''pixel_values''', {0: '''batch'''})] )
@property
def A ( self : List[str] ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([('''logits''', {0: '''batch'''})] )
else:
return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] )
@property
def A ( self : Union[str, Any] ):
'''simple docstring'''
return 1E-4
| 34
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
def snake_case_ (_a : List[str] ):
UpperCAmelCase = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
UpperCAmelCase = 1_2_8
elif "12-12" in model_name:
UpperCAmelCase = 1_2
UpperCAmelCase = 1_2
elif "14-14" in model_name:
UpperCAmelCase = 1_4
UpperCAmelCase = 1_4
elif "16-16" in model_name:
UpperCAmelCase = 1_6
UpperCAmelCase = 1_6
else:
raise ValueError('''Model not supported''' )
UpperCAmelCase = '''huggingface/label-files'''
if "speech-commands" in model_name:
UpperCAmelCase = 3_5
UpperCAmelCase = '''speech-commands-v2-id2label.json'''
else:
UpperCAmelCase = 5_2_7
UpperCAmelCase = '''audioset-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ (_a : Tuple ):
if "module.v" in name:
UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "dist_token" in name:
UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
# transformer blocks
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' )
# classifier head
if "module.mlp_head.0" in name:
UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' )
if "module.mlp_head.1" in name:
UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' )
return name
def snake_case_ (_a : Dict , _a : List[Any] ):
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(_a )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[3] )
UpperCAmelCase = config.hidden_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[dim : dim * 2, :]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def snake_case_ (_a : Tuple ):
UpperCAmelCase = [
'''module.v.head.weight''',
'''module.v.head.bias''',
'''module.v.head_dist.weight''',
'''module.v.head_dist.bias''',
]
for k in ignore_keys:
state_dict.pop(_a , _a )
@torch.no_grad()
def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ):
UpperCAmelCase = get_audio_spectrogram_transformer_config(_a )
UpperCAmelCase = {
'''ast-finetuned-audioset-10-10-0.4593''': (
'''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.450''': (
'''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448''': (
'''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448-v2''': (
'''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'''
),
'''ast-finetuned-audioset-12-12-0.447''': (
'''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'''
),
'''ast-finetuned-audioset-14-14-0.443''': (
'''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'''
),
'''ast-finetuned-audioset-16-16-0.442''': (
'''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'''
),
'''ast-finetuned-speech-commands-v2''': (
'''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'''
),
}
# load original state_dict
UpperCAmelCase = model_name_to_url[model_name]
UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' )
# remove some keys
remove_keys(_a )
# rename some keys
UpperCAmelCase = convert_state_dict(_a , _a )
# load 🤗 model
UpperCAmelCase = ASTForAudioClassification(_a )
model.eval()
model.load_state_dict(_a )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978
UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526
UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8
UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a )
if "speech-commands" in model_name:
UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' )
UpperCAmelCase = dataset[0]['''audio''']['''array''']
else:
UpperCAmelCase = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , )
UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a )
UpperCAmelCase = waveform.squeeze().numpy()
UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' )
# forward pass
UpperCAmelCase = model(**_a )
UpperCAmelCase = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError('''Unknown model name''' )
if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ):
raise ValueError('''Logits don\'t match''' )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(_a ).mkdir(exist_ok=_a )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_a )
print(F"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(_a )
if push_to_hub:
print('''Pushing model and feature extractor to the hub...''' )
model.push_to_hub(F"MIT/{model_name}" )
feature_extractor.push_to_hub(F"MIT/{model_name}" )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
A =parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 34
| 1
|
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
A =logging.get_logger(__name__)
A =TypeVar('DatasetType', Dataset, IterableDataset)
def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ):
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('''Unable to interleave an empty list of datasets.''' )
for i, dataset in enumerate(_a ):
if not isinstance(_a , (Dataset, IterableDataset) ):
if isinstance(_a , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'''is an empty dataset dictionary.''' )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(_a )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." )
if i == 0:
UpperCAmelCase , UpperCAmelCase = (
(Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset)
)
elif not isinstance(_a , _a ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
_a , _a , _a , info=_a , split=_a , stopping_strategy=_a )
else:
return _interleave_iterable_datasets(
_a , _a , _a , info=_a , split=_a , stopping_strategy=_a )
def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ):
if not dsets:
raise ValueError('''Unable to concatenate an empty list of datasets.''' )
for i, dataset in enumerate(_a ):
if not isinstance(_a , (Dataset, IterableDataset) ):
if isinstance(_a , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'''is an empty dataset dictionary.''' )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(_a )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." )
if i == 0:
UpperCAmelCase , UpperCAmelCase = (
(Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset)
)
elif not isinstance(_a , _a ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a )
else:
return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
| 34
|
'''simple docstring'''
from __future__ import annotations
def snake_case_ (_a : Dict , _a : str , _a : Optional[Any] , _a : List[str] ): # noqa: E741
while r - l > 1:
UpperCAmelCase = (l + r) // 2
if v[m] >= key:
UpperCAmelCase = m
else:
UpperCAmelCase = m # noqa: E741
return r
def snake_case_ (_a : list[int] ):
if len(_a ) == 0:
return 0
UpperCAmelCase = [0] * len(_a )
UpperCAmelCase = 1
UpperCAmelCase = v[0]
for i in range(1 , len(_a ) ):
if v[i] < tail[0]:
UpperCAmelCase = v[i]
elif v[i] > tail[length - 1]:
UpperCAmelCase = v[i]
length += 1
else:
UpperCAmelCase = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
| 1
|
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class _a ( __a ):
def __init__( self : List[str] , lowercase : Optional[Any] , lowercase : int=13 , lowercase : Dict=7 , lowercase : Any=True , lowercase : int=True , lowercase : Optional[int]=False , lowercase : List[str]=True , lowercase : str=99 , lowercase : int=32 , lowercase : Tuple=5 , lowercase : List[str]=4 , lowercase : Optional[Any]=37 , lowercase : Optional[int]="gelu" , lowercase : Optional[int]=0.1 , lowercase : str=0.1 , lowercase : Union[str, Any]=512 , lowercase : List[str]=16 , lowercase : Optional[Any]=2 , lowercase : str=0.02 , lowercase : str=3 , lowercase : List[Any]=4 , lowercase : Union[str, Any]=None , ):
'''simple docstring'''
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = scope
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : List[str] ):
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def A ( self : Union[str, Any] , lowercase : int , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Any , lowercase : Any , lowercase : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = DistilBertModel(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , lowercase )
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : int ):
'''simple docstring'''
UpperCAmelCase = DistilBertForMaskedLM(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self : Tuple , lowercase : int , lowercase : Tuple , lowercase : Optional[Any] , lowercase : str , lowercase : List[Any] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = DistilBertForQuestionAnswering(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(
lowercase , attention_mask=lowercase , start_positions=lowercase , end_positions=lowercase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self : Tuple , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : int ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = DistilBertForSequenceClassification(lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : List[str] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Any , lowercase : str , lowercase : Optional[Any] , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = DistilBertForTokenClassification(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self : Any , lowercase : Tuple , lowercase : List[str] , lowercase : Dict , lowercase : Union[str, Any] , lowercase : Any , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self.num_choices
UpperCAmelCase = DistilBertForMultipleChoice(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = model(
lowercase , attention_mask=lowercase , labels=lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.prepare_config_and_inputs()
((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = config_and_inputs
UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _a ( __a , __a , unittest.TestCase ):
__a : int = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
__a : Any = (
{
"""feature-extraction""": DistilBertModel,
"""fill-mask""": DistilBertForMaskedLM,
"""question-answering""": DistilBertForQuestionAnswering,
"""text-classification""": DistilBertForSequenceClassification,
"""token-classification""": DistilBertForTokenClassification,
"""zero-shot""": DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = True
__a : Optional[int] = True
__a : Optional[Any] = True
__a : Union[str, Any] = True
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = DistilBertModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowercase , dim=37 )
def A ( self : Optional[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase )
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase )
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase )
@slow
def A ( self : Tuple ):
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = DistilBertModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
@slow
@require_torch_gpu
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
UpperCAmelCase = True
UpperCAmelCase = model_class(config=lowercase )
UpperCAmelCase = self._prepare_for_class(lowercase , lowercase )
UpperCAmelCase = torch.jit.trace(
lowercase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowercase , os.path.join(lowercase , '''traced_model.pt''' ) )
UpperCAmelCase = torch.jit.load(os.path.join(lowercase , '''traced_model.pt''' ) , map_location=lowercase )
loaded(inputs_dict['''input_ids'''].to(lowercase ) , inputs_dict['''attention_mask'''].to(lowercase ) )
@require_torch
class _a ( unittest.TestCase ):
@slow
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' )
UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCAmelCase = model(lowercase , attention_mask=lowercase )[0]
UpperCAmelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , lowercase )
UpperCAmelCase = torch.tensor(
[[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
| 34
|
'''simple docstring'''
def snake_case_ (_a : str , _a : str ):
UpperCAmelCase = len(_a ) + 1
UpperCAmelCase = len(_a ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
UpperCAmelCase = [[0 for i in range(_a )] for j in range(_a )]
# since string of zero length match pattern of zero length
UpperCAmelCase = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _a ):
UpperCAmelCase = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _a ):
UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _a ):
for j in range(1 , _a ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
UpperCAmelCase = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
UpperCAmelCase = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
UpperCAmelCase = dp[i - 1][j]
else:
UpperCAmelCase = 0
else:
UpperCAmelCase = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
A ='aab'
A ='c*a*b'
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(f"""{input_string} matches the given pattern {pattern}""")
else:
print(f"""{input_string} does not match with the given pattern {pattern}""")
| 34
| 1
|
'''simple docstring'''
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class _a ( __a ):
__a : str = ["""vqvae"""]
def __init__( self : str , lowercase : AutoencoderKL , lowercase : UNetaDConditionModel , lowercase : Mel , lowercase : Union[DDIMScheduler, DDPMScheduler] , ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
return 50 if isinstance(self.scheduler , lowercase ) else 1_000
@torch.no_grad()
def __call__( self : Optional[Any] , lowercase : int = 1 , lowercase : str = None , lowercase : np.ndarray = None , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = None , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : float = 0 , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : torch.Tensor = None , lowercase : torch.Tensor = None , lowercase : Tuple=True , ):
'''simple docstring'''
UpperCAmelCase = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowercase )
UpperCAmelCase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
UpperCAmelCase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowercase , device=self.device , )
UpperCAmelCase = noise
UpperCAmelCase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowercase , lowercase )
UpperCAmelCase = self.mel.audio_slice_to_image(lowercase )
UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape(
(input_image.height, input_image.width) )
UpperCAmelCase = (input_image / 255) * 2 - 1
UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample(
generator=lowercase )[0]
UpperCAmelCase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] )
UpperCAmelCase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
UpperCAmelCase = int(mask_start_secs * pixels_per_second )
UpperCAmelCase = int(mask_end_secs * pixels_per_second )
UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowercase ):
UpperCAmelCase = self.unet(lowercase , lowercase , lowercase )['''sample''']
else:
UpperCAmelCase = self.unet(lowercase , lowercase )['''sample''']
if isinstance(self.scheduler , lowercase ):
UpperCAmelCase = self.scheduler.step(
model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )['''prev_sample''']
else:
UpperCAmelCase = self.scheduler.step(
model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )['''prev_sample''']
if mask is not None:
if mask_start > 0:
UpperCAmelCase = mask[:, step, :, :mask_start]
if mask_end > 0:
UpperCAmelCase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images
UpperCAmelCase = self.vqvae.decode(lowercase )['''sample''']
UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
UpperCAmelCase = (images * 255).round().astype('''uint8''' )
UpperCAmelCase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) )
UpperCAmelCase = [self.mel.image_to_audio(lowercase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) )
@torch.no_grad()
def A ( self : Dict , lowercase : List[Image.Image] , lowercase : int = 50 ):
'''simple docstring'''
assert isinstance(self.scheduler , lowercase )
self.scheduler.set_timesteps(lowercase )
UpperCAmelCase = np.array(
[np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] )
UpperCAmelCase = (sample / 255) * 2 - 1
UpperCAmelCase = torch.Tensor(lowercase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
UpperCAmelCase = self.scheduler.alphas_cumprod[t]
UpperCAmelCase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
UpperCAmelCase = 1 - alpha_prod_t
UpperCAmelCase = self.unet(lowercase , lowercase )['''sample''']
UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def A ( lowercase : torch.Tensor , lowercase : torch.Tensor , lowercase : float ):
'''simple docstring'''
UpperCAmelCase = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) )
return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
| 34
|
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
A ='pt'
elif is_tf_available():
A ='tf'
else:
A ='jax'
class _a ( __a , unittest.TestCase ):
__a : Optional[Any] = PerceiverTokenizer
__a : str = False
def A ( self : Union[str, Any] ):
'''simple docstring'''
super().setUp()
UpperCAmelCase = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def A ( self : Optional[int] ):
'''simple docstring'''
return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' )
def A ( self : Union[str, Any] , **lowercase : int ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase )
def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ):
'''simple docstring'''
UpperCAmelCase = []
for i in range(len(lowercase ) ):
try:
UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) )
UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) )
if max_length is not None and len(lowercase ) > max_length:
UpperCAmelCase = toks[:max_length]
if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0:
while len(lowercase ) < min_length:
UpperCAmelCase = toks + toks
# toks_str = [t[1] for t in toks]
UpperCAmelCase = [t[0] for t in toks]
# Ensure consistency
UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase )
if " " not in output_txt and len(lowercase ) > 1:
UpperCAmelCase = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase )
)
if with_prefix_space:
UpperCAmelCase = ''' ''' + output_txt
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
return output_txt, output_ids
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = '''Unicode €.'''
UpperCAmelCase = tokenizer(lowercase )
UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['''input_ids'''] , lowercase )
# decoding
UpperCAmelCase = tokenizer.decode(lowercase )
self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' )
UpperCAmelCase = tokenizer('''e è é ê ë''' )
UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['''input_ids'''] , lowercase )
# decoding
UpperCAmelCase = tokenizer.decode(lowercase )
self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
# fmt: off
UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase )
self.assertIsInstance(lowercase , lowercase )
if FRAMEWORK != "jax":
UpperCAmelCase = list(batch.input_ids.numpy()[0] )
else:
UpperCAmelCase = list(batch.input_ids.tolist()[0] )
self.assertListEqual(lowercase , lowercase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('''input_ids''' , lowercase )
self.assertIn('''attention_mask''' , lowercase )
self.assertNotIn('''decoder_input_ids''' , lowercase )
self.assertNotIn('''decoder_attention_mask''' , lowercase )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = [
'''Summary of the text.''',
'''Another summary.''',
]
UpperCAmelCase = tokenizer(
text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase )
UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
shutil.rmtree(lowercase )
UpperCAmelCase = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
tokenizer.add_tokens(['''bim''', '''bambam'''] )
UpperCAmelCase = tokenizer.additional_special_tokens
additional_special_tokens.append('''new_additional_special_token''' )
tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} )
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase )
UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(lowercase )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(lowercase )
with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file:
UpperCAmelCase = json.load(lowercase )
with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file:
UpperCAmelCase = json.load(lowercase )
UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )]
UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(lowercase , lowercase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase = tokenizer_class.from_pretrained(
lowercase , )
self.assertIn(
'''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )]
UpperCAmelCase = tokenizer_class.from_pretrained(
lowercase , additional_special_tokens=lowercase , )
self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens )
self.assertEqual(
['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , '''�''' )
def A ( self : Union[str, Any] ):
'''simple docstring'''
pass
def A ( self : Any ):
'''simple docstring'''
pass
def A ( self : Dict ):
'''simple docstring'''
pass
def A ( self : str ):
'''simple docstring'''
pass
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]''']
UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase )
self.assertIsInstance(lowercase , lowercase )
| 34
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
A ={'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =['PLBartTokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A =[
'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST',
'PLBartForCausalLM',
'PLBartForConditionalGeneration',
'PLBartForSequenceClassification',
'PLBartModel',
'PLBartPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
A =_LazyModule(__name__, globals()['__file__'], _import_structure)
| 34
|
'''simple docstring'''
import os
from distutils.util import strtobool
def snake_case_ (_a : Union[str, Any] , _a : List[Any] ):
for e in env_keys:
UpperCAmelCase = int(os.environ.get(_a , -1 ) )
if val >= 0:
return val
return default
def snake_case_ (_a : Dict , _a : Any=False ):
UpperCAmelCase = os.environ.get(_a , str(_a ) )
return strtobool(_a ) == 1 # As its name indicates `strtobool` actually returns an int...
def snake_case_ (_a : str , _a : Optional[Any]="no" ):
UpperCAmelCase = os.environ.get(_a , str(_a ) )
return value
| 34
| 1
|
'''simple docstring'''
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
A =logging.getLogger()
def snake_case_ ():
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
UpperCAmelCase = parser.parse_args()
return args.f
class _a ( __a ):
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(lowercase )
def A ( self : Dict , lowercase : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , '''run_glue_deebert.py''' )
with patch.object(lowercase , '''argv''' , lowercase ):
UpperCAmelCase = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowercase , 0.666 )
@slow
@require_torch_non_multi_gpu
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = '''
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
'''.split()
self.run_and_check(lowercase )
UpperCAmelCase = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(lowercase )
UpperCAmelCase = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(lowercase )
| 34
|
'''simple docstring'''
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
A =logging.getLogger(__name__)
A ='Hello world! cécé herlolip'
A =namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def snake_case_ (_a : List[Any] , _a : Any ):
UpperCAmelCase = BertAbsConfig(
temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , )
UpperCAmelCase = torch.load(_a , lambda _a , _a : storage )
UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a )
original.eval()
UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('''convert the model''' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('''Make sure that the models\' outputs are identical''' )
UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
# prepare the model inputs
UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
UpperCAmelCase = encoder_input_ids
UpperCAmelCase = decoder_input_ids
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0]
UpperCAmelCase = original.generator(_a )
UpperCAmelCase = new_model(
_a , _a , _a , _a , _a )[0]
UpperCAmelCase = new_model.generator(_a )
UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 )
if are_identical:
logging.info('''all weights are equal up to 1e-3''' )
else:
raise ValueError('''the weights are different. The new model is likely different from the original one.''' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('''saving the model\'s state dictionary''' )
torch.save(
new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' )
if __name__ == "__main__":
A =argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
A =parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 34
| 1
|
'''simple docstring'''
# HF Trainer benchmarking tool
#
# This tool can be used to run and compare multiple dimensions of the HF Trainers args.
#
# It then prints a report once in github format with all the information that needs to be shared
# with others and second time in a console-friendly format, so it's easier to use for tuning things up.
#
# The main idea is:
#
# ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \
# --target-metric-key train_samples_per_second
#
# The variations can be any command line argument that you want to compare and not just dtype as in
# the example.
#
# --variations allows you to compare variations in multiple dimensions.
#
# as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6
# times adding one of:
#
# 1. --tf32 0 --fp16 0
# 2. --tf32 0 --fp16 1
# 3. --tf32 0 --bf16 1
# 4. --tf32 1 --fp16 0
# 5. --tf32 1 --fp16 1
# 6. --tf32 1 --bf16 1
#
# and print the results. This is just a cartesian product - and more than 2 dimensions can be used.
#
# If you want to rely on defaults, this:
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1'
# is identical to this:
# --variations '--tf32 0|--tf32 1' '|--fp16|--bf16'
#
# the leading empty variation in the 2nd dimension is a valid variation.
#
# So here we get the following 6 variations:
#
# 1. --tf32 0
# 2. --tf32 0 --fp16
# 3. --tf32 0 --bf16
# 4. --tf32 1
# 5. --tf32 1 --fp16
# 6. --tf32 1 --bf16
#
# In this particular case we don't know what the default tf32 setting is as it's normally
# pytorch-version dependent). That's why it's best to do an explicit setting of each variation:
# `--tf32 0|--tf32 1`
#
# Here is a full example of a train:
#
# CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \
# --base-cmd \
# ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \
# --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \
# --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \
# --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \
# --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \
# --source_prefix "translate English to Romanian: " --warmup_steps 50 \
# --max_train_samples 20000 --dataloader_num_workers 2 ' \
# --target-metric-key train_samples_per_second --repeat-times 1 --variations \
# '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \
# --repeat-times 1 --base-variation '--tf32 0'
#
# and here is a possible output:
#
#
# | Variation | Train | Diff | Train |
# | | samples | % | loss |
# | | per | | |
# | | second | | |
# |:----------------|----------:|-------:|--------:|
# | --tf32 0 | 285.11 | 0 | 2.51 |
# | --tf32 1 | 342.09 | 20 | 2.51 |
# | --fp16 --tf32 0 | 423.49 | 49 | 2.51 |
# | --fp16 --tf32 1 | 423.13 | 48 | 2.51 |
# | --bf16 --tf32 0 | 416.80 | 46 | 2.52 |
# | --bf16 --tf32 1 | 415.87 | 46 | 2.52 |
#
#
# So you can quickly compare the different outcomes.
#
# Typically running each experiment once is enough, but if the environment is unstable you can
# re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results.
#
# By default it'll use the lowest result as the base line to use as 100% and then compare the rest to
# it as can be seen from the table above, but you can also specify which combination is the one to use as
# the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0'
#
# --target-metric-key is there to tell the program which metrics to compare - the different metric keys are
# inside output_dir/all_results.json. e.g., to measure eval performance instead of train use:
# --target-metric-key eval_samples_per_second
# but of course you will need to adjust the --base-cmd value in the example to perform evaluation as
# well (as currently it doesn't)
#
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
A =float('nan')
class _a :
def __init__( self : List[str] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = sys.stdout
UpperCAmelCase = open(lowercase , '''a''' )
def __getattr__( self : List[str] , lowercase : Union[str, Any] ):
'''simple docstring'''
return getattr(self.stdout , lowercase )
def A ( self : str , lowercase : str ):
'''simple docstring'''
self.stdout.write(lowercase )
# strip tqdm codes
self.file.write(re.sub(R'''^.*\r''' , '''''' , lowercase , 0 , re.M ) )
def snake_case_ (_a : Dict=8_0 , _a : int=False ):
UpperCAmelCase = []
# deal with critical env vars
UpperCAmelCase = ['''CUDA_VISIBLE_DEVICES''']
for key in env_keys:
UpperCAmelCase = os.environ.get(_a , _a )
if val is not None:
cmd.append(F"{key}={val}" )
# python executable (not always needed if the script is executable)
UpperCAmelCase = sys.executable if full_python_path else sys.executable.split('''/''' )[-1]
cmd.append(_a )
# now the normal args
cmd += list(map(shlex.quote , sys.argv ) )
# split up into up to MAX_WIDTH lines with shell multi-line escapes
UpperCAmelCase = []
UpperCAmelCase = ''''''
while len(_a ) > 0:
current_line += F"{cmd.pop(0 )} "
if len(_a ) == 0 or len(_a ) + len(cmd[0] ) + 1 > max_width - 1:
lines.append(_a )
UpperCAmelCase = ''''''
return "\\\n".join(_a )
def snake_case_ (_a : Optional[Any] , _a : Any ):
# unwrap multi-line input
UpperCAmelCase = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd )
# remove --output_dir if any and set our own
UpperCAmelCase = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd )
args.base_cmd += F" --output_dir {output_dir}"
# ensure we have --overwrite_output_dir
UpperCAmelCase = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd )
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd )
def snake_case_ (_a : List[str] , _a : int , _a : Dict , _a : str , _a : Optional[int] , _a : int , _a : Optional[Any] ):
# Enable to debug everything but the run itself, to do it fast and see the progress.
# This is useful for debugging the output formatting quickly - we can remove it later once
# everybody is happy with the output
if 0:
import random
from time import sleep
sleep(0 )
return dict(
{k: random.uniform(0 , 1_0_0 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , )
UpperCAmelCase = subprocess.run(_a , capture_output=_a , text=_a )
if verbose:
print('''STDOUT''' , result.stdout )
print('''STDERR''' , result.stderr )
# save the streams
UpperCAmelCase = variation.replace(''' ''' , '''-''' )
with open(Path(_a ) / F"log.{prefix}.stdout.txt" , '''w''' ) as f:
f.write(result.stdout )
with open(Path(_a ) / F"log.{prefix}.stderr.txt" , '''w''' ) as f:
f.write(result.stderr )
if result.returncode != 0:
if verbose:
print('''failed''' )
return {target_metric_key: nan}
with io.open(F"{output_dir}/all_results.json" , '''r''' , encoding='''utf-8''' ) as f:
UpperCAmelCase = json.load(_a )
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def snake_case_ (_a : List[Any] , _a : Optional[int] , _a : Tuple , _a : Optional[Any] , _a : Optional[Any] , _a : Optional[int] , _a : Dict , _a : List[Any] , _a : Optional[Any] , _a : List[str] , ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = F"{id}: {variation:<{longest_variation_len}}"
UpperCAmelCase = F"{preamble}: "
UpperCAmelCase = set(report_metric_keys + [target_metric_key] )
for i in tqdm(range(_a ) , desc=_a , leave=_a ):
UpperCAmelCase = process_run_single(
_a , _a , _a , _a , _a , _a , _a )
UpperCAmelCase = single_run_metrics[target_metric_key]
if not math.isnan(_a ):
metrics.append(_a )
results.append(_a )
outcome += "✓"
else:
outcome += "✘"
UpperCAmelCase = F"\33[2K\r{outcome}"
if len(_a ) > 0:
UpperCAmelCase = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()}
UpperCAmelCase = round(mean_metrics[target_metric_key] , 2 )
UpperCAmelCase = F"{outcome} {mean_target}"
if len(_a ) > 1:
results_str += F" {tuple(round(_a , 2 ) for x in results )}"
print(_a )
UpperCAmelCase = variation
return mean_metrics
else:
print(_a )
return {variation_key: variation, target_metric_key: nan}
def snake_case_ ():
UpperCAmelCase = torch.cuda.get_device_properties(torch.device('''cuda''' ) )
return F"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**3_0:0.2f}GB\n"
def snake_case_ (_a : int , _a : str , _a : List[Any] , _a : Union[str, Any] , _a : Optional[Any] ):
UpperCAmelCase = pd.DataFrame(_a )
UpperCAmelCase = '''variation'''
UpperCAmelCase = '''diff_%'''
UpperCAmelCase = nan
if base_variation is not None and len(df[df[variation_key] == base_variation] ):
# this may still return nan
UpperCAmelCase = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(_a ):
# as a fallback, use the minimal value as the sentinel
UpperCAmelCase = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(_a ):
UpperCAmelCase = df.apply(
lambda _a : round(1_0_0 * (r[target_metric_key] - sentinel_value) / sentinel_value )
if not math.isnan(r[target_metric_key] )
else 0 , axis='''columns''' , )
# re-order columns
UpperCAmelCase = [variation_key, target_metric_key, diff_key, *report_metric_keys]
UpperCAmelCase = df.reindex(_a , axis='''columns''' ) # reorder cols
# capitalize
UpperCAmelCase = df.rename(str.capitalize , axis='''columns''' )
# make the cols as narrow as possible
UpperCAmelCase = df.rename(lambda _a : c.replace('''_''' , '''<br>''' ) , axis='''columns''' )
UpperCAmelCase = df.rename(lambda _a : c.replace('''_''' , '''\n''' ) , axis='''columns''' )
UpperCAmelCase = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum''']
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=_a , floatfmt='''.2f''' )]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=_a , floatfmt='''.2f''' )]
print('''\n\n'''.join(_a ) )
def snake_case_ ():
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'''--base-cmd''' , default=_a , type=_a , required=_a , help='''Base cmd''' , )
parser.add_argument(
'''--variations''' , default=_a , type=_a , nargs='''+''' , required=_a , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , )
parser.add_argument(
'''--base-variation''' , default=_a , type=_a , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , )
parser.add_argument(
'''--target-metric-key''' , default=_a , type=_a , required=_a , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , )
parser.add_argument(
'''--report-metric-keys''' , default='''''' , type=_a , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , )
parser.add_argument(
'''--repeat-times''' , default=1 , type=_a , help='''How many times to re-run each variation - an average will be reported''' , )
parser.add_argument(
'''--output_dir''' , default='''output_benchmark''' , type=_a , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , )
parser.add_argument(
'''--verbose''' , default=_a , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = args.output_dir
Path(_a ).mkdir(exist_ok=_a )
UpperCAmelCase = get_base_command(_a , _a )
# split each dimension into its --foo variations
UpperCAmelCase = [list(map(str.strip , re.split(R'''\|''' , _a ) ) ) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
UpperCAmelCase = list(map(str.strip , map(''' '''.join , itertools.product(*_a ) ) ) )
UpperCAmelCase = max(len(_a ) for x in variations )
# split wanted keys
UpperCAmelCase = args.report_metric_keys.split()
# capture prints into a log file for convenience
UpperCAmelCase = F"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt"
print(F"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" )
print(F"and this script's output is also piped into {report_fn}" )
UpperCAmelCase = Tee(_a )
print(F"\n*** Running {len(_a )} benchmarks:" )
print(F"Base command: {' '.join(_a )}" )
UpperCAmelCase = '''variation'''
UpperCAmelCase = []
for id, variation in enumerate(tqdm(_a , desc='''Total completion: ''' , leave=_a ) ):
UpperCAmelCase = base_cmd + variation.split()
results.append(
process_run(
id + 1 , _a , _a , _a , _a , args.target_metric_key , _a , args.repeat_times , _a , args.verbose , ) )
process_results(_a , args.target_metric_key , _a , args.base_variation , _a )
if __name__ == "__main__":
main()
| 34
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : Any = ["""flax""", """transformers"""]
def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
| 34
| 1
|
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _a ( __a ):
__a : Optional[int] = ["""image_processor""", """tokenizer"""]
__a : str = """CLIPImageProcessor"""
__a : Optional[Any] = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self : Optional[int] , lowercase : int=None , lowercase : Tuple=None , **lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , lowercase , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowercase , lowercase )
def __call__( self : int , lowercase : List[str]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : int ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase )
if images is not None:
UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase )
def A ( self : int , *lowercase : Any , **lowercase : Union[str, Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase , **lowercase )
def A ( self : Optional[Any] , *lowercase : Any , **lowercase : Union[str, Any] ):
'''simple docstring'''
return self.tokenizer.decode(*lowercase , **lowercase )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A ( self : List[Any] ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , )
return self.image_processor_class
@property
def A ( self : Any ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase , )
return self.image_processor
| 34
|
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
A ={
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
A ={
'b0': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 2_24,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 2_40,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 14_08,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 2_60,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 15_36,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 3_00,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 17_92,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 3_80,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 20_48,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 4_56,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 23_04,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 5_28,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 25_60,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 6_00,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def snake_case_ (_a : List[str] ):
UpperCAmelCase = EfficientNetConfig()
UpperCAmelCase = CONFIG_MAP[model_name]['''hidden_dim''']
UpperCAmelCase = CONFIG_MAP[model_name]['''width_coef''']
UpperCAmelCase = CONFIG_MAP[model_name]['''depth_coef''']
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = CONFIG_MAP[model_name]['''dropout_rate''']
UpperCAmelCase = CONFIG_MAP[model_name]['''dw_padding''']
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''imagenet-1k-id2label.json'''
UpperCAmelCase = 1_0_0_0
UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ ():
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw )
return im
def snake_case_ (_a : str ):
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_a , )
return preprocessor
def snake_case_ (_a : Optional[Any] ):
UpperCAmelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
UpperCAmelCase = sorted(set(_a ) )
UpperCAmelCase = len(_a )
UpperCAmelCase = {b: str(_a ) for b, i in zip(_a , range(_a ) )}
UpperCAmelCase = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
UpperCAmelCase = block_name_mapping[b]
rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") )
rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") )
rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") )
rename_keys.append(
(F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") )
rename_keys.append(
(F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") )
rename_keys.append(
(F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") )
rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") )
rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") )
rename_keys.append(
(F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") )
rename_keys.append(
(F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") )
rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") )
rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") )
rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") )
rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") )
rename_keys.append(
(F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") )
rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") )
rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") )
rename_keys.append(
(F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") )
rename_keys.append(
(F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
UpperCAmelCase = {}
for item in rename_keys:
if item[0] in original_param_names:
UpperCAmelCase = '''efficientnet.''' + item[1]
UpperCAmelCase = '''classifier.weight'''
UpperCAmelCase = '''classifier.bias'''
return key_mapping
def snake_case_ (_a : Dict , _a : List[str] , _a : Dict ):
for key, value in tf_params.items():
if "normalization" in key:
continue
UpperCAmelCase = key_mapping[key]
if "_conv" in key and "kernel" in key:
UpperCAmelCase = torch.from_numpy(_a ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
UpperCAmelCase = torch.from_numpy(_a ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
UpperCAmelCase = torch.from_numpy(np.transpose(_a ) )
else:
UpperCAmelCase = torch.from_numpy(_a )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_a )
@torch.no_grad()
def snake_case_ (_a : Optional[Any] , _a : List[str] , _a : Optional[int] , _a : Dict ):
UpperCAmelCase = model_classes[model_name](
include_top=_a , weights='''imagenet''' , input_tensor=_a , input_shape=_a , pooling=_a , classes=1_0_0_0 , classifier_activation='''softmax''' , )
UpperCAmelCase = original_model.trainable_variables
UpperCAmelCase = original_model.non_trainable_variables
UpperCAmelCase = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
UpperCAmelCase = param.numpy()
UpperCAmelCase = list(tf_params.keys() )
# Load HuggingFace model
UpperCAmelCase = get_efficientnet_config(_a )
UpperCAmelCase = EfficientNetForImageClassification(_a ).eval()
UpperCAmelCase = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
UpperCAmelCase = rename_keys(_a )
replace_params(_a , _a , _a )
# Initialize preprocessor and preprocess input image
UpperCAmelCase = convert_image_processor(_a )
UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
UpperCAmelCase = hf_model(**_a )
UpperCAmelCase = outputs.logits.detach().numpy()
# Original model inference
UpperCAmelCase = False
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
UpperCAmelCase = image.img_to_array(_a )
UpperCAmelCase = np.expand_dims(_a , axis=0 )
UpperCAmelCase = original_model.predict(_a )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_a , _a , atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(_a ):
os.mkdir(_a )
# Save converted model and image processor
hf_model.save_pretrained(_a )
preprocessor.save_pretrained(_a )
if push_to_hub:
# Push model and image processor to hub
print(F"Pushing converted {model_name} to the hub..." )
UpperCAmelCase = F"efficientnet-{model_name}"
preprocessor.push_to_hub(_a )
hf_model.push_to_hub(_a )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
A =parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 34
| 1
|
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A =logging.get_logger(__name__)
def snake_case_ (_a : List[Any] ):
if isinstance(_a , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(_a , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(_a ):
return [[videos]]
raise ValueError(F"Could not make batched video from {videos}" )
class _a ( __a ):
__a : Optional[Any] = ["""pixel_values"""]
def __init__( self : List[str] , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : str , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 224}
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def A ( self : Any , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(lowercase , size['''shortest_edge'''] , default_to_square=lowercase )
elif "height" in size and "width" in size:
UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase )
def A ( self : Dict , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Tuple , ):
'''simple docstring'''
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A ( self : str , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ):
'''simple docstring'''
return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase )
def A ( self : List[str] , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = to_numpy_array(lowercase )
if do_resize:
UpperCAmelCase = self.resize(image=lowercase , size=lowercase , resample=lowercase )
if do_center_crop:
UpperCAmelCase = self.center_crop(lowercase , size=lowercase )
if do_rescale:
UpperCAmelCase = self.rescale(image=lowercase , scale=lowercase )
if do_normalize:
UpperCAmelCase = self.normalize(image=lowercase , mean=lowercase , std=lowercase )
UpperCAmelCase = to_channel_dimension_format(lowercase , lowercase )
return image
def A ( self : Optional[Any] , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : Union[str, Any] , ):
'''simple docstring'''
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
if not valid_images(lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase = make_batched(lowercase )
UpperCAmelCase = [
[
self._preprocess_image(
image=lowercase , do_resize=lowercase , size=lowercase , resample=lowercase , do_center_crop=lowercase , crop_size=lowercase , do_rescale=lowercase , rescale_factor=lowercase , do_normalize=lowercase , image_mean=lowercase , image_std=lowercase , data_format=lowercase , )
for img in video
]
for video in videos
]
UpperCAmelCase = {'''pixel_values''': videos}
return BatchFeature(data=lowercase , tensor_type=lowercase )
| 34
|
'''simple docstring'''
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
A =input('Enter image url: ').strip()
print(f"""Downloading image from {url} ...""")
A =BeautifulSoup(requests.get(url).content, 'html.parser')
# The image URL is in the content field of the first meta tag with property og:image
A =soup.find('meta', {'property': 'og:image'})['content']
A =requests.get(image_url).content
A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, 'wb') as fp:
fp.write(image_data)
print(f"""Done. Image saved to disk as {file_name}.""")
| 34
| 1
|
'''simple docstring'''
def snake_case_ (_a : int , _a : int ):
while b:
UpperCAmelCase , UpperCAmelCase = b, a % b
return a
def snake_case_ (_a : int , _a : int ):
return a if b == 0 else euclidean_gcd_recursive(_a , a % b )
def snake_case_ ():
print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" )
print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" )
print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" )
print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" )
print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" )
print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" )
print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" )
print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" )
print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" )
print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" )
if __name__ == "__main__":
main()
| 34
|
'''simple docstring'''
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class _a ( __a ):
__a : str = ["""vqvae"""]
def __init__( self : str , lowercase : AutoencoderKL , lowercase : UNetaDConditionModel , lowercase : Mel , lowercase : Union[DDIMScheduler, DDPMScheduler] , ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
return 50 if isinstance(self.scheduler , lowercase ) else 1_000
@torch.no_grad()
def __call__( self : Optional[Any] , lowercase : int = 1 , lowercase : str = None , lowercase : np.ndarray = None , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = None , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : float = 0 , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : torch.Tensor = None , lowercase : torch.Tensor = None , lowercase : Tuple=True , ):
'''simple docstring'''
UpperCAmelCase = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowercase )
UpperCAmelCase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
UpperCAmelCase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowercase , device=self.device , )
UpperCAmelCase = noise
UpperCAmelCase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowercase , lowercase )
UpperCAmelCase = self.mel.audio_slice_to_image(lowercase )
UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape(
(input_image.height, input_image.width) )
UpperCAmelCase = (input_image / 255) * 2 - 1
UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample(
generator=lowercase )[0]
UpperCAmelCase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] )
UpperCAmelCase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
UpperCAmelCase = int(mask_start_secs * pixels_per_second )
UpperCAmelCase = int(mask_end_secs * pixels_per_second )
UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowercase ):
UpperCAmelCase = self.unet(lowercase , lowercase , lowercase )['''sample''']
else:
UpperCAmelCase = self.unet(lowercase , lowercase )['''sample''']
if isinstance(self.scheduler , lowercase ):
UpperCAmelCase = self.scheduler.step(
model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )['''prev_sample''']
else:
UpperCAmelCase = self.scheduler.step(
model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )['''prev_sample''']
if mask is not None:
if mask_start > 0:
UpperCAmelCase = mask[:, step, :, :mask_start]
if mask_end > 0:
UpperCAmelCase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images
UpperCAmelCase = self.vqvae.decode(lowercase )['''sample''']
UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
UpperCAmelCase = (images * 255).round().astype('''uint8''' )
UpperCAmelCase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) )
UpperCAmelCase = [self.mel.image_to_audio(lowercase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) )
@torch.no_grad()
def A ( self : Dict , lowercase : List[Image.Image] , lowercase : int = 50 ):
'''simple docstring'''
assert isinstance(self.scheduler , lowercase )
self.scheduler.set_timesteps(lowercase )
UpperCAmelCase = np.array(
[np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] )
UpperCAmelCase = (sample / 255) * 2 - 1
UpperCAmelCase = torch.Tensor(lowercase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
UpperCAmelCase = self.scheduler.alphas_cumprod[t]
UpperCAmelCase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
UpperCAmelCase = 1 - alpha_prod_t
UpperCAmelCase = self.unet(lowercase , lowercase )['''sample''']
UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def A ( lowercase : torch.Tensor , lowercase : torch.Tensor , lowercase : float ):
'''simple docstring'''
UpperCAmelCase = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) )
return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
| 34
| 1
|
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def snake_case_ (_a : str ):
UpperCAmelCase = []
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight",
F"stage{idx}.patch_embed.proj.weight",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias",
F"stage{idx}.patch_embed.proj.bias",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight",
F"stage{idx}.patch_embed.norm.weight",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias",
F"stage{idx}.patch_embed.norm.bias",
) )
return embed
def snake_case_ (_a : Union[str, Any] , _a : str ):
UpperCAmelCase = []
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_q.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_q.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_k.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_k.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_v.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_v.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight",
F"stage{idx}.blocks.{cnt}.attn.proj.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias",
F"stage{idx}.blocks.{cnt}.attn.proj.bias",
) )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") )
return attention_weights
def snake_case_ (_a : Union[str, Any] ):
UpperCAmelCase = []
token.append((F"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') )
return token
def snake_case_ ():
UpperCAmelCase = []
head.append(('''layernorm.weight''', '''norm.weight''') )
head.append(('''layernorm.bias''', '''norm.bias''') )
head.append(('''classifier.weight''', '''head.weight''') )
head.append(('''classifier.bias''', '''head.bias''') )
return head
def snake_case_ (_a : Optional[Any] , _a : str , _a : Dict , _a : Optional[Any] ):
UpperCAmelCase = '''imagenet-1k-id2label.json'''
UpperCAmelCase = 1_0_0_0
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = num_labels
UpperCAmelCase = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type='''dataset''' ) ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
UpperCAmelCase = UpperCAmelCase = CvtConfig(num_labels=_a , idalabel=_a , labelaid=_a )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13":
UpperCAmelCase = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21":
UpperCAmelCase = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
UpperCAmelCase = [2, 2, 2_0]
UpperCAmelCase = [3, 1_2, 1_6]
UpperCAmelCase = [1_9_2, 7_6_8, 1_0_2_4]
UpperCAmelCase = CvtForImageClassification(_a )
UpperCAmelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
UpperCAmelCase = image_size
UpperCAmelCase = torch.load(_a , map_location=torch.device('''cpu''' ) )
UpperCAmelCase = OrderedDict()
UpperCAmelCase = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
UpperCAmelCase = list_of_state_dict + cls_token(_a )
UpperCAmelCase = list_of_state_dict + embeddings(_a )
for cnt in range(config.depth[idx] ):
UpperCAmelCase = list_of_state_dict + attention(_a , _a )
UpperCAmelCase = list_of_state_dict + final()
for gg in list_of_state_dict:
print(_a )
for i in range(len(_a ) ):
UpperCAmelCase = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(_a )
model.save_pretrained(_a )
image_processor.save_pretrained(_a )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
A =argparse.ArgumentParser()
parser.add_argument(
'--cvt_model',
default='cvt-w24',
type=str,
help='Name of the cvt model you\'d like to convert.',
)
parser.add_argument(
'--image_size',
default=3_84,
type=int,
help='Input Image Size',
)
parser.add_argument(
'--cvt_file_name',
default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth',
type=str,
help='Input Image Size',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
A =parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 34
|
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
A =logging.get_logger(__name__)
A =TypeVar('DatasetType', Dataset, IterableDataset)
def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ):
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('''Unable to interleave an empty list of datasets.''' )
for i, dataset in enumerate(_a ):
if not isinstance(_a , (Dataset, IterableDataset) ):
if isinstance(_a , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'''is an empty dataset dictionary.''' )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(_a )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." )
if i == 0:
UpperCAmelCase , UpperCAmelCase = (
(Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset)
)
elif not isinstance(_a , _a ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
_a , _a , _a , info=_a , split=_a , stopping_strategy=_a )
else:
return _interleave_iterable_datasets(
_a , _a , _a , info=_a , split=_a , stopping_strategy=_a )
def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ):
if not dsets:
raise ValueError('''Unable to concatenate an empty list of datasets.''' )
for i, dataset in enumerate(_a ):
if not isinstance(_a , (Dataset, IterableDataset) ):
if isinstance(_a , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'''is an empty dataset dictionary.''' )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(_a )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." )
if i == 0:
UpperCAmelCase , UpperCAmelCase = (
(Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset)
)
elif not isinstance(_a , _a ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a )
else:
return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
| 34
| 1
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
A =TypeVar('T')
A =TypeVar('U')
class _a ( Generic[T, U] ):
def __init__( self : str , lowercase : T | None , lowercase : U | None ):
'''simple docstring'''
UpperCAmelCase = key
UpperCAmelCase = val
UpperCAmelCase = None
UpperCAmelCase = None
def __repr__( self : Optional[int] ):
'''simple docstring'''
return (
f"Node: key: {self.key}, val: {self.val}, "
f"has next: {bool(self.next )}, has prev: {bool(self.prev )}"
)
class _a ( Generic[T, U] ):
def __init__( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = DoubleLinkedListNode(lowercase , lowercase )
UpperCAmelCase = DoubleLinkedListNode(lowercase , lowercase )
UpperCAmelCase , UpperCAmelCase = self.rear, self.head
def __repr__( self : Any ):
'''simple docstring'''
UpperCAmelCase = ['''DoubleLinkedList''']
UpperCAmelCase = self.head
while node.next is not None:
rep.append(str(lowercase ) )
UpperCAmelCase = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowercase )
def A ( self : Any , lowercase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
UpperCAmelCase = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
UpperCAmelCase = node
UpperCAmelCase = previous
UpperCAmelCase = node
UpperCAmelCase = self.rear
def A ( self : Any , lowercase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
if node.prev is None or node.next is None:
return None
UpperCAmelCase = node.next
UpperCAmelCase = node.prev
UpperCAmelCase = None
UpperCAmelCase = None
return node
class _a ( Generic[T, U] ):
__a : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self : int , lowercase : int ):
'''simple docstring'''
UpperCAmelCase = DoubleLinkedList()
UpperCAmelCase = capacity
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = {}
def __repr__( self : Optional[int] ):
'''simple docstring'''
return (
f"CacheInfo(hits={self.hits}, misses={self.miss}, "
f"capacity={self.capacity}, current size={self.num_keys})"
)
def __contains__( self : str , lowercase : T ):
'''simple docstring'''
return key in self.cache
def A ( self : Union[str, Any] , lowercase : T ):
'''simple docstring'''
if key in self.cache:
self.hits += 1
UpperCAmelCase = self.cache[key]
UpperCAmelCase = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowercase )
return node.val
self.miss += 1
return None
def A ( self : str , lowercase : T , lowercase : U ):
'''simple docstring'''
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
UpperCAmelCase = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowercase ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
UpperCAmelCase = DoubleLinkedListNode(lowercase , lowercase )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
UpperCAmelCase = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
UpperCAmelCase = value
self.list.add(lowercase )
@classmethod
def A ( cls : Any , lowercase : int = 128 ):
'''simple docstring'''
def cache_decorator_inner(lowercase : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowercase : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
UpperCAmelCase = LRUCache(lowercase )
UpperCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
UpperCAmelCase = func(*lowercase )
cls.decorator_function_to_instance_map[func].put(args[0] , lowercase )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowercase , '''cache_info''' , lowercase ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
|
'''simple docstring'''
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def snake_case_ (_a : Tuple ):
return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def snake_case_ ():
UpperCAmelCase = ArgumentParser(
'''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a )
UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(_a )
EnvironmentCommand.register_subcommand(_a )
TestCommand.register_subcommand(_a )
RunBeamCommand.register_subcommand(_a )
DummyDataCommand.register_subcommand(_a )
# Parse args
UpperCAmelCase , UpperCAmelCase = parser.parse_known_args()
if not hasattr(_a , '''func''' ):
parser.print_help()
exit(1 )
UpperCAmelCase = parse_unknown_args(_a )
# Run
UpperCAmelCase = args.func(_a , **_a )
service.run()
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
A =logging.getLogger(__name__)
A ='Hello world! cécé herlolip'
A =namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def snake_case_ (_a : List[Any] , _a : Any ):
UpperCAmelCase = BertAbsConfig(
temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , )
UpperCAmelCase = torch.load(_a , lambda _a , _a : storage )
UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a )
original.eval()
UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('''convert the model''' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('''Make sure that the models\' outputs are identical''' )
UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
# prepare the model inputs
UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
UpperCAmelCase = encoder_input_ids
UpperCAmelCase = decoder_input_ids
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0]
UpperCAmelCase = original.generator(_a )
UpperCAmelCase = new_model(
_a , _a , _a , _a , _a )[0]
UpperCAmelCase = new_model.generator(_a )
UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 )
if are_identical:
logging.info('''all weights are equal up to 1e-3''' )
else:
raise ValueError('''the weights are different. The new model is likely different from the original one.''' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('''saving the model\'s state dictionary''' )
torch.save(
new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' )
if __name__ == "__main__":
A =argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
A =parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 34
|
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
A =[
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
A =logging.getLogger()
def snake_case_ ():
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
UpperCAmelCase = parser.parse_args()
return args.f
def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ):
UpperCAmelCase = os.path.join(_a , F"{split}_results.json" )
if os.path.exists(_a ):
with open(_a , '''r''' ) as f:
return json.load(_a )
raise ValueError(F"can't find {path}" )
A =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( __a ):
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_glue.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_clm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_summarization_flax.main()
UpperCAmelCase = get_results(lowercase , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_ta_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = 7 if get_gpu_count() > 1 else 2
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_ner.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_qa.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 34
| 1
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : Any = ["""flax""", """transformers"""]
def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
| 34
|
'''simple docstring'''
class _a :
def __init__( self : Any ):
'''simple docstring'''
UpperCAmelCase = {} # Mapping from char to TrieNode
UpperCAmelCase = False
def A ( self : int , lowercase : list[str] ):
'''simple docstring'''
for word in words:
self.insert(lowercase )
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
UpperCAmelCase = TrieNode()
UpperCAmelCase = curr.nodes[char]
UpperCAmelCase = True
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
return False
UpperCAmelCase = curr.nodes[char]
return curr.is_leaf
def A ( self : str , lowercase : str ):
'''simple docstring'''
def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool:
if index == len(lowercase ):
# If word does not exist
if not curr.is_leaf:
return False
UpperCAmelCase = False
return len(curr.nodes ) == 0
UpperCAmelCase = word[index]
UpperCAmelCase = curr.nodes.get(lowercase )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
UpperCAmelCase = _delete(lowercase , lowercase , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , lowercase , 0 )
def snake_case_ (_a : TrieNode , _a : str ):
if node.is_leaf:
print(_a , end=''' ''' )
for key, value in node.nodes.items():
print_words(_a , word + key )
def snake_case_ ():
UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split()
UpperCAmelCase = TrieNode()
root.insert_many(_a )
# print_words(root, "")
assert all(root.find(_a ) for word in words )
assert root.find('''banana''' )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
assert root.find('''apple''' )
assert root.find('''all''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def snake_case_ (_a : str , _a : bool ):
print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' )
def snake_case_ ():
assert test_trie()
def snake_case_ ():
print_results('''Testing trie functionality''' , test_trie() )
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
import copy
import os
from typing import TYPE_CHECKING, List, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json',
}
class _a ( __a ):
__a : List[str] = """align_text_model"""
def __init__( self : Dict , lowercase : str=30_522 , lowercase : List[Any]=768 , lowercase : Union[str, Any]=12 , lowercase : Optional[Any]=12 , lowercase : Union[str, Any]=3_072 , lowercase : Tuple="gelu" , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : Optional[int]=512 , lowercase : Union[str, Any]=2 , lowercase : Dict=0.02 , lowercase : Tuple=1E-12 , lowercase : Any=0 , lowercase : Any="absolute" , lowercase : str=True , **lowercase : Any , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
UpperCAmelCase = pad_token_id
@classmethod
def A ( cls : Any , lowercase : Union[str, os.PathLike] , **lowercase : Dict ):
'''simple docstring'''
cls._set_token_in_kwargs(lowercase )
UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase )
# get the text config dict if we are loading from AlignConfig
if config_dict.get('''model_type''' ) == "align":
UpperCAmelCase = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(lowercase , **lowercase )
class _a ( __a ):
__a : Dict = """align_vision_model"""
def __init__( self : int , lowercase : int = 3 , lowercase : int = 600 , lowercase : float = 2.0 , lowercase : float = 3.1 , lowercase : int = 8 , lowercase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowercase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowercase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowercase : List[int] = [] , lowercase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowercase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowercase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowercase : float = 0.25 , lowercase : str = "swish" , lowercase : int = 2_560 , lowercase : str = "mean" , lowercase : float = 0.02 , lowercase : float = 0.001 , lowercase : float = 0.99 , lowercase : float = 0.2 , **lowercase : Optional[Any] , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = num_channels
UpperCAmelCase = image_size
UpperCAmelCase = width_coefficient
UpperCAmelCase = depth_coefficient
UpperCAmelCase = depth_divisor
UpperCAmelCase = kernel_sizes
UpperCAmelCase = in_channels
UpperCAmelCase = out_channels
UpperCAmelCase = depthwise_padding
UpperCAmelCase = strides
UpperCAmelCase = num_block_repeats
UpperCAmelCase = expand_ratios
UpperCAmelCase = squeeze_expansion_ratio
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dim
UpperCAmelCase = pooling_type
UpperCAmelCase = initializer_range
UpperCAmelCase = batch_norm_eps
UpperCAmelCase = batch_norm_momentum
UpperCAmelCase = drop_connect_rate
UpperCAmelCase = sum(lowercase ) * 4
@classmethod
def A ( cls : Optional[Any] , lowercase : Union[str, os.PathLike] , **lowercase : Tuple ):
'''simple docstring'''
cls._set_token_in_kwargs(lowercase )
UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase )
# get the vision config dict if we are loading from AlignConfig
if config_dict.get('''model_type''' ) == "align":
UpperCAmelCase = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(lowercase , **lowercase )
class _a ( __a ):
__a : List[Any] = """align"""
__a : str = True
def __init__( self : Optional[int] , lowercase : Optional[Any]=None , lowercase : Optional[int]=None , lowercase : List[Any]=640 , lowercase : Optional[int]=1.0 , lowercase : List[Any]=0.02 , **lowercase : List[str] , ):
'''simple docstring'''
super().__init__(**lowercase )
if text_config is None:
UpperCAmelCase = {}
logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' )
if vision_config is None:
UpperCAmelCase = {}
logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' )
UpperCAmelCase = AlignTextConfig(**lowercase )
UpperCAmelCase = AlignVisionConfig(**lowercase )
UpperCAmelCase = projection_dim
UpperCAmelCase = temperature_init_value
UpperCAmelCase = initializer_range
@classmethod
def A ( cls : str , lowercase : AlignTextConfig , lowercase : AlignVisionConfig , **lowercase : List[Any] ):
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase )
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = copy.deepcopy(self.__dict__ )
UpperCAmelCase = self.text_config.to_dict()
UpperCAmelCase = self.vision_config.to_dict()
UpperCAmelCase = self.__class__.model_type
return output
| 34
|
'''simple docstring'''
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json',
'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json',
}
class _a ( __a ):
__a : Union[str, Any] = """encodec"""
def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase = target_bandwidths
UpperCAmelCase = sampling_rate
UpperCAmelCase = audio_channels
UpperCAmelCase = normalize
UpperCAmelCase = chunk_length_s
UpperCAmelCase = overlap
UpperCAmelCase = hidden_size
UpperCAmelCase = num_filters
UpperCAmelCase = num_residual_layers
UpperCAmelCase = upsampling_ratios
UpperCAmelCase = norm_type
UpperCAmelCase = kernel_size
UpperCAmelCase = last_kernel_size
UpperCAmelCase = residual_kernel_size
UpperCAmelCase = dilation_growth_rate
UpperCAmelCase = use_causal_conv
UpperCAmelCase = pad_mode
UpperCAmelCase = compress
UpperCAmelCase = num_lstm_layers
UpperCAmelCase = trim_right_ratio
UpperCAmelCase = codebook_size
UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size
UpperCAmelCase = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" )
super().__init__(**lowercase )
@property
def A ( self : Dict ):
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def A ( self : Union[str, Any] ):
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 34
| 1
|
'''simple docstring'''
import logging
from transformers.configuration_utils import PretrainedConfig
A =logging.getLogger(__name__)
class _a ( __a ):
__a : List[str] = """masked_bert"""
def __init__( self : Any , lowercase : Any=30_522 , lowercase : Optional[Any]=768 , lowercase : Dict=12 , lowercase : str=12 , lowercase : Dict=3_072 , lowercase : List[Any]="gelu" , lowercase : int=0.1 , lowercase : Optional[int]=0.1 , lowercase : int=512 , lowercase : Optional[Any]=2 , lowercase : Dict=0.02 , lowercase : Any=1E-12 , lowercase : str=0 , lowercase : Dict="topK" , lowercase : int="constant" , lowercase : List[Any]=0.0 , **lowercase : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=lowercase , **lowercase )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = pruning_method
UpperCAmelCase = mask_init
UpperCAmelCase = mask_scale
| 34
|
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
A =logging.get_logger(__name__)
class _a ( __a ):
__a : str = ["""pixel_values"""]
def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = resample
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" )
UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase )
return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase )
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" )
return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase )
def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ):
'''simple docstring'''
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ):
'''simple docstring'''
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(lowercase ) for image in images]
if do_resize:
UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images]
if do_center_crop:
UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_normalize:
UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=lowercase , tensor_type=lowercase )
def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ):
'''simple docstring'''
UpperCAmelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase ) != len(lowercase ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowercase ):
UpperCAmelCase = target_sizes.numpy()
UpperCAmelCase = []
for idx in range(len(lowercase ) ):
UpperCAmelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase )
UpperCAmelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase )
else:
UpperCAmelCase = logits.argmax(dim=1 )
UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 34
| 1
|
'''simple docstring'''
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
'The `image_to_image.py` script is outdated. Please use directly `from diffusers import'
' StableDiffusionImg2ImgPipeline` instead.'
)
| 34
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
A =logging.getLogger(__name__)
def snake_case_ (_a : Dict , _a : Union[str, Any] ):
return (preds == labels).mean()
@dataclass
class _a :
__a : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class _a :
__a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
__a : str = field(metadata={"""help""": """Should contain the data files for the task."""} )
__a : int = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__a : bool = field(
default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def snake_case_ ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , _a )
# Set seed
set_seed(training_args.seed )
try:
UpperCAmelCase = processors[data_args.task_name]()
UpperCAmelCase = processor.get_labels()
UpperCAmelCase = len(_a )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , )
# Get datasets
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_a : EvalPrediction ) -> Dict:
UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_a , p.label_ids )}
# Data collator
UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
UpperCAmelCase = Trainer(
model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase = trainer.evaluate()
UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(_a , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , _a , _a )
writer.write('''%s = %s\n''' % (key, value) )
results.update(_a )
return results
def snake_case_ (_a : Optional[int] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 34
| 1
|
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
A =[
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
A =logging.getLogger()
def snake_case_ ():
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
UpperCAmelCase = parser.parse_args()
return args.f
def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ):
UpperCAmelCase = os.path.join(_a , F"{split}_results.json" )
if os.path.exists(_a ):
with open(_a , '''r''' ) as f:
return json.load(_a )
raise ValueError(F"can't find {path}" )
A =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( __a ):
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_glue.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_clm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_summarization_flax.main()
UpperCAmelCase = get_results(lowercase , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_ta_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = 7 if get_gpu_count() > 1 else 2
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_ner.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_qa.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 34
|
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _a ( __a ):
__a : int = ["""image_processor""", """tokenizer"""]
__a : Union[str, Any] = """ChineseCLIPImageProcessor"""
__a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , lowercase , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowercase , lowercase )
UpperCAmelCase = self.image_processor
def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase )
if images is not None:
UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase )
def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase , **lowercase )
def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ):
'''simple docstring'''
return self.tokenizer.decode(*lowercase , **lowercase )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A ( self : List[Any] ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , )
return self.image_processor_class
| 34
| 1
|
'''simple docstring'''
from __future__ import annotations
import csv
import requests
from bsa import BeautifulSoup
def snake_case_ (_a : str = "" ):
UpperCAmelCase = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250'''
UpperCAmelCase = BeautifulSoup(requests.get(_a ).text , '''html.parser''' )
UpperCAmelCase = soup.find_all('''td''' , attrs='''titleColumn''' )
UpperCAmelCase = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' )
return {
title.a.text: float(rating.strong.text )
for title, rating in zip(_a , _a )
}
def snake_case_ (_a : str = "IMDb_Top_250_Movies.csv" ):
UpperCAmelCase = get_imdb_top_aaa_movies()
with open(_a , '''w''' , newline='''''' ) as out_file:
UpperCAmelCase = csv.writer(_a )
writer.writerow(['''Movie title''', '''IMDb rating'''] )
for title, rating in movies.items():
writer.writerow([title, rating] )
if __name__ == "__main__":
write_movies()
| 34
|
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
A =logging.get_logger(__name__)
A ={
'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json',
# See all Marian models at https://huggingface.co/models?filter=marian
}
class _a ( __a ):
__a : List[Any] = """marian"""
__a : Union[str, Any] = ["""past_key_values"""]
__a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase = vocab_size
UpperCAmelCase = decoder_vocab_size or vocab_size
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = d_model
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , )
class _a ( __a ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def A ( self : int ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowercase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase , UpperCAmelCase = self.num_layers
for i in range(lowercase ):
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def A ( self : Any ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = super().outputs
else:
UpperCAmelCase = super(lowercase , self ).outputs
if self.use_past:
UpperCAmelCase , UpperCAmelCase = self.num_layers
for i in range(lowercase ):
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
# Generate decoder inputs
UpperCAmelCase = seq_length if not self.use_past else 1
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
UpperCAmelCase = dict(**lowercase , **lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape
UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1]
UpperCAmelCase , UpperCAmelCase = self.num_attention_heads
UpperCAmelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase = decoder_seq_length + 3
UpperCAmelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
UpperCAmelCase = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 )
UpperCAmelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
UpperCAmelCase , UpperCAmelCase = self.num_layers
UpperCAmelCase = min(lowercase , lowercase )
UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers
UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(lowercase ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
) )
# TODO: test this.
UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(lowercase , lowercase ):
common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) )
return common_inputs
def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase = seqlen + 2
UpperCAmelCase , UpperCAmelCase = self.num_layers
UpperCAmelCase , UpperCAmelCase = self.num_attention_heads
UpperCAmelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase = common_inputs['''attention_mask'''].dtype
UpperCAmelCase = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 )
UpperCAmelCase = [
(torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase )
]
return common_inputs
def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase )
UpperCAmelCase = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase )
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) )
return common_inputs
def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
else:
UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
return common_inputs
def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase )
else:
UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_(
lowercase , lowercase , lowercase , lowercase )
@property
def A ( self : Any ):
'''simple docstring'''
return 1E-4
| 34
| 1
|
'''simple docstring'''
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class _a ( __a ):
def __init__( self : str , lowercase : Union[str, Any] , lowercase : Tuple=None , lowercase : Any=True , lowercase : Dict=None , **lowercase : int ):
'''simple docstring'''
UpperCAmelCase = parent
UpperCAmelCase = config_class
UpperCAmelCase = has_text_modality
UpperCAmelCase = kwargs
UpperCAmelCase = common_properties
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.config_class(**self.inputs_dict )
UpperCAmelCase = (
['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers''']
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(['''vocab_size'''] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(lowercase , lowercase ) , msg=f"`{prop}` does not exist" )
# Test that config has the common properties as setter
for idx, name in enumerate(lowercase ):
try:
setattr(lowercase , lowercase , lowercase )
self.parent.assertEqual(
getattr(lowercase , lowercase ) , lowercase , msg=f"`{name} value {idx} expected, but was {getattr(lowercase , lowercase )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(lowercase ):
try:
UpperCAmelCase = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(lowercase , lowercase ) , lowercase , msg=f"`{name} value {idx} expected, but was {getattr(lowercase , lowercase )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = self.config_class(**self.inputs_dict )
UpperCAmelCase = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , lowercase )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase = os.path.join(lowercase , '''config.json''' )
config_first.to_json_file(lowercase )
UpperCAmelCase = self.config_class.from_json_file(lowercase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(lowercase )
UpperCAmelCase = self.config_class.from_pretrained(lowercase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.config_class(**self.inputs_dict )
UpperCAmelCase = '''test'''
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase = os.path.join(lowercase , lowercase )
config_first.save_pretrained(lowercase )
UpperCAmelCase = self.config_class.from_pretrained(lowercase , subfolder=lowercase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
UpperCAmelCase = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def A ( self : Union[str, Any] ):
'''simple docstring'''
if self.config_class.is_composition:
return
UpperCAmelCase = self.config_class()
self.parent.assertIsNotNone(lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = copy.deepcopy(lowercase )
UpperCAmelCase = self.config_class(**lowercase )
UpperCAmelCase = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) )
elif getattr(lowercase , lowercase ) != value:
wrong_values.append((key, getattr(lowercase , lowercase ), value) )
if len(lowercase ) > 0:
UpperCAmelCase = '''\n'''.join([f"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] )
raise ValueError(f"The following keys were not properly set in the config:\n{errors}" )
def A ( self : Tuple ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 34
|
'''simple docstring'''
import os
def snake_case_ ():
UpperCAmelCase = os.path.join(os.path.dirname(_a ) , '''num.txt''' )
with open(_a ) as file_hand:
return str(sum(int(_a ) for line in file_hand ) )[:1_0]
if __name__ == "__main__":
print(solution())
| 34
| 1
|
'''simple docstring'''
import numpy as np
def snake_case_ (_a : np.array ):
return (2 / (1 + np.exp(-2 * vector ))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
|
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
A =logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
A ={
'base': AutoModel,
'sequence-classification': AutoModelForSequenceClassification,
'question-answering': AutoModelForQuestionAnswering,
'pretraining': AutoModelForPreTraining,
'token-classification': AutoModelForTokenClassification,
'language-modeling': AutoModelWithLMHead,
'summarization': AutoModelForSeqaSeqLM,
'translation': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
A ={
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
A =sorted(arg_to_scheduler.keys())
A ='{' + ', '.join(arg_to_scheduler_choices) + '}'
class _a ( pl.LightningModule ):
def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ):
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowercase )
UpperCAmelCase = 0
UpperCAmelCase = Path(self.hparams.output_dir )
UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
UpperCAmelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , )
else:
UpperCAmelCase = config
UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , lowercase , lowercase ):
assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute"
setattr(self.config , lowercase , getattr(self.hparams , lowercase ) )
if tokenizer is None:
UpperCAmelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , )
else:
UpperCAmelCase = tokenizer
UpperCAmelCase = MODEL_MODES[mode]
if model is None:
UpperCAmelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , )
else:
UpperCAmelCase = model
def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase )
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler]
UpperCAmelCase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.model
UpperCAmelCase = ['''bias''', '''LayerNorm.weight''']
UpperCAmelCase = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
UpperCAmelCase = Adafactor(
lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase )
else:
UpperCAmelCase = AdamW(
lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
UpperCAmelCase = optimizer
UpperCAmelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def A ( self : List[Any] , lowercase : int , lowercase : List[str] ):
'''simple docstring'''
return self.validation_step(lowercase , lowercase )
def A ( self : List[Any] , lowercase : Tuple ):
'''simple docstring'''
return self.validation_end(lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def A ( self : List[str] , lowercase : Any ):
'''simple docstring'''
if stage == "test":
UpperCAmelCase = len(self.test_dataloader().dataset )
else:
UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase )
UpperCAmelCase = len(self.train_dataloader().dataset )
def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ):
'''simple docstring'''
raise NotImplementedError('''You must implement this for your task''' )
def A ( self : Union[str, Any] ):
'''simple docstring'''
return self.train_loader
def A ( self : Optional[Any] ):
'''simple docstring'''
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase )
def A ( self : Any , lowercase : Union[str, Any] ):
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def A ( self : List[str] , lowercase : Dict[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' )
UpperCAmelCase = self.step_count
self.model.save_pretrained(lowercase )
self.tokenizer.save_pretrained(lowercase )
@staticmethod
def A ( lowercase : Optional[int] , lowercase : List[str] ):
'''simple docstring'''
parser.add_argument(
'''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase )
parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase )
parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class _a ( pl.Callback ):
def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ):
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _a ( pl.Callback ):
def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ):
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowercase )
class _a ( pl.Callback ):
def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler''']
UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowercase )
def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info('''***** Validation results *****''' )
UpperCAmelCase = trainer.callback_metrics
# Log results
for key in sorted(lowercase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info('''***** Test results *****''' )
UpperCAmelCase = trainer.callback_metrics
# Log and save results to file
UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(lowercase , '''w''' ) as writer:
for key in sorted(lowercase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
def snake_case_ (_a : int , _a : Optional[Any] ):
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=_a , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ):
pl.seed_everything(args.seed )
# init model
UpperCAmelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_a )
# add custom checkpoints
if checkpoint_callback is None:
UpperCAmelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_a )
if logging_callback is None:
UpperCAmelCase = LoggingCallback()
UpperCAmelCase = {}
if args.fpaa:
UpperCAmelCase = 1_6
if args.gpus > 1:
UpperCAmelCase = '''auto'''
UpperCAmelCase = '''ddp'''
UpperCAmelCase = args.accumulate_grad_batches
UpperCAmelCase = None
UpperCAmelCase = '''auto'''
UpperCAmelCase = pl.Trainer.from_argparse_args(
_a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , )
if args.do_train:
trainer.fit(_a )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 34
| 1
|
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
A =logging.get_logger(__name__)
A ={
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class _a ( __a ):
__a : Any = """imagegpt"""
__a : List[str] = ["""past_key_values"""]
__a : str = {
"""hidden_size""": """n_embd""",
"""max_position_embeddings""": """n_positions""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Optional[int] , lowercase : List[str]=512 + 1 , lowercase : Optional[int]=32 * 32 , lowercase : Dict=512 , lowercase : List[str]=24 , lowercase : Optional[int]=8 , lowercase : Tuple=None , lowercase : List[str]="quick_gelu" , lowercase : Any=0.1 , lowercase : Any=0.1 , lowercase : str=0.1 , lowercase : str=1E-5 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=True , lowercase : int=True , lowercase : Optional[Any]=False , lowercase : List[Any]=False , lowercase : Optional[int]=False , **lowercase : List[Any] , ):
'''simple docstring'''
UpperCAmelCase = vocab_size
UpperCAmelCase = n_positions
UpperCAmelCase = n_embd
UpperCAmelCase = n_layer
UpperCAmelCase = n_head
UpperCAmelCase = n_inner
UpperCAmelCase = activation_function
UpperCAmelCase = resid_pdrop
UpperCAmelCase = embd_pdrop
UpperCAmelCase = attn_pdrop
UpperCAmelCase = layer_norm_epsilon
UpperCAmelCase = initializer_range
UpperCAmelCase = scale_attn_weights
UpperCAmelCase = use_cache
UpperCAmelCase = scale_attn_by_inverse_layer_idx
UpperCAmelCase = reorder_and_upcast_attn
UpperCAmelCase = tie_word_embeddings
super().__init__(tie_word_embeddings=lowercase , **lowercase )
class _a ( __a ):
@property
def A ( self : List[Any] ):
'''simple docstring'''
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
] )
def A ( self : List[Any] , lowercase : "FeatureExtractionMixin" , lowercase : int = 1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional["TensorType"] = None , lowercase : int = 3 , lowercase : int = 32 , lowercase : int = 32 , ):
'''simple docstring'''
UpperCAmelCase = self._generate_dummy_images(lowercase , lowercase , lowercase , lowercase )
UpperCAmelCase = dict(preprocessor(images=lowercase , return_tensors=lowercase ) )
return inputs
| 34
|
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ):
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
UpperCAmelCase = cst_fwd.get(_a , np.inf )
UpperCAmelCase = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
UpperCAmelCase = new_cost_f
UpperCAmelCase = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ):
UpperCAmelCase = -1
UpperCAmelCase = set()
UpperCAmelCase = set()
UpperCAmelCase = {source: 0}
UpperCAmelCase = {destination: 0}
UpperCAmelCase = {source: None}
UpperCAmelCase = {destination: None}
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
UpperCAmelCase , UpperCAmelCase = queue_forward.get()
visited_forward.add(_a )
UpperCAmelCase , UpperCAmelCase = queue_backward.get()
visited_backward.add(_a )
UpperCAmelCase = pass_and_relaxation(
_a , _a , _a , _a , _a , _a , _a , _a , _a , )
UpperCAmelCase = pass_and_relaxation(
_a , _a , _a , _a , _a , _a , _a , _a , _a , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
UpperCAmelCase = shortest_distance
return shortest_path_distance
A ={
'B': [['C', 1]],
'C': [['D', 1]],
'D': [['F', 1]],
'E': [['B', 1], ['G', 2]],
'F': [],
'G': [['F', 1]],
}
A ={
'B': [['E', 1]],
'C': [['B', 1]],
'D': [['C', 1]],
'F': [['D', 1], ['G', 1]],
'E': [[None, np.inf]],
'G': [['E', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
| 1
|
'''simple docstring'''
import numpy as np
from transformers import Pipeline
def snake_case_ (_a : str ):
UpperCAmelCase = np.max(_a , axis=-1 , keepdims=_a )
UpperCAmelCase = np.exp(outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_a )
class _a ( __a ):
def A ( self : Tuple , **lowercase : Any ):
'''simple docstring'''
UpperCAmelCase = {}
if "second_text" in kwargs:
UpperCAmelCase = kwargs['''second_text''']
return preprocess_kwargs, {}, {}
def A ( self : Union[str, Any] , lowercase : Any , lowercase : Dict=None ):
'''simple docstring'''
return self.tokenizer(lowercase , text_pair=lowercase , return_tensors=self.framework )
def A ( self : str , lowercase : List[Any] ):
'''simple docstring'''
return self.model(**lowercase )
def A ( self : Union[str, Any] , lowercase : Tuple ):
'''simple docstring'''
UpperCAmelCase = model_outputs.logits[0].numpy()
UpperCAmelCase = softmax(lowercase )
UpperCAmelCase = np.argmax(lowercase )
UpperCAmelCase = self.model.config.idalabel[best_class]
UpperCAmelCase = probabilities[best_class].item()
UpperCAmelCase = logits.tolist()
return {"label": label, "score": score, "logits": logits}
| 34
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
def snake_case_ (_a : List[str] ):
UpperCAmelCase = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
UpperCAmelCase = 1_2_8
elif "12-12" in model_name:
UpperCAmelCase = 1_2
UpperCAmelCase = 1_2
elif "14-14" in model_name:
UpperCAmelCase = 1_4
UpperCAmelCase = 1_4
elif "16-16" in model_name:
UpperCAmelCase = 1_6
UpperCAmelCase = 1_6
else:
raise ValueError('''Model not supported''' )
UpperCAmelCase = '''huggingface/label-files'''
if "speech-commands" in model_name:
UpperCAmelCase = 3_5
UpperCAmelCase = '''speech-commands-v2-id2label.json'''
else:
UpperCAmelCase = 5_2_7
UpperCAmelCase = '''audioset-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ (_a : Tuple ):
if "module.v" in name:
UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "dist_token" in name:
UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
# transformer blocks
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' )
# classifier head
if "module.mlp_head.0" in name:
UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' )
if "module.mlp_head.1" in name:
UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' )
return name
def snake_case_ (_a : Dict , _a : List[Any] ):
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(_a )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[3] )
UpperCAmelCase = config.hidden_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[dim : dim * 2, :]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def snake_case_ (_a : Tuple ):
UpperCAmelCase = [
'''module.v.head.weight''',
'''module.v.head.bias''',
'''module.v.head_dist.weight''',
'''module.v.head_dist.bias''',
]
for k in ignore_keys:
state_dict.pop(_a , _a )
@torch.no_grad()
def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ):
UpperCAmelCase = get_audio_spectrogram_transformer_config(_a )
UpperCAmelCase = {
'''ast-finetuned-audioset-10-10-0.4593''': (
'''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.450''': (
'''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448''': (
'''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448-v2''': (
'''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'''
),
'''ast-finetuned-audioset-12-12-0.447''': (
'''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'''
),
'''ast-finetuned-audioset-14-14-0.443''': (
'''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'''
),
'''ast-finetuned-audioset-16-16-0.442''': (
'''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'''
),
'''ast-finetuned-speech-commands-v2''': (
'''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'''
),
}
# load original state_dict
UpperCAmelCase = model_name_to_url[model_name]
UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' )
# remove some keys
remove_keys(_a )
# rename some keys
UpperCAmelCase = convert_state_dict(_a , _a )
# load 🤗 model
UpperCAmelCase = ASTForAudioClassification(_a )
model.eval()
model.load_state_dict(_a )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978
UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526
UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8
UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a )
if "speech-commands" in model_name:
UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' )
UpperCAmelCase = dataset[0]['''audio''']['''array''']
else:
UpperCAmelCase = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , )
UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a )
UpperCAmelCase = waveform.squeeze().numpy()
UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' )
# forward pass
UpperCAmelCase = model(**_a )
UpperCAmelCase = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError('''Unknown model name''' )
if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ):
raise ValueError('''Logits don\'t match''' )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(_a ).mkdir(exist_ok=_a )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_a )
print(F"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(_a )
if push_to_hub:
print('''Pushing model and feature extractor to the hub...''' )
model.push_to_hub(F"MIT/{model_name}" )
feature_extractor.push_to_hub(F"MIT/{model_name}" )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
A =parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 34
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json'
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class _a ( __a ):
__a : str = """fnet"""
def __init__( self : List[str] , lowercase : List[Any]=32_000 , lowercase : Union[str, Any]=768 , lowercase : Any=12 , lowercase : Optional[Any]=3_072 , lowercase : List[str]="gelu_new" , lowercase : Any=0.1 , lowercase : Any=512 , lowercase : Any=4 , lowercase : Dict=0.02 , lowercase : List[str]=1E-12 , lowercase : Dict=False , lowercase : Union[str, Any]=512 , lowercase : Tuple=3 , lowercase : Union[str, Any]=1 , lowercase : Tuple=2 , **lowercase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
UpperCAmelCase = vocab_size
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = initializer_range
UpperCAmelCase = type_vocab_size
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = use_tpu_fourier_optimizations
UpperCAmelCase = tpu_short_seq_length
| 34
|
'''simple docstring'''
from __future__ import annotations
def snake_case_ (_a : Dict , _a : str , _a : Optional[Any] , _a : List[str] ): # noqa: E741
while r - l > 1:
UpperCAmelCase = (l + r) // 2
if v[m] >= key:
UpperCAmelCase = m
else:
UpperCAmelCase = m # noqa: E741
return r
def snake_case_ (_a : list[int] ):
if len(_a ) == 0:
return 0
UpperCAmelCase = [0] * len(_a )
UpperCAmelCase = 1
UpperCAmelCase = v[0]
for i in range(1 , len(_a ) ):
if v[i] < tail[0]:
UpperCAmelCase = v[i]
elif v[i] > tail[length - 1]:
UpperCAmelCase = v[i]
length += 1
else:
UpperCAmelCase = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
| 1
|
'''simple docstring'''
def snake_case_ (_a : int ):
if number < 0:
raise ValueError('''number must not be negative''' )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
|
'''simple docstring'''
def snake_case_ (_a : str , _a : str ):
UpperCAmelCase = len(_a ) + 1
UpperCAmelCase = len(_a ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
UpperCAmelCase = [[0 for i in range(_a )] for j in range(_a )]
# since string of zero length match pattern of zero length
UpperCAmelCase = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _a ):
UpperCAmelCase = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _a ):
UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _a ):
for j in range(1 , _a ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
UpperCAmelCase = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
UpperCAmelCase = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
UpperCAmelCase = dp[i - 1][j]
else:
UpperCAmelCase = 0
else:
UpperCAmelCase = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
A ='aab'
A ='c*a*b'
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(f"""{input_string} matches the given pattern {pattern}""")
else:
print(f"""{input_string} does not match with the given pattern {pattern}""")
| 34
| 1
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"caidas/swin2sr-classicalsr-x2-64": (
"https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json"
),
}
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''swin2sr'''
__snake_case = {
'''hidden_size''': '''embed_dim''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : int , __UpperCAmelCase : int=64 , __UpperCAmelCase : int=1 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Dict=180 , __UpperCAmelCase : Union[str, Any]=[6, 6, 6, 6, 6, 6] , __UpperCAmelCase : Optional[Any]=[6, 6, 6, 6, 6, 6] , __UpperCAmelCase : Union[str, Any]=8 , __UpperCAmelCase : Union[str, Any]=2.0 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : str=False , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Optional[Any]=1e-5 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Union[str, Any]=1.0 , __UpperCAmelCase : List[Any]="1conv" , __UpperCAmelCase : int="pixelshuffle" , **__UpperCAmelCase : str , ) ->Tuple:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = image_size
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__UpperCAmelCase )
a = num_heads
a = window_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = use_absolute_embeddings
a = layer_norm_eps
a = initializer_range
a = upscale
a = img_range
a = resi_connection
a = upsampler
| 0
|
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
A ='pt'
elif is_tf_available():
A ='tf'
else:
A ='jax'
class _a ( __a , unittest.TestCase ):
__a : Optional[Any] = PerceiverTokenizer
__a : str = False
def A ( self : Union[str, Any] ):
'''simple docstring'''
super().setUp()
UpperCAmelCase = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def A ( self : Optional[int] ):
'''simple docstring'''
return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' )
def A ( self : Union[str, Any] , **lowercase : int ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase )
def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ):
'''simple docstring'''
UpperCAmelCase = []
for i in range(len(lowercase ) ):
try:
UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) )
UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) )
if max_length is not None and len(lowercase ) > max_length:
UpperCAmelCase = toks[:max_length]
if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0:
while len(lowercase ) < min_length:
UpperCAmelCase = toks + toks
# toks_str = [t[1] for t in toks]
UpperCAmelCase = [t[0] for t in toks]
# Ensure consistency
UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase )
if " " not in output_txt and len(lowercase ) > 1:
UpperCAmelCase = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase )
)
if with_prefix_space:
UpperCAmelCase = ''' ''' + output_txt
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
return output_txt, output_ids
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = '''Unicode €.'''
UpperCAmelCase = tokenizer(lowercase )
UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['''input_ids'''] , lowercase )
# decoding
UpperCAmelCase = tokenizer.decode(lowercase )
self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' )
UpperCAmelCase = tokenizer('''e è é ê ë''' )
UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['''input_ids'''] , lowercase )
# decoding
UpperCAmelCase = tokenizer.decode(lowercase )
self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
# fmt: off
UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase )
self.assertIsInstance(lowercase , lowercase )
if FRAMEWORK != "jax":
UpperCAmelCase = list(batch.input_ids.numpy()[0] )
else:
UpperCAmelCase = list(batch.input_ids.tolist()[0] )
self.assertListEqual(lowercase , lowercase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('''input_ids''' , lowercase )
self.assertIn('''attention_mask''' , lowercase )
self.assertNotIn('''decoder_input_ids''' , lowercase )
self.assertNotIn('''decoder_attention_mask''' , lowercase )
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
UpperCAmelCase = [
'''Summary of the text.''',
'''Another summary.''',
]
UpperCAmelCase = tokenizer(
text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase )
UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
shutil.rmtree(lowercase )
UpperCAmelCase = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
tokenizer.add_tokens(['''bim''', '''bambam'''] )
UpperCAmelCase = tokenizer.additional_special_tokens
additional_special_tokens.append('''new_additional_special_token''' )
tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} )
UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase )
UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(lowercase )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(lowercase )
with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file:
UpperCAmelCase = json.load(lowercase )
with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file:
UpperCAmelCase = json.load(lowercase )
UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )]
UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(lowercase , lowercase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase = tokenizer_class.from_pretrained(
lowercase , )
self.assertIn(
'''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )]
UpperCAmelCase = tokenizer_class.from_pretrained(
lowercase , additional_special_tokens=lowercase , )
self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens )
self.assertEqual(
['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , '''�''' )
def A ( self : Union[str, Any] ):
'''simple docstring'''
pass
def A ( self : Any ):
'''simple docstring'''
pass
def A ( self : Dict ):
'''simple docstring'''
pass
def A ( self : str ):
'''simple docstring'''
pass
def A ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]''']
UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase )
self.assertIsInstance(lowercase , lowercase )
| 34
| 0
|
'''simple docstring'''
from math import sqrt
def lowerCAmelCase_ ( snake_case_ : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = 0
for i in range(1 , int(sqrt(snake_case_ ) + 1 ) ):
if n % i == 0 and i != sqrt(snake_case_ ):
total += i + n // i
elif i == sqrt(snake_case_ ):
total += i
return total - n
def lowerCAmelCase_ ( snake_case_ : int = 1_00_00 ) -> int:
'''simple docstring'''
UpperCAmelCase_ = sum(
i
for i in range(1 , snake_case_ )
if sum_of_divisors(sum_of_divisors(snake_case_ ) ) == i and sum_of_divisors(snake_case_ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 1
|
'''simple docstring'''
import os
from distutils.util import strtobool
def snake_case_ (_a : Union[str, Any] , _a : List[Any] ):
for e in env_keys:
UpperCAmelCase = int(os.environ.get(_a , -1 ) )
if val >= 0:
return val
return default
def snake_case_ (_a : Dict , _a : Any=False ):
UpperCAmelCase = os.environ.get(_a , str(_a ) )
return strtobool(_a ) == 1 # As its name indicates `strtobool` actually returns an int...
def snake_case_ (_a : str , _a : Optional[Any]="no" ):
UpperCAmelCase = os.environ.get(_a , str(_a ) )
return value
| 34
| 0
|
'''simple docstring'''
from __future__ import annotations
class __lowerCAmelCase :
'''simple docstring'''
def __init__(self : Any , UpperCamelCase : int = 0 ):
'''simple docstring'''
lowercase__ = key
def UpperCamelCase__ (self : str , UpperCamelCase : str , UpperCamelCase : int ):
'''simple docstring'''
assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase )
lowercase__ = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(UpperCamelCase ) ^ key ) for ch in content]
def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str , UpperCamelCase : int ):
'''simple docstring'''
assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase )
lowercase__ = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(UpperCamelCase ) ^ key ) for ch in content]
def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : int = 0 ):
'''simple docstring'''
assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase )
lowercase__ = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
lowercase__ = ''''''
for ch in content:
ans += chr(ord(UpperCamelCase ) ^ key )
return ans
def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : int = 0 ):
'''simple docstring'''
assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase )
lowercase__ = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
lowercase__ = ''''''
for ch in content:
ans += chr(ord(UpperCamelCase ) ^ key )
return ans
def UpperCamelCase__ (self : str , UpperCamelCase : str , UpperCamelCase : int = 0 ):
'''simple docstring'''
assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase )
try:
with open(UpperCamelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(UpperCamelCase , UpperCamelCase ) )
except OSError:
return False
return True
def UpperCamelCase__ (self : Dict , UpperCamelCase : str , UpperCamelCase : int ):
'''simple docstring'''
assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase )
try:
with open(UpperCamelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(UpperCamelCase , UpperCamelCase ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 2
|
'''simple docstring'''
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
A =logging.getLogger(__name__)
A ='Hello world! cécé herlolip'
A =namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def snake_case_ (_a : List[Any] , _a : Any ):
UpperCAmelCase = BertAbsConfig(
temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , )
UpperCAmelCase = torch.load(_a , lambda _a , _a : storage )
UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a )
original.eval()
UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('''convert the model''' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('''Make sure that the models\' outputs are identical''' )
UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
# prepare the model inputs
UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
UpperCAmelCase = encoder_input_ids
UpperCAmelCase = decoder_input_ids
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0]
UpperCAmelCase = original.generator(_a )
UpperCAmelCase = new_model(
_a , _a , _a , _a , _a )[0]
UpperCAmelCase = new_model.generator(_a )
UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 )
if are_identical:
logging.info('''all weights are equal up to 1e-3''' )
else:
raise ValueError('''the weights are different. The new model is likely different from the original one.''' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('''saving the model\'s state dictionary''' )
torch.save(
new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' )
if __name__ == "__main__":
A =argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
A =parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 34
| 0
|
'''simple docstring'''
import argparse
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowercase : Optional[int] = 16
lowercase : Optional[Any] = 32
def lowerCAmelCase_ ( snake_case__ , snake_case__ = 16 ):
'''simple docstring'''
A : int = AutoTokenizer.from_pretrained('''bert-base-cased''' )
A : Optional[Any] = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(snake_case__ ):
# max_length=None => use the model max length (it's actually the default)
A : Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case__ , max_length=snake_case__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
A : Optional[int] = datasets.map(
snake_case__ , batched=snake_case__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Dict = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(snake_case__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
A : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
A : List[Any] = 16
elif accelerator.mixed_precision != "no":
A : Dict = 8
else:
A : Tuple = None
return tokenizer.pad(
snake_case__ , padding='''longest''' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='''pt''' , )
# Instantiate dataloaders.
A : Optional[int] = DataLoader(
tokenized_datasets['''train'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ , drop_last=snake_case__ )
A : int = DataLoader(
tokenized_datasets['''validation'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ , drop_last=(accelerator.mixed_precision == '''fp8''') , )
return train_dataloader, eval_dataloader
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : Optional[Any] = config['''lr''']
A : Dict = int(config['''num_epochs'''] )
A : List[str] = int(config['''seed'''] )
A : Optional[int] = int(config['''batch_size'''] )
A : Tuple = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
A : List[str] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
A : str = batch_size // MAX_GPU_BATCH_SIZE
A : int = MAX_GPU_BATCH_SIZE
set_seed(snake_case__ )
A, A : Optional[Any] = get_dataloaders(snake_case__ , snake_case__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
A : int = model.to(accelerator.device )
# Instantiate optimizer
A : List[Any] = AdamW(params=model.parameters() , lr=snake_case__ )
# Instantiate scheduler
A : Any = get_linear_schedule_with_warmup(
optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A, A, A, A, A : Tuple = accelerator.prepare(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# Now we train the model
for epoch in range(snake_case__ ):
model.train()
for step, batch in enumerate(snake_case__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
A : Optional[Any] = model(**snake_case__ )
A : Optional[Any] = outputs.loss
A : Dict = loss / gradient_accumulation_steps
accelerator.backward(snake_case__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A : str = model(**snake_case__ )
A : str = outputs.logits.argmax(dim=-1 )
A, A : List[str] = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=snake_case__ , references=snake_case__ , )
A : Optional[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:' , snake_case__ )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : str = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=snake_case__ , default=snake_case__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
A : int = parser.parse_args()
A : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case__ , snake_case__ )
if __name__ == "__main__":
main()
| 3
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : int = ["""flax""", """transformers"""]
def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class _a ( metaclass=__a ):
__a : Any = ["""flax""", """transformers"""]
def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ):
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ):
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
| 34
| 0
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase_ ( metaclass=__lowercase ):
lowerCamelCase : Tuple = ['''flax''', '''transformers''']
def __init__( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Dict ) -> Dict:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __UpperCAmelCase ( cls : Dict , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Optional[Any] ) -> str:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __UpperCAmelCase ( cls : Optional[Any] , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]:
requires_backends(cls , ['flax', 'transformers'] )
class UpperCAmelCase_ ( metaclass=__lowercase ):
lowerCamelCase : int = ['''flax''', '''transformers''']
def __init__( self : Tuple , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int ) -> List[Any]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __UpperCAmelCase ( cls : Dict , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Tuple ) -> List[str]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __UpperCAmelCase ( cls : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]:
requires_backends(cls , ['flax', 'transformers'] )
class UpperCAmelCase_ ( metaclass=__lowercase ):
lowerCamelCase : List[Any] = ['''flax''', '''transformers''']
def __init__( self : str , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Optional[int] ) -> Tuple:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __UpperCAmelCase ( cls : List[str] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : List[Any] ) -> List[str]:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __UpperCAmelCase ( cls : str , *UpperCAmelCase__ : int , **UpperCAmelCase__ : int ) -> List[str]:
requires_backends(cls , ['flax', 'transformers'] )
class UpperCAmelCase_ ( metaclass=__lowercase ):
lowerCamelCase : Any = ['''flax''', '''transformers''']
def __init__( self : Any , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Any ) -> Optional[int]:
requires_backends(self , ['flax', 'transformers'] )
@classmethod
def __UpperCAmelCase ( cls : int , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int ) -> str:
requires_backends(cls , ['flax', 'transformers'] )
@classmethod
def __UpperCAmelCase ( cls : Tuple , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Dict ) -> Optional[Any]:
requires_backends(cls , ['flax', 'transformers'] )
| 4
|
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
A ={
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
A ={
'b0': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 2_24,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 12_80,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 2_40,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 14_08,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 2_60,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 15_36,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 3_00,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 17_92,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 3_80,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 20_48,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 4_56,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 23_04,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 5_28,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 25_60,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 6_00,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def snake_case_ (_a : List[str] ):
UpperCAmelCase = EfficientNetConfig()
UpperCAmelCase = CONFIG_MAP[model_name]['''hidden_dim''']
UpperCAmelCase = CONFIG_MAP[model_name]['''width_coef''']
UpperCAmelCase = CONFIG_MAP[model_name]['''depth_coef''']
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = CONFIG_MAP[model_name]['''dropout_rate''']
UpperCAmelCase = CONFIG_MAP[model_name]['''dw_padding''']
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''imagenet-1k-id2label.json'''
UpperCAmelCase = 1_0_0_0
UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ ():
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw )
return im
def snake_case_ (_a : str ):
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_a , )
return preprocessor
def snake_case_ (_a : Optional[Any] ):
UpperCAmelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
UpperCAmelCase = sorted(set(_a ) )
UpperCAmelCase = len(_a )
UpperCAmelCase = {b: str(_a ) for b, i in zip(_a , range(_a ) )}
UpperCAmelCase = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
UpperCAmelCase = block_name_mapping[b]
rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") )
rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") )
rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") )
rename_keys.append(
(F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") )
rename_keys.append(
(F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") )
rename_keys.append(
(F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") )
rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") )
rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") )
rename_keys.append(
(F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") )
rename_keys.append(
(F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") )
rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") )
rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") )
rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") )
rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") )
rename_keys.append(
(F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") )
rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") )
rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") )
rename_keys.append(
(F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") )
rename_keys.append(
(F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
UpperCAmelCase = {}
for item in rename_keys:
if item[0] in original_param_names:
UpperCAmelCase = '''efficientnet.''' + item[1]
UpperCAmelCase = '''classifier.weight'''
UpperCAmelCase = '''classifier.bias'''
return key_mapping
def snake_case_ (_a : Dict , _a : List[str] , _a : Dict ):
for key, value in tf_params.items():
if "normalization" in key:
continue
UpperCAmelCase = key_mapping[key]
if "_conv" in key and "kernel" in key:
UpperCAmelCase = torch.from_numpy(_a ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
UpperCAmelCase = torch.from_numpy(_a ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
UpperCAmelCase = torch.from_numpy(np.transpose(_a ) )
else:
UpperCAmelCase = torch.from_numpy(_a )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_a )
@torch.no_grad()
def snake_case_ (_a : Optional[Any] , _a : List[str] , _a : Optional[int] , _a : Dict ):
UpperCAmelCase = model_classes[model_name](
include_top=_a , weights='''imagenet''' , input_tensor=_a , input_shape=_a , pooling=_a , classes=1_0_0_0 , classifier_activation='''softmax''' , )
UpperCAmelCase = original_model.trainable_variables
UpperCAmelCase = original_model.non_trainable_variables
UpperCAmelCase = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
UpperCAmelCase = param.numpy()
UpperCAmelCase = list(tf_params.keys() )
# Load HuggingFace model
UpperCAmelCase = get_efficientnet_config(_a )
UpperCAmelCase = EfficientNetForImageClassification(_a ).eval()
UpperCAmelCase = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
UpperCAmelCase = rename_keys(_a )
replace_params(_a , _a , _a )
# Initialize preprocessor and preprocess input image
UpperCAmelCase = convert_image_processor(_a )
UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
UpperCAmelCase = hf_model(**_a )
UpperCAmelCase = outputs.logits.detach().numpy()
# Original model inference
UpperCAmelCase = False
UpperCAmelCase = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
UpperCAmelCase = image.img_to_array(_a )
UpperCAmelCase = np.expand_dims(_a , axis=0 )
UpperCAmelCase = original_model.predict(_a )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_a , _a , atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(_a ):
os.mkdir(_a )
# Save converted model and image processor
hf_model.save_pretrained(_a )
preprocessor.save_pretrained(_a )
if push_to_hub:
# Push model and image processor to hub
print(F"Pushing converted {model_name} to the hub..." )
UpperCAmelCase = F"efficientnet-{model_name}"
preprocessor.push_to_hub(_a )
hf_model.push_to_hub(_a )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
A =parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 34
| 0
|
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> bool:
"""simple docstring"""
_lowercase =len(__snake_case )
_lowercase =len(__snake_case )
_lowercase =[[False for _ in range(m + 1 )] for _ in range(n + 1 )]
_lowercase =True
for i in range(__snake_case ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
_lowercase =True
if a[i].islower():
_lowercase =True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5
|
'''simple docstring'''
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
A =input('Enter image url: ').strip()
print(f"""Downloading image from {url} ...""")
A =BeautifulSoup(requests.get(url).content, 'html.parser')
# The image URL is in the content field of the first meta tag with property og:image
A =soup.find('meta', {'property': 'og:image'})['content']
A =requests.get(image_url).content
A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, 'wb') as fp:
fp.write(image_data)
print(f"""Done. Image saved to disk as {file_name}.""")
| 34
| 0
|
def __lowerCAmelCase ( a__ , a__ = False ) -> bool:
if n == 2:
return True
if not n % 2 or n < 2:
return False
if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit
return False
if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable:
raise ValueError(
'''Warning: upper bound of deterministic test is exceeded. '''
'''Pass allow_probable=True to allow probabilistic test. '''
'''A return value of True indicates a probable prime.''' )
# array bounds provided by analysis
__a = [
2047,
137_3653,
2532_6001,
32_1503_1751,
2_1523_0289_8747,
3_4747_4966_0383,
341_5500_7172_8321,
1,
382_5123_0565_4641_3051,
1,
1,
3186_6585_7834_0311_5116_7461,
3_3170_4406_4679_8873_8596_1981,
]
__a = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
for idx, _p in enumerate(a__ , 1 ):
if n < _p:
# then we have our last prime to check
__a = primes[:idx]
break
__a , __a = n - 1, 0
# break up n -1 into a power of 2 (s) and
# remaining odd component
# essentially, solve for d * 2 ** s == n - 1
while d % 2 == 0:
d //= 2
s += 1
for prime in plist:
__a = False
for r in range(a__ ):
__a = pow(a__ , d * 2**r , a__ )
# see article for analysis explanation for m
if (r == 0 and m == 1) or ((m + 1) % n == 0):
__a = True
# this loop will not determine compositeness
break
if pr:
continue
# if pr is False, then the above loop never evaluated to true,
# and the n MUST be composite
return False
return True
def __lowerCAmelCase ( ) -> None:
assert not miller_rabin(561 )
assert miller_rabin(563 )
# 2047
assert not miller_rabin(83_8201 )
assert miller_rabin(83_8207 )
# 1_373_653
assert not miller_rabin(1731_6001 )
assert miller_rabin(1731_6017 )
# 25_326_001
assert not miller_rabin(30_7838_6641 )
assert miller_rabin(30_7838_6653 )
# 3_215_031_751
assert not miller_rabin(1_7130_4557_4801 )
assert miller_rabin(1_7130_4557_4819 )
# 2_152_302_898_747
assert not miller_rabin(2_7797_9972_8307 )
assert miller_rabin(2_7797_9972_8327 )
# 3_474_749_660_383
assert not miller_rabin(113_8500_2390_9441 )
assert miller_rabin(113_8500_2390_9527 )
# 341_550_071_728_321
assert not miller_rabin(127_5041_0188_4880_4351 )
assert miller_rabin(127_5041_0188_4880_4391 )
# 3_825_123_056_546_413_051
assert not miller_rabin(796_6646_4458_5077_8779_1867 )
assert miller_rabin(796_6646_4458_5077_8779_1951 )
# 318_665_857_834_031_151_167_461
assert not miller_rabin(5528_4067_7446_6478_9766_0333 )
assert miller_rabin(5528_4067_7446_6478_9766_0359 )
# 3_317_044_064_679_887_385_961_981
# upper limit for probabilistic test
if __name__ == "__main__":
test_miller_rabin()
| 6
|
'''simple docstring'''
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class _a ( __a ):
__a : str = ["""vqvae"""]
def __init__( self : str , lowercase : AutoencoderKL , lowercase : UNetaDConditionModel , lowercase : Mel , lowercase : Union[DDIMScheduler, DDPMScheduler] , ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
return 50 if isinstance(self.scheduler , lowercase ) else 1_000
@torch.no_grad()
def __call__( self : Optional[Any] , lowercase : int = 1 , lowercase : str = None , lowercase : np.ndarray = None , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = None , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : float = 0 , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : torch.Tensor = None , lowercase : torch.Tensor = None , lowercase : Tuple=True , ):
'''simple docstring'''
UpperCAmelCase = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowercase )
UpperCAmelCase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
UpperCAmelCase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowercase , device=self.device , )
UpperCAmelCase = noise
UpperCAmelCase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowercase , lowercase )
UpperCAmelCase = self.mel.audio_slice_to_image(lowercase )
UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape(
(input_image.height, input_image.width) )
UpperCAmelCase = (input_image / 255) * 2 - 1
UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample(
generator=lowercase )[0]
UpperCAmelCase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] )
UpperCAmelCase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
UpperCAmelCase = int(mask_start_secs * pixels_per_second )
UpperCAmelCase = int(mask_end_secs * pixels_per_second )
UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowercase ):
UpperCAmelCase = self.unet(lowercase , lowercase , lowercase )['''sample''']
else:
UpperCAmelCase = self.unet(lowercase , lowercase )['''sample''']
if isinstance(self.scheduler , lowercase ):
UpperCAmelCase = self.scheduler.step(
model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )['''prev_sample''']
else:
UpperCAmelCase = self.scheduler.step(
model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )['''prev_sample''']
if mask is not None:
if mask_start > 0:
UpperCAmelCase = mask[:, step, :, :mask_start]
if mask_end > 0:
UpperCAmelCase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images
UpperCAmelCase = self.vqvae.decode(lowercase )['''sample''']
UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
UpperCAmelCase = (images * 255).round().astype('''uint8''' )
UpperCAmelCase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) )
UpperCAmelCase = [self.mel.image_to_audio(lowercase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) )
@torch.no_grad()
def A ( self : Dict , lowercase : List[Image.Image] , lowercase : int = 50 ):
'''simple docstring'''
assert isinstance(self.scheduler , lowercase )
self.scheduler.set_timesteps(lowercase )
UpperCAmelCase = np.array(
[np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] )
UpperCAmelCase = (sample / 255) * 2 - 1
UpperCAmelCase = torch.Tensor(lowercase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
UpperCAmelCase = self.scheduler.alphas_cumprod[t]
UpperCAmelCase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
UpperCAmelCase = 1 - alpha_prod_t
UpperCAmelCase = self.unet(lowercase , lowercase )['''sample''']
UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def A ( lowercase : torch.Tensor , lowercase : torch.Tensor , lowercase : float ):
'''simple docstring'''
UpperCAmelCase = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) )
return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
| 34
| 0
|
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]:
'''simple docstring'''
output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
else:
export(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , )
@torch.no_grad()
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple:
'''simple docstring'''
A__ = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
A__ = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
A__ = 'cpu'
A__ = Path(SCREAMING_SNAKE_CASE__ )
# VAE DECODER
A__ = AutoencoderKL.from_pretrained(model_path + '/vae' )
A__ = vae_decoder.config.latent_channels
# forward only through the decoder part
A__ = vae_decoder.decode
onnx_export(
SCREAMING_SNAKE_CASE__ , model_args=(
torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=SCREAMING_SNAKE_CASE__ , )
del vae_decoder
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowercase_ = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 7
|
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
A =logging.get_logger(__name__)
A =TypeVar('DatasetType', Dataset, IterableDataset)
def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ):
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('''Unable to interleave an empty list of datasets.''' )
for i, dataset in enumerate(_a ):
if not isinstance(_a , (Dataset, IterableDataset) ):
if isinstance(_a , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'''is an empty dataset dictionary.''' )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(_a )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." )
if i == 0:
UpperCAmelCase , UpperCAmelCase = (
(Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset)
)
elif not isinstance(_a , _a ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
_a , _a , _a , info=_a , split=_a , stopping_strategy=_a )
else:
return _interleave_iterable_datasets(
_a , _a , _a , info=_a , split=_a , stopping_strategy=_a )
def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ):
if not dsets:
raise ValueError('''Unable to concatenate an empty list of datasets.''' )
for i, dataset in enumerate(_a ):
if not isinstance(_a , (Dataset, IterableDataset) ):
if isinstance(_a , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
'''is an empty dataset dictionary.''' )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(_a )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." )
if i == 0:
UpperCAmelCase , UpperCAmelCase = (
(Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset)
)
elif not isinstance(_a , _a ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a )
else:
return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
| 34
| 0
|
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if not numbers:
return 0
if not isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) or not all(
isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for number in numbers ):
raise ValueError('''numbers must be an iterable of integers''' )
snake_case_ = snake_case_ = snake_case_ = numbers[0]
for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ):
# update the maximum and minimum subarray products
snake_case_ = numbers[i]
if number < 0:
snake_case_, snake_case_ = min_till_now, max_till_now
snake_case_ = max(SCREAMING_SNAKE_CASE__ , max_till_now * number )
snake_case_ = min(SCREAMING_SNAKE_CASE__ , min_till_now * number )
# update the maximum product found till now
snake_case_ = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return max_prod
| 8
|
'''simple docstring'''
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def snake_case_ (_a : Tuple ):
return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def snake_case_ ():
UpperCAmelCase = ArgumentParser(
'''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a )
UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(_a )
EnvironmentCommand.register_subcommand(_a )
TestCommand.register_subcommand(_a )
RunBeamCommand.register_subcommand(_a )
DummyDataCommand.register_subcommand(_a )
# Parse args
UpperCAmelCase , UpperCAmelCase = parser.parse_known_args()
if not hasattr(_a , '''func''' ):
parser.print_help()
exit(1 )
UpperCAmelCase = parse_unknown_args(_a )
# Run
UpperCAmelCase = args.func(_a , **_a )
service.run()
if __name__ == "__main__":
main()
| 34
| 0
|
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__lowerCAmelCase : int =logging.get_logger(__name__)
class _lowercase ( A__ ):
'''simple docstring'''
def __init__( self :Union[str, Any] , *lowerCAmelCase__ :Tuple , **lowerCAmelCase__ :Tuple ) -> None:
warnings.warn(
'''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use GLPNImageProcessor instead.''' , lowerCAmelCase__ , )
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
| 9
|
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
A =[
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
A =logging.getLogger()
def snake_case_ ():
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
UpperCAmelCase = parser.parse_args()
return args.f
def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ):
UpperCAmelCase = os.path.join(_a , F"{split}_results.json" )
if os.path.exists(_a ):
with open(_a , '''r''' ) as f:
return json.load(_a )
raise ValueError(F"can't find {path}" )
A =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( __a ):
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_glue.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_clm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_summarization_flax.main()
UpperCAmelCase = get_results(lowercase , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_ta_mlm_flax.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = 7 if get_gpu_count() > 1 else 2
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_flax_ner.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(lowercase , '''argv''' , lowercase ):
run_qa.main()
UpperCAmelCase = get_results(lowercase )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 34
| 0
|
import datasets
__A = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n"
__A = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n"
__A = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n"
def lowerCAmelCase_ ( __a , __a ) -> List[str]:
"""simple docstring"""
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _SCREAMING_SNAKE_CASE ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32"),
"references": datasets.Value("int64" if self.config_name != "sts-b" else "float32"),
}) , codebase_urls=[] , reference_urls=[] , format="numpy" , )
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]) ->Union[str, Any]:
'''simple docstring'''
return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_)}
| 10
|
'''simple docstring'''
class _a :
def __init__( self : Any ):
'''simple docstring'''
UpperCAmelCase = {} # Mapping from char to TrieNode
UpperCAmelCase = False
def A ( self : int , lowercase : list[str] ):
'''simple docstring'''
for word in words:
self.insert(lowercase )
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
UpperCAmelCase = TrieNode()
UpperCAmelCase = curr.nodes[char]
UpperCAmelCase = True
def A ( self : Optional[int] , lowercase : str ):
'''simple docstring'''
UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
return False
UpperCAmelCase = curr.nodes[char]
return curr.is_leaf
def A ( self : str , lowercase : str ):
'''simple docstring'''
def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool:
if index == len(lowercase ):
# If word does not exist
if not curr.is_leaf:
return False
UpperCAmelCase = False
return len(curr.nodes ) == 0
UpperCAmelCase = word[index]
UpperCAmelCase = curr.nodes.get(lowercase )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
UpperCAmelCase = _delete(lowercase , lowercase , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , lowercase , 0 )
def snake_case_ (_a : TrieNode , _a : str ):
if node.is_leaf:
print(_a , end=''' ''' )
for key, value in node.nodes.items():
print_words(_a , word + key )
def snake_case_ ():
UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split()
UpperCAmelCase = TrieNode()
root.insert_many(_a )
# print_words(root, "")
assert all(root.find(_a ) for word in words )
assert root.find('''banana''' )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
assert root.find('''apple''' )
assert root.find('''all''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def snake_case_ (_a : str , _a : bool ):
print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' )
def snake_case_ ():
assert test_trie()
def snake_case_ ():
print_results('''Testing trie functionality''' , test_trie() )
if __name__ == "__main__":
main()
| 34
| 0
|
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json',
}
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "git_vision_model"
def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase="quick_gelu" , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , **__lowerCamelCase , ) -> Any:
super().__init__(**__lowerCamelCase)
_A : int = hidden_size
_A : int = intermediate_size
_A : int = num_hidden_layers
_A : Dict = num_attention_heads
_A : Dict = num_channels
_A : List[Any] = patch_size
_A : str = image_size
_A : str = initializer_range
_A : int = attention_dropout
_A : Tuple = layer_norm_eps
_A : Dict = hidden_act
@classmethod
def _lowerCamelCase ( cls , __lowerCamelCase , **__lowerCamelCase) -> "PretrainedConfig":
cls._set_token_in_kwargs(__lowerCamelCase)
_A , _A : Union[str, Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase)
# get the vision config dict if we are loading from GITConfig
if config_dict.get("model_type") == "git":
_A : Optional[int] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.")
return cls.from_dict(__lowerCamelCase , **__lowerCamelCase)
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "git"
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=6 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=1_0_1 , __lowerCamelCase=1_0_2 , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]:
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , pad_token_id=__lowerCamelCase , **__lowerCamelCase)
if vision_config is None:
_A : List[str] = {}
logger.info("vision_config is None. initializing the GitVisionConfig with default values.")
_A : str = GitVisionConfig(**__lowerCamelCase)
_A : Tuple = vocab_size
_A : str = hidden_size
_A : Optional[int] = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Optional[Any] = hidden_act
_A : str = intermediate_size
_A : Tuple = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : int = max_position_embeddings
_A : List[Any] = initializer_range
_A : List[Any] = layer_norm_eps
_A : Union[str, Any] = position_embedding_type
_A : Union[str, Any] = use_cache
_A : int = tie_word_embeddings
_A : int = num_image_with_embedding
_A : Optional[Any] = bos_token_id
_A : str = eos_token_id
def _lowerCamelCase ( self) -> Dict:
_A : str = copy.deepcopy(self.__dict__)
_A : Any = self.vision_config.to_dict()
_A : Tuple = self.__class__.model_type
return output
| 11
|
'''simple docstring'''
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json',
'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json',
}
class _a ( __a ):
__a : Union[str, Any] = """encodec"""
def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase = target_bandwidths
UpperCAmelCase = sampling_rate
UpperCAmelCase = audio_channels
UpperCAmelCase = normalize
UpperCAmelCase = chunk_length_s
UpperCAmelCase = overlap
UpperCAmelCase = hidden_size
UpperCAmelCase = num_filters
UpperCAmelCase = num_residual_layers
UpperCAmelCase = upsampling_ratios
UpperCAmelCase = norm_type
UpperCAmelCase = kernel_size
UpperCAmelCase = last_kernel_size
UpperCAmelCase = residual_kernel_size
UpperCAmelCase = dilation_growth_rate
UpperCAmelCase = use_causal_conv
UpperCAmelCase = pad_mode
UpperCAmelCase = compress
UpperCAmelCase = num_lstm_layers
UpperCAmelCase = trim_right_ratio
UpperCAmelCase = codebook_size
UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size
UpperCAmelCase = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" )
super().__init__(**lowercase )
@property
def A ( self : Dict ):
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def A ( self : Union[str, Any] ):
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 34
| 0
|
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Dict = 'deberta-v2'
def __init__( self: Optional[Any] , UpperCamelCase_: Union[str, Any]=12_81_00 , UpperCamelCase_: Optional[int]=15_36 , UpperCamelCase_: str=24 , UpperCamelCase_: Optional[Any]=24 , UpperCamelCase_: int=61_44 , UpperCamelCase_: Dict="gelu" , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: List[Any]=0 , UpperCamelCase_: Any=0.02 , UpperCamelCase_: Tuple=1E-7 , UpperCamelCase_: List[Any]=False , UpperCamelCase_: Any=-1 , UpperCamelCase_: Tuple=0 , UpperCamelCase_: str=True , UpperCamelCase_: Any=None , UpperCamelCase_: List[Any]=0 , UpperCamelCase_: str="gelu" , **UpperCamelCase_: Tuple , ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = relative_attention
__lowerCamelCase = max_relative_positions
__lowerCamelCase = pad_token_id
__lowerCamelCase = position_biased_input
# Backwards compatibility
if type(UpperCamelCase_ ) == str:
__lowerCamelCase = [x.strip() for x in pos_att_type.lower().split("""|""" )]
__lowerCamelCase = pos_att_type
__lowerCamelCase = vocab_size
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = kwargs.get("""pooler_hidden_size""" , UpperCamelCase_ )
__lowerCamelCase = pooler_dropout
__lowerCamelCase = pooler_hidden_act
class lowerCamelCase__( __lowerCamelCase):
@property
def lowerCAmelCase__ ( self: int ):
if self.task == "multiple-choice":
__lowerCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__lowerCamelCase = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def lowerCAmelCase__ ( self: Any ):
return 12
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional["TensorType"] = None , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 40 , UpperCamelCase_: int = 40 , UpperCamelCase_: "PreTrainedTokenizerBase" = None , ):
__lowerCamelCase = super().generate_dummy_inputs(preprocessor=UpperCamelCase_ , framework=UpperCamelCase_ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 12
|
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
A =logging.get_logger(__name__)
class _a ( __a ):
__a : str = ["""pixel_values"""]
def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = resample
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" )
UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase )
return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase )
def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ):
'''simple docstring'''
UpperCAmelCase = get_size_dict(lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" )
return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase )
def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ):
'''simple docstring'''
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ):
'''simple docstring'''
return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase )
def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ):
'''simple docstring'''
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' )
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(lowercase ) for image in images]
if do_resize:
UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images]
if do_center_crop:
UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
if do_normalize:
UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=lowercase , tensor_type=lowercase )
def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ):
'''simple docstring'''
UpperCAmelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase ) != len(lowercase ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowercase ):
UpperCAmelCase = target_sizes.numpy()
UpperCAmelCase = []
for idx in range(len(lowercase ) ):
UpperCAmelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase )
UpperCAmelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase )
else:
UpperCAmelCase = logits.argmax(dim=1 )
UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 34
| 0
|
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
lowerCAmelCase : Optional[int] = logging.getLogger(__name__)
class __lowercase ( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=None):
super().__init__(
lowerCAmelCase__ , question_encoder_tokenizer=lowerCAmelCase__ , generator_tokenizer=lowerCAmelCase__ , index=lowerCAmelCase__ , init_retrieval=lowerCAmelCase__ , )
SCREAMING_SNAKE_CASE_: Any = None
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : int):
logger.info("initializing retrieval")
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("dist initialized")
# needs to be set manually
SCREAMING_SNAKE_CASE_: Dict = self._infer_socket_ifname()
# avoid clash with the NCCL port
SCREAMING_SNAKE_CASE_: List[Any] = str(distributed_port + 1)
SCREAMING_SNAKE_CASE_: int = dist.new_group(ranks=lowerCAmelCase__ , backend="gloo")
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("dist not initialized / main")
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
return dist.get_rank(group=self.process_group) == 0
def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=torch.floataa):
SCREAMING_SNAKE_CASE_: str = torch.empty(lowerCAmelCase__ , dtype=lowerCAmelCase__)
dist.scatter(lowerCAmelCase__ , src=0 , scatter_list=lowerCAmelCase__ , group=self.process_group)
return target_tensor
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
SCREAMING_SNAKE_CASE_: int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
SCREAMING_SNAKE_CASE_: Any = next((addr for addr in addrs if addr.startswith("e")) , lowerCAmelCase__)
return ifname
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int):
# single GPU training
if not dist.is_initialized():
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._main_retrieve(lowerCAmelCase__ , lowerCAmelCase__)
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase__)
# distributed training
SCREAMING_SNAKE_CASE_: Dict = dist.get_world_size(group=self.process_group)
# gather logic
SCREAMING_SNAKE_CASE_: Optional[Any] = None
if self._is_main():
SCREAMING_SNAKE_CASE_: Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowerCAmelCase__)]
dist.gather(torch.tensor(lowerCAmelCase__) , dst=0 , gather_list=lowerCAmelCase__ , group=self.process_group)
# scatter logic
SCREAMING_SNAKE_CASE_: Optional[Any] = question_hidden_states.shape[0]
SCREAMING_SNAKE_CASE_: Dict = []
SCREAMING_SNAKE_CASE_: List[Any] = []
if self._is_main():
assert len(lowerCAmelCase__) == world_size
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._main_retrieve(torch.cat(lowerCAmelCase__).numpy() , lowerCAmelCase__)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = torch.tensor(lowerCAmelCase__), torch.tensor(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[Any] = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[int] = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[Any] = self._scattered(lowerCAmelCase__ , [n_queries, n_docs] , target_type=torch.intaa)
SCREAMING_SNAKE_CASE_: int = self._scattered(lowerCAmelCase__ , [n_queries, n_docs, question_hidden_states.shape[1]])
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase__)
| 13
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
A =logging.getLogger(__name__)
def snake_case_ (_a : Dict , _a : Union[str, Any] ):
return (preds == labels).mean()
@dataclass
class _a :
__a : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class _a :
__a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} )
__a : str = field(metadata={"""help""": """Should contain the data files for the task."""} )
__a : int = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__a : bool = field(
default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def snake_case_ ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , _a )
# Set seed
set_seed(training_args.seed )
try:
UpperCAmelCase = processors[data_args.task_name]()
UpperCAmelCase = processor.get_labels()
UpperCAmelCase = len(_a )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , )
# Get datasets
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
UpperCAmelCase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_a : EvalPrediction ) -> Dict:
UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_a , p.label_ids )}
# Data collator
UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
UpperCAmelCase = Trainer(
model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase = trainer.evaluate()
UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(_a , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , _a , _a )
writer.write('''%s = %s\n''' % (key, value) )
results.update(_a )
return results
def snake_case_ (_a : Optional[int] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 34
| 0
|
from statistics import mean
import numpy as np
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list:
"""simple docstring"""
A__ = 0
# Number of processes finished
A__ = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
A__ = [0] * no_of_process
# List to include calculation results
A__ = [0] * no_of_process
# Sort by arrival time.
A__ = [burst_time[i] for i in np.argsort(lowercase_ )]
A__ = [process_name[i] for i in np.argsort(lowercase_ )]
arrival_time.sort()
while no_of_process > finished_process_count:
A__ = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
A__ = arrival_time[i]
A__ = 0
# Index showing the location of the process being performed
A__ = 0
# Saves the current response ratio.
A__ = 0
for i in range(0 , lowercase_ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
A__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
A__ = temp
A__ = i
# Calculate the turn around time
A__ = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
A__ = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list:
"""simple docstring"""
A__ = [0] * no_of_process
for i in range(0 , lowercase_ ):
A__ = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_lowerCamelCase : List[Any] = 5
_lowerCamelCase : Any = ["""A""", """B""", """C""", """D""", """E"""]
_lowerCamelCase : Optional[int] = [1, 2, 3, 4, 5]
_lowerCamelCase : Optional[int] = [1, 2, 3, 4, 5]
_lowerCamelCase : Union[str, Any] = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_lowerCamelCase : Tuple = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""")
for i in range(0, no_of_process):
print(
F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'''
F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}'''
)
print(F'''average waiting time : {mean(waiting_time):.5f}''')
print(F'''average turn around time : {mean(turn_around_time):.5f}''')
| 14
|
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _a ( __a ):
__a : int = ["""image_processor""", """tokenizer"""]
__a : Union[str, Any] = """ChineseCLIPImageProcessor"""
__a : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Dict , lowercase : Union[str, Any]=None , lowercase : Dict=None , **lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , lowercase , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowercase , lowercase )
UpperCAmelCase = self.image_processor
def __call__( self : Tuple , lowercase : Optional[Any]=None , lowercase : Union[str, Any]=None , lowercase : int=None , **lowercase : Dict ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase )
if images is not None:
UpperCAmelCase = self.image_processor(lowercase , return_tensors=lowercase , **lowercase )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase )
def A ( self : int , *lowercase : Tuple , **lowercase : List[str] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase , **lowercase )
def A ( self : Optional[Any] , *lowercase : int , **lowercase : Optional[int] ):
'''simple docstring'''
return self.tokenizer.decode(*lowercase , **lowercase )
@property
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A ( self : List[Any] ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase , )
return self.image_processor_class
| 34
| 0
|
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__)
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] )
__A = MaskFormerConfig(backbone_config=a_ )
__A = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
__A = 8_4_7
__A = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
__A = 1_5_0
__A = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
__A = 1_7_1
__A = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
__A = 1_3_3
__A = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
__A = 1_9
__A = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
__A = 6_5
__A = "mapillary-vistas-id2label.json"
__A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) )
__A = {int(a_ ): v for k, v in idalabel.items()}
return config
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
__A = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") )
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") )
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") )
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") )
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") )
for i in range(3 ):
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = dct.pop(a_ )
__A = val
def UpperCAmelCase ( a_ , a_ ) -> Dict:
"""simple docstring"""
__A = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
__A = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
__A = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
__A = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
__A = in_proj_weight[:dim, :]
__A = in_proj_bias[: dim]
__A = in_proj_weight[
dim : dim * 2, :
]
__A = in_proj_bias[
dim : dim * 2
]
__A = in_proj_weight[
-dim :, :
]
__A = in_proj_bias[-dim :]
# fmt: on
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
__A = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
__A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
__A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__A = in_proj_weight[: hidden_size, :]
__A = in_proj_bias[:config.hidden_size]
__A = in_proj_weight[hidden_size : hidden_size * 2, :]
__A = in_proj_bias[hidden_size : hidden_size * 2]
__A = in_proj_weight[-hidden_size :, :]
__A = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
__A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
__A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__A = in_proj_weight[: hidden_size, :]
__A = in_proj_bias[:config.hidden_size]
__A = in_proj_weight[hidden_size : hidden_size * 2, :]
__A = in_proj_bias[hidden_size : hidden_size * 2]
__A = in_proj_weight[-hidden_size :, :]
__A = in_proj_bias[-hidden_size :]
# fmt: on
def UpperCAmelCase ( ) -> torch.Tensor:
"""simple docstring"""
__A = "http://images.cocodataset.org/val2017/000000039769.jpg"
__A = Image.open(requests.get(a_ , stream=a_ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ , a_ , a_ = False ) -> Union[str, Any]:
"""simple docstring"""
__A = get_maskformer_config(a_ )
# load original state_dict
with open(a_ , "rb" ) as f:
__A = pickle.load(a_ )
__A = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
__A = create_rename_keys(a_ )
for src, dest in rename_keys:
rename_key(a_ , a_ , a_ )
read_in_swin_q_k_v(a_ , config.backbone_config )
read_in_decoder_q_k_v(a_ , a_ )
# update to torch tensors
for key, value in state_dict.items():
__A = torch.from_numpy(a_ )
# load 🤗 model
__A = MaskFormerForInstanceSegmentation(a_ )
model.eval()
for name, param in model.named_parameters():
print(a_ , param.shape )
__A , __A = model.load_state_dict(a_ , strict=a_ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(a_ ) == 0, F'''Unexpected keys: {unexpected_keys}'''
# verify results
__A = prepare_img()
if "vistas" in model_name:
__A = 6_5
elif "cityscapes" in model_name:
__A = 6_5_5_3_5
else:
__A = 2_5_5
__A = True if "ade" in model_name else False
__A = MaskFormerImageProcessor(ignore_index=a_ , reduce_labels=a_ )
__A = image_processor(a_ , return_tensors="pt" )
__A = model(**a_ )
print("Logits:" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
__A = torch.tensor(
[[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , a_ , atol=1E-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if push_to_hub:
print("Pushing model and image processor to the hub..." )
model.push_to_hub(F'''nielsr/{model_name}''' )
image_processor.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='maskformer-swin-tiny-ade',
type=str,
help=('Name of the MaskFormer model you\'d like to convert',),
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl',
type=str,
help='Path to the original state dict (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 15
|
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
A =logging.get_logger(__name__)
A ={
'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json',
# See all Marian models at https://huggingface.co/models?filter=marian
}
class _a ( __a ):
__a : List[Any] = """marian"""
__a : Union[str, Any] = ["""past_key_values"""]
__a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase = vocab_size
UpperCAmelCase = decoder_vocab_size or vocab_size
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = d_model
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , )
class _a ( __a ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def A ( self : int ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowercase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase , UpperCAmelCase = self.num_layers
for i in range(lowercase ):
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
UpperCAmelCase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def A ( self : Any ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = super().outputs
else:
UpperCAmelCase = super(lowercase , self ).outputs
if self.use_past:
UpperCAmelCase , UpperCAmelCase = self.num_layers
for i in range(lowercase ):
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
# Generate decoder inputs
UpperCAmelCase = seq_length if not self.use_past else 1
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
UpperCAmelCase = dict(**lowercase , **lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape
UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1]
UpperCAmelCase , UpperCAmelCase = self.num_attention_heads
UpperCAmelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase = decoder_seq_length + 3
UpperCAmelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
UpperCAmelCase = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 )
UpperCAmelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
UpperCAmelCase , UpperCAmelCase = self.num_layers
UpperCAmelCase = min(lowercase , lowercase )
UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers
UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(lowercase ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
torch.zeros(lowercase ),
) )
# TODO: test this.
UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(lowercase , lowercase ):
common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) )
return common_inputs
def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase = seqlen + 2
UpperCAmelCase , UpperCAmelCase = self.num_layers
UpperCAmelCase , UpperCAmelCase = self.num_attention_heads
UpperCAmelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCAmelCase = common_inputs['''attention_mask'''].dtype
UpperCAmelCase = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 )
UpperCAmelCase = [
(torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase )
]
return common_inputs
def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
UpperCAmelCase = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase )
UpperCAmelCase = compute_effective_axis_dimension(
lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase )
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) )
return common_inputs
def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
else:
UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
return common_inputs
def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase )
else:
UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_(
lowercase , lowercase , lowercase , lowercase )
@property
def A ( self : Any ):
'''simple docstring'''
return 1E-4
| 34
| 0
|
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.g4dn.xlarge",
"results": {"train_runtime": 6_5_0, "eval_accuracy": 0.6, "eval_loss": 0.9},
},
{
"framework": "tensorflow",
"script": "run_tf.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.g4dn.xlarge",
"results": {"train_runtime": 6_0_0, "eval_accuracy": 0.3, "eval_loss": 0.9},
},
] )
class __A ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='''utf-8''' ,check=_snake_case ,)
assert hasattr(self ,'''env''' )
def UpperCAmelCase ( self : List[Any] ,_snake_case : Any=1 ) -> Any:
"""simple docstring"""
return HuggingFace(
entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=f"""{self.env.base_job_name}-single""" ,instance_count=_snake_case ,instance_type=self.instance_type ,debugger_hook_config=_snake_case ,hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,py_version='''py36''' ,)
def UpperCAmelCase ( self : Tuple ,_snake_case : List[Any] ) -> List[Any]:
"""simple docstring"""
TrainingJobAnalytics(_snake_case ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" )
def UpperCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ : Tuple = self.create_estimator()
# run training
estimator.fit()
# result dataframe
lowercase__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowercase__ : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
lowercase__ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowercase__ : List[Any] = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' ,999_999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"""{estimator.latest_training_job.name}.json""" ,'''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} ,_snake_case )
| 16
|
'''simple docstring'''
import os
def snake_case_ ():
UpperCAmelCase = os.path.join(os.path.dirname(_a ) , '''num.txt''' )
with open(_a ) as file_hand:
return str(sum(int(_a ) for line in file_hand ) )[:1_0]
if __name__ == "__main__":
print(solution())
| 34
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_a = logging.get_logger(__name__)
def _A ( UpperCamelCase_ : str) -> List[List[ImageInput]]:
'''simple docstring'''
if isinstance(UpperCamelCase_, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(UpperCamelCase_, (list, tuple)) and is_valid_image(videos[0]):
return [videos]
elif is_valid_image(UpperCamelCase_):
return [[videos]]
raise ValueError(F"""Could not make batched video from {videos}""")
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : int = ["pixel_values"]
def __init__( self : Optional[int], UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, **UpperCAmelCase__ : Any, ):
super().__init__(**UpperCAmelCase__ )
__lowercase = size if size is not None else {"shortest_edge": 2_2_4}
__lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ )
__lowercase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4}
__lowercase = get_size_dict(UpperCAmelCase__, param_name="crop_size" )
__lowercase = do_resize
__lowercase = size
__lowercase = do_center_crop
__lowercase = crop_size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase ( self : int, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Optional[int], ):
__lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ )
if "shortest_edge" in size:
__lowercase = get_resize_output_image_size(UpperCAmelCase__, size["shortest_edge"], default_to_square=UpperCAmelCase__ )
elif "height" in size and "width" in size:
__lowercase = (size["height"], size["width"])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : int, ):
__lowercase = get_size_dict(UpperCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(UpperCAmelCase__, size=(size["height"], size["width"]), data_format=UpperCAmelCase__, **UpperCAmelCase__ )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Union[int, float], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Optional[Any], ):
return rescale(UpperCAmelCase__, scale=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : int, ):
return normalize(UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : float = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST, ):
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__lowercase = to_numpy_array(UpperCAmelCase__ )
if do_resize:
__lowercase = self.resize(image=UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__ )
if do_center_crop:
__lowercase = self.center_crop(UpperCAmelCase__, size=UpperCAmelCase__ )
if do_rescale:
__lowercase = self.rescale(image=UpperCAmelCase__, scale=UpperCAmelCase__ )
if do_normalize:
__lowercase = self.normalize(image=UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__ )
__lowercase = to_channel_dimension_format(UpperCAmelCase__, UpperCAmelCase__ )
return image
def _lowercase ( self : List[str], UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : float = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST, **UpperCAmelCase__ : Optional[Any], ):
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ )
__lowercase = crop_size if crop_size is not None else self.crop_size
__lowercase = get_size_dict(UpperCAmelCase__, param_name="crop_size" )
if not valid_images(UpperCAmelCase__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
__lowercase = make_batched(UpperCAmelCase__ )
__lowercase = [
[
self._preprocess_image(
image=UpperCAmelCase__, do_resize=UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__, do_center_crop=UpperCAmelCase__, crop_size=UpperCAmelCase__, do_rescale=UpperCAmelCase__, rescale_factor=UpperCAmelCase__, do_normalize=UpperCAmelCase__, image_mean=UpperCAmelCase__, image_std=UpperCAmelCase__, data_format=UpperCAmelCase__, )
for img in video
]
for video in videos
]
__lowercase = {"pixel_values": videos}
return BatchFeature(data=UpperCAmelCase__, tensor_type=UpperCAmelCase__ )
| 17
|
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
A =logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
A ={
'base': AutoModel,
'sequence-classification': AutoModelForSequenceClassification,
'question-answering': AutoModelForQuestionAnswering,
'pretraining': AutoModelForPreTraining,
'token-classification': AutoModelForTokenClassification,
'language-modeling': AutoModelWithLMHead,
'summarization': AutoModelForSeqaSeqLM,
'translation': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
A ={
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
A =sorted(arg_to_scheduler.keys())
A ='{' + ', '.join(arg_to_scheduler_choices) + '}'
class _a ( pl.LightningModule ):
def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ):
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowercase )
UpperCAmelCase = 0
UpperCAmelCase = Path(self.hparams.output_dir )
UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
UpperCAmelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , )
else:
UpperCAmelCase = config
UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , lowercase , lowercase ):
assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute"
setattr(self.config , lowercase , getattr(self.hparams , lowercase ) )
if tokenizer is None:
UpperCAmelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , )
else:
UpperCAmelCase = tokenizer
UpperCAmelCase = MODEL_MODES[mode]
if model is None:
UpperCAmelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , )
else:
UpperCAmelCase = model
def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase )
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler]
UpperCAmelCase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = self.model
UpperCAmelCase = ['''bias''', '''LayerNorm.weight''']
UpperCAmelCase = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
UpperCAmelCase = Adafactor(
lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase )
else:
UpperCAmelCase = AdamW(
lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
UpperCAmelCase = optimizer
UpperCAmelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def A ( self : List[Any] , lowercase : int , lowercase : List[str] ):
'''simple docstring'''
return self.validation_step(lowercase , lowercase )
def A ( self : List[Any] , lowercase : Tuple ):
'''simple docstring'''
return self.validation_end(lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def A ( self : List[str] , lowercase : Any ):
'''simple docstring'''
if stage == "test":
UpperCAmelCase = len(self.test_dataloader().dataset )
else:
UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase )
UpperCAmelCase = len(self.train_dataloader().dataset )
def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ):
'''simple docstring'''
raise NotImplementedError('''You must implement this for your task''' )
def A ( self : Union[str, Any] ):
'''simple docstring'''
return self.train_loader
def A ( self : Optional[Any] ):
'''simple docstring'''
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase )
def A ( self : List[Any] ):
'''simple docstring'''
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase )
def A ( self : Any , lowercase : Union[str, Any] ):
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def A ( self : List[str] , lowercase : Dict[str, Any] ):
'''simple docstring'''
UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' )
UpperCAmelCase = self.step_count
self.model.save_pretrained(lowercase )
self.tokenizer.save_pretrained(lowercase )
@staticmethod
def A ( lowercase : Optional[int] , lowercase : List[str] ):
'''simple docstring'''
parser.add_argument(
'''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase )
parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase )
parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class _a ( pl.Callback ):
def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ):
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _a ( pl.Callback ):
def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ):
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowercase )
class _a ( pl.Callback ):
def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler''']
UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowercase )
def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info('''***** Validation results *****''' )
UpperCAmelCase = trainer.callback_metrics
# Log results
for key in sorted(lowercase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info('''***** Test results *****''' )
UpperCAmelCase = trainer.callback_metrics
# Log and save results to file
UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(lowercase , '''w''' ) as writer:
for key in sorted(lowercase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) )
def snake_case_ (_a : int , _a : Optional[Any] ):
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=_a , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ):
pl.seed_everything(args.seed )
# init model
UpperCAmelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_a )
# add custom checkpoints
if checkpoint_callback is None:
UpperCAmelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_a )
if logging_callback is None:
UpperCAmelCase = LoggingCallback()
UpperCAmelCase = {}
if args.fpaa:
UpperCAmelCase = 1_6
if args.gpus > 1:
UpperCAmelCase = '''auto'''
UpperCAmelCase = '''ddp'''
UpperCAmelCase = args.accumulate_grad_batches
UpperCAmelCase = None
UpperCAmelCase = '''auto'''
UpperCAmelCase = pl.Trainer.from_argparse_args(
_a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , )
if args.do_train:
trainer.fit(_a )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 34
| 0
|
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class a__ :
def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = parent
SCREAMING_SNAKE_CASE_ : Any = 13
SCREAMING_SNAKE_CASE_ : List[str] = 7
SCREAMING_SNAKE_CASE_ : Dict = True
SCREAMING_SNAKE_CASE_ : Optional[Any] = True
SCREAMING_SNAKE_CASE_ : Tuple = True
SCREAMING_SNAKE_CASE_ : List[str] = True
SCREAMING_SNAKE_CASE_ : List[str] = 99
SCREAMING_SNAKE_CASE_ : Tuple = 384
SCREAMING_SNAKE_CASE_ : Optional[Any] = 2
SCREAMING_SNAKE_CASE_ : Any = 4
SCREAMING_SNAKE_CASE_ : str = 37
SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu"
SCREAMING_SNAKE_CASE_ : List[Any] = 0.1
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1
SCREAMING_SNAKE_CASE_ : Dict = 512
SCREAMING_SNAKE_CASE_ : int = 16
SCREAMING_SNAKE_CASE_ : Optional[int] = 2
SCREAMING_SNAKE_CASE_ : Any = 0.02
SCREAMING_SNAKE_CASE_ : str = 3
SCREAMING_SNAKE_CASE_ : int = 4
SCREAMING_SNAKE_CASE_ : Dict = 128
SCREAMING_SNAKE_CASE_ : Any = 2
SCREAMING_SNAKE_CASE_ : Tuple = 9
SCREAMING_SNAKE_CASE_ : List[Any] = 1
SCREAMING_SNAKE_CASE_ : Any = None
def __UpperCamelCase ( self : str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size )
SCREAMING_SNAKE_CASE_ : Any = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE_ : List[str] = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size )
SCREAMING_SNAKE_CASE_ : Dict = None
SCREAMING_SNAKE_CASE_ : Dict = None
SCREAMING_SNAKE_CASE_ : str = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size )
SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels )
SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices )
SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig(
vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A )
SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask]
SCREAMING_SNAKE_CASE_ : List[str] = model(_A )
SCREAMING_SNAKE_CASE_ : Dict = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels
SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) )
def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices
SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A )
SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE_ : int = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
SCREAMING_SNAKE_CASE_ : int = model(_A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) )
def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A )
SCREAMING_SNAKE_CASE_ : Tuple = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE_ : str = model(_A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) )
def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A )
SCREAMING_SNAKE_CASE_ : Dict = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE_ : Any = model(_A )
self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) )
def __UpperCamelCase ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
) : List[Any] = config_and_inputs
SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class a__ ( A__ , A__ , unittest.TestCase ):
A = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
A = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
A = False
A = False
A = False
def __UpperCamelCase ( self : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self )
SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 )
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_A )
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_A )
def __UpperCamelCase ( self : str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
def __UpperCamelCase ( self : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def __UpperCamelCase ( self : Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_A )
@slow
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ : List[str] = True
SCREAMING_SNAKE_CASE_ : Any = True
if hasattr(_A,"use_cache" ):
SCREAMING_SNAKE_CASE_ : List[Any] = True
SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length )
SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A )
SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A )
SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A,saved_model=_A )
SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" )
SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A )
SCREAMING_SNAKE_CASE_ : str = model(_A )
if self.is_encoder_decoder:
SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"]
SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"]
else:
SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"]
SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"]
self.assertEqual(len(_A ),_A )
SCREAMING_SNAKE_CASE_ : Any = getattr(
self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_A ),_A )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],)
self.assertEqual(len(_A ),self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],)
@slow
def __UpperCamelCase ( self : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(_A )
def __UpperCamelCase ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ : List[str] = True
SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length )
SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length )
SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A )
SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A )
def check_decoder_attentions_output(_A : Dict ):
SCREAMING_SNAKE_CASE_ : int = len(_A )
self.assertEqual(out_len % 2,0 )
SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions
self.assertEqual(len(_A ),self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],)
def check_encoder_attentions_output(_A : Tuple ):
SCREAMING_SNAKE_CASE_ : int = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_A ),self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],)
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : Optional[Any] = True
SCREAMING_SNAKE_CASE_ : Optional[Any] = False
SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A )
SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) )
SCREAMING_SNAKE_CASE_ : Tuple = len(_A )
self.assertEqual(config.output_hidden_states,_A )
check_encoder_attentions_output(_A )
if self.is_encoder_decoder:
SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A )
SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) )
self.assertEqual(config.output_hidden_states,_A )
check_decoder_attentions_output(_A )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
SCREAMING_SNAKE_CASE_ : str = True
SCREAMING_SNAKE_CASE_ : int = model_class(_A )
SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) )
self.assertEqual(config.output_hidden_states,_A )
check_encoder_attentions_output(_A )
# Check attention is always last and order is fine
SCREAMING_SNAKE_CASE_ : str = True
SCREAMING_SNAKE_CASE_ : int = True
SCREAMING_SNAKE_CASE_ : Dict = model_class(_A )
SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) )
self.assertEqual(model.config.output_hidden_states,_A )
check_encoder_attentions_output(_A )
@require_tf
class a__ ( unittest.TestCase ):
@slow
def __UpperCamelCase ( self : Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0]
SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768]
self.assertEqual(output.shape,_A )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(
[
[
[-0.03475493, -0.4686034, -0.30638832],
[0.22637248, -0.26988646, -0.7423424],
[0.10324868, -0.45013508, -0.58280784],
]
] )
tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
| 18
|
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ):
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
UpperCAmelCase = cst_fwd.get(_a , np.inf )
UpperCAmelCase = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
UpperCAmelCase = new_cost_f
UpperCAmelCase = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ):
UpperCAmelCase = -1
UpperCAmelCase = set()
UpperCAmelCase = set()
UpperCAmelCase = {source: 0}
UpperCAmelCase = {destination: 0}
UpperCAmelCase = {source: None}
UpperCAmelCase = {destination: None}
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
UpperCAmelCase , UpperCAmelCase = queue_forward.get()
visited_forward.add(_a )
UpperCAmelCase , UpperCAmelCase = queue_backward.get()
visited_backward.add(_a )
UpperCAmelCase = pass_and_relaxation(
_a , _a , _a , _a , _a , _a , _a , _a , _a , )
UpperCAmelCase = pass_and_relaxation(
_a , _a , _a , _a , _a , _a , _a , _a , _a , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
UpperCAmelCase = shortest_distance
return shortest_path_distance
A ={
'B': [['C', 1]],
'C': [['D', 1]],
'D': [['F', 1]],
'E': [['B', 1], ['G', 2]],
'F': [],
'G': [['F', 1]],
}
A ={
'B': [['E', 1]],
'C': [['B', 1]],
'D': [['C', 1]],
'F': [['D', 1], ['G', 1]],
'E': [[None, np.inf]],
'G': [['E', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34
| 0
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def lowerCamelCase_ ( lowerCamelCase__=None ):
if subparsers is not None:
lowerCamelCase_ = subparsers.add_parser("test" )
else:
lowerCamelCase_ = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=lowerCamelCase__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=lowerCamelCase__ )
return parser
def lowerCamelCase_ ( lowerCamelCase__ ):
lowerCamelCase_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
lowerCamelCase_ = script_name
else:
lowerCamelCase_ = F'--config_file={args.config_file} {script_name}'
lowerCamelCase_ = ["accelerate-launch"] + test_args.split()
lowerCamelCase_ = execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def lowerCamelCase_ ( ):
lowerCamelCase_ = test_command_parser()
lowerCamelCase_ = parser.parse_args()
test_command(lowerCamelCase__ )
if __name__ == "__main__":
main()
| 19
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
A =logging.get_logger(__name__)
def snake_case_ (_a : List[str] ):
UpperCAmelCase = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
UpperCAmelCase = 1_2_8
elif "12-12" in model_name:
UpperCAmelCase = 1_2
UpperCAmelCase = 1_2
elif "14-14" in model_name:
UpperCAmelCase = 1_4
UpperCAmelCase = 1_4
elif "16-16" in model_name:
UpperCAmelCase = 1_6
UpperCAmelCase = 1_6
else:
raise ValueError('''Model not supported''' )
UpperCAmelCase = '''huggingface/label-files'''
if "speech-commands" in model_name:
UpperCAmelCase = 3_5
UpperCAmelCase = '''speech-commands-v2-id2label.json'''
else:
UpperCAmelCase = 5_2_7
UpperCAmelCase = '''audioset-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def snake_case_ (_a : Tuple ):
if "module.v" in name:
UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "dist_token" in name:
UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
# transformer blocks
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' )
# classifier head
if "module.mlp_head.0" in name:
UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' )
if "module.mlp_head.1" in name:
UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' )
return name
def snake_case_ (_a : Dict , _a : List[Any] ):
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(_a )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[3] )
UpperCAmelCase = config.hidden_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[dim : dim * 2, :]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def snake_case_ (_a : Tuple ):
UpperCAmelCase = [
'''module.v.head.weight''',
'''module.v.head.bias''',
'''module.v.head_dist.weight''',
'''module.v.head_dist.bias''',
]
for k in ignore_keys:
state_dict.pop(_a , _a )
@torch.no_grad()
def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ):
UpperCAmelCase = get_audio_spectrogram_transformer_config(_a )
UpperCAmelCase = {
'''ast-finetuned-audioset-10-10-0.4593''': (
'''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.450''': (
'''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448''': (
'''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'''
),
'''ast-finetuned-audioset-10-10-0.448-v2''': (
'''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'''
),
'''ast-finetuned-audioset-12-12-0.447''': (
'''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'''
),
'''ast-finetuned-audioset-14-14-0.443''': (
'''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'''
),
'''ast-finetuned-audioset-16-16-0.442''': (
'''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'''
),
'''ast-finetuned-speech-commands-v2''': (
'''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'''
),
}
# load original state_dict
UpperCAmelCase = model_name_to_url[model_name]
UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' )
# remove some keys
remove_keys(_a )
# rename some keys
UpperCAmelCase = convert_state_dict(_a , _a )
# load 🤗 model
UpperCAmelCase = ASTForAudioClassification(_a )
model.eval()
model.load_state_dict(_a )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978
UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526
UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8
UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a )
if "speech-commands" in model_name:
UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' )
UpperCAmelCase = dataset[0]['''audio''']['''array''']
else:
UpperCAmelCase = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , )
UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a )
UpperCAmelCase = waveform.squeeze().numpy()
UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' )
# forward pass
UpperCAmelCase = model(**_a )
UpperCAmelCase = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError('''Unknown model name''' )
if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ):
raise ValueError('''Logits don\'t match''' )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(_a ).mkdir(exist_ok=_a )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_a )
print(F"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(_a )
if push_to_hub:
print('''Pushing model and feature extractor to the hub...''' )
model.push_to_hub(F"MIT/{model_name}" )
feature_extractor.push_to_hub(F"MIT/{model_name}" )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
A =parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 34
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.