code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def A ( snake_case :Any ) -> List[Any]: __UpperCamelCase = len(snake_case ) __UpperCamelCase = sum(snake_case ) __UpperCamelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCamelCase = True for i in range(1 , s + 1 ): __UpperCamelCase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCamelCase = dp[i][j - 1] if arr[i - 1] <= j: __UpperCamelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCamelCase = s - 2 * j break return diff
316
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A ( snake_case :Dict ) -> int: __UpperCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def A ( snake_case :Union[str, Any] ) -> Union[str, Any]: __UpperCamelCase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: __UpperCamelCase = s_dict.pop(snake_case ) elif "subsample" in key: __UpperCamelCase = s_dict.pop(snake_case ) def A ( snake_case :str ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase = emb.weight.shape __UpperCamelCase = nn.Linear(snake_case , snake_case , bias=snake_case ) __UpperCamelCase = emb.weight.data return lin_layer def A ( snake_case :Optional[int] , snake_case :List[Any] ) -> Union[str, Any]: __UpperCamelCase = torch.load(snake_case , map_location='cpu' ) __UpperCamelCase = mam_aaa['args'] __UpperCamelCase = mam_aaa['model'] __UpperCamelCase = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(snake_case ) rename_keys(snake_case ) __UpperCamelCase = state_dict['decoder.embed_tokens.weight'].shape[0] __UpperCamelCase = args.share_decoder_input_output_embed __UpperCamelCase = [int(snake_case ) for i in args.conv_kernel_sizes.split(',' )] __UpperCamelCase = SpeechaTextConfig( vocab_size=snake_case , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(snake_case ) , conv_channels=args.conv_channels , conv_kernel_sizes=snake_case , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=snake_case , num_beams=5 , max_length=2_0_0 , use_cache=snake_case , decoder_start_token_id=2 , early_stopping=snake_case , ) __UpperCamelCase = SpeechaTextForConditionalGeneration(snake_case ) __UpperCamelCase , __UpperCamelCase = model.model.load_state_dict(snake_case , strict=snake_case ) if len(snake_case ) > 0 and not set(snake_case ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f' but all the following weights are missing {missing}' ) if tie_embeds: __UpperCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __UpperCamelCase = lm_head_weights model.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase : Optional[int] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
316
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
1
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
1
"""simple docstring""" from math import pow def A ( snake_case :int , snake_case :int , snake_case :int , snake_case :int , snake_case :int , ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __UpperCamelCase = int(pow(snake_case , snake_case ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __UpperCamelCase , __UpperCamelCase = backtrack( snake_case , snake_case , current_number + 1 , snake_case , snake_case ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __UpperCamelCase , __UpperCamelCase = backtrack( snake_case , snake_case , current_number + 1 , snake_case , snake_case ) return current_sum, solutions_count def A ( snake_case :int , snake_case :int ) -> int: if not (1 <= needed_sum <= 1_0_0_0 and 2 <= power <= 1_0): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(snake_case , snake_case , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : Optional[int] = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "switch_transformers" lowercase = ["past_key_values"] lowercase = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , __UpperCAmelCase=3_2128 , __UpperCAmelCase=768 , __UpperCAmelCase=64 , __UpperCAmelCase=2048 , __UpperCAmelCase=64 , __UpperCAmelCase=12 , __UpperCAmelCase=3 , __UpperCAmelCase=12 , __UpperCAmelCase=3 , __UpperCAmelCase=12 , __UpperCAmelCase=8 , __UpperCAmelCase=False , __UpperCAmelCase=0.0_1 , __UpperCAmelCase="float32" , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=128 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=0.0_0_1 , __UpperCAmelCase=0.0_0_1 , __UpperCAmelCase=1.0 , __UpperCAmelCase="relu" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = d_kv __UpperCamelCase = d_ff __UpperCamelCase = num_sparse_encoder_layers __UpperCamelCase = num_layers __UpperCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCamelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __UpperCamelCase = self.num_layers // self.num_sparse_encoder_layers else: __UpperCamelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __UpperCamelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: __UpperCamelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers __UpperCamelCase = num_heads __UpperCamelCase = num_experts __UpperCamelCase = expert_capacity __UpperCamelCase = router_bias __UpperCamelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) __UpperCamelCase = router_dtype __UpperCamelCase = router_ignore_padding_tokens __UpperCamelCase = relative_attention_num_buckets __UpperCamelCase = relative_attention_max_distance __UpperCamelCase = dropout_rate __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_factor __UpperCamelCase = feed_forward_proj __UpperCamelCase = use_cache __UpperCamelCase = add_router_probs __UpperCamelCase = router_z_loss_coef __UpperCamelCase = router_aux_loss_coef __UpperCamelCase = self.feed_forward_proj.split('-' ) __UpperCamelCase = act_info[-1] __UpperCamelCase = act_info[0] == 'gated' if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __UpperCamelCase = 'gelu_new' super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
316
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
1
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def A ( snake_case :Optional[int] , snake_case :str ) -> str: __UpperCamelCase = old_name if "patch_embed" in old_name: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = old_name.split('.' ) if layer == "0": __UpperCamelCase = old_name.replace('0' , 'convolution1' ) elif layer == "1": __UpperCamelCase = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": __UpperCamelCase = old_name.replace('3' , 'convolution2' ) else: __UpperCamelCase = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , snake_case ): __UpperCamelCase = r'\b\d{2}\b' if bool(re.search(snake_case , snake_case ) ): __UpperCamelCase = re.search(r'\d\.\d\d.' , snake_case ).group() else: __UpperCamelCase = re.search(r'\d\.\d.' , snake_case ).group() if int(match[0] ) < 6: __UpperCamelCase = old_name.replace(snake_case , '' ) __UpperCamelCase = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) __UpperCamelCase = 'intermediate_stages.' + trimmed_name else: __UpperCamelCase = old_name.replace(snake_case , '' ) if int(match[2] ) < num_meta4D_last_stage: __UpperCamelCase = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: __UpperCamelCase = str(int(match[2] ) - num_meta4D_last_stage ) __UpperCamelCase = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: __UpperCamelCase = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: __UpperCamelCase = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: __UpperCamelCase = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: __UpperCamelCase = trimmed_name.replace('fc2' , 'linear_out' ) __UpperCamelCase = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , snake_case ): __UpperCamelCase = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: __UpperCamelCase = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __UpperCamelCase = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __UpperCamelCase = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: __UpperCamelCase = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: __UpperCamelCase = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: __UpperCamelCase = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: __UpperCamelCase = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __UpperCamelCase = new_name.replace('norm' , 'layernorm' ) __UpperCamelCase = 'efficientformer.' + new_name else: __UpperCamelCase = 'efficientformer.encoder.' + new_name return new_name def A ( snake_case :Dict , snake_case :str ) -> Tuple: for key in checkpoint.copy().keys(): __UpperCamelCase = checkpoint.pop(snake_case ) __UpperCamelCase = val return checkpoint def A ( ) -> Union[str, Any]: __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return image def A ( snake_case :Path , snake_case :Path , snake_case :Path , snake_case :bool ) -> Dict: __UpperCamelCase = torch.load(snake_case , map_location='cpu' )['model'] __UpperCamelCase = EfficientFormerConfig.from_json_file(snake_case ) __UpperCamelCase = EfficientFormerForImageClassificationWithTeacher(snake_case ) __UpperCamelCase = '_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) __UpperCamelCase = config.depths[-1] - config.num_metaad_blocks + 1 __UpperCamelCase = convert_torch_checkpoint(snake_case , snake_case ) model.load_state_dict(snake_case ) model.eval() __UpperCamelCase = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image __UpperCamelCase = prepare_img() __UpperCamelCase = 2_5_6 __UpperCamelCase = 2_2_4 __UpperCamelCase = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) __UpperCamelCase = processor(images=snake_case , return_tensors='pt' ).pixel_values # original processing pipeline __UpperCamelCase = Compose( [ Resize(snake_case , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(snake_case ), ToTensor(), Normalize(snake_case , snake_case ), ] ) __UpperCamelCase = image_transforms(snake_case ).unsqueeze(0 ) assert torch.allclose(snake_case , snake_case ) __UpperCamelCase = model(snake_case ) __UpperCamelCase = outputs.logits __UpperCamelCase = (1, 1_0_0_0) if "l1" in model_name: __UpperCamelCase = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :1_0] , snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __UpperCamelCase = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :1_0] , snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __UpperCamelCase = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( f'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(snake_case ).mkdir(exist_ok=snake_case ) model.save_pretrained(snake_case ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(snake_case ) print(f'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message='Add model' , use_temp_dir=snake_case , ) processor.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message='Add image processor' , use_temp_dir=snake_case , ) if __name__ == "__main__": UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) UpperCamelCase : Optional[int] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
316
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = {} def UpperCAmelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = super().add_tokens(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' ' `placeholder_token` that is not already in the tokenizer.' ) def UpperCAmelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , __UpperCAmelCase=1 , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) output.append(__UpperCAmelCase ) else: __UpperCamelCase = [] for i in range(__UpperCAmelCase ): __UpperCamelCase = placeholder_token + F'_{i}' self.try_adding_tokens(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) output.append(__UpperCAmelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent' ) __UpperCamelCase = output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=1.0 ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = [] for i in range(len(__UpperCAmelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__UpperCAmelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __UpperCamelCase = self.token_map[placeholder_token] __UpperCamelCase = tokens[: 1 + int(len(__UpperCAmelCase ) * prop_tokens_to_load )] if vector_shuffle: __UpperCamelCase = copy.copy(__UpperCAmelCase ) random.shuffle(__UpperCAmelCase ) __UpperCamelCase = text.replace(__UpperCAmelCase , ' '.join(__UpperCAmelCase ) ) return text def __call__( self , __UpperCAmelCase , *__UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=1.0 , **__UpperCAmelCase ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( __UpperCAmelCase , vector_shuffle=__UpperCAmelCase , prop_tokens_to_load=__UpperCAmelCase ) , *__UpperCAmelCase , **__UpperCAmelCase , ) def UpperCAmelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=1.0 , **__UpperCAmelCase ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( __UpperCAmelCase , vector_shuffle=__UpperCAmelCase , prop_tokens_to_load=__UpperCAmelCase ) , *__UpperCAmelCase , **__UpperCAmelCase , )
316
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
1
"""simple docstring""" import re def A ( snake_case :str ) -> str: if len(re.findall('[ATCG]' , snake_case ) ) != len(snake_case ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" from __future__ import annotations from math import pi def A ( snake_case :float , snake_case :float , snake_case :float ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
1
"""simple docstring""" from heapq import heappop, heappush import numpy as np def A ( snake_case :np.ndarray , snake_case :tuple[int, int] , snake_case :tuple[int, int] , snake_case :bool , ) -> tuple[float | int, list[tuple[int, int]]]: __UpperCamelCase , __UpperCamelCase = grid.shape __UpperCamelCase = [-1, 1, 0, 0] __UpperCamelCase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __UpperCamelCase , __UpperCamelCase = [(0, source)], set() __UpperCamelCase = np.full((rows, cols) , np.inf ) __UpperCamelCase = 0 __UpperCamelCase = np.empty((rows, cols) , dtype=snake_case ) __UpperCamelCase = None while queue: ((__UpperCamelCase) , (__UpperCamelCase)) = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __UpperCamelCase = [] while (x, y) != source: path.append((x, y) ) __UpperCamelCase , __UpperCamelCase = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): __UpperCamelCase , __UpperCamelCase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __UpperCamelCase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) __UpperCamelCase = dist + 1 __UpperCamelCase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
1
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position UpperCamelCase : Dict = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCamelCase : Union[str, Any] = concatenate_datasets UpperCamelCase : Any = DownloadConfig UpperCamelCase : List[Any] = DownloadManager UpperCamelCase : Dict = DownloadMode UpperCamelCase : Any = DownloadConfig UpperCamelCase : Union[str, Any] = DownloadMode UpperCamelCase : Any = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def A ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
316
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __lowerCAmelCase : lowercase = PegasusConfig lowercase = {} lowercase = "gelu" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=40 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = TFPegasusModel(config=__UpperCAmelCase ).get_decoder() __UpperCamelCase = inputs_dict['input_ids'] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict['attention_mask'][:1, :] __UpperCamelCase = inputs_dict['head_mask'] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) def A ( snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :Optional[Any]=None , snake_case :Dict=None , snake_case :Tuple=None , snake_case :Dict=None , snake_case :Any=None , ) -> str: if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowercase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () lowercase = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class __lowerCAmelCase ( unittest.TestCase ): lowercase = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] lowercase = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowercase = "google/pegasus-xsum" @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.translate_src_text(**__UpperCAmelCase ) assert self.expected_text == generated_words def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.tokenizer(self.src_text , **__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='tf' ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , ) __UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase ) return generated_words @slow def UpperCAmelCase ( self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = CycleDiffusionPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } lowercase = PipelineTesterMixin.required_optional_params - {"latents"} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __UpperCamelCase = CLIPTextModel(__UpperCAmelCase ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = image / 2 + 0.5 if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = CycleDiffusionPipeline(**__UpperCAmelCase ) __UpperCamelCase = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCamelCase = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCamelCase = pipe(**__UpperCAmelCase ) __UpperCamelCase = output.images __UpperCamelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCamelCase = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(__UpperCAmelCase , 'half' ): __UpperCamelCase = module.half() __UpperCamelCase = CycleDiffusionPipeline(**__UpperCAmelCase ) __UpperCamelCase = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCamelCase = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCamelCase = pipe(**__UpperCAmelCase ) __UpperCamelCase = output.images __UpperCamelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCamelCase = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCAmelCase ( self ): '''simple docstring''' return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def UpperCAmelCase ( self ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def UpperCAmelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) __UpperCamelCase = init_image.resize((512, 512) ) __UpperCamelCase = 'CompVis/stable-diffusion-v1-4' __UpperCamelCase = DDIMScheduler.from_pretrained(__UpperCAmelCase , subfolder='scheduler' ) __UpperCamelCase = CycleDiffusionPipeline.from_pretrained( __UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() __UpperCamelCase = 'A black colored car' __UpperCamelCase = 'A blue colored car' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = pipe( prompt=__UpperCAmelCase , source_prompt=__UpperCAmelCase , image=__UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=__UpperCAmelCase , output_type='np' , ) __UpperCamelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) __UpperCamelCase = init_image.resize((512, 512) ) __UpperCamelCase = 'CompVis/stable-diffusion-v1-4' __UpperCamelCase = DDIMScheduler.from_pretrained(__UpperCAmelCase , subfolder='scheduler' ) __UpperCamelCase = CycleDiffusionPipeline.from_pretrained(__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() __UpperCamelCase = 'A black colored car' __UpperCamelCase = 'A blue colored car' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = pipe( prompt=__UpperCAmelCase , source_prompt=__UpperCAmelCase , image=__UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=__UpperCAmelCase , output_type='np' , ) __UpperCamelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
316
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
1
"""simple docstring""" from __future__ import annotations import queue class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None __UpperCamelCase = None def A ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) __UpperCamelCase = input('Enter the value of the root node: ' ).strip().lower() __UpperCamelCase = queue.Queue() __UpperCamelCase = TreeNode(int(snake_case ) ) q.put(snake_case ) while not q.empty(): __UpperCamelCase = q.get() __UpperCamelCase = f'Enter the left node of {node_found.data}: ' __UpperCamelCase = input(snake_case ).strip().lower() or 'n' if check == "n": return tree_node __UpperCamelCase = TreeNode(int(snake_case ) ) __UpperCamelCase = left_node q.put(snake_case ) __UpperCamelCase = f'Enter the right node of {node_found.data}: ' __UpperCamelCase = input(snake_case ).strip().lower() or 'n' if check == "n": return tree_node __UpperCamelCase = TreeNode(int(snake_case ) ) __UpperCamelCase = right_node q.put(snake_case ) raise def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return __UpperCamelCase = queue.Queue() q.put(snake_case ) while not q.empty(): __UpperCamelCase = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return __UpperCamelCase = queue.Queue() q.put(snake_case ) while not q.empty(): __UpperCamelCase = [] while not q.empty(): __UpperCamelCase = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case ) def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return __UpperCamelCase = [] __UpperCamelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(snake_case ) __UpperCamelCase = n.left # end of while means current node doesn't have left child __UpperCamelCase = stack.pop() # start to traverse its right child __UpperCamelCase = n.right def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return __UpperCamelCase = [] __UpperCamelCase = node while n or stack: while n: stack.append(snake_case ) __UpperCamelCase = n.left __UpperCamelCase = stack.pop() print(n.data , end=',' ) __UpperCamelCase = n.right def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return __UpperCamelCase , __UpperCamelCase = [], [] __UpperCamelCase = node stacka.append(snake_case ) while stacka: # to find the reversed order of post order, store it in stack2 __UpperCamelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def A ( snake_case :str = "" , snake_case :str=5_0 , snake_case :Any="*" ) -> str: if not s: return "\n" + width * char __UpperCamelCase , __UpperCamelCase = divmod(width - len(snake_case ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCamelCase : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def A ( snake_case :int ) -> List[Any]: __UpperCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def A ( snake_case :Dict ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase = emb.weight.shape __UpperCamelCase = nn.Linear(snake_case , snake_case , bias=snake_case ) __UpperCamelCase = emb.weight.data return lin_layer def A ( snake_case :Optional[Any] , snake_case :Optional[int]="facebook/mbart-large-en-ro" , snake_case :List[str]=False , snake_case :Optional[Any]=False ) -> Optional[Any]: __UpperCamelCase = torch.load(snake_case , map_location='cpu' )['model'] remove_ignore_keys_(snake_case ) __UpperCamelCase = state_dict['encoder.embed_tokens.weight'].shape[0] __UpperCamelCase = MBartConfig.from_pretrained(snake_case , vocab_size=snake_case ) if mbart_aa and finetuned: __UpperCamelCase = 'relu' __UpperCamelCase = state_dict['decoder.embed_tokens.weight'] __UpperCamelCase = MBartForConditionalGeneration(snake_case ) model.model.load_state_dict(snake_case ) if finetuned: __UpperCamelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") UpperCamelCase : Optional[int] = parser.parse_args() UpperCamelCase : Tuple = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
316
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : str = "▁" UpperCamelCase : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase : Optional[Any] = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } UpperCamelCase : List[Any] = { "xlm-roberta-base": 5_1_2, "xlm-roberta-large": 5_1_2, "xlm-roberta-large-finetuned-conll02-dutch": 5_1_2, "xlm-roberta-large-finetuned-conll02-spanish": 5_1_2, "xlm-roberta-large-finetuned-conll03-english": 5_1_2, "xlm-roberta-large-finetuned-conll03-german": 5_1_2, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) __UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCamelCase = 1 __UpperCamelCase = len(self.sp_model ) + self.fairseq_offset __UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None __UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCamelCase = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = ''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ' ' ).strip() return out_string def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , 'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
316
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
1
"""simple docstring""" from math import pi, sqrt def A ( snake_case :float ) -> float: if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def A ( ) -> None: assert gamma(0.5 ) == sqrt(snake_case ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase : Optional[int] = 1.0 while num: UpperCamelCase : List[str] = float(input("Gamma of: ")) print(f'''gamma({num}) = {gamma(num)}''') print("\nEnter 0 to exit...")
316
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def UpperCAmelCase ( __UpperCAmelCase ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCAmelCase ( self ): '''simple docstring''' raise NotImplementedError()
316
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
1
"""simple docstring""" def A ( snake_case :str , snake_case :int ) -> list: __UpperCamelCase = word.split() def justify(snake_case :list , snake_case :int , snake_case :int ) -> str: __UpperCamelCase = max_width - width __UpperCamelCase = len(snake_case ) if len(snake_case ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __UpperCamelCase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __UpperCamelCase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __UpperCamelCase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(snake_case ): num_spaces_between_words_list[i] += 1 __UpperCamelCase = [] for i in range(snake_case ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(snake_case ) __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = 0 for word in words: if width + len(snake_case ) + len(snake_case ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(snake_case ) width += len(snake_case ) else: # justify the line and add it to result answer.append(justify(snake_case , snake_case , snake_case ) ) # reset new line and new width __UpperCamelCase , __UpperCamelCase = [word], len(snake_case ) __UpperCamelCase = max_width - width - len(snake_case ) answer.append(' '.join(snake_case ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
316
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
1
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = GPTaTokenizer lowercase = GPTaTokenizerFast lowercase = True lowercase = {"add_prefix_space": True} lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] __UpperCamelCase = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __UpperCamelCase = {'unk_token': '<unk>'} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCAmelCase ) ) def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 'lower newer' __UpperCamelCase = 'lower newer' return input_text, output_text def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase = 'lower newer' __UpperCamelCase = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] __UpperCamelCase = tokenizer.tokenize(__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = tokens + [tokenizer.unk_token] __UpperCamelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=__UpperCAmelCase ) __UpperCamelCase = 'lower newer' # Testing tokenization __UpperCamelCase = tokenizer.tokenize(__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) __UpperCamelCase = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing conversion to ids without special tokens __UpperCamelCase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) __UpperCamelCase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing conversion to ids with special tokens __UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=__UpperCAmelCase ) __UpperCamelCase = tokenizer.encode(__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) __UpperCamelCase = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing the unknown token __UpperCamelCase = tokens + [rust_tokenizer.unk_token] __UpperCamelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' pass def UpperCAmelCase ( self , __UpperCAmelCase=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # Simple input __UpperCamelCase = 'This is a simple input' __UpperCamelCase = ['This is a simple input 1', 'This is a simple input 2'] __UpperCamelCase = ('This is a simple input', 'This is a pair') __UpperCamelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises( __UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises( __UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input __UpperCamelCase = 'This is a simple input' __UpperCamelCase = ['This is a simple input looooooooong', 'This is a simple input'] __UpperCamelCase = ('This is a simple input', 'This is a pair') __UpperCamelCase = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] __UpperCamelCase = tokenizer.pad_token_id __UpperCamelCase = tokenizer(__UpperCAmelCase , padding='max_length' , max_length=30 , return_tensors='np' ) __UpperCamelCase = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , truncate=__UpperCAmelCase , return_tensors='np' ) __UpperCamelCase = tokenizer(*__UpperCAmelCase , padding='max_length' , max_length=60 , return_tensors='np' ) __UpperCamelCase = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , truncate=__UpperCAmelCase , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = '$$$' __UpperCamelCase = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__UpperCAmelCase , add_bos_token=__UpperCAmelCase ) __UpperCamelCase = 'This is a simple input' __UpperCamelCase = ['This is a simple input 1', 'This is a simple input 2'] __UpperCamelCase = tokenizer.bos_token_id __UpperCamelCase = tokenizer(__UpperCAmelCase ) __UpperCamelCase = tokenizer(__UpperCAmelCase ) self.assertEqual(out_s.input_ids[0] , __UpperCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __UpperCamelCase = tokenizer.decode(out_s.input_ids ) __UpperCamelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __UpperCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [self.get_tokenizer(do_lower_case=__UpperCAmelCase , add_bos_token=__UpperCAmelCase )] for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __UpperCamelCase = 'Encode this.' __UpperCamelCase = 'This one too please.' __UpperCamelCase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) encoded_sequence += tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __UpperCamelCase = tokenizer.encode_plus( __UpperCAmelCase , __UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , ) __UpperCamelCase = encoded_sequence_dict['input_ids'] __UpperCamelCase = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) __UpperCamelCase = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__UpperCAmelCase ) ] __UpperCamelCase = [x for x in filtered_sequence if x is not None] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=__UpperCAmelCase ) __UpperCamelCase = 'A photo of a cat' __UpperCamelCase = tokenizer.encode( __UpperCAmelCase , ) self.assertEqual(__UpperCAmelCase , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) __UpperCamelCase = AutoTokenizer.from_pretrained('./test_opt' ) __UpperCamelCase = tokenizer.encode( __UpperCAmelCase , ) self.assertEqual(__UpperCAmelCase , [2, 250, 1345, 9, 10, 4758] ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=__UpperCAmelCase ) __UpperCamelCase = 'A photo of a cat' __UpperCamelCase = tokenizer.encode( __UpperCAmelCase , ) # Same as above self.assertEqual(__UpperCAmelCase , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=__UpperCAmelCase ) __UpperCamelCase = 'bos' __UpperCamelCase = tokenizer.get_vocab()['bos'] __UpperCamelCase = 'A photo of a cat' __UpperCamelCase = tokenizer.encode( __UpperCAmelCase , ) # We changed the bos token self.assertEqual(__UpperCAmelCase , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) __UpperCamelCase = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) __UpperCamelCase = tokenizer.encode( __UpperCAmelCase , ) self.assertEqual(__UpperCAmelCase , [3_1957, 250, 1345, 9, 10, 4758] )
316
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
1
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = (UnCLIPScheduler,) def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**__UpperCAmelCase ) return config def UpperCAmelCase ( self ): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__UpperCAmelCase , prev_timestep=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(variance_type='fixed_small_log' ) __UpperCamelCase = scheduler_class(**__UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_5_4_9_6_2_5 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_9_9_4_9_8_7 ) ) < 1E-5 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(variance_type='learned_range' ) __UpperCamelCase = scheduler_class(**__UpperCAmelCase ) __UpperCamelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=__UpperCAmelCase ) - -1_0.1_7_1_2_7_9_0 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=__UpperCAmelCase ) - -5.7_9_9_8_0_5_2 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=__UpperCAmelCase ) - -0.0_0_1_0_0_1_1 < 1E-5 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**__UpperCAmelCase ) __UpperCamelCase = scheduler.timesteps __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter __UpperCamelCase = torch.manual_seed(0 ) for i, t in enumerate(__UpperCAmelCase ): # 1. predict noise residual __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample __UpperCamelCase = pred_prev_sample __UpperCamelCase = torch.sum(torch.abs(__UpperCAmelCase ) ) __UpperCamelCase = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1E-3 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(25 ) __UpperCamelCase = scheduler.timesteps __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter __UpperCamelCase = torch.manual_seed(0 ) for i, t in enumerate(__UpperCAmelCase ): # 1. predict noise residual __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ) if i + 1 == timesteps.shape[0]: __UpperCamelCase = None else: __UpperCamelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __UpperCamelCase = scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , prev_timestep=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample __UpperCamelCase = pred_prev_sample __UpperCamelCase = torch.sum(torch.abs(__UpperCAmelCase ) ) __UpperCamelCase = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1E-3 def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' pass
316
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
1
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def A ( snake_case :Sequence[float] , snake_case :int , snake_case :int ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __UpperCamelCase = (low + high) // 2 __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = max_subarray(snake_case , snake_case , snake_case ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = max_subarray(snake_case , mid + 1 , snake_case ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = max_cross_sum(snake_case , snake_case , snake_case , snake_case ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def A ( snake_case :Sequence[float] , snake_case :int , snake_case :int , snake_case :int ) -> tuple[int, int, float]: __UpperCamelCase , __UpperCamelCase = float('-inf' ), -1 __UpperCamelCase , __UpperCamelCase = float('-inf' ), -1 __UpperCamelCase = 0 for i in range(snake_case , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __UpperCamelCase = summ __UpperCamelCase = i __UpperCamelCase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __UpperCamelCase = summ __UpperCamelCase = i return max_left, max_right, (left_sum + right_sum) def A ( snake_case :int ) -> float: __UpperCamelCase = [randint(1 , snake_case ) for _ in range(snake_case )] __UpperCamelCase = time.time() max_subarray(snake_case , 0 , input_size - 1 ) __UpperCamelCase = time.time() return end - start def A ( ) -> None: __UpperCamelCase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __UpperCamelCase = [time_max_subarray(snake_case ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(snake_case , snake_case ): print(snake_case , '\t\t' , snake_case ) plt.plot(snake_case , snake_case ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
1
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0.0 , __UpperCAmelCase = None , __UpperCAmelCase = "geglu" , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = "layer_norm" , __UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __UpperCamelCase = only_cross_attention __UpperCamelCase = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' __UpperCamelCase = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __UpperCamelCase = AdaLayerNorm(__UpperCAmelCase , __UpperCAmelCase ) elif self.use_ada_layer_norm_zero: __UpperCamelCase = AdaLayerNormZero(__UpperCAmelCase , __UpperCAmelCase ) else: __UpperCamelCase = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) __UpperCamelCase = Attention( query_dim=__UpperCAmelCase , heads=__UpperCAmelCase , dim_head=__UpperCAmelCase , dropout=__UpperCAmelCase , bias=__UpperCAmelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__UpperCAmelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __UpperCamelCase = ( AdaLayerNorm(__UpperCAmelCase , __UpperCAmelCase ) if self.use_ada_layer_norm else nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) ) __UpperCamelCase = Attention( query_dim=__UpperCAmelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__UpperCAmelCase , dim_head=__UpperCAmelCase , dropout=__UpperCAmelCase , bias=__UpperCAmelCase , upcast_attention=__UpperCAmelCase , ) # is self-attn if encoder_hidden_states is none else: __UpperCamelCase = None __UpperCamelCase = None # 3. Feed-forward __UpperCamelCase = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) __UpperCamelCase = FeedForward(__UpperCAmelCase , dropout=__UpperCAmelCase , activation_fn=__UpperCAmelCase , final_dropout=__UpperCAmelCase ) # let chunk size default to None __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = chunk_size __UpperCamelCase = dim def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ): '''simple docstring''' if self.use_ada_layer_norm: __UpperCamelCase = self.norma(__UpperCAmelCase , __UpperCAmelCase ) elif self.use_ada_layer_norm_zero: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.norma( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hidden_dtype=hidden_states.dtype ) else: __UpperCamelCase = self.norma(__UpperCAmelCase ) __UpperCamelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __UpperCamelCase = self.attna( __UpperCAmelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) if self.use_ada_layer_norm_zero: __UpperCamelCase = gate_msa.unsqueeze(1 ) * attn_output __UpperCamelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __UpperCamelCase = ( self.norma(__UpperCAmelCase , __UpperCAmelCase ) if self.use_ada_layer_norm else self.norma(__UpperCAmelCase ) ) __UpperCamelCase = self.attna( __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = attn_output + hidden_states # 3. Feed-forward __UpperCamelCase = self.norma(__UpperCAmelCase ) if self.use_ada_layer_norm_zero: __UpperCamelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) __UpperCamelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __UpperCamelCase = torch.cat( [self.ff(__UpperCAmelCase ) for hid_slice in norm_hidden_states.chunk(__UpperCAmelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __UpperCamelCase = self.ff(__UpperCAmelCase ) if self.use_ada_layer_norm_zero: __UpperCamelCase = gate_mlp.unsqueeze(1 ) * ff_output __UpperCamelCase = ff_output + hidden_states return hidden_states class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 4 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = "geglu" , __UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __UpperCamelCase = int(dim * mult ) __UpperCamelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __UpperCamelCase = GELU(__UpperCAmelCase , __UpperCAmelCase ) if activation_fn == "gelu-approximate": __UpperCamelCase = GELU(__UpperCAmelCase , __UpperCAmelCase , approximate='tanh' ) elif activation_fn == "geglu": __UpperCamelCase = GEGLU(__UpperCAmelCase , __UpperCAmelCase ) elif activation_fn == "geglu-approximate": __UpperCamelCase = ApproximateGELU(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = nn.ModuleList([] ) # project in self.net.append(__UpperCAmelCase ) # project dropout self.net.append(nn.Dropout(__UpperCAmelCase ) ) # project out self.net.append(nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__UpperCAmelCase ) ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' for module in self.net: __UpperCamelCase = module(__UpperCAmelCase ) return hidden_states class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = "none" ): '''simple docstring''' super().__init__() __UpperCamelCase = nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = approximate def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__UpperCAmelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.proj(__UpperCAmelCase ) __UpperCamelCase = self.gelu(__UpperCAmelCase ) return hidden_states class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __UpperCamelCase = nn.Linear(__UpperCAmelCase , dim_out * 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__UpperCAmelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.proj(__UpperCAmelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__UpperCAmelCase ) class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __UpperCamelCase = nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.proj(__UpperCAmelCase ) return x * torch.sigmoid(1.7_0_2 * x ) class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __UpperCamelCase = nn.Embedding(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = nn.SiLU() __UpperCamelCase = nn.Linear(__UpperCAmelCase , embedding_dim * 2 ) __UpperCamelCase = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.linear(self.silu(self.emb(__UpperCAmelCase ) ) ) __UpperCamelCase , __UpperCamelCase = torch.chunk(__UpperCAmelCase , 2 ) __UpperCamelCase = self.norm(__UpperCAmelCase ) * (1 + scale) + shift return x class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __UpperCamelCase = CombinedTimestepLabelEmbeddings(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = nn.SiLU() __UpperCamelCase = nn.Linear(__UpperCAmelCase , 6 * embedding_dim , bias=__UpperCAmelCase ) __UpperCamelCase = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase , eps=1E-6 ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' __UpperCamelCase = self.linear(self.silu(self.emb(__UpperCAmelCase , __UpperCAmelCase , hidden_dtype=__UpperCAmelCase ) ) ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = emb.chunk(6 , dim=1 ) __UpperCamelCase = self.norm(__UpperCAmelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 1E-5 ): '''simple docstring''' super().__init__() __UpperCamelCase = num_groups __UpperCamelCase = eps if act_fn is None: __UpperCamelCase = None else: __UpperCamelCase = get_activation(__UpperCAmelCase ) __UpperCamelCase = nn.Linear(__UpperCAmelCase , out_dim * 2 ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self.act: __UpperCamelCase = self.act(__UpperCAmelCase ) __UpperCamelCase = self.linear(__UpperCAmelCase ) __UpperCamelCase = emb[:, :, None, None] __UpperCamelCase , __UpperCamelCase = emb.chunk(2 , dim=1 ) __UpperCamelCase = F.group_norm(__UpperCAmelCase , self.num_groups , eps=self.eps ) __UpperCamelCase = x * (1 + scale) + shift return x
316
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = load_tool('text-classification' ) self.tool.setup() __UpperCamelCase = load_tool('text-classification' , remote=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(__UpperCAmelCase , 'positive' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.remote_tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(__UpperCAmelCase , 'positive' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(__UpperCAmelCase , 'positive' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(__UpperCAmelCase , 'positive' )
316
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
1
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
1
"""simple docstring""" def A ( snake_case :int ) -> int: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(snake_case , snake_case ): raise TypeError('Input value must be a \'int\' type' ) return bin(snake_case ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
1
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCamelCase : Union[str, Any] = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def A ( snake_case :List[str] , snake_case :str , snake_case :List[str] , snake_case :str , snake_case :Optional[Any] , snake_case :Optional[Any] ) -> List[Any]: if got_ver is None or want_ver is None: raise ValueError( f'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' f' reinstalling {pkg}.' ) if not ops[op](version.parse(snake_case ) , version.parse(snake_case ) ): raise ImportError( f'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def A ( snake_case :str , snake_case :Optional[str] = None ) -> None: __UpperCamelCase = f'\n{hint}' if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$' , snake_case ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = requirement, None, None else: __UpperCamelCase = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , snake_case ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f' got {requirement}' ) __UpperCamelCase , __UpperCamelCase = match[0] __UpperCamelCase = want_full.split(',' ) # there could be multiple requirements __UpperCamelCase = {} for w in want_range: __UpperCamelCase = re.findall(r'^([\s!=<>]{1,2})(.+)' , snake_case ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f' but got {requirement}' ) __UpperCamelCase , __UpperCamelCase = match[0] __UpperCamelCase = want_ver if op not in ops: raise ValueError(f'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": __UpperCamelCase = '.'.join([str(snake_case ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) return # check if any version is installed try: __UpperCamelCase = importlib.metadata.version(snake_case ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) def A ( snake_case :Union[str, Any] ) -> Any: __UpperCamelCase = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(snake_case , snake_case )
316
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
1
"""simple docstring""" def A ( snake_case :str ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
1
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") UpperCamelCase , UpperCamelCase : Optional[int] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") UpperCamelCase : Dict = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: UpperCamelCase : Dict = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCamelCase : Tuple = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def A ( snake_case :Optional[Any]=None , snake_case :Union[str, Any]=None ) -> Dict: return field(default_factory=lambda: default , metadata=snake_case ) @dataclass class __lowerCAmelCase : lowercase = field( metadata={"help": "The csv file to plot."} , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Disable logarithmic scale when plotting"} , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) lowercase = list_field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def A ( snake_case :Tuple ) -> List[Any]: try: int(snake_case ) return True except ValueError: return False def A ( snake_case :str ) -> List[Any]: try: float(snake_case ) return True except ValueError: return False class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = args __UpperCamelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: __UpperCamelCase = csv.DictReader(__UpperCAmelCase ) for row in reader: __UpperCamelCase = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None __UpperCamelCase = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None __UpperCamelCase = float(row['result'] ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = plt.subplots() __UpperCamelCase = 'Time usage' if self.args.is_time else 'Memory usage' __UpperCamelCase = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __UpperCamelCase = sorted(set(self.result_dict[model_name]['bsz'] ) ) __UpperCamelCase = sorted(set(self.result_dict[model_name]['seq_len'] ) ) __UpperCamelCase = self.result_dict[model_name]['result'] ((__UpperCamelCase) , (__UpperCamelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __UpperCamelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __UpperCamelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__UpperCAmelCase , ) else: __UpperCamelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__UpperCamelCase) , (__UpperCamelCase)) = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) __UpperCamelCase = np.asarray(__UpperCAmelCase , __UpperCAmelCase )[: len(__UpperCAmelCase )] plt.scatter( __UpperCAmelCase , __UpperCAmelCase , label=F'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(__UpperCAmelCase , __UpperCAmelCase , '--' ) title_str += F' {label_model_name} vs.' __UpperCamelCase = title_str[:-4] __UpperCamelCase = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(__UpperCAmelCase ) plt.xlabel(__UpperCAmelCase ) plt.ylabel(__UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def A ( ) -> Tuple: __UpperCamelCase = HfArgumentParser(snake_case ) __UpperCamelCase = parser.parse_args_into_dataclasses()[0] __UpperCamelCase = Plot(args=snake_case ) plot.plot() if __name__ == "__main__": main()
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
1
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=False , ): '''simple docstring''' __UpperCamelCase = size if size is not None else {'height': 20, 'width': 20} __UpperCamelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = image_size __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_normalize __UpperCamelCase = image_mean __UpperCamelCase = image_std __UpperCamelCase = do_reduce_labels def UpperCAmelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def A ( ) -> str: __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(dataset[0]['file'] ) __UpperCamelCase = Image.open(dataset[1]['file'] ) return image, map def A ( ) -> Union[str, Any]: __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = Image.open(ds[1]['file'] ) __UpperCamelCase = Image.open(ds[2]['file'] ) __UpperCamelCase = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitImageProcessingTester(self ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'image_std' ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , __UpperCAmelCase ) __UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__UpperCAmelCase ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) __UpperCamelCase = [] for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test not batched input (PIL images) __UpperCamelCase , __UpperCamelCase = prepare_semantic_single_inputs() __UpperCamelCase = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched input (PIL images) __UpperCamelCase , __UpperCamelCase = prepare_semantic_batch_inputs() __UpperCamelCase = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __UpperCamelCase , __UpperCamelCase = prepare_semantic_single_inputs() __UpperCamelCase = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 150 ) __UpperCamelCase = True __UpperCamelCase = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 )
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
1
"""simple docstring""" from __future__ import annotations def A ( snake_case :list[int] , snake_case :int ) -> bool: if len(snake_case ) == 0: return False __UpperCamelCase = len(snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case ) else: return binary_search(a_list[midpoint + 1 :] , snake_case ) if __name__ == "__main__": UpperCamelCase : List[Any] = input("Enter numbers separated by comma:\n").strip() UpperCamelCase : int = [int(item.strip()) for item in user_input.split(",")] UpperCamelCase : Optional[Any] = int(input("Enter the number to be found in the list:\n").strip()) UpperCamelCase : Dict = "" if binary_search(sequence, target) else "not " print(f'''{target} was {not_str}found in {sequence}''')
316
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=True , __UpperCAmelCase=1 / 255 , __UpperCAmelCase=True , ): '''simple docstring''' __UpperCamelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = do_normalize __UpperCamelCase = image_mean __UpperCamelCase = image_std __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad def UpperCAmelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if not batched: __UpperCamelCase = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image ): __UpperCamelCase , __UpperCamelCase = image.size else: __UpperCamelCase , __UpperCamelCase = image.shape[1], image.shape[2] if w < h: __UpperCamelCase = int(self.size['shortest_edge'] * h / w ) __UpperCamelCase = self.size['shortest_edge'] elif w > h: __UpperCamelCase = self.size['shortest_edge'] __UpperCamelCase = int(self.size['shortest_edge'] * w / h ) else: __UpperCamelCase = self.size['shortest_edge'] __UpperCamelCase = self.size['shortest_edge'] else: __UpperCamelCase = [] for image in image_inputs: __UpperCamelCase , __UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCamelCase = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] __UpperCamelCase = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_rescale' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_pad' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'size' ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) __UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCAmelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __UpperCamelCase = json.loads(f.read() ) __UpperCamelCase = {'image_id': 3_9769, 'annotations': target} # encode them __UpperCamelCase = DeformableDetrImageProcessor() __UpperCamelCase = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , return_tensors='pt' ) # verify pixel values __UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area __UpperCamelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __UpperCAmelCase ) ) # verify boxes __UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id __UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __UpperCAmelCase ) ) # verify is_crowd __UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __UpperCAmelCase ) ) # verify class_labels __UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __UpperCAmelCase ) ) # verify orig_size __UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __UpperCAmelCase ) ) # verify size __UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __UpperCAmelCase ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __UpperCamelCase = json.loads(f.read() ) __UpperCamelCase = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} __UpperCamelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __UpperCamelCase = DeformableDetrImageProcessor(format='coco_panoptic' ) __UpperCamelCase = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , masks_path=__UpperCAmelCase , return_tensors='pt' ) # verify pixel values __UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area __UpperCamelCase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __UpperCAmelCase ) ) # verify boxes __UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id __UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __UpperCAmelCase ) ) # verify is_crowd __UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __UpperCAmelCase ) ) # verify class_labels __UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __UpperCAmelCase ) ) # verify masks __UpperCamelCase = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __UpperCAmelCase ) # verify orig_size __UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __UpperCAmelCase ) ) # verify size __UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __UpperCAmelCase ) )
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["vqvae"] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , mel=__UpperCAmelCase , vqvae=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler , __UpperCAmelCase ) else 1000 @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=True , ): '''simple docstring''' __UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__UpperCAmelCase ) __UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__UpperCAmelCase , device=self.device , ) __UpperCamelCase = noise __UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = self.mel.audio_slice_to_image(__UpperCAmelCase ) __UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) __UpperCamelCase = (input_image / 255) * 2 - 1 __UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__UpperCAmelCase , 0 ) ).latent_dist.sample( generator=__UpperCAmelCase )[0] __UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: __UpperCamelCase = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) __UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __UpperCamelCase = int(mask_start_secs * pixels_per_second ) __UpperCamelCase = int(mask_end_secs * pixels_per_second ) __UpperCamelCase = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __UpperCAmelCase ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )['sample'] else: __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase )['sample'] if isinstance(self.scheduler , __UpperCAmelCase ): __UpperCamelCase = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , )['prev_sample'] else: __UpperCamelCase = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase , )['prev_sample'] if mask is not None: if mask_start > 0: __UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: __UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images __UpperCamelCase = self.vqvae.decode(__UpperCAmelCase )['sample'] __UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) __UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __UpperCamelCase = (images * 255).round().astype('uint8' ) __UpperCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) ) __UpperCamelCase = [self.mel.image_to_audio(__UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__UpperCAmelCase ) ) @torch.no_grad() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = 50 ): '''simple docstring''' assert isinstance(self.scheduler , __UpperCAmelCase ) self.scheduler.set_timesteps(__UpperCAmelCase ) __UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) __UpperCamelCase = (sample / 255) * 2 - 1 __UpperCamelCase = torch.Tensor(__UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __UpperCamelCase = self.scheduler.alphas_cumprod[t] __UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __UpperCamelCase = 1 - alpha_prod_t __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase )['sample'] __UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output __UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = acos(torch.dot(torch.flatten(__UpperCAmelCase ) , torch.flatten(__UpperCAmelCase ) ) / torch.norm(__UpperCAmelCase ) / torch.norm(__UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(__UpperCAmelCase )
316
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
1
"""simple docstring""" def A ( snake_case :Optional[Any] , snake_case :List[Any] ) -> str: print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(snake_case ): for j in range(snake_case ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def A ( snake_case :List[Any] , snake_case :str ) -> List[str]: __UpperCamelCase = [[float('inf' ) for _ in range(snake_case )] for _ in range(snake_case )] for i in range(snake_case ): for j in range(snake_case ): __UpperCamelCase = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(snake_case ): # looping through rows of graph array for i in range(snake_case ): # looping through columns of graph array for j in range(snake_case ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): __UpperCamelCase = dist[i][k] + dist[k][j] _print_dist(snake_case , snake_case ) return dist, v if __name__ == "__main__": UpperCamelCase : int = int(input("Enter number of vertices: ")) UpperCamelCase : Any = int(input("Enter number of edges: ")) UpperCamelCase : List[Any] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase : Tuple = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) UpperCamelCase : Optional[Any] = int(input("Enter source:")) UpperCamelCase : List[str] = int(input("Enter destination:")) UpperCamelCase : Optional[int] = float(input("Enter weight:")) UpperCamelCase : List[Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
316
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def A ( snake_case :list[list[float]] ) -> list[list[float]]: __UpperCamelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __UpperCamelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements __UpperCamelCase = [[0.0, 0.0], [0.0, 0.0]] __UpperCamelCase , __UpperCamelCase = matrix[1][1], matrix[0][0] __UpperCamelCase , __UpperCamelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __UpperCamelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix __UpperCamelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __UpperCamelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __UpperCamelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __UpperCamelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __UpperCamelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __UpperCamelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __UpperCamelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __UpperCamelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __UpperCamelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __UpperCamelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __UpperCamelCase = array(snake_case ) for i in range(3 ): for j in range(3 ): __UpperCamelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __UpperCamelCase = array(snake_case ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case ) # Calculate the inverse of the matrix return [[float(d(snake_case ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
316
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
1
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
1
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Dict = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase = PegasusTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = '</s>' __UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(__UpperCAmelCase ) , 1103 ) def UpperCAmelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) __UpperCamelCase = rust_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0] __UpperCamelCase = py_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __UpperCamelCase = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' __UpperCamelCase = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] __UpperCamelCase = tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __UpperCamelCase = 'To ensure a smooth flow of bank resolutions.' __UpperCamelCase = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] __UpperCamelCase = tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ['This is going to be way too long.' * 150, 'short example'] __UpperCamelCase = ['not super long but more than 5 tokens', 'tiny'] __UpperCamelCase = self._large_tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='pt' ) __UpperCamelCase = self._large_tokenizer( text_target=__UpperCAmelCase , max_length=5 , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(__UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase = PegasusTokenizer(__UpperCAmelCase , offset=0 , mask_token_sent=__UpperCAmelCase , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) __UpperCamelCase = rust_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0] __UpperCamelCase = py_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_torch def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ['This is going to be way too long.' * 1000, 'short example'] __UpperCamelCase = ['not super long but more than 5 tokens', 'tiny'] __UpperCamelCase = self._large_tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='pt' ) __UpperCamelCase = self._large_tokenizer( text_target=__UpperCAmelCase , max_length=5 , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(__UpperCAmelCase ) == 2 # input_ids, attention_mask. def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) __UpperCamelCase = self._large_tokenizer(__UpperCAmelCase ).input_ids self.assertListEqual( __UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
316
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def A ( snake_case :int ) -> Optional[int]: __UpperCamelCase = checkpoints.load_tax_checkpoint(snake_case ) __UpperCamelCase = flatten_dict(snake_case ) return flax_params def A ( snake_case :List[str] ) -> Tuple: __UpperCamelCase = {} __UpperCamelCase = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase = new_key.replace(snake_case , snake_case ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase = new_key.replace(snake_case , snake_case ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase = re.sub(r'layers_(\d+)' , r'layer.\1' , snake_case ) __UpperCamelCase = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase = re.sub(r'layers_(\d+)' , r'layer.\1' , snake_case ) __UpperCamelCase = flax_dict[key] __UpperCamelCase = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase = torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def A ( snake_case :int , snake_case :List[Any] , snake_case :Optional[Any]=False , snake_case :str=False ) -> Dict: __UpperCamelCase = get_flax_param(snake_case ) if not use_large: __UpperCamelCase = PixaStructVisionConfig() __UpperCamelCase = PixaStructTextConfig() else: __UpperCamelCase = PixaStructVisionConfig( hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_attention_heads=2_4 , num_hidden_layers=1_8 ) __UpperCamelCase = PixaStructTextConfig(hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_heads=2_4 , num_layers=1_8 ) __UpperCamelCase = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=snake_case ) __UpperCamelCase = PixaStructForConditionalGeneration(snake_case ) __UpperCamelCase = rename_and_convert_flax_params(snake_case ) model.load_state_dict(snake_case ) __UpperCamelCase = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase = PixaStructImageProcessor() __UpperCamelCase = PixaStructProcessor(image_processor=snake_case , tokenizer=snake_case ) if use_large: __UpperCamelCase = 4_0_9_6 __UpperCamelCase = True # mkdir if needed os.makedirs(snake_case , exist_ok=snake_case ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) print('Model saved in {}'.format(snake_case ) ) if __name__ == "__main__": UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") UpperCamelCase : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
316
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
1
"""simple docstring""" from __future__ import annotations import math def A ( snake_case :list , snake_case :list ) -> list: if len(snake_case ) != 2 or len(a[0] ) != 2 or len(snake_case ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) __UpperCamelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def A ( snake_case :list , snake_case :list ) -> Optional[int]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case ) ) ] def A ( snake_case :list , snake_case :list ) -> Tuple: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case ) ) ] def A ( snake_case :list ) -> tuple[list, list, list, list]: if len(snake_case ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) __UpperCamelCase = len(snake_case ) __UpperCamelCase = matrix_length // 2 __UpperCamelCase = [[a[i][j] for j in range(snake_case , snake_case )] for i in range(snake_case )] __UpperCamelCase = [ [a[i][j] for j in range(snake_case , snake_case )] for i in range(snake_case , snake_case ) ] __UpperCamelCase = [[a[i][j] for j in range(snake_case )] for i in range(snake_case )] __UpperCamelCase = [[a[i][j] for j in range(snake_case )] for i in range(snake_case , snake_case )] return top_left, top_right, bot_left, bot_right def A ( snake_case :list ) -> tuple[int, int]: return len(snake_case ), len(matrix[0] ) def A ( snake_case :list ) -> None: print('\n'.join(str(snake_case ) for line in matrix ) ) def A ( snake_case :list , snake_case :list ) -> list: if matrix_dimensions(snake_case ) == (2, 2): return default_matrix_multiplication(snake_case , snake_case ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = split_matrix(snake_case ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = split_matrix(snake_case ) __UpperCamelCase = actual_strassen(snake_case , matrix_subtraction(snake_case , snake_case ) ) __UpperCamelCase = actual_strassen(matrix_addition(snake_case , snake_case ) , snake_case ) __UpperCamelCase = actual_strassen(matrix_addition(snake_case , snake_case ) , snake_case ) __UpperCamelCase = actual_strassen(snake_case , matrix_subtraction(snake_case , snake_case ) ) __UpperCamelCase = actual_strassen(matrix_addition(snake_case , snake_case ) , matrix_addition(snake_case , snake_case ) ) __UpperCamelCase = actual_strassen(matrix_subtraction(snake_case , snake_case ) , matrix_addition(snake_case , snake_case ) ) __UpperCamelCase = actual_strassen(matrix_subtraction(snake_case , snake_case ) , matrix_addition(snake_case , snake_case ) ) __UpperCamelCase = matrix_addition(matrix_subtraction(matrix_addition(snake_case , snake_case ) , snake_case ) , snake_case ) __UpperCamelCase = matrix_addition(snake_case , snake_case ) __UpperCamelCase = matrix_addition(snake_case , snake_case ) __UpperCamelCase = matrix_subtraction(matrix_subtraction(matrix_addition(snake_case , snake_case ) , snake_case ) , snake_case ) # construct the new matrix from our 4 quadrants __UpperCamelCase = [] for i in range(len(snake_case ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(snake_case ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def A ( snake_case :list , snake_case :list ) -> list: if matrix_dimensions(snake_case )[1] != matrix_dimensions(snake_case )[0]: __UpperCamelCase = ( 'Unable to multiply these matrices, please check the dimensions.\n' f'Matrix A: {matrixa}\n' f'Matrix B: {matrixa}' ) raise Exception(snake_case ) __UpperCamelCase = matrix_dimensions(snake_case ) __UpperCamelCase = matrix_dimensions(snake_case ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __UpperCamelCase = max(*snake_case , *snake_case ) __UpperCamelCase = int(math.pow(2 , math.ceil(math.loga(snake_case ) ) ) ) __UpperCamelCase = matrixa __UpperCamelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , snake_case ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __UpperCamelCase = actual_strassen(snake_case , snake_case ) # Removing the additional zeros for i in range(0 , snake_case ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCamelCase : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCamelCase : List[str] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
316
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Any = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "van" def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3, 3] , __UpperCAmelCase=[4, 2, 2, 2] , __UpperCAmelCase=[64, 128, 320, 512] , __UpperCAmelCase=[3, 3, 12, 3] , __UpperCAmelCase=[8, 8, 4, 4] , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=1E-2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = image_size __UpperCamelCase = num_channels __UpperCamelCase = patch_sizes __UpperCamelCase = strides __UpperCamelCase = hidden_sizes __UpperCamelCase = depths __UpperCamelCase = mlp_ratios __UpperCamelCase = hidden_act __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = layer_scale_init_value __UpperCamelCase = drop_path_rate __UpperCamelCase = dropout_rate
316
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
1
"""simple docstring""" from __future__ import annotations def A ( snake_case :int ) -> list[int]: __UpperCamelCase = 2 __UpperCamelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(snake_case ) if n > 1: factors.append(snake_case ) return factors if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
1
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) def A ( ) -> Optional[int]: __UpperCamelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=snake_case , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=snake_case , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=snake_case , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=snake_case , default='data/dump' , help='The dump file prefix.' ) __UpperCamelCase = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": __UpperCamelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) __UpperCamelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` __UpperCamelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": __UpperCamelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __UpperCamelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` __UpperCamelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": __UpperCamelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __UpperCamelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` __UpperCamelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: __UpperCamelCase = fp.readlines() logger.info('Start encoding' ) logger.info(f'{len(snake_case )} examples to process.' ) __UpperCamelCase = [] __UpperCamelCase = 0 __UpperCamelCase = 1_0_0_0_0 __UpperCamelCase = time.time() for text in data: __UpperCamelCase = f'{bos} {text.strip()} {sep}' __UpperCamelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) rslt.append(snake_case ) iter += 1 if iter % interval == 0: __UpperCamelCase = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) __UpperCamelCase = time.time() logger.info('Finished binarization' ) logger.info(f'{len(snake_case )} examples processed.' ) __UpperCamelCase = f'{args.dump_file}.{args.tokenizer_name}.pickle' __UpperCamelCase = tokenizer.vocab_size if vocab_size < (1 << 1_6): __UpperCamelCase = [np.uintaa(snake_case ) for d in rslt] else: __UpperCamelCase = [np.intaa(snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(snake_case , 'wb' ) as handle: pickle.dump(rslt_ , snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Dict = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A ( snake_case :Any ) -> Any: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A ( ) -> Optional[Any]: with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" __UpperCamelCase = [1, 2, 3] with pytest.raises(snake_case ): with parallel_backend('unsupported backend' ): map_nested(snake_case , snake_case , num_proc=2 ) with pytest.raises(snake_case ): with parallel_backend('unsupported backend' ): map_nested(snake_case , snake_case , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def A ( snake_case :Union[str, Any] ) -> Optional[Any]: __UpperCamelCase = [1, 2] __UpperCamelCase = {'a': 1, 'b': 2} __UpperCamelCase = {'a': [1, 2], 'b': [3, 4]} __UpperCamelCase = {'a': {'1': 1}, 'b': 2} __UpperCamelCase = {'a': 1, 'b': 2, 'c': 3, 'd': 4} __UpperCamelCase = [2, 3] __UpperCamelCase = {'a': 2, 'b': 3} __UpperCamelCase = {'a': [2, 3], 'b': [4, 5]} __UpperCamelCase = {'a': {'1': 2}, 'b': 3} __UpperCamelCase = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(snake_case , snake_case , num_proc=snake_case ) == expected_map_nested_sa assert map_nested(snake_case , snake_case , num_proc=snake_case ) == expected_map_nested_sa assert map_nested(snake_case , snake_case , num_proc=snake_case ) == expected_map_nested_sa assert map_nested(snake_case , snake_case , num_proc=snake_case ) == expected_map_nested_sa assert map_nested(snake_case , snake_case , num_proc=snake_case ) == expected_map_nested_sa
316
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
1
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def A ( snake_case :Features ) -> Optional[int]: __UpperCamelCase = np.inf def set_batch_size(snake_case :FeatureType ) -> None: nonlocal batch_size if isinstance(snake_case , snake_case ): __UpperCamelCase = min(snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(snake_case , snake_case ): __UpperCamelCase = min(snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(snake_case , snake_case ) and feature.dtype == "binary": __UpperCamelCase = min(snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(snake_case , snake_case ) return None if batch_size is np.inf else batch_size class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths} __UpperCamelCase = _PACKAGED_DATASETS_MODULES['parquet'][1] __UpperCamelCase = Parquet( cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , hash=__UpperCAmelCase , **__UpperCAmelCase , ) def UpperCAmelCase ( self ): '''simple docstring''' if self.streaming: __UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) __UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = dataset __UpperCamelCase = path_or_buf __UpperCamelCase = batch_size or get_writer_batch_size(dataset.features ) __UpperCamelCase = parquet_writer_kwargs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __UpperCamelCase = self._write(file_obj=__UpperCAmelCase , batch_size=__UpperCAmelCase , **self.parquet_writer_kwargs ) else: __UpperCamelCase = self._write(file_obj=self.path_or_buf , batch_size=__UpperCAmelCase , **self.parquet_writer_kwargs ) return written def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = parquet_writer_kwargs.pop('path_or_buf' , __UpperCAmelCase ) __UpperCamelCase = self.dataset.features.arrow_schema __UpperCamelCase = pq.ParquetWriter(__UpperCAmelCase , schema=__UpperCAmelCase , **__UpperCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __UpperCAmelCase ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __UpperCamelCase = query_table( table=self.dataset._data , key=slice(__UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__UpperCAmelCase ) written += batch.nbytes writer.close() return written
316
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
1
"""simple docstring""" def A ( snake_case :int = 1_0_0_0_0_0_0 ) -> int: __UpperCamelCase = 1 __UpperCamelCase = 1 __UpperCamelCase = {1: 1} for inputa in range(2 , snake_case ): __UpperCamelCase = 0 __UpperCamelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __UpperCamelCase = (3 * number) + 1 counter += 1 if inputa not in counters: __UpperCamelCase = counter if counter > pre_counter: __UpperCamelCase = inputa __UpperCamelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
316
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
1
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def A ( snake_case :Tuple ) -> List[str]: __UpperCamelCase = SwinConfig() __UpperCamelCase = swin_name.split('_' ) __UpperCamelCase = name_split[1] __UpperCamelCase = int(name_split[4] ) __UpperCamelCase = int(name_split[3][-1] ) if model_size == "tiny": __UpperCamelCase = 9_6 __UpperCamelCase = (2, 2, 6, 2) __UpperCamelCase = (3, 6, 1_2, 2_4) elif model_size == "small": __UpperCamelCase = 9_6 __UpperCamelCase = (2, 2, 1_8, 2) __UpperCamelCase = (3, 6, 1_2, 2_4) elif model_size == "base": __UpperCamelCase = 1_2_8 __UpperCamelCase = (2, 2, 1_8, 2) __UpperCamelCase = (4, 8, 1_6, 3_2) else: __UpperCamelCase = 1_9_2 __UpperCamelCase = (2, 2, 1_8, 2) __UpperCamelCase = (6, 1_2, 2_4, 4_8) if "in22k" in swin_name: __UpperCamelCase = 2_1_8_4_1 else: __UpperCamelCase = 1_0_0_0 __UpperCamelCase = 'huggingface/label-files' __UpperCamelCase = 'imagenet-1k-id2label.json' __UpperCamelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase = {int(snake_case ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} __UpperCamelCase = img_size __UpperCamelCase = num_classes __UpperCamelCase = embed_dim __UpperCamelCase = depths __UpperCamelCase = num_heads __UpperCamelCase = window_size return config def A ( snake_case :Dict ) -> Tuple: if "patch_embed.proj" in name: __UpperCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __UpperCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __UpperCamelCase = 'encoder.' + name if "attn.proj" in name: __UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __UpperCamelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: __UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": __UpperCamelCase = 'layernorm.weight' if name == "norm.bias": __UpperCamelCase = 'layernorm.bias' if "head" in name: __UpperCamelCase = name.replace('head' , 'classifier' ) else: __UpperCamelCase = 'swin.' + name return name def A ( snake_case :str , snake_case :Any ) -> Any: for key in orig_state_dict.copy().keys(): __UpperCamelCase = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: __UpperCamelCase = key.split('.' ) __UpperCamelCase = int(key_split[1] ) __UpperCamelCase = int(key_split[3] ) __UpperCamelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCamelCase = val[:dim, :] __UpperCamelCase = val[ dim : dim * 2, : ] __UpperCamelCase = val[-dim:, :] else: __UpperCamelCase = val[ :dim ] __UpperCamelCase = val[ dim : dim * 2 ] __UpperCamelCase = val[ -dim: ] else: __UpperCamelCase = val return orig_state_dict def A ( snake_case :Optional[Any] , snake_case :Optional[int] ) -> Optional[int]: __UpperCamelCase = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() __UpperCamelCase = get_swin_config(snake_case ) __UpperCamelCase = SwinForImageClassification(snake_case ) model.eval() __UpperCamelCase = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) __UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) __UpperCamelCase = image_processor(images=snake_case , return_tensors='pt' ) __UpperCamelCase = timm_model(inputs['pixel_values'] ) __UpperCamelCase = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1e-3 ) print(f'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase : Tuple = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
316
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
1
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCAmelCase : def __init__( self ): '''simple docstring''' __UpperCamelCase = {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ): '''simple docstring''' if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __UpperCamelCase = [[w, v]] if not self.graph.get(__UpperCAmelCase ): __UpperCamelCase = [] def UpperCAmelCase ( self ): '''simple docstring''' return list(self.graph ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ): '''simple docstring''' if s == d: return [] __UpperCamelCase = [] __UpperCamelCase = [] if s == -2: __UpperCamelCase = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) __UpperCamelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: __UpperCamelCase = stack[len(__UpperCAmelCase ) - 1] else: __UpperCamelCase = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def UpperCAmelCase ( self , __UpperCAmelCase=-1 ): '''simple docstring''' if c == -1: __UpperCamelCase = floor(random() * 1_0000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __UpperCamelCase = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def UpperCAmelCase ( self , __UpperCAmelCase=-2 ): '''simple docstring''' __UpperCamelCase = deque() __UpperCamelCase = [] if s == -2: __UpperCamelCase = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: __UpperCamelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return len(self.graph[u] ) def UpperCAmelCase ( self , __UpperCAmelCase=-2 ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = [] if s == -2: __UpperCamelCase = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) __UpperCamelCase = s __UpperCamelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __UpperCamelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: __UpperCamelCase = stack[len(__UpperCAmelCase ) - 1] else: __UpperCamelCase = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) __UpperCamelCase = -2 __UpperCamelCase = [] __UpperCamelCase = s __UpperCamelCase = False __UpperCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __UpperCamelCase = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __UpperCamelCase = True if len(__UpperCAmelCase ) != 0: __UpperCamelCase = stack[len(__UpperCAmelCase ) - 1] else: __UpperCamelCase = False indirect_parents.append(__UpperCAmelCase ) __UpperCamelCase = s __UpperCamelCase = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) __UpperCamelCase = -2 __UpperCamelCase = [] __UpperCamelCase = s __UpperCamelCase = False __UpperCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __UpperCamelCase = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __UpperCamelCase = True if len(__UpperCAmelCase ) != 0: __UpperCamelCase = stack[len(__UpperCAmelCase ) - 1] else: __UpperCamelCase = False indirect_parents.append(__UpperCAmelCase ) __UpperCamelCase = s __UpperCamelCase = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ): '''simple docstring''' __UpperCamelCase = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = time() return end - begin def UpperCAmelCase ( self , __UpperCAmelCase=-2 ): '''simple docstring''' __UpperCamelCase = time() self.bfs(__UpperCAmelCase ) __UpperCamelCase = time() return end - begin class __lowerCAmelCase : def __init__( self ): '''simple docstring''' __UpperCamelCase = {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ): '''simple docstring''' if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __UpperCamelCase = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __UpperCamelCase = [[w, u]] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ): '''simple docstring''' if s == d: return [] __UpperCamelCase = [] __UpperCamelCase = [] if s == -2: __UpperCamelCase = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) __UpperCamelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: __UpperCamelCase = stack[len(__UpperCAmelCase ) - 1] else: __UpperCamelCase = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def UpperCAmelCase ( self , __UpperCAmelCase=-1 ): '''simple docstring''' if c == -1: __UpperCamelCase = floor(random() * 1_0000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __UpperCamelCase = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def UpperCAmelCase ( self , __UpperCAmelCase=-2 ): '''simple docstring''' __UpperCamelCase = deque() __UpperCamelCase = [] if s == -2: __UpperCamelCase = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: __UpperCamelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return len(self.graph[u] ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) __UpperCamelCase = -2 __UpperCamelCase = [] __UpperCamelCase = s __UpperCamelCase = False __UpperCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __UpperCamelCase = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __UpperCamelCase = True if len(__UpperCAmelCase ) != 0: __UpperCamelCase = stack[len(__UpperCAmelCase ) - 1] else: __UpperCamelCase = False indirect_parents.append(__UpperCAmelCase ) __UpperCamelCase = s __UpperCamelCase = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) __UpperCamelCase = -2 __UpperCamelCase = [] __UpperCamelCase = s __UpperCamelCase = False __UpperCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __UpperCamelCase = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __UpperCamelCase = True if len(__UpperCAmelCase ) != 0: __UpperCamelCase = stack[len(__UpperCAmelCase ) - 1] else: __UpperCamelCase = False indirect_parents.append(__UpperCAmelCase ) __UpperCamelCase = s __UpperCamelCase = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def UpperCAmelCase ( self ): '''simple docstring''' return list(self.graph ) def UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ): '''simple docstring''' __UpperCamelCase = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = time() return end - begin def UpperCAmelCase ( self , __UpperCAmelCase=-2 ): '''simple docstring''' __UpperCamelCase = time() self.bfs(__UpperCAmelCase ) __UpperCamelCase = time() return end - begin
316
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
1
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" class __lowerCAmelCase : def __init__( self ): '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = {} def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if vertex not in self.adjacency: __UpperCamelCase = {} self.num_vertices += 1 def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.add_vertex(__UpperCAmelCase ) self.add_vertex(__UpperCAmelCase ) if head == tail: return __UpperCamelCase = weight __UpperCamelCase = weight def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_edges() for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = edge edges.remove((tail, head, weight) ) for i in range(len(__UpperCAmelCase ) ): __UpperCamelCase = list(edges[i] ) edges.sort(key=lambda __UpperCAmelCase : e[2] ) for i in range(len(__UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __UpperCamelCase = edges[i][2] + 1 for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = edge __UpperCamelCase = weight __UpperCamelCase = weight def __str__( self ): '''simple docstring''' __UpperCamelCase = '' for tail in self.adjacency: for head in self.adjacency[tail]: __UpperCamelCase = self.adjacency[head][tail] string += F'{head} -> {tail} == {weight}\n' return string.rstrip('\n' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCAmelCase ( self ): '''simple docstring''' return self.adjacency.keys() @staticmethod def UpperCAmelCase ( __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' __UpperCamelCase = Graph() if vertices is None: __UpperCamelCase = [] if edges is None: __UpperCamelCase = [] for vertex in vertices: g.add_vertex(__UpperCAmelCase ) for edge in edges: g.add_edge(*__UpperCAmelCase ) return g class __lowerCAmelCase : def __init__( self ): '''simple docstring''' __UpperCamelCase = {} __UpperCamelCase = {} def __len__( self ): '''simple docstring''' return len(self.parent ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if item in self.parent: return self.find(__UpperCAmelCase ) __UpperCamelCase = item __UpperCamelCase = 0 return item def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if item not in self.parent: return self.make_set(__UpperCAmelCase ) if item != self.parent[item]: __UpperCamelCase = self.find(self.parent[item] ) return self.parent[item] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.find(__UpperCAmelCase ) __UpperCamelCase = self.find(__UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __UpperCamelCase = roota return roota if self.rank[roota] < self.rank[roota]: __UpperCamelCase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __UpperCamelCase = roota return roota return None @staticmethod def UpperCAmelCase ( __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = graph.num_vertices __UpperCamelCase = Graph.UnionFind() __UpperCamelCase = [] while num_components > 1: __UpperCamelCase = {} for vertex in graph.get_vertices(): __UpperCamelCase = -1 __UpperCamelCase = graph.get_edges() for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = edge edges.remove((tail, head, weight) ) for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = edge __UpperCamelCase = union_find.find(__UpperCAmelCase ) __UpperCamelCase = union_find.find(__UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCamelCase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCamelCase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = cheap_edge[vertex] if union_find.find(__UpperCAmelCase ) != union_find.find(__UpperCAmelCase ): union_find.union(__UpperCAmelCase , __UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) __UpperCamelCase = num_components - 1 __UpperCamelCase = Graph.build(edges=__UpperCAmelCase ) return mst
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
1
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCamelCase : Any = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model UpperCamelCase : Tuple = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names UpperCamelCase : Any = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase : Dict = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: UpperCamelCase : List[str] = "allenai" def A ( snake_case :Tuple ) -> Any: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __UpperCamelCase = dict((re.sub(r'@@$' , '' , snake_case ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , snake_case ), v) for k, v in d.items() ) __UpperCamelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] __UpperCamelCase = d[k] # restore return da def A ( snake_case :Optional[int] , snake_case :str ) -> List[str]: # prep assert os.path.exists(snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __UpperCamelCase = basename(snake_case ) __UpperCamelCase = dirname(snake_case ) __UpperCamelCase = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel __UpperCamelCase = cls.hub_models() __UpperCamelCase = {'bpe': 'fastbpe', 'tokenizer': 'moses'} __UpperCamelCase = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'using checkpoint {checkpoint_file}' ) __UpperCamelCase = hub_utils.from_pretrained( snake_case , snake_case , snake_case , archive_map=snake_case , **snake_case ) __UpperCamelCase = vars(chkpt['args']['model'] ) __UpperCamelCase = args['source_lang'] __UpperCamelCase = args['target_lang'] __UpperCamelCase = dirname(snake_case ) __UpperCamelCase = basename(snake_case ) # dicts __UpperCamelCase = os.path.join(snake_case , f'dict.{src_lang}.txt' ) __UpperCamelCase = os.path.join(snake_case , f'dict.{tgt_lang}.txt' ) __UpperCamelCase = Dictionary.load(snake_case ) __UpperCamelCase = rewrite_dict_keys(src_dict.indices ) __UpperCamelCase = len(snake_case ) __UpperCamelCase = os.path.join(snake_case , 'vocab-src.json' ) print(f'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab __UpperCamelCase = True for k in src_vocab.keys(): if not k.islower(): __UpperCamelCase = False break __UpperCamelCase = Dictionary.load(snake_case ) __UpperCamelCase = rewrite_dict_keys(tgt_dict.indices ) __UpperCamelCase = len(snake_case ) __UpperCamelCase = os.path.join(snake_case , 'vocab-tgt.json' ) print(f'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # merges_file (bpecodes) __UpperCamelCase = os.path.join(snake_case , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" __UpperCamelCase = os.path.join(snake_case , snake_case ) if os.path.exists(snake_case ): break with open(snake_case , encoding='utf-8' ) as fin: __UpperCamelCase = fin.read() __UpperCamelCase = re.sub(r' \d+$' , '' , snake_case , 0 , re.M ) # remove frequency number print(f'Generating {merges_file}' ) with open(snake_case , 'w' , encoding='utf-8' ) as fout: fout.write(snake_case ) # model config __UpperCamelCase = os.path.join(snake_case , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", f'need to extend tokenizer to support bpe={args["tokenizer"]}' __UpperCamelCase = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with __UpperCamelCase = 5 __UpperCamelCase = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: __UpperCamelCase = best_score_hparams[model_dir]['length_penalty'] else: __UpperCamelCase = 1.0 print(f'Generating {fsmt_model_config_file}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # tokenizer config __UpperCamelCase = os.path.join(snake_case , snake_case ) __UpperCamelCase = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1_0_2_4, 'do_lower_case': do_lower_case, } print(f'Generating {fsmt_tokenizer_config_file}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # model __UpperCamelCase = chkpt['models'][0] __UpperCamelCase = model.state_dict() # rename keys to start with 'model.' __UpperCamelCase = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys __UpperCamelCase = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(snake_case , snake_case ) __UpperCamelCase = FSMTConfig.from_pretrained(snake_case ) __UpperCamelCase = FSMTForConditionalGeneration(snake_case ) # check that it loads ok model_new.load_state_dict(snake_case , strict=snake_case ) # save __UpperCamelCase = os.path.join(snake_case , snake_case ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(snake_case , snake_case ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'cd {data_root}' ) print(f'transformers-cli upload {model_dir}' ) if __name__ == "__main__": UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase : str = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : str = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "markuplm" def __init__( self , __UpperCAmelCase=3_0522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=256 , __UpperCAmelCase=1024 , __UpperCAmelCase=216 , __UpperCAmelCase=1001 , __UpperCAmelCase=32 , __UpperCAmelCase=50 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout # additional properties __UpperCamelCase = max_depth __UpperCamelCase = max_xpath_tag_unit_embeddings __UpperCamelCase = max_xpath_subs_unit_embeddings __UpperCamelCase = tag_pad_id __UpperCamelCase = subs_pad_id __UpperCamelCase = xpath_unit_hidden_size
316
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Tuple = {"vocab_file": "spiece.model"} UpperCamelCase : Tuple = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } UpperCamelCase : str = { "albert-base-v1": 5_1_2, "albert-large-v1": 5_1_2, "albert-xlarge-v1": 5_1_2, "albert-xxlarge-v1": 5_1_2, "albert-base-v2": 5_1_2, "albert-large-v2": 5_1_2, "albert-xlarge-v2": 5_1_2, "albert-xxlarge-v2": 5_1_2, } UpperCamelCase : List[str] = "▁" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = ( AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase , normalized=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token ) __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) __UpperCamelCase = do_lower_case __UpperCamelCase = remove_space __UpperCamelCase = keep_accents __UpperCamelCase = vocab_file __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if self.remove_space: __UpperCamelCase = ' '.join(inputs.strip().split() ) else: __UpperCamelCase = inputs __UpperCamelCase = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: __UpperCamelCase = unicodedata.normalize('NFKD' , __UpperCAmelCase ) __UpperCamelCase = ''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: __UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.preprocess_text(__UpperCAmelCase ) __UpperCamelCase = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) __UpperCamelCase = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): __UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase = cur_pieces[1:] else: __UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.sp_model.PieceToId(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.sp_model.IdToPiece(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = '' __UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token __UpperCamelCase = True __UpperCamelCase = [] else: current_sub_tokens.append(__UpperCAmelCase ) __UpperCamelCase = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , 'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
316
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
1
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from math import isqrt, loga def A ( snake_case :int ) -> list[int]: __UpperCamelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case , snake_case ): __UpperCamelCase = False return [i for i in range(2 , snake_case ) if is_prime[i]] def A ( snake_case :int = 8_0_0_8_0_0 , snake_case :int = 8_0_0_8_0_0 ) -> int: __UpperCamelCase = degree * loga(snake_case ) __UpperCamelCase = int(snake_case ) __UpperCamelCase = calculate_prime_numbers(snake_case ) __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
316
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
1
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 UpperCamelCase : List[str] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase : List[Any] = get_tests_dir("fixtures/vocab.json") UpperCamelCase : Any = get_tests_dir("fixtures") class __lowerCAmelCase ( unittest.TestCase ): lowercase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaConfig() __UpperCamelCase = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) copyfile(__UpperCAmelCase , os.path.join(__UpperCAmelCase , 'vocab.json' ) ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaFeatureExtractor() __UpperCamelCase = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) __UpperCamelCase = WavaVecaProcessor(__UpperCAmelCase , __UpperCAmelCase ) # save in new folder processor.save_pretrained(__UpperCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , 'r' ) as f: __UpperCamelCase = json.load(__UpperCAmelCase ) config_dict.pop('processor_class' ) with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , 'w' ) as f: f.write(json.dumps(__UpperCAmelCase ) ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaFeatureExtractor() __UpperCamelCase = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) __UpperCamelCase = WavaVecaProcessor(__UpperCAmelCase , __UpperCAmelCase ) # save in new folder processor.save_pretrained(__UpperCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , 'r' ) as f: __UpperCamelCase = json.load(__UpperCAmelCase ) config_dict.pop('processor_class' ) with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , 'w' ) as f: f.write(json.dumps(__UpperCAmelCase ) ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(__UpperCAmelCase ) # copy relevant files copyfile(__UpperCAmelCase , os.path.join(__UpperCAmelCase , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , 'w' ) as f: f.write('{}' ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): __UpperCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCAmelCase ): __UpperCamelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__UpperCAmelCase ) __UpperCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=__UpperCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) __UpperCamelCase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) __UpperCamelCase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version __UpperCamelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) __UpperCamelCase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def UpperCAmelCase ( self ): '''simple docstring''' try: AutoConfig.register('custom' , __UpperCAmelCase ) AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) AutoProcessor.register(__UpperCAmelCase , __UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): AutoProcessor.register(__UpperCAmelCase , __UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase = CustomFeatureExtractor.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = os.path.join(__UpperCAmelCase , 'vocab.txt' ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) __UpperCamelCase = CustomTokenizer(__UpperCAmelCase ) __UpperCamelCase = CustomProcessor(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self ): '''simple docstring''' class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = False class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = False class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "AutoFeatureExtractor" lowercase = "AutoTokenizer" lowercase = False try: AutoConfig.register('custom' , __UpperCAmelCase ) AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) AutoProcessor.register(__UpperCAmelCase , __UpperCAmelCase ) # If remote code is not set, the default is to use local classes. __UpperCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __UpperCamelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __UpperCamelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): lowercase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(__UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = WavaVecaProcessor.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__UpperCAmelCase , 'test-processor' ) , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) __UpperCamelCase = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(new_processor.feature_extractor , __UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = WavaVecaProcessor.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__UpperCAmelCase , 'test-processor-org' ) , push_to_hub=__UpperCAmelCase , use_auth_token=self._token , organization='valid_org' , ) __UpperCamelCase = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(new_processor.feature_extractor , __UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCAmelCase ( self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __UpperCamelCase = CustomFeatureExtractor.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = os.path.join(__UpperCAmelCase , 'vocab.txt' ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) __UpperCamelCase = CustomTokenizer(__UpperCAmelCase ) __UpperCamelCase = CustomProcessor(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor' , token=self._token ) __UpperCamelCase = Repository(__UpperCAmelCase , clone_from=F'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(__UpperCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__UpperCAmelCase , 'tokenizer_config.json' ) ) as f: __UpperCamelCase = json.load(__UpperCAmelCase ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__UpperCAmelCase , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__UpperCAmelCase , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__UpperCAmelCase , 'custom_processing.py' ) ) ) repo.push_to_hub() __UpperCamelCase = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=__UpperCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
316
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A ( ) -> Optional[int]: __UpperCamelCase = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' __UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('RGB' ) return image def A ( snake_case :List[Any] ) -> Dict: __UpperCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def A ( snake_case :Optional[Any] , snake_case :str , snake_case :Tuple ) -> Any: __UpperCamelCase = dct.pop(snake_case ) __UpperCamelCase = val def A ( snake_case :List[str] , snake_case :int ) -> Optional[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCamelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) __UpperCamelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict __UpperCamelCase = torch.cat((q_bias, torch.zeros_like(snake_case , requires_grad=snake_case ), v_bias) ) __UpperCamelCase = qkv_bias def A ( snake_case :Optional[int] ) -> Tuple: __UpperCamelCase = 3_6_4 if 'coco' in model_name else 2_2_4 __UpperCamelCase = InstructBlipVisionConfig(image_size=snake_case ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __UpperCamelCase = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: __UpperCamelCase = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __UpperCamelCase = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() __UpperCamelCase = InstructBlipConfig(vision_config=snake_case , text_config=snake_case , qformer_config=snake_case ) return config, image_size @torch.no_grad() def A ( snake_case :Any , snake_case :str=None , snake_case :Optional[int]=False ) -> List[str]: __UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: __UpperCamelCase = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __UpperCamelCase = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) __UpperCamelCase , __UpperCamelCase = get_blipa_config(snake_case ) __UpperCamelCase = InstructBlipForConditionalGeneration(snake_case ).eval() __UpperCamelCase = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } __UpperCamelCase , __UpperCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) __UpperCamelCase = 'cuda:1' if torch.cuda.is_available() else 'cpu' __UpperCamelCase = 'cuda:2' if torch.cuda.is_available() else 'cpu' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_model_and_preprocess( name=snake_case , model_type=snake_case , is_eval=snake_case , device=snake_case ) original_model.eval() print('Done!' ) # update state dict keys __UpperCamelCase = original_model.state_dict() __UpperCamelCase = create_rename_keys(snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCamelCase = state_dict.pop(snake_case ) if key.startswith('Qformer.bert' ): __UpperCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __UpperCamelCase = key.replace('self' , 'attention' ) if "llm_proj" in key: __UpperCamelCase = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: __UpperCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): __UpperCamelCase = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): __UpperCamelCase = key.replace('t5' , 'language' ) __UpperCamelCase = val # read in qv biases read_in_q_v_bias(snake_case , snake_case ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(snake_case , strict=snake_case ) __UpperCamelCase = load_demo_image() __UpperCamelCase = 'What is unusual about this image?' # create processor __UpperCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=snake_case , image_std=snake_case ) __UpperCamelCase = InstructBlipProcessor( image_processor=snake_case , tokenizer=snake_case , qformer_tokenizer=snake_case , ) __UpperCamelCase = processor(images=snake_case , text=snake_case , return_tensors='pt' ).to(snake_case ) # make sure processor creates exact same pixel values __UpperCamelCase = vis_processors['eval'](snake_case ).unsqueeze(0 ).to(snake_case ) __UpperCamelCase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , snake_case ) original_model.to(snake_case ) hf_model.to(snake_case ) with torch.no_grad(): if "vicuna" in model_name: __UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits __UpperCamelCase = hf_model(**snake_case ).logits else: __UpperCamelCase = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits __UpperCamelCase = tokenizer('\n' , return_tensors='pt' ).input_ids.to(snake_case ) __UpperCamelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) __UpperCamelCase = hf_model(**snake_case , labels=snake_case ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __UpperCamelCase = 1e-4 if 'vicuna' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , snake_case , atol=snake_case ) print('Looks ok!' ) print('Generating with original model...' ) __UpperCamelCase = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) __UpperCamelCase = hf_model.generate( **snake_case , do_sample=snake_case , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __UpperCamelCase = 2 print('Original generation:' , snake_case ) __UpperCamelCase = processor.batch_decode(snake_case , skip_special_tokens=snake_case ) __UpperCamelCase = [text.strip() for text in output_text] print('HF generation:' , snake_case ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case ) hf_model.save_pretrained(snake_case ) if push_to_hub: processor.push_to_hub(f'Salesforce/{model_name}' ) hf_model.push_to_hub(f'Salesforce/{model_name}' ) if __name__ == "__main__": UpperCamelCase : List[str] = argparse.ArgumentParser() UpperCamelCase : List[Any] = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) UpperCamelCase : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
316
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
1
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore UpperCamelCase : Union[str, Any] = namedtuple("covid_data", "cases deaths recovered") def A ( snake_case :str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __UpperCamelCase = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(snake_case ).content ).xpath(snake_case ) ) UpperCamelCase : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
316
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : List[str] = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "longformer" def __init__( self , __UpperCAmelCase = 512 , __UpperCAmelCase = 2 , __UpperCAmelCase = 1 , __UpperCAmelCase = 0 , __UpperCAmelCase = 2 , __UpperCAmelCase = 3_0522 , __UpperCAmelCase = 768 , __UpperCAmelCase = 12 , __UpperCAmelCase = 12 , __UpperCAmelCase = 3072 , __UpperCAmelCase = "gelu" , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 512 , __UpperCAmelCase = 2 , __UpperCAmelCase = 0.0_2 , __UpperCAmelCase = 1E-12 , __UpperCAmelCase = False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = attention_window __UpperCamelCase = sep_token_id __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = onnx_export class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = True @property def UpperCAmelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().outputs if self.task == "default": __UpperCamelCase = {0: 'batch'} return outputs @property def UpperCAmelCase ( self ): '''simple docstring''' return 1E-4 @property def UpperCAmelCase ( self ): '''simple docstring''' return max(super().default_onnx_opset , 14 ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ): '''simple docstring''' __UpperCamelCase = super().generate_dummy_inputs( preprocessor=__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __UpperCamelCase = torch.zeros_like(inputs['input_ids'] ) # make every second token global __UpperCamelCase = 1 return inputs
316
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" def A ( snake_case :Tuple ) -> Dict: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def A ( snake_case :dict[int, list[int]] ) -> list[tuple[int, int]]: __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) # No of vertices in graph __UpperCamelCase = [0] * n __UpperCamelCase = [False] * n def dfs(snake_case :Tuple , snake_case :int , snake_case :Any , snake_case :Optional[int] ): __UpperCamelCase = True __UpperCamelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(snake_case , snake_case , snake_case , id_ ) __UpperCamelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __UpperCamelCase = min(low[at] , low[to] ) __UpperCamelCase = [] for i in range(snake_case ): if not visited[i]: dfs(snake_case , -1 , snake_case , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [[1, 2, 4], [1, 2, 3, 4]] __UpperCamelCase = DisjunctiveConstraint(__UpperCAmelCase ) self.assertTrue(isinstance(dc.token_ids , __UpperCAmelCase ) ) with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint(__UpperCAmelCase ) # fails here def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [[1, 2, 3], [1, 2, 4]] __UpperCamelCase = DisjunctiveConstraint(__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = dc.update(1 ) __UpperCamelCase = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = dc.update(2 ) __UpperCamelCase = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = dc.update(3 ) __UpperCamelCase = stepped is True and completed is True and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __UpperCamelCase = DisjunctiveConstraint(__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
316
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def A ( snake_case :int , snake_case :str=False ) -> Union[str, Any]: __UpperCamelCase = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __UpperCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def A ( snake_case :List[str] , snake_case :Optional[Any] , snake_case :Any=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: __UpperCamelCase = '' else: __UpperCamelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) __UpperCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] __UpperCamelCase = in_proj_bias[: config.hidden_size] __UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] __UpperCamelCase = in_proj_bias[-config.hidden_size :] def A ( snake_case :List[Any] ) -> int: __UpperCamelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def A ( snake_case :Optional[int] , snake_case :Any , snake_case :str ) -> List[Any]: __UpperCamelCase = dct.pop(snake_case ) __UpperCamelCase = val def A ( ) -> Union[str, Any]: __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def A ( snake_case :Optional[int] , snake_case :Any , snake_case :Tuple=False ) -> List[str]: __UpperCamelCase = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=snake_case , ) __UpperCamelCase = ViTHybridConfig(backbone_config=snake_case , image_size=3_8_4 , num_labels=1_0_0_0 ) __UpperCamelCase = False # load original model from timm __UpperCamelCase = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys __UpperCamelCase = timm_model.state_dict() if base_model: remove_classification_head_(snake_case ) __UpperCamelCase = create_rename_keys(snake_case , snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) read_in_q_k_v(snake_case , snake_case , snake_case ) __UpperCamelCase = 'huggingface/label-files' __UpperCamelCase = 'imagenet-1k-id2label.json' __UpperCamelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase = {int(snake_case ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": __UpperCamelCase = ViTHybridModel(snake_case ).eval() else: __UpperCamelCase = ViTHybridForImageClassification(snake_case ).eval() model.load_state_dict(snake_case ) # create image processor __UpperCamelCase = create_transform(**resolve_data_config({} , model=snake_case ) ) __UpperCamelCase = transform.transforms __UpperCamelCase = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } __UpperCamelCase = ViTHybridImageProcessor( do_resize=snake_case , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=snake_case , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __UpperCamelCase = prepare_img() __UpperCamelCase = transform(snake_case ).unsqueeze(0 ) __UpperCamelCase = processor(snake_case , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(snake_case , snake_case ) # verify logits with torch.no_grad(): __UpperCamelCase = model(snake_case ) __UpperCamelCase = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: __UpperCamelCase = timm_model.forward_features(snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(snake_case , outputs.pooler_output , atol=1e-3 ) else: __UpperCamelCase = timm_model(snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(snake_case ) if push_to_hub: print(f'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(f'ybelkada/{vit_name}' ) processor.push_to_hub(f'ybelkada/{vit_name}' ) if __name__ == "__main__": UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) UpperCamelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
316
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller UpperCamelCase : str = 3 def A ( snake_case :int ) -> int: print('Generating primitive root of p' ) while True: __UpperCamelCase = random.randrange(3 , snake_case ) if pow(snake_case , 2 , snake_case ) == 1: continue if pow(snake_case , snake_case , snake_case ) == 1: continue return g def A ( snake_case :int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) __UpperCamelCase = rabin_miller.generate_large_prime(snake_case ) # select large prime number. __UpperCamelCase = primitive_root(snake_case ) # one primitive root on modulo p. __UpperCamelCase = random.randrange(3 , snake_case ) # private_key -> have to be greater than 2 for safety. __UpperCamelCase = cryptomath.find_mod_inverse(pow(snake_case , snake_case , snake_case ) , snake_case ) __UpperCamelCase = (key_size, e_a, e_a, p) __UpperCamelCase = (key_size, d) return public_key, private_key def A ( snake_case :str , snake_case :int ) -> None: if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ): print('\nWARNING:' ) print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() __UpperCamelCase , __UpperCamelCase = generate_key(snake_case ) print(f'\nWriting public key to file {name}_pubkey.txt...' ) with open(f'{name}_pubkey.txt' , 'w' ) as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(f'Writing private key to file {name}_privkey.txt...' ) with open(f'{name}_privkey.txt' , 'w' ) as fo: fo.write(f'{private_key[0]},{private_key[1]}' ) def A ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2_0_4_8 ) print('Key files generation successful' ) if __name__ == "__main__": main()
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
1
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import functools def A ( snake_case :list[int] , snake_case :list[int] ) -> int: # Validation if not isinstance(snake_case , snake_case ) or not all(isinstance(snake_case , snake_case ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(snake_case ) != 3 or not all(isinstance(snake_case , snake_case ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(snake_case ) == 0: return 0 if min(snake_case ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(snake_case ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) __UpperCamelCase = set(snake_case ) @functools.cache def dynamic_programming(snake_case :int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
1
"""simple docstring""" from __future__ import annotations import bisect def A ( snake_case :list[int] , snake_case :int , snake_case :int = 0 , snake_case :int = -1 ) -> int: if hi < 0: __UpperCamelCase = len(snake_case ) while lo < hi: __UpperCamelCase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid return lo def A ( snake_case :list[int] , snake_case :int , snake_case :int = 0 , snake_case :int = -1 ) -> int: if hi < 0: __UpperCamelCase = len(snake_case ) while lo < hi: __UpperCamelCase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid return lo def A ( snake_case :list[int] , snake_case :int , snake_case :int = 0 , snake_case :int = -1 ) -> None: sorted_collection.insert(bisect_left(snake_case , snake_case , snake_case , snake_case ) , snake_case ) def A ( snake_case :list[int] , snake_case :int , snake_case :int = 0 , snake_case :int = -1 ) -> None: sorted_collection.insert(bisect_right(snake_case , snake_case , snake_case , snake_case ) , snake_case ) def A ( snake_case :list[int] , snake_case :int ) -> int | None: __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 while left <= right: __UpperCamelCase = left + (right - left) // 2 __UpperCamelCase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __UpperCamelCase = midpoint - 1 else: __UpperCamelCase = midpoint + 1 return None def A ( snake_case :list[int] , snake_case :int ) -> int | None: __UpperCamelCase = bisect.bisect_left(snake_case , snake_case ) if index != len(snake_case ) and sorted_collection[index] == item: return index return None def A ( snake_case :list[int] , snake_case :int , snake_case :int , snake_case :int ) -> int | None: if right < left: return None __UpperCamelCase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(snake_case , snake_case , snake_case , midpoint - 1 ) else: return binary_search_by_recursion(snake_case , snake_case , midpoint + 1 , snake_case ) if __name__ == "__main__": UpperCamelCase : str = input("Enter numbers separated by comma:\n").strip() UpperCamelCase : str = sorted(int(item) for item in user_input.split(",")) UpperCamelCase : int = int(input("Enter a single number to be found in the list:\n")) UpperCamelCase : Tuple = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
316
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=4 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_attention_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_choices def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_attention_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = True __UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = True lowercase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__UpperCAmelCase ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__UpperCAmelCase ) __UpperCamelCase = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__UpperCAmelCase ) __UpperCamelCase = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __UpperCamelCase = model(__UpperCAmelCase )[0] # compare the actual values for a slice. __UpperCamelCase = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
316
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
1
"""simple docstring""" UpperCamelCase : List[Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def A ( snake_case :dict , snake_case :Optional[int] , snake_case :List[Any] ) -> list[str]: __UpperCamelCase = set() # keep track of all the paths to be checked __UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __UpperCamelCase = queue.pop(0 ) # get the last node from the path __UpperCamelCase = path[-1] if node not in explored: __UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __UpperCamelCase = list(snake_case ) new_path.append(snake_case ) queue.append(snake_case ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(snake_case ) # in case there's no path between the 2 nodes return [] def A ( snake_case :dict , snake_case :Any , snake_case :Tuple ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __UpperCamelCase = [start] __UpperCamelCase = set(snake_case ) # Keep tab on distances from `start` node. __UpperCamelCase = {start: 0, target: -1} while queue: __UpperCamelCase = queue.pop(0 ) if node == target: __UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(snake_case ) queue.append(snake_case ) __UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
316
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
1
"""simple docstring""" UpperCamelCase : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def A ( snake_case :int ) -> int: __UpperCamelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCamelCase : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 UpperCamelCase : int = True UpperCamelCase : List[Any] = False def A ( snake_case :int ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __UpperCamelCase = chain(next_number(snake_case ) ) __UpperCamelCase = number_chain while number < 1_0_0_0_0_0_0_0: __UpperCamelCase = number_chain number *= 1_0 return number_chain def A ( snake_case :int = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
316
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase : str = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = size if size is not None else {'shortest_edge': 384} __UpperCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCamelCase = do_resize __UpperCamelCase = size # Default value set here for backwards compatibility where the value in config is None __UpperCamelCase = crop_pct if crop_pct is not None else 224 / 256 __UpperCamelCase = resample __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __UpperCamelCase = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __UpperCamelCase = int(shortest_edge / crop_pct ) __UpperCamelCase = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCamelCase = resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" UpperCamelCase : List[str] = "Input must be a string of 8 numbers plus letter" UpperCamelCase : Optional[int] = "TRWAGMYFPDXBNJZSQVHLCKE" def A ( snake_case :str ) -> bool: if not isinstance(snake_case , snake_case ): __UpperCamelCase = f'Expected string as input, found {type(snake_case ).__name__}' raise TypeError(snake_case ) __UpperCamelCase = spanish_id.replace('-' , '' ).upper() if len(snake_case ) != 9: raise ValueError(snake_case ) try: __UpperCamelCase = int(spanish_id_clean[0:8] ) __UpperCamelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(snake_case ) from ex if letter.isdigit(): raise ValueError(snake_case ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
1
"""simple docstring""" from __future__ import annotations import time import numpy as np UpperCamelCase : str = [8, 5, 9, 7] UpperCamelCase : List[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] UpperCamelCase : Union[str, Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = claim_vector __UpperCamelCase = allocated_resources_table __UpperCamelCase = maximum_claim_table def UpperCAmelCase ( self ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase ( self ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase ( self ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase ( self ): '''simple docstring''' return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()} def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.__need() __UpperCamelCase = self.__allocated_resources_table __UpperCamelCase = self.__available_resources() __UpperCamelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __UpperCamelCase = False for each_need in need_list: __UpperCamelCase = True for index, need in enumerate(__UpperCAmelCase ): if need > available_resources[index]: __UpperCamelCase = False break if execution: __UpperCamelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __UpperCamelCase = original_need_index print(F'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__UpperCAmelCase ) # update available/freed resources stack __UpperCamelCase = np.array(__UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__UpperCAmelCase ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def UpperCAmelCase ( self ): '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F'P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}' + ' '.join(F'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F'P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}' + ' '.join(F'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__UpperCAmelCase ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
316
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
1
"""simple docstring""" import string from math import logaa def A ( snake_case :str , snake_case :str ) -> int: __UpperCamelCase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __UpperCamelCase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A ( snake_case :str , snake_case :str ) -> tuple[int, int]: __UpperCamelCase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __UpperCamelCase = corpus_without_punctuation.split('\n' ) __UpperCamelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(snake_case )) def A ( snake_case :int , snake_case :int , snake_case :List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def A ( snake_case :int , snake_case :int ) -> float: return round(tf * idf , 3 )
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from functools import reduce UpperCamelCase : Dict = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def A ( snake_case :str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case , snake_case : str(int(snake_case ) * int(snake_case ) ) , n[i : i + 1_3] ) ) for i in range(len(snake_case ) - 1_2 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
316
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def A ( snake_case :List[Any] , snake_case :List[str] ) -> Union[str, Any]: # ===== initialization ===== __UpperCamelCase = Mock() __UpperCamelCase = conn, Mock() __UpperCamelCase = iter([1, None] ) __UpperCamelCase = lambda snake_case : next(snake_case ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=snake_case ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
316
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
1
"""simple docstring""" def A ( snake_case :str , snake_case :int ) -> str: __UpperCamelCase = [[] for _ in range(snake_case )] __UpperCamelCase = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(snake_case ) <= key: return input_string for position, character in enumerate(snake_case ): __UpperCamelCase = position % (lowest * 2) # puts it in bounds __UpperCamelCase = min(snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(snake_case ) __UpperCamelCase = [''.join(snake_case ) for row in temp_grid] __UpperCamelCase = ''.join(snake_case ) return output_string def A ( snake_case :str , snake_case :int ) -> str: __UpperCamelCase = [] __UpperCamelCase = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string __UpperCamelCase = [[] for _ in range(snake_case )] # generates template for position in range(len(snake_case ) ): __UpperCamelCase = position % (lowest * 2) # puts it in bounds __UpperCamelCase = min(snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) __UpperCamelCase = 0 for row in temp_grid: # fills in the characters __UpperCamelCase = input_string[counter : counter + len(snake_case )] grid.append(list(snake_case ) ) counter += len(snake_case ) __UpperCamelCase = '' # reads as zigzag for position in range(len(snake_case ) ): __UpperCamelCase = position % (lowest * 2) # puts it in bounds __UpperCamelCase = min(snake_case , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def A ( snake_case :str ) -> dict[int, str]: __UpperCamelCase = {} for key_guess in range(1 , len(snake_case ) ): # tries every key __UpperCamelCase = decrypt(snake_case , snake_case ) return results if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCamelCase : Optional[Any] = None UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Tuple = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } UpperCamelCase : str = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off UpperCamelCase : Dict = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ["input_ids", "attention_mask"] lowercase = MBartTokenizer lowercase = [] lowercase = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = vocab_file __UpperCamelCase = False if not self.vocab_file else True __UpperCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __UpperCamelCase = { lang_code: self.convert_tokens_to_ids(__UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCamelCase = src_lang if src_lang is not None else 'en_XX' __UpperCamelCase = self.convert_tokens_to_ids(self._src_lang ) __UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase = src_lang __UpperCamelCase = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = self.convert_tokens_to_ids(__UpperCAmelCase ) __UpperCamelCase = tgt_lang_id return inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "en_XX" , __UpperCAmelCase = None , __UpperCAmelCase = "ro_RO" , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.convert_tokens_to_ids(__UpperCAmelCase ) __UpperCamelCase = [] __UpperCamelCase = [self.eos_token_id, self.cur_lang_code] __UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.convert_tokens_to_ids(__UpperCAmelCase ) __UpperCamelCase = [] __UpperCamelCase = [self.eos_token_id, self.cur_lang_code] __UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
316
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
1
"""simple docstring""" def A ( snake_case :int ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 __UpperCamelCase = 1 __UpperCamelCase = 1 while repunit: __UpperCamelCase = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def A ( snake_case :int = 1_0_0_0_0_0_0 ) -> int: __UpperCamelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(snake_case ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
316
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=[30, 30] , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=8 , __UpperCAmelCase=10 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = scope __UpperCamelCase = n_targets __UpperCamelCase = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __UpperCamelCase = (image_size[1] // patch_size) * (image_size[0] // patch_size) __UpperCamelCase = num_patches + 1 + self.num_detection_tokens def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) __UpperCamelCase = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __UpperCamelCase = [] for i in range(self.batch_size ): __UpperCamelCase = {} __UpperCamelCase = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__UpperCAmelCase ) __UpperCamelCase = torch.rand(self.n_targets , 4 , device=__UpperCAmelCase ) labels.append(__UpperCAmelCase ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = YolosModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = YolosForObjectDetection(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(pixel_values=__UpperCAmelCase ) __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) __UpperCamelCase = model(pixel_values=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowercase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __UpperCamelCase = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __UpperCamelCase = [] for i in range(self.model_tester.batch_size ): __UpperCamelCase = {} __UpperCamelCase = torch.ones( size=(self.model_tester.n_targets,) , device=__UpperCAmelCase , dtype=torch.long ) __UpperCamelCase = torch.ones( self.model_tester.n_targets , 4 , device=__UpperCAmelCase , dtype=torch.float ) labels.append(__UpperCAmelCase ) __UpperCamelCase = labels return inputs_dict def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = YolosModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True # in YOLOS, the seq_len is different __UpperCamelCase = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCamelCase = True __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __UpperCamelCase = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = 1 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = outputs.hidden_states __UpperCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # YOLOS has a different seq_length __UpperCamelCase = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = YolosModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> Optional[Any]: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(inputs.pixel_values ) # verify outputs __UpperCamelCase = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__UpperCAmelCase , ) __UpperCamelCase = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify postprocessing __UpperCamelCase = image_processor.post_process_object_detection( __UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] __UpperCamelCase = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__UpperCAmelCase ) __UpperCamelCase = [75, 75, 17, 63, 17] __UpperCamelCase = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__UpperCAmelCase ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , __UpperCAmelCase , atol=1E-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , __UpperCAmelCase ) self.assertTrue(torch.allclose(results['boxes'][0, :] , __UpperCAmelCase ) )
316
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
1
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
1
"""simple docstring""" def A ( snake_case :int = 1_0_0_0_0_0_0 ) -> int: __UpperCamelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , snake_case ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
316
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
1
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __lowerCAmelCase : def __init__( self ): '''simple docstring''' __UpperCamelCase = '' __UpperCamelCase = '' __UpperCamelCase = [] __UpperCamelCase = 0 __UpperCamelCase = 256 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = cva.imread(__UpperCAmelCase , 0 ) __UpperCamelCase = copy.deepcopy(self.img ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) __UpperCamelCase = np.sum(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): __UpperCamelCase = x[i] / self.k self.sk += prk __UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: __UpperCamelCase = int(last % last ) __UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__UpperCAmelCase ) __UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) __UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __UpperCamelCase = self.img[j][i] if num != self.last_list[num]: __UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase ( self ): '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase ( self ): '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase : Any = os.path.join(os.path.basename(__file__), "image_data/input.jpg") UpperCamelCase : Tuple = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
316
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
1
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
1
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> int: while second != 0: __UpperCamelCase = first & second first ^= second __UpperCamelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : str = int(input("Enter the first number: ").strip()) UpperCamelCase : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f'''{add(first, second) = }''')
316
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
1
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCamelCase : str = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_2_8, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 5_0, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 1_0, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 1_0, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(__UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __UpperCamelCase = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__UpperCAmelCase , repo_id='test-config' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) __UpperCamelCase = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __UpperCamelCase = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) __UpperCamelCase = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' CustomConfig.register_for_auto_class() __UpperCamelCase = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __UpperCamelCase = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=__UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __UpperCamelCase = c.n_embd + 1 # int __UpperCamelCase = c.resid_pdrop + 1.0 # float __UpperCamelCase = not c.scale_attn_weights # bool __UpperCamelCase = c.summary_type + 'foo' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(__UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = PretrainedConfig() __UpperCamelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __UpperCamelCase = [key for key, value in config_common_kwargs.items() if value == getattr(__UpperCAmelCase , __UpperCAmelCase )] if len(__UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F' {", ".join(__UpperCAmelCase )}.' ) def UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __UpperCamelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __UpperCamelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = mock.Mock() __UpperCamelCase = 500 __UpperCamelCase = {} __UpperCamelCase = HTTPError __UpperCamelCase = {} # Download this model to make sure it's in the cache. __UpperCamelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__UpperCAmelCase ) as mock_head: __UpperCamelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = AutoConfig.from_pretrained('bert-base-cased' ) __UpperCamelCase = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(__UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __UpperCamelCase = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __UpperCamelCase = ['config.42.0.0.json'] __UpperCamelCase = 768 configuration.save_pretrained(__UpperCAmelCase ) shutil.move(os.path.join(__UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(__UpperCAmelCase , 'config.42.0.0.json' ) ) __UpperCamelCase = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __UpperCamelCase = 'v4.0.0' __UpperCamelCase , __UpperCamelCase = new_transformers.models.auto.AutoConfig.from_pretrained( __UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __UpperCamelCase = 'v3.0.0' __UpperCamelCase = old_transformers.models.auto.AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 768 )
316
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
1
"""simple docstring""" class __lowerCAmelCase : # Public class to implement a graph def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = row __UpperCamelCase = col __UpperCamelCase = graph def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __UpperCamelCase = [-1, 0, 1, -1, 1, -1, 0, 1] __UpperCamelCase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __UpperCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __UpperCAmelCase ) def UpperCAmelCase ( self ): # And finally, count all islands. '''simple docstring''' __UpperCamelCase = [[False for j in range(self.COL )] for i in range(self.ROW )] __UpperCamelCase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) count += 1 return count
316
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
1
"""simple docstring""" def A ( ) -> Any: __UpperCamelCase = [] __UpperCamelCase = 1 while len(snake_case ) < 1e6: constant.append(str(snake_case ) ) i += 1 __UpperCamelCase = ''.join(snake_case ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
316
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase : Dict = logging.get_logger(__name__) UpperCamelCase : Optional[int] = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def A ( snake_case :str ) -> List[str]: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __UpperCamelCase = model_type_to_module_name(snake_case ) __UpperCamelCase = importlib.import_module(f'.{module_name}' , 'transformers.models' ) try: return getattr(snake_case , snake_case ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case , '__name__' , snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __UpperCamelCase = importlib.import_module('transformers' ) if hasattr(snake_case , snake_case ): return getattr(snake_case , snake_case ) return None def A ( snake_case :Union[str, os.PathLike] , snake_case :Optional[Union[str, os.PathLike]] = None , snake_case :bool = False , snake_case :bool = False , snake_case :Optional[Dict[str, str]] = None , snake_case :Optional[Union[bool, str]] = None , snake_case :Optional[str] = None , snake_case :bool = False , **snake_case :List[str] , ) -> List[Any]: __UpperCamelCase = get_file_from_repo( snake_case , snake_case , cache_dir=snake_case , force_download=snake_case , resume_download=snake_case , proxies=snake_case , use_auth_token=snake_case , revision=snake_case , local_files_only=snake_case , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(snake_case , encoding='utf-8' ) as reader: return json.load(snake_case ) class __lowerCAmelCase : def __init__( self ): '''simple docstring''' raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.pop('config' , __UpperCAmelCase ) __UpperCamelCase = kwargs.pop('trust_remote_code' , __UpperCAmelCase ) __UpperCamelCase = True __UpperCamelCase , __UpperCamelCase = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = config_dict.get('feature_extractor_type' , __UpperCAmelCase ) __UpperCamelCase = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): __UpperCamelCase = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` __UpperCamelCase = getattr(__UpperCAmelCase , 'feature_extractor_type' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: __UpperCamelCase = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: __UpperCamelCase = feature_extractor_class_from_name(__UpperCAmelCase ) __UpperCamelCase = feature_extractor_auto_map is not None __UpperCamelCase = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING __UpperCamelCase = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: __UpperCamelCase = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = kwargs.pop('code_revision' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: __UpperCamelCase = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' F'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}' ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
316
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=None , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = ViTMSNModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = ViTMSNForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = ViTMSNForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowercase = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ViTMSNModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = ViTMSNModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> Optional[int]: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(2 ) __UpperCamelCase = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : Tuple = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "convbert" def __init__( self , __UpperCAmelCase=3_0522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=768 , __UpperCAmelCase=2 , __UpperCAmelCase=9 , __UpperCAmelCase=1 , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = embedding_size __UpperCamelCase = head_ratio __UpperCamelCase = conv_kernel_size __UpperCamelCase = num_groups __UpperCamelCase = classifier_dropout class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def UpperCAmelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
1