code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( a__, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BioGptTokenizer lowerCamelCase__ = False def A_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _lowerCamelCase : List[str] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) _lowerCamelCase : Optional[int] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def A_ ( self , lowercase ): _lowerCamelCase : Any = '''lower newer''' _lowerCamelCase : int = '''lower newer''' return input_text, output_text def A_ ( self ): _lowerCamelCase : str = BioGptTokenizer(self.vocab_file , self.merges_file ) _lowerCamelCase : List[str] = '''lower''' _lowerCamelCase : Optional[Any] = ['''low''', '''er</w>'''] _lowerCamelCase : Optional[Any] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = tokens + ['''<unk>'''] _lowerCamelCase : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @slow def A_ ( self ): _lowerCamelCase : Optional[Any] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _lowerCamelCase : Optional[int] = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : str = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) _lowerCamelCase : str = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
96
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase_( a__=32 , a__=10 , a__=100 , a__=1_026 , a__=True , a__="data/tokenized_stories_train_wikitext103.jbl" , a__="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = generate_datasets( a__ , a__ , number=a__ , min_len=1_026 , trim=a__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model SCREAMING_SNAKE_CASE : Dict = load_gpta('''gpt2''' ).to(a__ ) print('''computing perplexity on objective set''' ) SCREAMING_SNAKE_CASE : int = compute_perplexity(a__ , a__ , a__ ).item() print('''perplexity on objective set:''' , a__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase_( a__ , a__=15 , a__=128 , a__=100 , a__="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE : List[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE : str = SecondaryLearner(a__ ) # Train secondary learner SCREAMING_SNAKE_CASE : Union[str, Any] = train_secondary_learner( a__ , a__ , max_epochs=a__ , batch_size=a__ , eval_freq=100 , igf_model_path=a__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase_( a__ , a__ , a__ , a__=32 , a__=1_000 , a__=16 , a__=1.0 , a__=recopy_gpta , a__=None , a__=10 , a__="gpt2_finetuned.pt" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE : Optional[int] = RandomSampler(a__ ) SCREAMING_SNAKE_CASE : Dict = DataLoader(a__ , sampler=a__ ) SCREAMING_SNAKE_CASE : Tuple = max_steps // (len(a__ )) + 1 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = recopy_model(a__ , a__ , a__ ) model.train() if secondary_learner is not None: secondary_learner.to(a__ ) secondary_learner.eval() SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) for epoch in range(int(a__ ) ): for step, example in enumerate(a__ ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = True if secondary_learner is not None: SCREAMING_SNAKE_CASE : List[str] = secondary_learner.forward( torch.tensor(a__ , dtype=torch.long , device=a__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE : Dict = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE : str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE : List[str] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=a__ , type=a__ , required=a__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a__ , default=a__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a__ , default=a__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a__ , default=a__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=a__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=a__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_000 , type=a__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=a__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=a__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=a__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_026 , type=a__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=a__ , type=a__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=a__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=a__ , type=a__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=a__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE : List[Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner SCREAMING_SNAKE_CASE : Tuple = training_secondary_learner( a__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=a__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a__ , a__ , a__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=a__ , secondary_learner=a__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
313
0
'''simple docstring''' import datasets from .evaluate import evaluate UpperCAmelCase_ = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' UpperCAmelCase_ = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' UpperCAmelCase_ = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} UpperCAmelCase__ = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] UpperCAmelCase__ = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
346
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = filter(lambda a__ : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Any = logging.getLogger(__name__) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if metric == "rouge2": SCREAMING_SNAKE_CASE : str = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": SCREAMING_SNAKE_CASE : List[Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": SCREAMING_SNAKE_CASE : int = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": SCREAMING_SNAKE_CASE : int = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) SCREAMING_SNAKE_CASE : Dict = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a__ , verbose=a__ , ) class a_ ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) ->None: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results SCREAMING_SNAKE_CASE : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE : Any = od / '''test_results.txt''' SCREAMING_SNAKE_CASE : Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" SCREAMING_SNAKE_CASE : Tuple = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_lowerCamelCase ) generations_file.parent.mkdir(exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , '''a+''' ) as writer: for key in sorted(_lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE : Tuple = metrics[key] if isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = val.item() SCREAMING_SNAKE_CASE : Tuple = F"""{key}: {val:.6f}\n""" writer.write(_lowerCamelCase ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE : Optional[Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: try: SCREAMING_SNAKE_CASE : Any = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE : Optional[int] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE : int = count_trainable_parameters(_lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowerCamelCase , _lowerCamelCase , '''test''' ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
313
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( a__ , a__ , unittest.TestCase ): _lowercase : Union[str, Any] = IFInpaintingSuperResolutionPipeline _lowercase : Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} _lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) _lowercase : Any = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=0 ) -> List[Any]: """simple docstring""" if str(_lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(_lowerCamelCase ) else: lowercase__ = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowercase__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase_ ( self: str ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase_ ( self: Dict ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowerCamelCase_ ( self: Any ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" self._test_save_load_local() def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
110
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_( a__ ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCAmelCase_( a__ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : str = ord(a__ ) if not _is_chinese_char(a__ ): return 0 return 1 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = set() for token in tokens: SCREAMING_SNAKE_CASE : str = len(a__ ) > 1 and is_chinese(a__ ) if chinese_word: word_set.add(a__ ) SCREAMING_SNAKE_CASE : str = list(a__ ) return word_list def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : List[str] = max([len(a__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Tuple = bert_tokens SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, len(a__ ) while start < end: SCREAMING_SNAKE_CASE : Dict = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : Optional[int] = min(end - start , a__ ) for i in range(a__ , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE : List[str] = start + i SCREAMING_SNAKE_CASE : Optional[Any] = False break if single_word: start += 1 return bert_word def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(a__ ) for r in res] ltp_res.extend(a__ ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : Any = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : int = [] for input_ids, chinese_word in zip(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = [] for id in input_ids: SCREAMING_SNAKE_CASE : List[Any] = bert_tokenizer._convert_id_to_token(a__ ) input_tokens.append(a__ ) SCREAMING_SNAKE_CASE : List[str] = add_sub_symbol(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Optional[int] = token[2:] # save chinese tokens' pos if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ): ref_id.append(a__ ) ref_ids.append(a__ ) assert len(a__ ) == len(a__ ) return ref_ids def UpperCAmelCase_( a__ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : List[str] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : int = prepare_ref(a__ , a__ , a__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = [json.dumps(a__ ) + '''\n''' for ref in ref_ids] f.writelines(a__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a__ : int = parser.parse_args() main(args)
313
0
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def _UpperCamelCase ( *_A , **_A ) -> List[str]: pass def A__ ( __lowerCamelCase ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __UpperCAmelCase = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _UpperCamelCase ( self , _A , _A , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = pipeline( '''document-question-answering''' , model=_lowerCamelCase , tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = INVOICE_URL SCREAMING_SNAKE_CASE_ = list(zip(*apply_tesseract(load_image(_lowerCamelCase ) , _lowerCamelCase , '''''' ) ) ) SCREAMING_SNAKE_CASE_ = '''What is the placebo?''' SCREAMING_SNAKE_CASE_ = [ { '''image''': load_image(_lowerCamelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def _UpperCamelCase ( self , _A , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = dqa_pipeline(_lowerCamelCase , top_k=2 ) self.assertEqual( _lowerCamelCase , [ [ {'''score''': ANY(_lowerCamelCase ), '''answer''': ANY(_lowerCamelCase ), '''start''': ANY(_lowerCamelCase ), '''end''': ANY(_lowerCamelCase )}, {'''score''': ANY(_lowerCamelCase ), '''answer''': ANY(_lowerCamelCase ), '''start''': ANY(_lowerCamelCase ), '''end''': ANY(_lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) SCREAMING_SNAKE_CASE_ = INVOICE_URL SCREAMING_SNAKE_CASE_ = '''How many cats are there?''' SCREAMING_SNAKE_CASE_ = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] SCREAMING_SNAKE_CASE_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(_lowerCamelCase , decimals=4 ) , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(_lowerCamelCase , decimals=4 ) , _lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' SCREAMING_SNAKE_CASE_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual(_lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , words=_lowerCamelCase , boxes=_lowerCamelCase , top_k=2 ) self.assertEqual(_lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) SCREAMING_SNAKE_CASE_ = INVOICE_URL SCREAMING_SNAKE_CASE_ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE_ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE_ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) SCREAMING_SNAKE_CASE_ = INVOICE_URL SCREAMING_SNAKE_CASE_ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE_ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE_ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=_lowerCamelCase , revision='''3dc6de3''' , ) SCREAMING_SNAKE_CASE_ = INVOICE_URL SCREAMING_SNAKE_CASE_ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) SCREAMING_SNAKE_CASE_ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) SCREAMING_SNAKE_CASE_ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE_ = list(zip(*apply_tesseract(load_image(_lowerCamelCase ) , _lowerCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE_ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=_lowerCamelCase , revision='''3dc6de3''' , max_seq_len=50 , ) SCREAMING_SNAKE_CASE_ = INVOICE_URL SCREAMING_SNAKE_CASE_ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE_ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE_ = list(zip(*apply_tesseract(load_image(_lowerCamelCase ) , _lowerCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE_ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) SCREAMING_SNAKE_CASE_ = INVOICE_URL SCREAMING_SNAKE_CASE_ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(_lowerCamelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def _UpperCamelCase ( self ) -> str: pass
299
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Tuple = '''1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''f32le''' SCREAMING_SNAKE_CASE : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error SCREAMING_SNAKE_CASE : Optional[Any] = output_stream[0] SCREAMING_SNAKE_CASE : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCAmelCase_( a__ , a__ , a__ = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Dict = '''1''' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = '''alsa''' SCREAMING_SNAKE_CASE : Any = '''default''' elif system == "Darwin": SCREAMING_SNAKE_CASE : Union[str, Any] = '''avfoundation''' SCREAMING_SNAKE_CASE : Optional[int] = ''':0''' elif system == "Windows": SCREAMING_SNAKE_CASE : int = '''dshow''' SCREAMING_SNAKE_CASE : Any = '''default''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Tuple = stream_chunk_s else: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s SCREAMING_SNAKE_CASE : Union[str, Any] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Any = np.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): SCREAMING_SNAKE_CASE : List[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : Dict = np.frombuffer(item['''raw'''] , dtype=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = b'''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: SCREAMING_SNAKE_CASE : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: SCREAMING_SNAKE_CASE : List[str] = False yield item SCREAMING_SNAKE_CASE : Dict = stride_left SCREAMING_SNAKE_CASE : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: SCREAMING_SNAKE_CASE : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : str = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
313
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=[1, 1, 2] , __lowerCAmelCase=1 , __lowerCAmelCase=32 , __lowerCAmelCase=4 , __lowerCAmelCase=8 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu_new" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=512 , __lowerCAmelCase=3 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , __lowerCAmelCase=False , ) -> Dict: lowercase__ : Optional[Any] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Any = seq_length lowercase__ : Optional[int] = is_training lowercase__ : Union[str, Any] = use_input_mask lowercase__ : str = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Dict = vocab_size lowercase__ : List[Any] = block_sizes lowercase__ : Dict = num_decoder_layers lowercase__ : Optional[int] = d_model lowercase__ : Dict = n_head lowercase__ : int = d_head lowercase__ : Dict = d_inner lowercase__ : Dict = hidden_act lowercase__ : str = hidden_dropout lowercase__ : Optional[Any] = attention_dropout lowercase__ : Any = activation_dropout lowercase__ : List[str] = max_position_embeddings lowercase__ : Any = type_vocab_size lowercase__ : int = 2 lowercase__ : Dict = num_labels lowercase__ : Tuple = num_choices lowercase__ : Optional[int] = scope lowercase__ : Optional[int] = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ : Any = n_head # Used in the tests to check the size of the first hidden state lowercase__ : Optional[Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ : Tuple = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ : int = self.num_hidden_layers + 2 def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : List[str] = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : str = None if self.use_token_type_ids: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Union[str, Any] = None lowercase__ : Optional[Any] = None lowercase__ : List[str] = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[str] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> str: lowercase__ : Any = TFFunnelModel(config=_lowerCamelCase ) lowercase__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ : Optional[int] = model(_lowerCamelCase ) lowercase__ : int = [input_ids, input_mask] lowercase__ : Any = model(_lowerCamelCase ) lowercase__ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowercase__ : List[Any] = False lowercase__ : str = TFFunnelModel(config=_lowerCamelCase ) lowercase__ : Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowercase__ : Union[str, Any] = False lowercase__ : Optional[Any] = TFFunnelModel(config=_lowerCamelCase ) lowercase__ : Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Any: lowercase__ : str = TFFunnelBaseModel(config=_lowerCamelCase ) lowercase__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ : Optional[int] = model(_lowerCamelCase ) lowercase__ : Optional[Any] = [input_ids, input_mask] lowercase__ : Union[str, Any] = model(_lowerCamelCase ) lowercase__ : Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowercase__ : Dict = False lowercase__ : List[Any] = TFFunnelBaseModel(config=_lowerCamelCase ) lowercase__ : Tuple = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowercase__ : Any = False lowercase__ : Any = TFFunnelBaseModel(config=_lowerCamelCase ) lowercase__ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> List[str]: lowercase__ : Union[str, Any] = TFFunnelForPreTraining(config=_lowerCamelCase ) lowercase__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ : str = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> List[str]: lowercase__ : List[str] = TFFunnelForMaskedLM(config=_lowerCamelCase ) lowercase__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ : Any = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> str: lowercase__ : Dict = self.num_labels lowercase__ : Optional[Any] = TFFunnelForSequenceClassification(config=_lowerCamelCase ) lowercase__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Dict: lowercase__ : Optional[int] = self.num_choices lowercase__ : Optional[int] = TFFunnelForMultipleChoice(config=_lowerCamelCase ) lowercase__ : List[str] = tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : List[Any] = tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : str = tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : List[Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase__ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Any: lowercase__ : Optional[Any] = self.num_labels lowercase__ : int = TFFunnelForTokenClassification(config=_lowerCamelCase ) lowercase__ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ : Tuple = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Optional[Any]: lowercase__ : str = TFFunnelForQuestionAnswering(config=_lowerCamelCase ) lowercase__ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ : List[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Optional[Any] = self.prepare_config_and_inputs() ( lowercase__ ) : List[str] = config_and_inputs lowercase__ : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Any = TFFunnelModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowerCAmelCase( self ) -> int: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) @require_tf class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Optional[Any] = TFFunnelModelTester(self , base=_lowerCamelCase ) lowercase__ : str = ConfigTester(self , config_class=_lowerCamelCase ) def _lowerCAmelCase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase( self ) -> int: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_lowerCamelCase ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase )
198
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class a_ : def __init__( self : Dict , lowercase : Any ): """simple docstring""" lowercase_ :Union[str, Any] = value lowercase_ :Node | None = None lowercase_ :Node | None = None class a_ : def __init__( self : str , lowercase : Optional[int] ): """simple docstring""" lowercase_ :List[Any] = tree def lowercase__ ( self : List[str] , lowercase : List[Any] ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : str ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
223
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase: List[str] = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Optional[Any] = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Dict = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Any = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: int = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Optional[int] = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _UpperCamelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
255
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = (EulerDiscreteScheduler,) __SCREAMING_SNAKE_CASE : Optional[int] = 10 def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**_lowerCamelCase ) return config def __lowerCAmelCase ( self ) ->Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Any = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[str] = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase , use_karras_sigmas=_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : int = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = output.prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
313
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase : int = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any = ['''DPTFeatureExtractor'''] _UpperCamelCase : List[Any] = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase="resnet50" ,__UpperCAmelCase=3 ,__UpperCAmelCase=32 ,__UpperCAmelCase=3 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,) -> Optional[int]: lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : Tuple = out_indices if out_indices is not None else [4] lowerCAmelCase__ : Dict = stage_names lowerCAmelCase__ : Optional[Any] = out_features lowerCAmelCase__ : Optional[Any] = backbone lowerCAmelCase__ : Union[str, Any] = batch_size lowerCAmelCase__ : Any = image_size lowerCAmelCase__ : Any = num_channels lowerCAmelCase__ : int = use_pretrained_backbone lowerCAmelCase__ : Any = is_training def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[Any] = self.get_config() return config, pixel_values def UpperCAmelCase_ ( self ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : Optional[int] = TimmBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : List[str] = model(_lowerCamelCase ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 14, 14) ,) def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase__ : Tuple = config_and_inputs lowerCAmelCase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase_( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' __lowercase : str = (TimmBackbone,) if is_torch_available() else () __lowercase : str = {'feature-extraction': TimmBackbone} if is_torch_available() else {} __lowercase : Any = False __lowercase : Tuple = False __lowercase : Any = False __lowercase : Optional[Any] = False def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Tuple = TimmBackboneModelTester(self ) lowerCAmelCase__ : Optional[int] = ConfigTester(self ,config_class=_lowerCamelCase ,has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Any = '''resnet18''' lowerCAmelCase__ : Dict = '''microsoft/resnet-18''' lowerCAmelCase__ : int = AutoBackbone.from_pretrained(_lowerCamelCase ,use_timm_backbone=_lowerCamelCase ) lowerCAmelCase__ : str = AutoBackbone.from_pretrained(_lowerCamelCase ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) lowerCAmelCase__ : Optional[Any] = AutoBackbone.from_pretrained(_lowerCamelCase ,use_timm_backbone=_lowerCamelCase ,out_indices=[1, 2, 3] ) lowerCAmelCase__ : Dict = AutoBackbone.from_pretrained(_lowerCamelCase ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip("""TimmBackbone doesn\'t support feed forward chunking""" ) def UpperCAmelCase_ ( self ) -> Any: pass @unittest.skip("""TimmBackbone doesn\'t have num_hidden_layers attribute""" ) def UpperCAmelCase_ ( self ) -> Any: pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def UpperCAmelCase_ ( self ) -> int: pass @unittest.skip("""TimmBackbone models doesn\'t have inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip("""TimmBackbone models doesn\'t have inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip("""model weights aren\'t tied in TimmBackbone.""" ) def UpperCAmelCase_ ( self ) -> Tuple: pass @unittest.skip("""model weights aren\'t tied in TimmBackbone.""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ) -> Tuple: pass @unittest.skip("""TimmBackbone doesn\'t have hidden size info in its configuration.""" ) def UpperCAmelCase_ ( self ) -> str: pass @unittest.skip("""TimmBackbone doesn\'t support output_attentions.""" ) def UpperCAmelCase_ ( self ) -> int: pass @unittest.skip("""Safetensors is not supported by timm.""" ) def UpperCAmelCase_ ( self ) -> int: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase_ ( self ) -> Tuple: pass def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Union[str, Any] = model_class(_lowerCamelCase ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : str = [*signature.parameters.keys()] lowerCAmelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Dict = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase__ : Optional[int] = self.all_model_classes[0] lowerCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) lowerCAmelCase__ : List[str] = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = model(**_lowerCamelCase ) lowerCAmelCase__ : List[str] = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase__ : Tuple = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase__ : List[str] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase__ : Optional[int] = model(**_lowerCamelCase ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase__ : Optional[Any] = copy.deepcopy(_lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : int = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase__ : Optional[Any] = model(**_lowerCamelCase ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase__ : Dict = copy.deepcopy(_lowerCamelCase ) lowerCAmelCase__ : int = False lowerCAmelCase__ : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(**_lowerCamelCase )
37
from __future__ import annotations import math def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if len(a__ ) != 2 or len(a[0] ) != 2 or len(a__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) SCREAMING_SNAKE_CASE : Dict = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Any = matrix_length // 2 SCREAMING_SNAKE_CASE : Tuple = [[a[i][j] for j in range(a__ , a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : Optional[int] = [ [a[i][j] for j in range(a__ , a__ )] for i in range(a__ , a__ ) ] SCREAMING_SNAKE_CASE : Optional[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : List[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ , a__ )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase_( a__ ): """simple docstring""" return len(a__ ), len(matrix[0] ) def UpperCAmelCase_( a__ ): """simple docstring""" print('''\n'''.join(str(a__ ) for line in matrix ) ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ ) == (2, 2): return default_matrix_multiplication(a__ , a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : int = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Any = actual_strassen(matrix_addition(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(len(a__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(a__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ )[1] != matrix_dimensions(a__ )[0]: SCREAMING_SNAKE_CASE : Any = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(a__ ) SCREAMING_SNAKE_CASE : str = matrix_dimensions(a__ ) SCREAMING_SNAKE_CASE : Tuple = matrix_dimensions(a__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE : str = max(*a__ , *a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(math.pow(2 , math.ceil(math.loga(a__ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = matrixa SCREAMING_SNAKE_CASE : Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(a__ , a__ ) # Removing the additional zeros for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a__ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a__ : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
313
0
import operator as op lowerCamelCase__ = '''scaler.pt''' lowerCamelCase__ = '''pytorch_model''' lowerCamelCase__ = '''random_states''' lowerCamelCase__ = '''optimizer''' lowerCamelCase__ = '''scheduler''' lowerCamelCase__ = '''pytorch_model.bin''' lowerCamelCase__ = '''pytorch_model.bin.index.json''' lowerCamelCase__ = '''model.safetensors''' lowerCamelCase__ = '''model.safetensors.index.json''' lowerCamelCase__ = '''1.10.2''' lowerCamelCase__ = '''py38''' lowerCamelCase__ = '''4.17.0''' lowerCamelCase__ = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] lowerCamelCase__ = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] lowerCamelCase__ = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] lowerCamelCase__ = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] lowerCamelCase__ = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] lowerCamelCase__ = '''2.0.1''' lowerCamelCase__ = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] lowerCamelCase__ = ['''default''', '''reduce-overhead''', '''max-autotune'''] lowerCamelCase__ = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowerCamelCase__ = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] lowerCamelCase__ = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] lowerCamelCase__ = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
212
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
0
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase ={} __lowercase =job['''started_at'''] __lowercase =job['''completed_at'''] __lowercase =date_parser.parse(a__ ) __lowercase =date_parser.parse(a__ ) __lowercase =round((end_datetime - start_datetime).total_seconds() / 60.0 ) __lowercase =start __lowercase =end __lowercase =duration_in_min return job_info def _A ( _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" __lowercase =None if token is not None: __lowercase ={'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} __lowercase =f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" __lowercase =requests.get(a__ , headers=a__ ).json() __lowercase ={} try: job_time.update({job['name']: extract_time_from_single_job(a__ ) for job in result['jobs']} ) __lowercase =math.ceil((result['total_count'] - 100) / 100 ) for i in range(a__ ): __lowercase =requests.get(url + f"""&page={i + 2}""" , headers=a__ ).json() job_time.update({job['name']: extract_time_from_single_job(a__ ) for job in result['jobs']} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") lowerCamelCase = parser.parse_args() lowerCamelCase = get_job_time(args.workflow_run_id) lowerCamelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"{k}: {v['duration']}")
166
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ ) return k def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE : Dict = v.T SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = array return tf_weights def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE : int = task_specific_params SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : Any = Path(args.tf_ckpt_path).parent.name a__ : int = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowercase__ = logging.get_logger(__name__) # General docstring lowercase__ = '''MobileNetV1Config''' # Base docstring lowercase__ = '''google/mobilenet_v1_1.0_224''' lowercase__ = [1, 1024, 7, 7] # Image classification docstring lowercase__ = '''google/mobilenet_v1_1.0_224''' lowercase__ = '''tabby, tabby cat''' lowercase__ = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _snake_case ( lowercase__ , lowercase__ , lowercase__=None ): _lowerCamelCase : Optional[int] = {} if isinstance(a__ , a__ ): _lowerCamelCase : int = model.mobilenet_va else: _lowerCamelCase : Optional[Any] = model _lowerCamelCase : int = '''MobilenetV1/Conv2d_0/''' _lowerCamelCase : int = backbone.conv_stem.convolution.weight _lowerCamelCase : Union[str, Any] = backbone.conv_stem.normalization.bias _lowerCamelCase : Union[str, Any] = backbone.conv_stem.normalization.weight _lowerCamelCase : Optional[Any] = backbone.conv_stem.normalization.running_mean _lowerCamelCase : int = backbone.conv_stem.normalization.running_var for i in range(13 ): _lowerCamelCase : Union[str, Any] = i + 1 _lowerCamelCase : int = i * 2 _lowerCamelCase : int = backbone.layer[pt_index] _lowerCamelCase : Union[str, Any] = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' _lowerCamelCase : int = pointer.convolution.weight _lowerCamelCase : Union[str, Any] = pointer.normalization.bias _lowerCamelCase : str = pointer.normalization.weight _lowerCamelCase : int = pointer.normalization.running_mean _lowerCamelCase : Any = pointer.normalization.running_var _lowerCamelCase : int = backbone.layer[pt_index + 1] _lowerCamelCase : Any = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' _lowerCamelCase : List[Any] = pointer.convolution.weight _lowerCamelCase : Any = pointer.normalization.bias _lowerCamelCase : Tuple = pointer.normalization.weight _lowerCamelCase : List[Any] = pointer.normalization.running_mean _lowerCamelCase : str = pointer.normalization.running_var if isinstance(a__ , a__ ): _lowerCamelCase : Dict = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' _lowerCamelCase : Dict = model.classifier.weight _lowerCamelCase : Union[str, Any] = model.classifier.bias return tf_to_pt_map def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model _lowerCamelCase : Optional[int] = tf.train.list_variables(a__ ) _lowerCamelCase : str = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''' ) _lowerCamelCase : Union[str, Any] = tf.train.load_variable(a__ , a__ ) _lowerCamelCase : Dict = array # Build TF to PyTorch weights loading map _lowerCamelCase : Optional[Any] = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''' ) if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''' ) continue _lowerCamelCase : Any = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) _lowerCamelCase : str = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer _lowerCamelCase : List[Any] = array.squeeze().transpose() else: _lowerCamelCase : Tuple = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' ) _lowerCamelCase : List[str] = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '/RMSProp' , a__ ) tf_weights.pop(name + '/RMSProp_1' , a__ ) tf_weights.pop(name + '/ExponentialMovingAverage' , a__ ) logger.info(f'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}''' ) return model def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : int = features.shape[-2:] _lowerCamelCase : Union[str, Any] = conv_layer.stride _lowerCamelCase : Dict = conv_layer.kernel_size if in_height % stride_height == 0: _lowerCamelCase : Union[str, Any] = max(kernel_height - stride_height , 0 ) else: _lowerCamelCase : List[str] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _lowerCamelCase : Optional[Any] = max(kernel_width - stride_width , 0 ) else: _lowerCamelCase : List[str] = max(kernel_width - (in_width % stride_width) , 0 ) _lowerCamelCase : int = pad_along_width // 2 _lowerCamelCase : Any = pad_along_width - pad_left _lowerCamelCase : Dict = pad_along_height // 2 _lowerCamelCase : Dict = pad_along_height - pad_top _lowerCamelCase : Any = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , 'constant' , 0.0 ) class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase = 1 , lowercase = 1 , lowercase = False , lowercase = True , lowercase = True , ): super().__init__() _lowerCamelCase : Union[str, Any] = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) _lowerCamelCase : List[Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _lowerCamelCase : Tuple = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='zeros' , ) if use_normalization: _lowerCamelCase : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: _lowerCamelCase : List[Any] = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): _lowerCamelCase : str = ACTaFN[config.hidden_act] else: _lowerCamelCase : int = config.hidden_act else: _lowerCamelCase : Union[str, Any] = None def A_ ( self , lowercase ): if self.config.tf_padding: _lowerCamelCase : Any = apply_tf_padding(_lowerCamelCase , self.convolution ) _lowerCamelCase : Optional[int] = self.convolution(_lowerCamelCase ) if self.normalization is not None: _lowerCamelCase : Optional[int] = self.normalization(_lowerCamelCase ) if self.activation is not None: _lowerCamelCase : Any = self.activation(_lowerCamelCase ) return features class lowerCAmelCase__ ( a__ ): '''simple docstring''' lowerCamelCase__ = MobileNetVaConfig lowerCamelCase__ = load_tf_weights_in_mobilenet_va lowerCamelCase__ = 'mobilenet_v1' lowerCamelCase__ = 'pixel_values' lowerCamelCase__ = False def A_ ( self , lowercase ): if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowercase__ = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase__ = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""", a__, ) class lowerCAmelCase__ ( a__ ): '''simple docstring''' def __init__( self , lowercase , lowercase = True ): super().__init__(_lowerCamelCase ) _lowerCamelCase : Optional[int] = config _lowerCamelCase : int = 32 _lowerCamelCase : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) _lowerCamelCase : int = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) _lowerCamelCase : Optional[Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _lowerCamelCase : Union[str, Any] = nn.ModuleList() for i in range(13 ): _lowerCamelCase : Tuple = out_channels if strides[i] == 2 or i == 0: depth *= 2 _lowerCamelCase : Union[str, Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) _lowerCamelCase : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def A_ ( self , lowercase ): raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A_ ( self , lowercase = None , lowercase = None , lowercase = None , ): _lowerCamelCase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _lowerCamelCase : Dict = self.conv_stem(_lowerCamelCase ) _lowerCamelCase : Any = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _lowerCamelCase : Dict = layer_module(_lowerCamelCase ) if output_hidden_states: _lowerCamelCase : Dict = all_hidden_states + (hidden_states,) _lowerCamelCase : Dict = hidden_states if self.pooler is not None: _lowerCamelCase : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: _lowerCamelCase : Optional[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( """\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n """, a__, ) class lowerCAmelCase__ ( a__ ): '''simple docstring''' def __init__( self , lowercase ): super().__init__(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = config.num_labels _lowerCamelCase : List[Any] = MobileNetVaModel(_lowerCamelCase ) _lowerCamelCase : List[Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _lowerCamelCase : Any = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) _lowerCamelCase : List[str] = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A_ ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , ): _lowerCamelCase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : str = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) _lowerCamelCase : int = outputs.pooler_output if return_dict else outputs[1] _lowerCamelCase : List[Any] = self.classifier(self.dropout(_lowerCamelCase ) ) _lowerCamelCase : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCamelCase : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCamelCase : Dict = '''single_label_classification''' else: _lowerCamelCase : List[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": _lowerCamelCase : Optional[Any] = MSELoss() if self.num_labels == 1: _lowerCamelCase : Tuple = loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowerCamelCase : str = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": _lowerCamelCase : Optional[int] = CrossEntropyLoss() _lowerCamelCase : Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCamelCase : Optional[Any] = BCEWithLogitsLoss() _lowerCamelCase : Optional[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: _lowerCamelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
96
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( a__ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , ): """simple docstring""" super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: UpperCAmelCase__ = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate("""steps_offset!=1""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase ) UpperCAmelCase__ = dict(scheduler.config ) UpperCAmelCase__ = 1 UpperCAmelCase__ = FrozenDict(_lowerCamelCase ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase__ = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase ) UpperCAmelCase__ = dict(scheduler.config ) UpperCAmelCase__ = True UpperCAmelCase__ = FrozenDict(_lowerCamelCase ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=_lowerCamelCase , segmentation_processor=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" self.enable_attention_slicing(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase__ = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCamelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] = 5_12 , _UpperCAmelCase : Optional[Any] = 5_12 , _UpperCAmelCase : Dict = 50 , _UpperCAmelCase : str = 7.5 , _UpperCAmelCase : List[str] = None , _UpperCAmelCase : Union[str, Any] = 1 , _UpperCAmelCase : str = 0.0 , _UpperCAmelCase : List[Any] = None , _UpperCAmelCase : List[str] = None , _UpperCAmelCase : List[Any] = "pil" , _UpperCAmelCase : List[str] = True , _UpperCAmelCase : Any = None , _UpperCAmelCase : Optional[Any] = 1 , **_UpperCAmelCase : Tuple , ): """simple docstring""" UpperCAmelCase__ = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) UpperCAmelCase__ = self.segmentation_model(**_lowerCamelCase ) UpperCAmelCase__ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase__ = self.numpy_to_pil(_lowerCamelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase__ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , )
346
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase_( a__ , a__ , a__=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE : Any = '''''' else: SCREAMING_SNAKE_CASE : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = val def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ViTMSNConfig() SCREAMING_SNAKE_CASE : Optional[int] = 1_000 SCREAMING_SNAKE_CASE : str = '''datasets/huggingface/label-files''' SCREAMING_SNAKE_CASE : List[str] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(a__ , a__ ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(a__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : str = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 384 SCREAMING_SNAKE_CASE : Any = 1_536 SCREAMING_SNAKE_CASE : List[str] = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = 1_024 SCREAMING_SNAKE_CASE : Optional[int] = 4_096 SCREAMING_SNAKE_CASE : Tuple = 24 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : Dict = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 7 SCREAMING_SNAKE_CASE : Union[str, Any] = 1_024 SCREAMING_SNAKE_CASE : List[Any] = 4_096 SCREAMING_SNAKE_CASE : List[Any] = 24 SCREAMING_SNAKE_CASE : Tuple = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMSNModel(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' )['''target_encoder'''] SCREAMING_SNAKE_CASE : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(a__ ) SCREAMING_SNAKE_CASE : Any = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , base_model=a__ ) model.load_state_dict(a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(a__ , stream=a__ ).raw ) SCREAMING_SNAKE_CASE : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=a__ , image_std=a__ ) SCREAMING_SNAKE_CASE : int = image_processor(images=a__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE : Tuple = model(**a__ ) SCREAMING_SNAKE_CASE : str = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-z )) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return (-y * np.log(a__ ) - (1 - y) * np.log(1 - h )).mean() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = np.dot(a__ , a__ ) return np.sum(y * scores - np.log(1 + np.exp(a__ ) ) ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7_00_00 ): """simple docstring""" lowercase__ = np.zeros(x.shape[1] ) for iterations in range(a__ ): lowercase__ = np.dot(a__ , a__ ) lowercase__ = sigmoid_function(a__ ) lowercase__ = np.dot(x.T , h - y ) / y.size lowercase__ = theta - alpha * gradient # updating the weights lowercase__ = np.dot(a__ , a__ ) lowercase__ = sigmoid_function(a__ ) lowercase__ = cost_function(a__ , a__ ) if iterations % 1_00 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowerCAmelCase = datasets.load_iris() lowerCAmelCase = iris.data[:, :2] lowerCAmelCase = (iris.target != 0) * 1 lowerCAmelCase = 0.1 lowerCAmelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('theta: ', theta) # printing the theta i.e our weights vector def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return sigmoid_function( np.dot(a__ , a__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') (lowerCAmelCase) = (x[:, 0].min(), x[:, 0].max()) (lowerCAmelCase) = (x[:, 1].min(), x[:, 1].max()) (lowerCAmelCase) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowerCAmelCase = np.c_[xxa.ravel(), xxa.ravel()] lowerCAmelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
110
import csv import tweepy # Twitter API credentials a__ : Union[str, Any] = '''''' a__ : List[str] = '''''' a__ : Any = '''''' a__ : List[str] = '''''' def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tweepy.OAuthHandler(a__ , a__ ) auth.set_access_token(a__ , a__ ) SCREAMING_SNAKE_CASE : List[str] = tweepy.API(a__ ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE : List[Any] = api.user_timeline(screen_name=a__ , count=200 ) # save most recent tweets alltweets.extend(a__ ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a__ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE : Any = api.user_timeline( screen_name=a__ , count=200 , max_id=a__ ) # save most recent tweets alltweets.extend(a__ ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Dict = alltweets[-1].id - 1 print(F"""...{len(a__ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , '''w''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = csv.writer(a__ ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(a__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
313
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __UpperCAmelCase = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __UpperCAmelCase = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __UpperCAmelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __UpperCAmelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __UpperCAmelCase = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __UpperCAmelCase = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __UpperCAmelCase = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def A__ ( ): SCREAMING_SNAKE_CASE_ = randrange(len(a__ ) ), randrange(len(a__ ) ) SCREAMING_SNAKE_CASE_ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] SCREAMING_SNAKE_CASE_ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def A__ ( __lowerCamelCase = 1_00 ): return (generate_random_hand() for _ in range(a__ )) @pytest.mark.parametrize('''hand, expected''', a__ ) def A__ ( __lowerCamelCase, __lowerCamelCase ): assert PokerHand(a__ )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''', a__ ) def A__ ( __lowerCamelCase, __lowerCamelCase ): assert PokerHand(a__ )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''', a__ ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = PokerHand(a__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''', a__ ) def A__ ( __lowerCamelCase, __lowerCamelCase ): assert PokerHand(a__ )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''', a__ ) def A__ ( __lowerCamelCase, __lowerCamelCase ): assert PokerHand(a__ )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''', a__ ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): assert PokerHand(a__ ).compare_with(PokerHand(a__ ) ) == expected @pytest.mark.parametrize('''hand, other, expected''', generate_random_hands() ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): assert PokerHand(a__ ).compare_with(PokerHand(a__ ) ) == expected def A__ ( ): SCREAMING_SNAKE_CASE_ = [PokerHand(a__ ) for hand in SORTED_HANDS] SCREAMING_SNAKE_CASE_ = poker_hands.copy() shuffle(a__ ) SCREAMING_SNAKE_CASE_ = chain(sorted(a__ ) ) for index, hand in enumerate(a__ ): assert hand == poker_hands[index] def A__ ( ): SCREAMING_SNAKE_CASE_ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=a__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def A__ ( ): SCREAMING_SNAKE_CASE_ = PokerHand('''2C 4S AS 3D 5C''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def A__ ( ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(a__ ) ) SCREAMING_SNAKE_CASE_ = os.path.join(a__, '''poker_hands.txt''' ) with open(a__ ) as file_hand: for line in file_hand: SCREAMING_SNAKE_CASE_ = line[:14].strip() SCREAMING_SNAKE_CASE_ = line[15:].strip() SCREAMING_SNAKE_CASE_ = PokerHand(a__ ), PokerHand(a__ ) SCREAMING_SNAKE_CASE_ = player.compare_with(a__ ) if output == "Win": answer += 1 assert answer == 3_76
299
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'ibert' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Dict = force_dequant class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
313
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[int] = [] for line in lines: lowercase__ : str = re.sub(r'''#.*''' , '''''' , a__ ) # remove comments if line: filtered_lines.append(a__ ) lowercase__ : Optional[int] = '''\n'''.join(a__ ) # Make a hash from all this code lowercase__ : Optional[int] = full_str.encode('''utf-8''' ) return shaaaa(a__ ).hexdigest() # get importable module names and hash for caching __a: str = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __a: Optional[Any] = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __a: str = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name __a: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
198
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType a__ : Any = logging.get_logger(__name__) a__ : Dict = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'imagegpt' __SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=512 + 1 , _lowerCamelCase=32 * 32 , _lowerCamelCase=512 , _lowerCamelCase=24 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase="quick_gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = n_positions SCREAMING_SNAKE_CASE : Optional[int] = n_embd SCREAMING_SNAKE_CASE : List[Any] = n_layer SCREAMING_SNAKE_CASE : List[Any] = n_head SCREAMING_SNAKE_CASE : int = n_inner SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop SCREAMING_SNAKE_CASE : Dict = embd_pdrop SCREAMING_SNAKE_CASE : List[str] = attn_pdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : int = scale_attn_weights SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : str = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 32 , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return inputs
313
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase : str =imread(r'''digital_image_processing/image_data/lena_small.jpg''') lowerCAmelCase : Any =cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase_ ( ): lowercase_ :Any = cn.convert_to_negative(a__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase_ ( ): with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(a__ ,1_10 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def UpperCAmelCase_ ( ): lowercase_ :Union[str, Any] = canny.gen_gaussian_kernel(9 ,sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase_ ( ): lowercase_ :int = imread("digital_image_processing/image_data/lena_small.jpg" ,0 ) # assert ambiguous array for all == True assert canny_img.all() lowercase_ :Optional[Any] = canny.canny(a__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase_ ( ): assert gg.gaussian_filter(a__ ,5 ,sigma=0.9 ).all() def UpperCAmelCase_ ( ): lowercase_ :Tuple = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowercase_ :int = conv.img_convolve(a__ ,a__ ).astype(a__ ) assert res.any() def UpperCAmelCase_ ( ): assert med.median_filter(a__ ,3 ).any() def UpperCAmelCase_ ( ): lowercase_ :Union[str, Any] = sob.sobel_filter(a__ ) assert grad.any() and theta.any() def UpperCAmelCase_ ( ): lowercase_ :Union[str, Any] = sp.make_sepia(a__ ,20 ) assert sepia.all() def UpperCAmelCase_ ( __lowerCamelCase : Tuple = "digital_image_processing/image_data/lena_small.jpg" ): lowercase_ :List[Any] = bs.Burkes(imread(a__ ,1 ) ,1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase_ ( __lowerCamelCase : int = "digital_image_processing/image_data/lena_small.jpg" ,): lowercase_ :Dict = rs.NearestNeighbour(imread(a__ ,1 ) ,4_00 ,2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase_ ( ): lowercase_ :List[Any] = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowercase_ :Tuple = imread(a__ ,0 ) # Test for get_neighbors_pixel function() return not None lowercase_ :str = 0 lowercase_ :Union[str, Any] = 0 lowercase_ :int = image[x_coordinate][y_coordinate] lowercase_ :List[Any] = lbp.get_neighbors_pixel( a__ ,a__ ,a__ ,a__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowercase_ :Tuple = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 ,image.shape[0] ): for j in range(0 ,image.shape[1] ): lowercase_ :Dict = lbp.local_binary_value(a__ ,a__ ,a__ ) assert lbp_image.any()
223
from maths.prime_check import is_prime def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(a__ ) if is_prime(a__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
313
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase: Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _UpperCamelCase: Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
255
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = KandinskyVaaControlnetImgaImgPipeline __SCREAMING_SNAKE_CASE : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[Any] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[str] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->Optional[Any]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 32 @property def __lowerCAmelCase ( self ) ->str: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Dict: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Tuple: return 100 @property def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->Any: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = self.dummy_unet SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE : List[str] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : str = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 2_5_5.0 SCREAMING_SNAKE_CASE : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[Any] = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Any = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , image=_lowerCamelCase , strength=0.8_5 , generator=_lowerCamelCase , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : List[str] = pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _UpperCamelCase : Union[str, Any] = get_logger(__name__) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Dict=0 ): '''simple docstring''' os.makedirs(a__ , exist_ok=a__ ) with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' lowercase = os.path.join(a__ , a__ ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(a__ , a__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) lowercase = os.path.join(a__ , a__ ) logger.info(f'Saving model to {output_model_file}' ) torch.save(a__ , a__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase = os.path.join(a__ , f'{MODEL_NAME}_{model_index}' ) os.makedirs(a__ , exist_ok=a__ ) logger.info(f'Saving model to {ckpt_dir}' ) lowercase = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=a__ , storage_writer=dist_cp.FileSystemWriter(a__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(a__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return lowercase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' lowercase = os.path.join(a__ , a__ ) logger.info(f'Loading model from {input_model_file}' ) lowercase = torch.load(a__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) lowercase = os.path.join(a__ , a__ ) logger.info(f'Loading model from {input_model_file}' ) lowercase = torch.load(a__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase = ( os.path.join(a__ , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) lowercase = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=a__ , storage_reader=dist_cp.FileSystemReader(a__ ) , planner=DefaultLoadPlanner() , ) lowercase = state_dict['''model'''] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(a__ ) def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : Dict=0 ): '''simple docstring''' os.makedirs(a__ , exist_ok=a__ ) with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase = FSDP.optim_state_dict(a__ , a__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) lowercase = os.path.join(a__ , a__ ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(a__ , a__ ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: lowercase = os.path.join(a__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(a__ , exist_ok=a__ ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(a__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Dict=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) lowercase = os.path.join(a__ , a__ ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) lowercase = torch.load(a__ ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: lowercase = ( os.path.join(a__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) lowercase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(a__ ) , ) lowercase = optim_state['''optimizer'''] logger.info(f'Optimizer loaded from {ckpt_dir}' ) lowercase = FSDP.optim_state_dict_to_load(a__ , a__ , a__ ) optimizer.load_state_dict(a__ )
220
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a__ : List[str] = '''CompVis/stable-diffusion-v1-1''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-2''' a__ : Any = '''CompVis/stable-diffusion-v1-3''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-4''' class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) ->str: super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , requires_safety_checker=_lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self ) ->Dict[str, Any]: return {k: getattr(self , _lowerCamelCase ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self , _lowerCamelCase = "auto" ) ->Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->str: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Tuple: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[Any]: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(_lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Any = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Optional[int] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
313
0
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowerCAmelCase_( a__ ): '''simple docstring''' __lowercase : Optional[Any] = 'MCTCTFeatureExtractor' __lowercase : str = 'AutoTokenizer' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: super().__init__(_lowerCamelCase ,_lowerCamelCase ) lowerCAmelCase__ : int = self.feature_extractor lowerCAmelCase__ : Dict = False def __call__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase ,**_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) lowerCAmelCase__ : Dict = kwargs.pop("""raw_speech""" ) else: lowerCAmelCase__ : Tuple = kwargs.pop("""audio""" ,_lowerCamelCase ) lowerCAmelCase__ : List[Any] = kwargs.pop("""sampling_rate""" ,_lowerCamelCase ) lowerCAmelCase__ : Optional[int] = kwargs.pop("""text""" ,_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCAmelCase__ : Dict = args[0] lowerCAmelCase__ : int = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowerCAmelCase__ : Any = self.feature_extractor(_lowerCamelCase ,*_lowerCamelCase ,sampling_rate=_lowerCamelCase ,**_lowerCamelCase ) if text is not None: lowerCAmelCase__ : int = self.tokenizer(_lowerCamelCase ,**_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase__ : List[str] = encodings['''input_ids'''] return inputs def UpperCAmelCase_ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: return self.tokenizer.batch_decode(*_lowerCamelCase ,**_lowerCamelCase ) def UpperCAmelCase_ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowerCamelCase ,**_lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = kwargs.pop("""input_features""" ,_lowerCamelCase ) lowerCAmelCase__ : str = kwargs.pop("""labels""" ,_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCAmelCase__ : List[Any] = args[0] lowerCAmelCase__ : Union[str, Any] = args[1:] if input_features is not None: lowerCAmelCase__ : List[Any] = self.feature_extractor.pad(_lowerCamelCase ,*_lowerCamelCase ,**_lowerCamelCase ) if labels is not None: lowerCAmelCase__ : Optional[Any] = self.tokenizer.pad(_lowerCamelCase ,**_lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: lowerCAmelCase__ : Union[str, Any] = labels['''input_ids'''] return input_features def UpperCAmelCase_ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: return self.tokenizer.decode(*_lowerCamelCase ,**_lowerCamelCase ) @contextmanager def UpperCAmelCase_ ( self ) -> Optional[Any]: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) lowerCAmelCase__ : Any = True lowerCAmelCase__ : List[str] = self.tokenizer yield lowerCAmelCase__ : Dict = self.feature_extractor lowerCAmelCase__ : Optional[Any] = False
37
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False __SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 __SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None __SCREAMING_SNAKE_CASE : int = 1280 __SCREAMING_SNAKE_CASE : float = 0.0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : bool = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->FrozenDict: # init input tensors SCREAMING_SNAKE_CASE : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = jax.random.split(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = self.block_out_channels SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE : List[str] = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE : Dict = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : int = block_out_channels[i] SCREAMING_SNAKE_CASE : List[Any] = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = down_blocks # mid SCREAMING_SNAKE_CASE : int = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : Tuple = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] SCREAMING_SNAKE_CASE : Dict = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": SCREAMING_SNAKE_CASE : str = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Optional[int] = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Tuple = up_blocks # out SCREAMING_SNAKE_CASE : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , _lowerCamelCase = False , ) ->Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.expand_dims(_lowerCamelCase , 0 ) SCREAMING_SNAKE_CASE : List[str] = self.time_proj(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.time_embedding(_lowerCamelCase ) # 2. pre-process SCREAMING_SNAKE_CASE : int = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_in(_lowerCamelCase ) # 3. down SCREAMING_SNAKE_CASE : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: SCREAMING_SNAKE_CASE : int = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE : Dict = new_down_block_res_samples # 4. mid SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] SCREAMING_SNAKE_CASE : Optional[int] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: SCREAMING_SNAKE_CASE : Optional[int] = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.conv_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
313
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowerCamelCase__ = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' lowerCamelCase__ = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' lowerCamelCase__ = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def _lowerCamelCase ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def _lowerCamelCase ( self : Union[str, Any] , a : Optional[int] , a : Any , a : str=4 , a : int=False ): '''simple docstring''' lowerCAmelCase__ : Tuple = compute_bleu( reference_corpus=_lowerCamelCase , translation_corpus=_lowerCamelCase , max_order=_lowerCamelCase , smooth=_lowerCamelCase ) (lowerCAmelCase__) : List[Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
212
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
0
'''simple docstring''' def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =abs(a__ ) __lowercase =0 while n > 0: res += n % 10 n //= 10 return res def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =abs(a__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _A ( _lowerCAmelCase ): """simple docstring""" return sum(int(a__ ) for c in str(abs(a__ ) ) ) def _A ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCAmelCase , _lowerCAmelCase ) -> None: __lowercase =f"""{func.__name__}({value})""" __lowercase =timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(a__ )} -- {timing:.4f} seconds""" ) for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(a__ , a__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
166
from abc import ABC, abstractmethod from typing import List, Optional class a_ ( a__ ): """simple docstring""" def __init__( self ) ->List[str]: # test for the above condition self.test() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : List[Any] = self.advance() if not self.does_advance(_lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.update(_lowerCamelCase ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Union[str, Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Any: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = token_ids SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.token_ids ) SCREAMING_SNAKE_CASE : Any = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False if self.does_advance(_lowerCamelCase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : str = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : Dict = True self.reset() return stepped, completed, reset def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __lowerCAmelCase ( self ) ->Any: return self.seqlen - (self.fulfilled_idx + 1) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Dict: SCREAMING_SNAKE_CASE : Any = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Dict = self.seqlen SCREAMING_SNAKE_CASE : int = self.fulfilled_idx SCREAMING_SNAKE_CASE : Tuple = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=True ) ->Dict: SCREAMING_SNAKE_CASE : Any = max([len(_lowerCamelCase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : List[str] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Optional[Any] = root for tidx, token_id in enumerate(_lowerCamelCase ): if token_id not in level: SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Tuple = level[token_id] if no_subsets and self.has_subsets(_lowerCamelCase , _lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = root def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : int = start[current_token] SCREAMING_SNAKE_CASE : Optional[int] = list(start.keys() ) return next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.next_tokens(_lowerCamelCase ) return len(_lowerCamelCase ) == 0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = list(root.values() ) if len(_lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_lowerCamelCase ) for nn in next_nodes] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.count_leaves(_lowerCamelCase ) return len(_lowerCamelCase ) != leaf_count class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveTrie(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = nested_token_ids SCREAMING_SNAKE_CASE : Optional[int] = self.trie.max_height SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(_lowerCamelCase ): self.current_seq.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : Any = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[Any] = completed return stepped, completed, reset def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = [] def __lowerCAmelCase ( self ) ->Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->List[str]: SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : int = self.current_seq SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : str = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False self.init_state() def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = [constraint.copy(stateful=_lowerCamelCase ) for constraint in self.constraints] def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : Optional[int] = constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.add(_lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.inprogress_constraint.update(_lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : str = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pending_constraint.update(_lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = None if not complete and stepped: SCREAMING_SNAKE_CASE : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __lowerCAmelCase ( self , _lowerCamelCase=True ) ->str: SCREAMING_SNAKE_CASE : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : str = [ constraint.copy(stateful=_lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.copy(stateful=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
313
0
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def _snake_case ( lowercase__ ): _lowerCamelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): _lowerCamelCase : Dict = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): _lowerCamelCase : Optional[int] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _snake_case ( lowercase__ = 1000 ): _lowerCamelCase : Optional[Any] = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
96
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase_( a__=32 , a__=10 , a__=100 , a__=1_026 , a__=True , a__="data/tokenized_stories_train_wikitext103.jbl" , a__="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = generate_datasets( a__ , a__ , number=a__ , min_len=1_026 , trim=a__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model SCREAMING_SNAKE_CASE : Dict = load_gpta('''gpt2''' ).to(a__ ) print('''computing perplexity on objective set''' ) SCREAMING_SNAKE_CASE : int = compute_perplexity(a__ , a__ , a__ ).item() print('''perplexity on objective set:''' , a__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase_( a__ , a__=15 , a__=128 , a__=100 , a__="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE : List[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE : str = SecondaryLearner(a__ ) # Train secondary learner SCREAMING_SNAKE_CASE : Union[str, Any] = train_secondary_learner( a__ , a__ , max_epochs=a__ , batch_size=a__ , eval_freq=100 , igf_model_path=a__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase_( a__ , a__ , a__ , a__=32 , a__=1_000 , a__=16 , a__=1.0 , a__=recopy_gpta , a__=None , a__=10 , a__="gpt2_finetuned.pt" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE : Optional[int] = RandomSampler(a__ ) SCREAMING_SNAKE_CASE : Dict = DataLoader(a__ , sampler=a__ ) SCREAMING_SNAKE_CASE : Tuple = max_steps // (len(a__ )) + 1 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = recopy_model(a__ , a__ , a__ ) model.train() if secondary_learner is not None: secondary_learner.to(a__ ) secondary_learner.eval() SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) for epoch in range(int(a__ ) ): for step, example in enumerate(a__ ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = True if secondary_learner is not None: SCREAMING_SNAKE_CASE : List[str] = secondary_learner.forward( torch.tensor(a__ , dtype=torch.long , device=a__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE : Dict = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE : str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE : List[str] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=a__ , type=a__ , required=a__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a__ , default=a__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a__ , default=a__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a__ , default=a__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=a__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=a__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_000 , type=a__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=a__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=a__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=a__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_026 , type=a__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=a__ , type=a__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=a__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=a__ , type=a__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=a__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE : List[Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner SCREAMING_SNAKE_CASE : Tuple = training_secondary_learner( a__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=a__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a__ , a__ , a__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=a__ , secondary_learner=a__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
313
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any = 50 ): '''simple docstring''' UpperCAmelCase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f"{solution() = }")
346
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = filter(lambda a__ : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Any = logging.getLogger(__name__) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if metric == "rouge2": SCREAMING_SNAKE_CASE : str = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": SCREAMING_SNAKE_CASE : List[Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": SCREAMING_SNAKE_CASE : int = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": SCREAMING_SNAKE_CASE : int = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) SCREAMING_SNAKE_CASE : Dict = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a__ , verbose=a__ , ) class a_ ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) ->None: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results SCREAMING_SNAKE_CASE : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE : Any = od / '''test_results.txt''' SCREAMING_SNAKE_CASE : Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" SCREAMING_SNAKE_CASE : Tuple = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_lowerCamelCase ) generations_file.parent.mkdir(exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , '''a+''' ) as writer: for key in sorted(_lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE : Tuple = metrics[key] if isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = val.item() SCREAMING_SNAKE_CASE : Tuple = F"""{key}: {val:.6f}\n""" writer.write(_lowerCamelCase ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE : Optional[Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: try: SCREAMING_SNAKE_CASE : Any = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE : Optional[int] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE : int = count_trainable_parameters(_lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowerCamelCase , _lowerCamelCase , '''test''' ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
313
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _a ( unittest.TestCase ): def __init__( self: Dict , UpperCamelCase_: List[Any] , UpperCamelCase_: int=13 , UpperCamelCase_: List[str]=7 , UpperCamelCase_: int=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Any=True , UpperCamelCase_: Tuple=99 , UpperCamelCase_: str=32 , UpperCamelCase_: Union[str, Any]=5 , UpperCamelCase_: Union[str, Any]=4 , UpperCamelCase_: Any=37 , UpperCamelCase_: str="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: str=0.1 , UpperCamelCase_: Tuple=512 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: Dict=2 , UpperCamelCase_: Optional[Any]=0.02 , UpperCamelCase_: Union[str, Any]=4 , ) -> Optional[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _a ( a__ , unittest.TestCase ): _lowercase : Optional[Any] = True _lowercase : Tuple = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self: Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=_lowerCamelCase ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: List[Any] ) -> Tuple: """simple docstring""" lowercase__ = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase__ = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(_lowerCamelCase )[0] lowercase__ = 50_000 lowercase__ = (1, 6, vocab_size) self.assertEqual(output.shape , _lowerCamelCase ) lowercase__ = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) )
110
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_( a__ ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCAmelCase_( a__ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : str = ord(a__ ) if not _is_chinese_char(a__ ): return 0 return 1 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = set() for token in tokens: SCREAMING_SNAKE_CASE : str = len(a__ ) > 1 and is_chinese(a__ ) if chinese_word: word_set.add(a__ ) SCREAMING_SNAKE_CASE : str = list(a__ ) return word_list def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : List[str] = max([len(a__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Tuple = bert_tokens SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, len(a__ ) while start < end: SCREAMING_SNAKE_CASE : Dict = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : Optional[int] = min(end - start , a__ ) for i in range(a__ , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE : List[str] = start + i SCREAMING_SNAKE_CASE : Optional[Any] = False break if single_word: start += 1 return bert_word def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(a__ ) for r in res] ltp_res.extend(a__ ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : Any = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : int = [] for input_ids, chinese_word in zip(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = [] for id in input_ids: SCREAMING_SNAKE_CASE : List[Any] = bert_tokenizer._convert_id_to_token(a__ ) input_tokens.append(a__ ) SCREAMING_SNAKE_CASE : List[str] = add_sub_symbol(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Optional[int] = token[2:] # save chinese tokens' pos if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ): ref_id.append(a__ ) ref_ids.append(a__ ) assert len(a__ ) == len(a__ ) return ref_ids def UpperCAmelCase_( a__ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : List[str] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : int = prepare_ref(a__ , a__ , a__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = [json.dumps(a__ ) + '''\n''' for ref in ref_ids] f.writelines(a__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a__ : int = parser.parse_args() main(args)
313
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( a__ ): """simple docstring""" UpperCAmelCase_ =['input_features'] def __init__( self , _A=80 , _A=16000 , _A=160 , _A=30 , _A=400 , _A=0.0 , _A=False , **_A , ) -> List[str]: super().__init__( feature_size=_lowerCamelCase , sampling_rate=_lowerCamelCase , padding_value=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE_ = n_fft SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = chunk_length SCREAMING_SNAKE_CASE_ = chunk_length * sampling_rate SCREAMING_SNAKE_CASE_ = self.n_samples // hop_length SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_lowerCamelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_lowerCamelCase , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self , _A ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _lowerCamelCase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) SCREAMING_SNAKE_CASE_ = log_spec[:, :-1] SCREAMING_SNAKE_CASE_ = np.maximum(_lowerCamelCase , log_spec.max() - 8.0 ) SCREAMING_SNAKE_CASE_ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _UpperCamelCase ( _A , _A , _A = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: SCREAMING_SNAKE_CASE_ = np.array(_lowerCamelCase , np.intaa ) SCREAMING_SNAKE_CASE_ = [] for vector, length in zip(_lowerCamelCase , attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE_ = padding_value normed_input_values.append(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , _A , _A = True , _A = None , _A = None , _A = None , _A = "max_length" , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_lowerCamelCase , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCamelCase , dtype=np.floataa ) elif isinstance(_lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray([raw_speech] ).T] SCREAMING_SNAKE_CASE_ = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding SCREAMING_SNAKE_CASE_ = self.pad( _lowerCamelCase , padding=_lowerCamelCase , max_length=max_length if max_length else self.n_samples , truncation=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: SCREAMING_SNAKE_CASE_ = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) SCREAMING_SNAKE_CASE_ = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format SCREAMING_SNAKE_CASE_ = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) SCREAMING_SNAKE_CASE_ = [self._np_extract_fbank_features(_lowerCamelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for feature in input_features] else: SCREAMING_SNAKE_CASE_ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) SCREAMING_SNAKE_CASE_ = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: SCREAMING_SNAKE_CASE_ = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
299
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Tuple = '''1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''f32le''' SCREAMING_SNAKE_CASE : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error SCREAMING_SNAKE_CASE : Optional[Any] = output_stream[0] SCREAMING_SNAKE_CASE : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCAmelCase_( a__ , a__ , a__ = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Dict = '''1''' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = '''alsa''' SCREAMING_SNAKE_CASE : Any = '''default''' elif system == "Darwin": SCREAMING_SNAKE_CASE : Union[str, Any] = '''avfoundation''' SCREAMING_SNAKE_CASE : Optional[int] = ''':0''' elif system == "Windows": SCREAMING_SNAKE_CASE : int = '''dshow''' SCREAMING_SNAKE_CASE : Any = '''default''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Tuple = stream_chunk_s else: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s SCREAMING_SNAKE_CASE : Union[str, Any] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Any = np.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): SCREAMING_SNAKE_CASE : List[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : Dict = np.frombuffer(item['''raw'''] , dtype=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = b'''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: SCREAMING_SNAKE_CASE : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: SCREAMING_SNAKE_CASE : List[str] = False yield item SCREAMING_SNAKE_CASE : Dict = stride_left SCREAMING_SNAKE_CASE : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: SCREAMING_SNAKE_CASE : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : str = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
313
0
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __a: List[str] = 10 def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): for i in range(a__ , a__ ): if array[i] == target: return i return -1 def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = 0 lowercase__ : Union[str, Any] = len(a__ ) while left <= right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__ ) lowercase__ : Any = (left + right) // 3 + 1 lowercase__ : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowercase__ : Union[str, Any] = one_third - 1 elif array[two_third] < target: lowercase__ : Optional[Any] = two_third + 1 else: lowercase__ : Tuple = one_third + 1 lowercase__ : List[str] = two_third - 1 else: return -1 def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if left < right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__ ) lowercase__ : Tuple = (left + right) // 3 + 1 lowercase__ : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(a__ , one_third - 1 , a__ , a__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , a__ , a__ , a__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , a__ , a__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __a: List[str] = input("""Enter numbers separated by comma:\n""").strip() __a: List[Any] = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." __a: Optional[Any] = int(input("""Enter the number to be found in the list:\n""").strip()) __a: Any = ite_ternary_search(collection, target) __a: Any = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print("""Not found""")
198
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : int ={ '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a_ ( a__ ): __A = 'perceiver' def __init__( self : Optional[int] , lowercase : Optional[int]=256 , lowercase : Any=1_280 , lowercase : Union[str, Any]=768 , lowercase : List[str]=1 , lowercase : List[Any]=26 , lowercase : int=8 , lowercase : Dict=8 , lowercase : List[str]=None , lowercase : Union[str, Any]=None , lowercase : List[Any]="kv" , lowercase : Any=1 , lowercase : Optional[Any]=1 , lowercase : str="gelu" , lowercase : str=0.1 , lowercase : Dict=0.02 , lowercase : Optional[int]=1e-1_2 , lowercase : Optional[int]=True , lowercase : str=262 , lowercase : Tuple=2_048 , lowercase : Dict=56 , lowercase : Any=[368, 496] , lowercase : Any=16 , lowercase : Union[str, Any]=1_920 , lowercase : Optional[int]=16 , lowercase : Union[str, Any]=[1, 16, 224, 224] , **lowercase : Optional[int] , ): """simple docstring""" super().__init__(**_lowerCamelCase ) lowercase_ :Union[str, Any] = num_latents lowercase_ :Any = d_latents lowercase_ :List[Any] = d_model lowercase_ :str = num_blocks lowercase_ :Optional[Any] = num_self_attends_per_block lowercase_ :int = num_self_attention_heads lowercase_ :Any = num_cross_attention_heads lowercase_ :List[Any] = qk_channels lowercase_ :Dict = v_channels lowercase_ :List[Any] = cross_attention_shape_for_attention lowercase_ :Union[str, Any] = self_attention_widening_factor lowercase_ :Tuple = cross_attention_widening_factor lowercase_ :Optional[Any] = hidden_act lowercase_ :List[Any] = attention_probs_dropout_prob lowercase_ :Optional[Any] = initializer_range lowercase_ :Any = layer_norm_eps lowercase_ :Union[str, Any] = use_query_residual # masked language modeling attributes lowercase_ :int = vocab_size lowercase_ :Optional[Any] = max_position_embeddings # image classification attributes lowercase_ :Tuple = image_size # flow attributes lowercase_ :Union[str, Any] = train_size # multimodal autoencoding attributes lowercase_ :Tuple = num_frames lowercase_ :List[Any] = audio_samples_per_frame lowercase_ :str = samples_per_patch lowercase_ :List[str] = output_shape class a_ ( a__ ): @property def lowercase__ ( self : str ): """simple docstring""" if self.task == "multiple-choice": lowercase_ :List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase_ :List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def lowercase__ ( self : List[str] ): """simple docstring""" return 1e-4 def lowercase__ ( self : Dict , lowercase : Dict , lowercase : Any = -1 , lowercase : List[str] = -1 , lowercase : Dict = -1 , lowercase : Union[str, Any] = False , lowercase : Optional[Any] = None , lowercase : Dict = 3 , lowercase : Union[str, Any] = 40 , lowercase : Tuple = 40 , ): """simple docstring""" if isinstance(_lowerCamelCase , _lowerCamelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ :Any = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ :Union[str, Any] = preprocessor.num_special_tokens_to_add(_lowerCamelCase ) lowercase_ :Dict = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowercase_ :Union[str, Any] = [''' '''.join(["a"] ) * seq_length] * batch_size lowercase_ :Any = dict(preprocessor(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) lowercase_ :Optional[Any] = inputs.pop("input_ids" ) return inputs elif isinstance(_lowerCamelCase , _lowerCamelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ :str = compute_effective_axis_dimension(_lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase_ :Tuple = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase_ :str = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) lowercase_ :Optional[int] = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
223
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ ( unittest.TestCase ): def __init__( self : Union[str, Any], lowerCAmelCase : Optional[int], lowerCAmelCase : str=3, lowerCAmelCase : Any=32, lowerCAmelCase : Tuple=3, lowerCAmelCase : Optional[Any]=10, lowerCAmelCase : List[str]=[10, 20, 30, 40], lowerCAmelCase : Dict=[1, 1, 2, 1], lowerCAmelCase : List[Any]=True, lowerCAmelCase : Dict=True, lowerCAmelCase : Dict="relu", lowerCAmelCase : Dict=3, lowerCAmelCase : int=None, ) -> List[Any]: lowercase : List[str] = parent lowercase : Dict = batch_size lowercase : Any = image_size lowercase : Tuple = num_channels lowercase : Optional[int] = embeddings_size lowercase : Union[str, Any] = hidden_sizes lowercase : Optional[Any] = depths lowercase : Optional[Any] = is_training lowercase : Dict = use_labels lowercase : Any = hidden_act lowercase : Dict = num_labels lowercase : Union[str, Any] = scope lowercase : Union[str, Any] = len(_lowerCamelCase ) def lowercase ( self : Any ) -> Optional[int]: lowercase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Dict = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> Dict: return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, image_size=self.image_size, ) def lowercase ( self : Tuple, lowerCAmelCase : Dict, lowerCAmelCase : Optional[Any] ) -> List[Any]: lowercase : List[Any] = FlaxRegNetModel(config=_lowerCamelCase ) lowercase : Dict = model(_lowerCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase ( self : Any, lowerCAmelCase : Any, lowerCAmelCase : List[str] ) -> str: lowercase : Union[str, Any] = self.num_labels lowercase : Optional[Any] = FlaxRegNetForImageClassification(config=_lowerCamelCase ) lowercase : Optional[int] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase ( self : Any ) -> Dict: lowercase : Union[str, Any] = self.prepare_config_and_inputs() lowercase : Dict = config_and_inputs lowercase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class a__ ( a__, unittest.TestCase ): _lowerCamelCase = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowercase ( self : List[str] ) -> None: lowercase : List[str] = FlaxRegNetModelTester(self ) lowercase : Dict = ConfigTester(self, config_class=_lowerCamelCase, has_text_modality=_lowerCamelCase ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Dict: return def lowercase ( self : List[str] ) -> Any: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase ( self : Tuple ) -> Any: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> int: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> List[str]: pass def lowercase ( self : int ) -> Dict: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : str = model_class(_lowerCamelCase ) lowercase : List[str] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[str] = [*signature.parameters.keys()] lowercase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1], _lowerCamelCase ) def lowercase ( self : Optional[int] ) -> str: def check_hidden_states_output(lowerCAmelCase : Optional[Any], lowerCAmelCase : Any, lowerCAmelCase : Optional[int] ): lowercase : List[Any] = model_class(_lowerCamelCase ) lowercase : Tuple = model(**self._prepare_for_class(_lowerCamelCase, _lowerCamelCase ) ) lowercase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : int = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ), expected_num_stages + 1 ) lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[int] = True check_hidden_states_output(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Tuple = True check_hidden_states_output(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) def lowercase ( self : Tuple ) -> Optional[Any]: lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase : str = self._prepare_for_class(_lowerCamelCase, _lowerCamelCase ) lowercase : int = model_class(_lowerCamelCase ) @jax.jit def model_jitted(lowerCAmelCase : Union[str, Any], **lowerCAmelCase : int ): return model(pixel_values=_lowerCamelCase, **_lowerCamelCase ) with self.subTest('JIT Enabled' ): lowercase : Any = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase : List[Any] = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ), len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase, _lowerCamelCase ): self.assertEqual(jitted_output.shape, output.shape ) def lowercase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class a__ ( unittest.TestCase ): @cached_property def lowercase ( self : List[str] ) -> int: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Any ) -> Union[str, Any]: lowercase : Dict = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) lowercase : List[str] = self.default_image_processor lowercase : List[Any] = prepare_img() lowercase : Union[str, Any] = image_processor(images=_lowerCamelCase, return_tensors='np' ) lowercase : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits lowercase : Dict = (1, 1000) self.assertEqual(outputs.logits.shape, _lowerCamelCase ) lowercase : Optional[int] = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3], _lowerCamelCase, atol=1e-4 ) )
255
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = (EulerDiscreteScheduler,) __SCREAMING_SNAKE_CASE : Optional[int] = 10 def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**_lowerCamelCase ) return config def __lowerCAmelCase ( self ) ->Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Any = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[str] = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase , use_karras_sigmas=_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : int = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = output.prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
313
0
"""simple docstring""" from itertools import permutations def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowercase = [7, 11, 13, 17] for i, test in enumerate(a__ ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] = 10 ): '''simple docstring''' return sum( int(''.join(map(a__ , a__ ) ) ) for num in permutations(range(a__ ) ) if is_substring_divisible(a__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
220
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
0
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_( a__ , a__ , unittest.TestCase ): '''simple docstring''' __lowercase : Any = VQModel __lowercase : Any = 'sample' @property def UpperCAmelCase_ ( self ,__UpperCAmelCase=(32, 32) ) -> Optional[int]: lowerCAmelCase__ : List[Any] = 4 lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) return {"sample": image} @property def UpperCAmelCase_ ( self ) -> List[str]: return (3, 32, 32) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return (3, 32, 32) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Union[str, Any] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCAmelCase__ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Optional[Any] = VQModel.from_pretrained("""fusing/vqgan-dummy""" ,output_loading_info=_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(_lowerCamelCase ) lowerCAmelCase__ : Optional[int] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Tuple = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(_lowerCamelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCAmelCase__ : Tuple = torch.randn(1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ) lowerCAmelCase__ : Optional[Any] = image.to(_lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : int = model(_lowerCamelCase ).sample lowerCAmelCase__ : Any = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ : Any = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-3 ) )
37
from __future__ import annotations import math def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if len(a__ ) != 2 or len(a[0] ) != 2 or len(a__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) SCREAMING_SNAKE_CASE : Dict = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Any = matrix_length // 2 SCREAMING_SNAKE_CASE : Tuple = [[a[i][j] for j in range(a__ , a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : Optional[int] = [ [a[i][j] for j in range(a__ , a__ )] for i in range(a__ , a__ ) ] SCREAMING_SNAKE_CASE : Optional[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : List[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ , a__ )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase_( a__ ): """simple docstring""" return len(a__ ), len(matrix[0] ) def UpperCAmelCase_( a__ ): """simple docstring""" print('''\n'''.join(str(a__ ) for line in matrix ) ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ ) == (2, 2): return default_matrix_multiplication(a__ , a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : int = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Any = actual_strassen(matrix_addition(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(len(a__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(a__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ )[1] != matrix_dimensions(a__ )[0]: SCREAMING_SNAKE_CASE : Any = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(a__ ) SCREAMING_SNAKE_CASE : str = matrix_dimensions(a__ ) SCREAMING_SNAKE_CASE : Tuple = matrix_dimensions(a__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE : str = max(*a__ , *a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(math.pow(2 , math.ceil(math.loga(a__ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = matrixa SCREAMING_SNAKE_CASE : Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(a__ , a__ ) # Removing the additional zeros for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a__ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a__ : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
313
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 1_000 ) -> Any: lowerCAmelCase__ : Optional[Any] = 1, 1 lowerCAmelCase__ : Any = [] for i in range(1 , n + 1 ): lowerCAmelCase__ : str = prev_numerator + 2 * prev_denominator lowerCAmelCase__ : Any = prev_numerator + prev_denominator if len(str(a__ ) ) > len(str(a__ ) ): result.append(a__ ) lowerCAmelCase__ : Optional[int] = numerator lowerCAmelCase__ : Tuple = denominator return len(a__ ) if __name__ == "__main__": print(F"""{solution() = }""")
212
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
0
'''simple docstring''' from __future__ import annotations lowerCamelCase = '''Muhammad Umer Farooq''' lowerCamelCase = '''MIT''' lowerCamelCase = '''1.0.0''' lowerCamelCase = '''Muhammad Umer Farooq''' lowerCamelCase = '''contact@muhammadumerfarooq.me''' lowerCamelCase = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class _UpperCamelCase ( a__ ): '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Optional[Any]): '''simple docstring''' super().__init__() __lowercase =[] __lowercase =domain def __lowerCamelCase ( self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str): '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __lowercase =parse.urljoin(self.domain , _lowerCamelCase) self.urls.append(_lowerCamelCase) def _A ( _lowerCAmelCase ): """simple docstring""" return ".".join(get_sub_domain_name(a__ ).split('.' )[-2:] ) def _A ( _lowerCAmelCase ): """simple docstring""" return parse.urlparse(a__ ).netloc def _A ( _lowerCAmelCase = "https://github.com" ): """simple docstring""" __lowercase =get_domain_name(a__ ) # Initialize the parser __lowercase =Parser(a__ ) try: # Open URL __lowercase =requests.get(a__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __lowercase =set() for link in parser.urls: # open URL. # read = requests.get(link) try: __lowercase =requests.get(a__ ) # Get the valid email. __lowercase =re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(a__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(a__ ) if __name__ == "__main__": lowerCamelCase = emails_from_url("""https://github.com""") print(f"{len(emails)} emails found:") print("""\n""".join(sorted(emails)))
166
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ ) return k def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE : Dict = v.T SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = array return tf_weights def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE : int = task_specific_params SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : Any = Path(args.tf_ckpt_path).parent.name a__ : int = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
"""simple docstring""" import math def _snake_case ( lowercase__ , lowercase__ = 0 , lowercase__ = 0 ): _lowerCamelCase : Optional[int] = end or len(a__ ) for i in range(a__ , a__ ): _lowerCamelCase : int = i _lowerCamelCase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowerCamelCase : List[Any] = array[temp_index - 1] temp_index -= 1 _lowerCamelCase : Any = temp_index_value return array def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # Max Heap _lowerCamelCase : Optional[Any] = index _lowerCamelCase : Union[str, Any] = 2 * index + 1 # Left Node _lowerCamelCase : int = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowerCamelCase : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowerCamelCase : str = right_index if largest != index: _lowerCamelCase : Optional[Any] = array[largest], array[index] heapify(a__ , a__ , a__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : List[str] = len(a__ ) for i in range(n // 2 , -1 , -1 ): heapify(a__ , a__ , a__ ) for i in range(n - 1 , 0 , -1 ): _lowerCamelCase : List[Any] = array[0], array[i] heapify(a__ , 0 , a__ ) return array def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : List[str] = low _lowerCamelCase : Any = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowerCamelCase : Dict = array[j], array[i] i += 1 def _snake_case ( lowercase__ ): if len(a__ ) == 0: return array _lowerCamelCase : Dict = 2 * math.ceil(math.loga(len(a__ ) ) ) _lowerCamelCase : Any = 16 return intro_sort(a__ , 0 , len(a__ ) , a__ , a__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(a__ ) max_depth -= 1 _lowerCamelCase : List[str] = median_of_a(a__ , a__ , start + ((end - start) // 2) + 1 , end - 1 ) _lowerCamelCase : int = partition(a__ , a__ , a__ , a__ ) intro_sort(a__ , a__ , a__ , a__ , a__ ) _lowerCamelCase : Any = p return insertion_sort(a__ , a__ , a__ ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = input("""Enter numbers separated by a comma : """).strip() lowercase__ = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
96
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase_ ( a__ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = 'blenderbot-small' lowerCAmelCase_ : Any = ['past_key_values'] lowerCAmelCase_ : Optional[int] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , _UpperCAmelCase : Tuple=5_02_65 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : str=8 , _UpperCAmelCase : List[str]=20_48 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : Dict=8 , _UpperCAmelCase : Dict=20_48 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : Optional[int] , ): """simple docstring""" UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = d_model UpperCAmelCase__ = encoder_ffn_dim UpperCAmelCase__ = encoder_layers UpperCAmelCase__ = encoder_attention_heads UpperCAmelCase__ = decoder_ffn_dim UpperCAmelCase__ = decoder_layers UpperCAmelCase__ = decoder_attention_heads UpperCAmelCase__ = dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = activation_function UpperCAmelCase__ = init_std UpperCAmelCase__ = encoder_layerdrop UpperCAmelCase__ = decoder_layerdrop UpperCAmelCase__ = use_cache UpperCAmelCase__ = encoder_layers UpperCAmelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) class lowerCAmelCase_ ( a__ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase__ = {0: '''batch'''} UpperCAmelCase__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase__ = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase__ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase__ = self.num_layers for i in range(_lowerCamelCase ): UpperCAmelCase__ = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase__ = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ = super().outputs else: UpperCAmelCase__ = super(_lowerCamelCase , self ).outputs if self.use_past: UpperCAmelCase__ = self.num_layers for i in range(_lowerCamelCase ): UpperCAmelCase__ = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase__ = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] = -1 , _UpperCAmelCase : Any = -1 , _UpperCAmelCase : int = False , _UpperCAmelCase : List[str] = None , ): """simple docstring""" UpperCAmelCase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs UpperCAmelCase__ = seq_length if not self.use_past else 1 UpperCAmelCase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase__ = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase__ = common_inputs['''input_ids'''].shape UpperCAmelCase__ = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase__ = self.num_attention_heads UpperCAmelCase__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ = decoder_seq_length + 3 UpperCAmelCase__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase__ = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) UpperCAmelCase__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase__ = self.num_layers UpperCAmelCase__ = min(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers UpperCAmelCase__ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. UpperCAmelCase__ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] = -1 , _UpperCAmelCase : Dict = -1 , _UpperCAmelCase : Optional[Any] = False , _UpperCAmelCase : Union[str, Any] = None , ): """simple docstring""" UpperCAmelCase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase__ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase__ = seqlen + 2 UpperCAmelCase__ = self.num_layers UpperCAmelCase__ = self.num_attention_heads UpperCAmelCase__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ = common_inputs['''attention_mask'''].dtype UpperCAmelCase__ = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) UpperCAmelCase__ = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : str = False , _UpperCAmelCase : List[str] = None , ): """simple docstring""" UpperCAmelCase__ = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) UpperCAmelCase__ = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase__ = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] = -1 , _UpperCAmelCase : Any = -1 , _UpperCAmelCase : Tuple = False , _UpperCAmelCase : Tuple = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) elif self.task == "causal-lm": UpperCAmelCase__ = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: UpperCAmelCase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: UpperCAmelCase__ = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
346
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase_( a__ , a__ , a__=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE : Any = '''''' else: SCREAMING_SNAKE_CASE : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = val def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ViTMSNConfig() SCREAMING_SNAKE_CASE : Optional[int] = 1_000 SCREAMING_SNAKE_CASE : str = '''datasets/huggingface/label-files''' SCREAMING_SNAKE_CASE : List[str] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(a__ , a__ ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(a__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : str = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 384 SCREAMING_SNAKE_CASE : Any = 1_536 SCREAMING_SNAKE_CASE : List[str] = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = 1_024 SCREAMING_SNAKE_CASE : Optional[int] = 4_096 SCREAMING_SNAKE_CASE : Tuple = 24 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : Dict = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 7 SCREAMING_SNAKE_CASE : Union[str, Any] = 1_024 SCREAMING_SNAKE_CASE : List[Any] = 4_096 SCREAMING_SNAKE_CASE : List[Any] = 24 SCREAMING_SNAKE_CASE : Tuple = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMSNModel(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' )['''target_encoder'''] SCREAMING_SNAKE_CASE : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(a__ ) SCREAMING_SNAKE_CASE : Any = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , base_model=a__ ) model.load_state_dict(a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(a__ , stream=a__ ).raw ) SCREAMING_SNAKE_CASE : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=a__ , image_std=a__ ) SCREAMING_SNAKE_CASE : int = image_processor(images=a__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE : Tuple = model(**a__ ) SCREAMING_SNAKE_CASE : str = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(a__ )] ) lowercase__ = np.array(a__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , a__ ) ) , x.transpose() ) , a__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( a__ , exog=a__ , order=a__ , seasonal_order=a__ ) lowercase__ = model.fit(disp=a__ , maxiter=6_00 , method='''nm''' ) lowercase__ = model_fit.predict(1 , len(a__ ) , exog=[test_match] ) return result[0] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(a__ , a__ ) lowercase__ = regressor.predict(a__ ) return y_pred[0] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" train_user.sort() lowercase__ = np.percentile(a__ , 25 ) lowercase__ = np.percentile(a__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(a__ ) - abs(a__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowerCAmelCase = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] lowerCAmelCase = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) lowerCAmelCase = Normalizer().fit_transform(data_input_df.values) # split data lowerCAmelCase = normalize_df[:, 2].tolist() lowerCAmelCase = normalize_df[:, 0].tolist() lowerCAmelCase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowerCAmelCase = normalize_df[:, [1, 2]].tolist() lowerCAmelCase = x[: len(x) - 1] lowerCAmelCase = x[len(x) - 1 :] # for linear regression & sarimax lowerCAmelCase = total_date[: len(total_date) - 1] lowerCAmelCase = total_user[: len(total_user) - 1] lowerCAmelCase = total_match[: len(total_match) - 1] lowerCAmelCase = total_date[len(total_date) - 1 :] lowerCAmelCase = total_user[len(total_user) - 1 :] lowerCAmelCase = total_match[len(total_match) - 1 :] # voting system with forecasting lowerCAmelCase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowerCAmelCase = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('Today\'s data is {not_str}safe.')
110
import csv import tweepy # Twitter API credentials a__ : Union[str, Any] = '''''' a__ : List[str] = '''''' a__ : Any = '''''' a__ : List[str] = '''''' def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tweepy.OAuthHandler(a__ , a__ ) auth.set_access_token(a__ , a__ ) SCREAMING_SNAKE_CASE : List[str] = tweepy.API(a__ ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE : List[Any] = api.user_timeline(screen_name=a__ , count=200 ) # save most recent tweets alltweets.extend(a__ ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a__ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE : Any = api.user_timeline( screen_name=a__ , count=200 , max_id=a__ ) # save most recent tweets alltweets.extend(a__ ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Dict = alltweets[-1].id - 1 print(F"""...{len(a__ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , '''w''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = csv.writer(a__ ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(a__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
313
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'ibert' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Dict = force_dequant class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
313
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Tuple = 1 lowercase__ : Any = 3 lowercase__ : Union[str, Any] = (32, 32) lowercase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCamelCase ) return image @property def _lowerCAmelCase( self ) -> Any: torch.manual_seed(0 ) lowercase__ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _lowerCAmelCase( self ) -> List[Any]: torch.manual_seed(0 ) lowercase__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowerCAmelCase( self ) -> List[Any]: torch.manual_seed(0 ) lowercase__ : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_lowerCamelCase ) @property def _lowerCAmelCase( self ) -> Optional[Any]: def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Any: lowercase__ : List[Any] = torch.ones([0] ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[Any]: self.pixel_values.to(_lowerCamelCase ) return self return Out() return extract def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Union[str, Any] = self.dummy_cond_unet lowercase__ : Optional[Any] = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) lowercase__ : Union[str, Any] = self.dummy_vae lowercase__ : Optional[Any] = self.dummy_text_encoder lowercase__ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowercase__ : int = 77 lowercase__ : int = self.dummy_image.to(_lowerCamelCase ) lowercase__ : Dict = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase__ : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=self.dummy_extractor , ) lowercase__ : Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCamelCase ) lowercase__ : List[Any] = alt_pipe.to(_lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase__ : Any = '''A painting of a squirrel eating a burger''' lowercase__ : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) lowercase__ : int = alt_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_lowerCamelCase , ) lowercase__ : Tuple = output.images lowercase__ : Tuple = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) lowercase__ : List[Any] = alt_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] lowercase__ : List[Any] = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Union[str, Any] = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : Union[str, Any] = self.dummy_cond_unet lowercase__ : Union[str, Any] = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) lowercase__ : Union[str, Any] = self.dummy_vae lowercase__ : int = self.dummy_text_encoder lowercase__ : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowercase__ : Optional[int] = 77 lowercase__ : Union[str, Any] = self.dummy_image.to(_lowerCamelCase ) # put models in fp16 lowercase__ : List[Any] = unet.half() lowercase__ : List[Any] = vae.half() lowercase__ : str = bert.half() # make sure here that pndm scheduler skips prk lowercase__ : Tuple = AltDiffusionImgaImgPipeline( unet=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=self.dummy_extractor , ) lowercase__ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCamelCase ) lowercase__ : List[Any] = alt_pipe.to(_lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase__ : str = '''A painting of a squirrel eating a burger''' lowercase__ : str = torch.manual_seed(0 ) lowercase__ : Optional[Any] = alt_pipe( [prompt] , generator=_lowerCamelCase , num_inference_steps=2 , output_type='''np''' , image=_lowerCamelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _lowerCAmelCase( self ) -> Any: lowercase__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase__ : Union[str, Any] = init_image.resize((760, 504) ) lowercase__ : str = '''BAAI/AltDiffusion''' lowercase__ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCamelCase , safety_checker=_lowerCamelCase , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ : Optional[int] = '''A fantasy landscape, trending on artstation''' lowercase__ : Optional[int] = torch.manual_seed(0 ) lowercase__ : Dict = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , generator=_lowerCamelCase , output_type='''np''' , ) lowercase__ : int = output.images[0] lowercase__ : str = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase__ : Optional[Any] = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase( self ) -> Dict: lowercase__ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowercase__ : Union[str, Any] = init_image.resize((768, 512) ) lowercase__ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowercase__ : List[str] = '''BAAI/AltDiffusion''' lowercase__ : Tuple = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCamelCase , safety_checker=_lowerCamelCase , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() lowercase__ : str = '''A fantasy landscape, trending on artstation''' lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Any = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , generator=_lowerCamelCase , output_type='''np''' , ) lowercase__ : Optional[Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
198
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType a__ : Any = logging.get_logger(__name__) a__ : Dict = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'imagegpt' __SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=512 + 1 , _lowerCamelCase=32 * 32 , _lowerCamelCase=512 , _lowerCamelCase=24 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase="quick_gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = n_positions SCREAMING_SNAKE_CASE : Optional[int] = n_embd SCREAMING_SNAKE_CASE : List[Any] = n_layer SCREAMING_SNAKE_CASE : List[Any] = n_head SCREAMING_SNAKE_CASE : int = n_inner SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop SCREAMING_SNAKE_CASE : Dict = embd_pdrop SCREAMING_SNAKE_CASE : List[str] = attn_pdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : int = scale_attn_weights SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : str = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 32 , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return inputs
313
0
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): lowerCAmelCase : Optional[int] =True from torch.cuda.amp import autocast lowerCAmelCase : Tuple =logging.getLogger(__name__) @dataclass class a_ : __A = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __A = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __A = field( default=a__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __A = field( default=a__ , metadata={"help": "Whether to log verbose messages or not."} , ) __A = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) __A = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) __A = field( default=0.999995 , metadata={"help": "Decay of gumbel temperature during training."} ) def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[int] ): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowercase_ :Union[str, Any] = logging.WARNING if model_args.verbose_logging: lowercase_ :Optional[Any] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowercase_ :List[str] = logging.INFO logger.setLevel(a__ ) @dataclass class a_ : __A = field( default=a__ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __A = field( default=a__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __A = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'" } , ) __A = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'" ) } , ) __A = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to \'file\'"} , ) __A = field( default=a__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __A = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there\'s no validation split" } , ) __A = field( default=a__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) __A = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class a_ : __A = 42 __A = 42 __A = "longest" __A = None __A = None def __call__( self : List[str] , lowercase : Any ): """simple docstring""" lowercase_ :List[Any] = self.feature_extractor.pad( _lowerCamelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) lowercase_ :Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowercase_ :Optional[Any] = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowercase_ :Any = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowercase_ :str = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowercase_ :Dict = 1 lowercase_ :Optional[int] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowercase_ :Optional[int] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_lowerCamelCase , min_masks=2 , ) return batch class a_ ( a__ ): def __init__( self : List[str] , *lowercase : str , lowercase : str=1 , lowercase : int=0 , lowercase : Optional[int]=1.0 , **lowercase : Dict ): """simple docstring""" super().__init__(*_lowerCamelCase , **_lowerCamelCase ) lowercase_ :Any = 0 lowercase_ :str = max_gumbel_temp lowercase_ :Dict = min_gumbel_temp lowercase_ :List[str] = gumbel_temp_decay def lowercase__ ( self : Dict , lowercase : int , lowercase : Optional[int] ): """simple docstring""" model.train() lowercase_ :Union[str, Any] = self._prepare_inputs(_lowerCamelCase ) if self.use_amp: with autocast(): lowercase_ :Tuple = self.compute_loss(_lowerCamelCase , _lowerCamelCase ) else: lowercase_ :List[Any] = self.compute_loss(_lowerCamelCase , _lowerCamelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowercase_ :Optional[int] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase_ :Any = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: lowercase_ :Optional[int] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_lowerCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_lowerCamelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def UpperCAmelCase_ ( ): lowercase_ :Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase_ :Any = parser.parse_args_into_dataclasses() configure_logger(a__ ,a__ ) # Downloading and loading a dataset from the hub. lowercase_ :Optional[Any] = load_dataset(data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowercase_ :Any = DatasetDict() lowercase_ :int = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' ,cache_dir=model_args.cache_dir ,) lowercase_ :Optional[int] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' ,cache_dir=model_args.cache_dir ,) else: # make sure only "validation" and "train" keys remain" lowercase_ :Dict = DatasetDict() lowercase_ :Optional[int] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split="validation" ,cache_dir=model_args.cache_dir ,) lowercase_ :List[str] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=F'{data_args.train_split_name}' ,cache_dir=model_args.cache_dir ,) # only normalized-inputs-training is supported lowercase_ :Dict = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,do_normalize=a__ ) def prepare_dataset(__lowerCamelCase : Union[str, Any] ): # check that all files have the correct sampling rate lowercase_ :Any = librosa.load(batch[data_args.speech_file_column] ,sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowercase_ :Optional[int] = datasets.map( a__ ,num_proc=data_args.preprocessing_num_workers ,remove_columns=datasets["train"].column_names ) # filter audio files that are too long lowercase_ :Dict = vectorized_datasets.filter( lambda __lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowerCamelCase : Optional[Any] ): return feature_extractor(batch["speech"] ,sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowercase_ :Any = vectorized_datasets.map( a__ ,batched=a__ ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,remove_columns=vectorized_datasets["train"].column_names ,) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowercase_ :str = WavaVecaConfig.from_pretrained( model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,gradient_checkpointing=training_args.gradient_checkpointing ,) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm=\'layer\'" ) lowercase_ :str = WavaVecaForPreTraining(a__ ) lowercase_ :Union[str, Any] = DataCollatorForWavaVecaPretraining(model=a__ ,feature_extractor=a__ ) lowercase_ :Optional[int] = WavaVecaPreTrainer( model=a__ ,data_collator=a__ ,args=a__ ,train_dataset=vectorized_datasets["train"] ,eval_dataset=vectorized_datasets["validation"] ,tokenizer=a__ ,max_gumbel_temp=model_args.max_gumbel_temperature ,min_gumbel_temp=model_args.min_gumbel_temperature ,gumbel_temp_decay=model_args.gumbel_temperature_decay ,) trainer.train() if __name__ == "__main__": main()
223
from maths.prime_check import is_prime def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(a__ ) if is_prime(a__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
313
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class a__ ( a__ ): _lowerCamelCase = 'SpeechT5FeatureExtractor' _lowerCamelCase = 'SpeechT5Tokenizer' def __init__( self : int, lowerCAmelCase : Any, lowerCAmelCase : Tuple ) -> Any: super().__init__(_lowerCamelCase, _lowerCamelCase ) def __call__( self : Union[str, Any], *lowerCAmelCase : Any, **lowerCAmelCase : Dict ) -> Tuple: lowercase : Dict = kwargs.pop('audio', _lowerCamelCase ) lowercase : List[str] = kwargs.pop('text', _lowerCamelCase ) lowercase : Any = kwargs.pop('text_target', _lowerCamelCase ) lowercase : List[str] = kwargs.pop('audio_target', _lowerCamelCase ) lowercase : Optional[int] = kwargs.pop('sampling_rate', _lowerCamelCase ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: lowercase : List[str] = self.feature_extractor(_lowerCamelCase, *_lowerCamelCase, sampling_rate=_lowerCamelCase, **_lowerCamelCase ) elif text is not None: lowercase : List[str] = self.tokenizer(_lowerCamelCase, **_lowerCamelCase ) else: lowercase : Union[str, Any] = None if audio_target is not None: lowercase : Any = self.feature_extractor(audio_target=_lowerCamelCase, *_lowerCamelCase, sampling_rate=_lowerCamelCase, **_lowerCamelCase ) lowercase : Dict = targets['''input_values'''] elif text_target is not None: lowercase : List[Any] = self.tokenizer(_lowerCamelCase, **_lowerCamelCase ) lowercase : Union[str, Any] = targets['''input_ids'''] else: lowercase : int = None if inputs is None: return targets if targets is not None: lowercase : List[Any] = labels lowercase : str = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowercase : Dict = decoder_attention_mask return inputs def lowercase ( self : List[str], *lowerCAmelCase : int, **lowerCAmelCase : Optional[int] ) -> str: lowercase : str = kwargs.pop('input_values', _lowerCamelCase ) lowercase : Optional[Any] = kwargs.pop('input_ids', _lowerCamelCase ) lowercase : List[str] = kwargs.pop('labels', _lowerCamelCase ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: lowercase : Union[str, Any] = self.feature_extractor.pad(_lowerCamelCase, *_lowerCamelCase, **_lowerCamelCase ) elif input_ids is not None: lowercase : Any = self.tokenizer.pad(_lowerCamelCase, **_lowerCamelCase ) else: lowercase : int = None if labels is not None: if "input_ids" in labels or (isinstance(_lowerCamelCase, _lowerCamelCase ) and "input_ids" in labels[0]): lowercase : List[Any] = self.tokenizer.pad(_lowerCamelCase, **_lowerCamelCase ) lowercase : List[Any] = targets['''input_ids'''] else: lowercase : Dict = self.feature_extractor.feature_size lowercase : Any = self.feature_extractor.num_mel_bins lowercase : Dict = self.feature_extractor.pad(_lowerCamelCase, *_lowerCamelCase, **_lowerCamelCase ) lowercase : List[str] = feature_size_hack lowercase : List[str] = targets['''input_values'''] else: lowercase : List[str] = None if inputs is None: return targets if targets is not None: lowercase : Any = labels lowercase : Optional[int] = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowercase : List[str] = decoder_attention_mask return inputs def lowercase ( self : Union[str, Any], *lowerCAmelCase : Union[str, Any], **lowerCAmelCase : List[Any] ) -> int: return self.tokenizer.batch_decode(*_lowerCamelCase, **_lowerCamelCase ) def lowercase ( self : Optional[int], *lowerCAmelCase : int, **lowerCAmelCase : List[str] ) -> List[str]: return self.tokenizer.decode(*_lowerCamelCase, **_lowerCamelCase )
255
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = KandinskyVaaControlnetImgaImgPipeline __SCREAMING_SNAKE_CASE : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[Any] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[str] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->Optional[Any]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 32 @property def __lowerCAmelCase ( self ) ->str: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Dict: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Tuple: return 100 @property def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->Any: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = self.dummy_unet SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE : List[str] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : str = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 2_5_5.0 SCREAMING_SNAKE_CASE : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[Any] = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Any = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , image=_lowerCamelCase , strength=0.8_5 , generator=_lowerCamelCase , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : List[str] = pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
"""simple docstring""" import math def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' if not isinstance(a__ , a__ ): lowercase = f'Input value of [number={number}] must be an integer' raise TypeError(a__ ) if number < 1: lowercase = f'Input value of [number={number}] must be > 0' raise ValueError(a__ ) elif number == 1: return 3 elif number == 2: return 5 else: lowercase = int(math.log(number // 3 , 2 ) ) + 2 lowercase = [3, 5] lowercase = 2 lowercase = 3 for block in range(1 , a__ ): for _ in range(a__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): _UpperCamelCase : Optional[int] = 0 try: _UpperCamelCase : Tuple = proth(number) except ValueError: print(F'''ValueError: there is no {number}th Proth number''') continue print(F'''The {number}th Proth number: {value}''')
220
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a__ : List[str] = '''CompVis/stable-diffusion-v1-1''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-2''' a__ : Any = '''CompVis/stable-diffusion-v1-3''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-4''' class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) ->str: super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , requires_safety_checker=_lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self ) ->Dict[str, Any]: return {k: getattr(self , _lowerCamelCase ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self , _lowerCamelCase = "auto" ) ->Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->str: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Tuple: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[Any]: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(_lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Any = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Optional[int] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
313
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
37
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False __SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 __SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None __SCREAMING_SNAKE_CASE : int = 1280 __SCREAMING_SNAKE_CASE : float = 0.0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : bool = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->FrozenDict: # init input tensors SCREAMING_SNAKE_CASE : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = jax.random.split(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = self.block_out_channels SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE : List[str] = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE : Dict = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : int = block_out_channels[i] SCREAMING_SNAKE_CASE : List[Any] = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = down_blocks # mid SCREAMING_SNAKE_CASE : int = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : Tuple = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] SCREAMING_SNAKE_CASE : Dict = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": SCREAMING_SNAKE_CASE : str = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Optional[int] = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Tuple = up_blocks # out SCREAMING_SNAKE_CASE : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , _lowerCamelCase = False , ) ->Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.expand_dims(_lowerCamelCase , 0 ) SCREAMING_SNAKE_CASE : List[str] = self.time_proj(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.time_embedding(_lowerCamelCase ) # 2. pre-process SCREAMING_SNAKE_CASE : int = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_in(_lowerCamelCase ) # 3. down SCREAMING_SNAKE_CASE : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: SCREAMING_SNAKE_CASE : int = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE : Dict = new_down_block_res_samples # 4. mid SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] SCREAMING_SNAKE_CASE : Optional[int] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: SCREAMING_SNAKE_CASE : Optional[int] = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.conv_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
313
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : List[str] , a : List[str] , a : Union[str, Any] ): '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={"_".join([str(_lowerCamelCase ) for s in shape] )}.npy''' def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() def _lowerCamelCase ( self : Union[str, Any] , a : Dict=0 , a : str=(4, 4, 64, 64) , a : str=False ): '''simple docstring''' lowerCAmelCase__ : int = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase__ : Tuple = jnp.array(load_hf_numpy(self.get_file_format(_lowerCamelCase , _lowerCamelCase ) ) , dtype=_lowerCamelCase ) return image def _lowerCamelCase ( self : Dict , a : List[Any]=False , a : int="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' lowerCAmelCase__ : int = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase__ : Any = '''bf16''' if fpaa else None lowerCAmelCase__ : List[Any] = FlaxUNetaDConditionModel.from_pretrained( _lowerCamelCase , subfolder='unet' , dtype=_lowerCamelCase , revision=_lowerCamelCase ) return model, params def _lowerCamelCase ( self : Dict , a : Union[str, Any]=0 , a : Any=(4, 77, 768) , a : List[str]=False ): '''simple docstring''' lowerCAmelCase__ : Any = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase__ : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(_lowerCamelCase , _lowerCamelCase ) ) , dtype=_lowerCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def _lowerCamelCase ( self : List[Any] , a : List[Any] , a : Any , a : str ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=_lowerCamelCase ) lowerCAmelCase__ : Any = self.get_latents(_lowerCamelCase , fpaa=_lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.get_encoder_hidden_states(_lowerCamelCase , fpaa=_lowerCamelCase ) lowerCAmelCase__ : str = model.apply( {'params': params} , _lowerCamelCase , jnp.array(_lowerCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCamelCase , ).sample assert sample.shape == latents.shape lowerCAmelCase__ : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase__ : List[str] = jnp.array(_lowerCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def _lowerCamelCase ( self : str , a : Tuple , a : str , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=_lowerCamelCase ) lowerCAmelCase__ : Dict = self.get_latents(_lowerCamelCase , shape=(4, 4, 96, 96) , fpaa=_lowerCamelCase ) lowerCAmelCase__ : int = self.get_encoder_hidden_states(_lowerCamelCase , shape=(4, 77, 1_024) , fpaa=_lowerCamelCase ) lowerCAmelCase__ : Optional[int] = model.apply( {'params': params} , _lowerCamelCase , jnp.array(_lowerCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCamelCase , ).sample assert sample.shape == latents.shape lowerCAmelCase__ : int = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase__ : str = jnp.array(_lowerCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-2 )
212
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
0
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =[] for part_id in partition_order: __lowercase =df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(a__ ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" __lowercase =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase =spark.range(100 ).repartition(1 ) __lowercase =Spark(a__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" __lowercase =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase =spark.range(10 ).repartition(2 ) __lowercase =[1, 0] __lowercase =_generate_iterable_examples(a__ , a__ ) # Reverse the partitions. __lowercase =_get_expected_row_ids_and_row_dicts_for_partition_order(a__ , a__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __lowercase =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" __lowercase =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase =spark.range(10 ).repartition(1 ) __lowercase =SparkExamplesIterable(a__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(a__ ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" __lowercase =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: __lowercase =lambda _lowerCAmelCase : x.reverse() __lowercase =_get_expected_row_ids_and_row_dicts_for_partition_order(a__ , [2, 1, 0] ) __lowercase =SparkExamplesIterable(a__ ).shuffle_data_sources(a__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(a__ ): __lowercase =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" __lowercase =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __lowercase =SparkExamplesIterable(a__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowercase =_get_expected_row_ids_and_row_dicts_for_partition_order(a__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(a__ ): __lowercase =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __lowercase =SparkExamplesIterable(a__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowercase =_get_expected_row_ids_and_row_dicts_for_partition_order(a__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(a__ ): __lowercase =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): """simple docstring""" __lowercase =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowercase =spark.range(100 ).repartition(1 ) __lowercase =Spark(a__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
166
from abc import ABC, abstractmethod from typing import List, Optional class a_ ( a__ ): """simple docstring""" def __init__( self ) ->List[str]: # test for the above condition self.test() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : List[Any] = self.advance() if not self.does_advance(_lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.update(_lowerCamelCase ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Union[str, Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Any: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = token_ids SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.token_ids ) SCREAMING_SNAKE_CASE : Any = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False if self.does_advance(_lowerCamelCase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : str = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : Dict = True self.reset() return stepped, completed, reset def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __lowerCAmelCase ( self ) ->Any: return self.seqlen - (self.fulfilled_idx + 1) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Dict: SCREAMING_SNAKE_CASE : Any = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Dict = self.seqlen SCREAMING_SNAKE_CASE : int = self.fulfilled_idx SCREAMING_SNAKE_CASE : Tuple = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=True ) ->Dict: SCREAMING_SNAKE_CASE : Any = max([len(_lowerCamelCase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : List[str] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Optional[Any] = root for tidx, token_id in enumerate(_lowerCamelCase ): if token_id not in level: SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Tuple = level[token_id] if no_subsets and self.has_subsets(_lowerCamelCase , _lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = root def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : int = start[current_token] SCREAMING_SNAKE_CASE : Optional[int] = list(start.keys() ) return next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.next_tokens(_lowerCamelCase ) return len(_lowerCamelCase ) == 0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = list(root.values() ) if len(_lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_lowerCamelCase ) for nn in next_nodes] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.count_leaves(_lowerCamelCase ) return len(_lowerCamelCase ) != leaf_count class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveTrie(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = nested_token_ids SCREAMING_SNAKE_CASE : Optional[int] = self.trie.max_height SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(_lowerCamelCase ): self.current_seq.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : Any = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[Any] = completed return stepped, completed, reset def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = [] def __lowerCAmelCase ( self ) ->Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->List[str]: SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : int = self.current_seq SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : str = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False self.init_state() def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = [constraint.copy(stateful=_lowerCamelCase ) for constraint in self.constraints] def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : Optional[int] = constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.add(_lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.inprogress_constraint.update(_lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : str = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pending_constraint.update(_lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = None if not complete and stepped: SCREAMING_SNAKE_CASE : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __lowerCAmelCase ( self , _lowerCamelCase=True ) ->str: SCREAMING_SNAKE_CASE : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : str = [ constraint.copy(stateful=_lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.copy(stateful=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
313
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ ): _lowerCamelCase : Any = '''huggingface/label-files''' _lowerCamelCase : Any = '''imagenet-1k-id2label.json''' _lowerCamelCase : Tuple = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : int = {int(a__ ): v for k, v in idalabel.items()} _lowerCamelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[Any] = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" _lowerCamelCase : Tuple = BitConfig( conv_layer=a__ , num_labels=1000 , idalabel=a__ , labelaid=a__ , ) return config def _snake_case ( lowercase__ ): if "stem.conv" in name: _lowerCamelCase : int = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _lowerCamelCase : List[str] = name.replace('blocks' , 'layers' ) if "head.fc" in name: _lowerCamelCase : List[Any] = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): _lowerCamelCase : int = '''bit.''' + name if "bit" not in name and "classifier" not in name: _lowerCamelCase : int = '''bit.encoder.''' + name return name def _snake_case ( ): _lowerCamelCase : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase : Tuple = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def _snake_case ( lowercase__ , lowercase__ , lowercase__=False ): _lowerCamelCase : Dict = get_config(a__ ) # load original model from timm _lowerCamelCase : List[Any] = create_model(a__ , pretrained=a__ ) timm_model.eval() # load state_dict of original model _lowerCamelCase : Dict = timm_model.state_dict() for key in state_dict.copy().keys(): _lowerCamelCase : Tuple = state_dict.pop(a__ ) _lowerCamelCase : List[str] = val.squeeze() if '''head''' in key else val # load HuggingFace model _lowerCamelCase : Optional[Any] = BitForImageClassification(a__ ) model.eval() model.load_state_dict(a__ ) # create image processor _lowerCamelCase : Any = create_transform(**resolve_data_config({} , model=a__ ) ) _lowerCamelCase : int = transform.transforms _lowerCamelCase : Optional[int] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } _lowerCamelCase : Tuple = BitImageProcessor( do_resize=a__ , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a__ , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=a__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _lowerCamelCase : Dict = prepare_img() _lowerCamelCase : Optional[int] = transform(a__ ).unsqueeze(0 ) _lowerCamelCase : Optional[int] = processor(a__ , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(a__ , a__ ) # verify logits with torch.no_grad(): _lowerCamelCase : Any = model(a__ ) _lowerCamelCase : int = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) _lowerCamelCase : List[Any] = timm_model(a__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a__ , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(a__ ).mkdir(exist_ok=a__ ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowercase__ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
96
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase_( a__=32 , a__=10 , a__=100 , a__=1_026 , a__=True , a__="data/tokenized_stories_train_wikitext103.jbl" , a__="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = generate_datasets( a__ , a__ , number=a__ , min_len=1_026 , trim=a__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model SCREAMING_SNAKE_CASE : Dict = load_gpta('''gpt2''' ).to(a__ ) print('''computing perplexity on objective set''' ) SCREAMING_SNAKE_CASE : int = compute_perplexity(a__ , a__ , a__ ).item() print('''perplexity on objective set:''' , a__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase_( a__ , a__=15 , a__=128 , a__=100 , a__="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE : List[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE : str = SecondaryLearner(a__ ) # Train secondary learner SCREAMING_SNAKE_CASE : Union[str, Any] = train_secondary_learner( a__ , a__ , max_epochs=a__ , batch_size=a__ , eval_freq=100 , igf_model_path=a__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase_( a__ , a__ , a__ , a__=32 , a__=1_000 , a__=16 , a__=1.0 , a__=recopy_gpta , a__=None , a__=10 , a__="gpt2_finetuned.pt" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE : Optional[int] = RandomSampler(a__ ) SCREAMING_SNAKE_CASE : Dict = DataLoader(a__ , sampler=a__ ) SCREAMING_SNAKE_CASE : Tuple = max_steps // (len(a__ )) + 1 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = recopy_model(a__ , a__ , a__ ) model.train() if secondary_learner is not None: secondary_learner.to(a__ ) secondary_learner.eval() SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) for epoch in range(int(a__ ) ): for step, example in enumerate(a__ ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = True if secondary_learner is not None: SCREAMING_SNAKE_CASE : List[str] = secondary_learner.forward( torch.tensor(a__ , dtype=torch.long , device=a__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE : Dict = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE : str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE : List[str] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=a__ , type=a__ , required=a__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a__ , default=a__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a__ , default=a__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a__ , default=a__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=a__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=a__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_000 , type=a__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=a__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=a__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=a__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_026 , type=a__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=a__ , type=a__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=a__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=a__ , type=a__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=a__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE : List[Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner SCREAMING_SNAKE_CASE : Tuple = training_secondary_learner( a__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=a__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a__ , a__ , a__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=a__ , secondary_learner=a__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
313
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = filter(lambda SCREAMING_SNAKE_CASE__ : p.requires_grad , model.parameters() ) UpperCAmelCase__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase_ = logging.getLogger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' if metric == "rouge2": UpperCAmelCase__ = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": UpperCAmelCase__ = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": UpperCAmelCase__ = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": UpperCAmelCase__ = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) UpperCAmelCase__ = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F'''val_{metric}''' , mode="""max""" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return EarlyStopping( monitor=F'''val_{metric}''' , mode="""min""" if """loss""" in metric else """max""" , patience=a__ , verbose=a__ , ) class lowerCAmelCase_ ( pl.Callback ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = {f'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCamelCase ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any=True ): """simple docstring""" logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) UpperCAmelCase__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results UpperCAmelCase__ = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase__ = od / '''test_results.txt''' UpperCAmelCase__ = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase__ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' UpperCAmelCase__ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_lowerCamelCase ) generations_file.parent.mkdir(exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """a+""" ) as writer: for key in sorted(_lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase__ = metrics[key] if isinstance(_lowerCamelCase , torch.Tensor ): UpperCAmelCase__ = val.item() UpperCAmelCase__ = f'''{key}: {val:.6f}\n''' writer.write(_lowerCamelCase ) if not save_generations: return if "preds" in metrics: UpperCAmelCase__ = '''\n'''.join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_lowerCamelCase ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ): """simple docstring""" try: UpperCAmelCase__ = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase__ = pl_module.model.num_parameters() UpperCAmelCase__ = count_trainable_parameters(_lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowerCamelCase , _lowerCamelCase , """test""" ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
346
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = filter(lambda a__ : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Any = logging.getLogger(__name__) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if metric == "rouge2": SCREAMING_SNAKE_CASE : str = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": SCREAMING_SNAKE_CASE : List[Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": SCREAMING_SNAKE_CASE : int = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": SCREAMING_SNAKE_CASE : int = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) SCREAMING_SNAKE_CASE : Dict = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a__ , verbose=a__ , ) class a_ ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) ->None: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results SCREAMING_SNAKE_CASE : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE : Any = od / '''test_results.txt''' SCREAMING_SNAKE_CASE : Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" SCREAMING_SNAKE_CASE : Tuple = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_lowerCamelCase ) generations_file.parent.mkdir(exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , '''a+''' ) as writer: for key in sorted(_lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE : Tuple = metrics[key] if isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = val.item() SCREAMING_SNAKE_CASE : Tuple = F"""{key}: {val:.6f}\n""" writer.write(_lowerCamelCase ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE : Optional[Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: try: SCREAMING_SNAKE_CASE : Any = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE : Optional[int] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE : int = count_trainable_parameters(_lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowerCamelCase , _lowerCamelCase , '''test''' ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
313
0
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = credit_card_number lowercase__ = 0 lowercase__ = len(a__ ) - 2 for i in range(a__ , -1 , -2 ): # double the value of every second digit lowercase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowercase__ = cc_number[:i] + str(a__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(a__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(a__ ) <= 16: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(a__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(a__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
110
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_( a__ ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCAmelCase_( a__ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : str = ord(a__ ) if not _is_chinese_char(a__ ): return 0 return 1 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = set() for token in tokens: SCREAMING_SNAKE_CASE : str = len(a__ ) > 1 and is_chinese(a__ ) if chinese_word: word_set.add(a__ ) SCREAMING_SNAKE_CASE : str = list(a__ ) return word_list def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : List[str] = max([len(a__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Tuple = bert_tokens SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, len(a__ ) while start < end: SCREAMING_SNAKE_CASE : Dict = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : Optional[int] = min(end - start , a__ ) for i in range(a__ , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE : List[str] = start + i SCREAMING_SNAKE_CASE : Optional[Any] = False break if single_word: start += 1 return bert_word def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(a__ ) for r in res] ltp_res.extend(a__ ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : Any = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : int = [] for input_ids, chinese_word in zip(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = [] for id in input_ids: SCREAMING_SNAKE_CASE : List[Any] = bert_tokenizer._convert_id_to_token(a__ ) input_tokens.append(a__ ) SCREAMING_SNAKE_CASE : List[str] = add_sub_symbol(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Optional[int] = token[2:] # save chinese tokens' pos if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ): ref_id.append(a__ ) ref_ids.append(a__ ) assert len(a__ ) == len(a__ ) return ref_ids def UpperCAmelCase_( a__ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : List[str] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : int = prepare_ref(a__ , a__ , a__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = [json.dumps(a__ ) + '''\n''' for ref in ref_ids] f.writelines(a__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a__ : int = parser.parse_args() main(args)
313
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=18 , _A=30 , _A=400 , _A=True , _A=32 , _A=True , ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size_divisor SCREAMING_SNAKE_CASE_ = do_rescale def _UpperCamelCase ( self ) -> Dict: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCamelCase__ ( a__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =GLPNImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = GLPNImageProcessingTester(self ) @property def _UpperCamelCase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size_divisor''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''resample''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_rescale''' ) ) def _UpperCamelCase ( self ) -> List[Any]: pass def _UpperCamelCase ( self ) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _UpperCamelCase ( self ) -> Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _UpperCamelCase ( self ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
299
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Tuple = '''1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''f32le''' SCREAMING_SNAKE_CASE : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error SCREAMING_SNAKE_CASE : Optional[Any] = output_stream[0] SCREAMING_SNAKE_CASE : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCAmelCase_( a__ , a__ , a__ = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Dict = '''1''' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = '''alsa''' SCREAMING_SNAKE_CASE : Any = '''default''' elif system == "Darwin": SCREAMING_SNAKE_CASE : Union[str, Any] = '''avfoundation''' SCREAMING_SNAKE_CASE : Optional[int] = ''':0''' elif system == "Windows": SCREAMING_SNAKE_CASE : int = '''dshow''' SCREAMING_SNAKE_CASE : Any = '''default''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Tuple = stream_chunk_s else: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s SCREAMING_SNAKE_CASE : Union[str, Any] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Any = np.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): SCREAMING_SNAKE_CASE : List[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : Dict = np.frombuffer(item['''raw'''] , dtype=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = b'''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: SCREAMING_SNAKE_CASE : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: SCREAMING_SNAKE_CASE : List[str] = False yield item SCREAMING_SNAKE_CASE : Dict = stride_left SCREAMING_SNAKE_CASE : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: SCREAMING_SNAKE_CASE : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : str = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
313
0
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCamelCase ( UpperCAmelCase ): return np.dot(a__ , a__ ) class UpperCAmelCase : '''simple docstring''' def __init__( self , *, __lowerCAmelCase = np.inf , __lowerCAmelCase = "linear" , __lowerCAmelCase = 0.0 , ) -> None: lowercase__ : Any = regularization lowercase__ : str = gamma if kernel == "linear": lowercase__ : List[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) lowercase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowercase__ : Tuple = F"""Unknown kernel: {kernel}""" raise ValueError(_lowerCamelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> float: return np.dot(_lowerCamelCase , _lowerCamelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: lowercase__ : List[str] = observations lowercase__ : str = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (lowercase__ ) : str = np.shape(_lowerCamelCase ) def to_minimize(__lowerCAmelCase ) -> float: lowercase__ : Any = 0 (lowercase__ ) : List[str] = np.shape(_lowerCamelCase ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowerCamelCase ) lowercase__ : Dict = LinearConstraint(_lowerCamelCase , 0 , 0 ) lowercase__ : Optional[Any] = Bounds(0 , self.regularization ) lowercase__ : int = minimize( _lowerCamelCase , np.ones(_lowerCamelCase ) , bounds=_lowerCamelCase , constraints=[ly_contraint] ).x lowercase__ : List[Any] = l_star # calculating mean offset of separation plane to points lowercase__ : Dict = 0 for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) lowercase__ : Union[str, Any] = s / n def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: lowercase__ : str = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowerCamelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
198
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCAmelCase : str =logging.get_logger(__name__) class a_ ( a__ ): def __init__( self : Tuple , *lowercase : Any , **lowercase : str ): """simple docstring""" warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
223
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github _UpperCamelCase: int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def lowercase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase : str = Github(os.environ['GITHUB_TOKEN'] ) lowercase : Tuple = g.get_repo('huggingface/diffusers' ) lowercase : Dict = repo.get_issues(state='open' ) for issue in open_issues: lowercase : str = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=a__ ) lowercase : Tuple = comments[0] if len(a__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
255
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = (EulerDiscreteScheduler,) __SCREAMING_SNAKE_CASE : Optional[int] = 10 def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**_lowerCamelCase ) return config def __lowerCAmelCase ( self ) ->Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Any = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[str] = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase , use_karras_sigmas=_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : int = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = output.prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
313
0
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple ): '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Union[str, Any] ): '''simple docstring''' lowercase = XGBClassifier() classifier.fit(a__ , a__ ) return classifier def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = load_iris() lowercase = data_handling(a__ ) lowercase = train_test_split( a__ , a__ , test_size=0.25 ) lowercase = iris['''target_names'''] # Create an XGBoost Classifier from the training data lowercase = xgboost(a__ , a__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( a__ , a__ , a__ , display_labels=a__ , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
220
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
0
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _lowerCAmelCase = open # noqa: we just need to have a builtin inside this module to test it properly
37
from __future__ import annotations import math def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if len(a__ ) != 2 or len(a[0] ) != 2 or len(a__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) SCREAMING_SNAKE_CASE : Dict = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Any = matrix_length // 2 SCREAMING_SNAKE_CASE : Tuple = [[a[i][j] for j in range(a__ , a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : Optional[int] = [ [a[i][j] for j in range(a__ , a__ )] for i in range(a__ , a__ ) ] SCREAMING_SNAKE_CASE : Optional[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : List[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ , a__ )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase_( a__ ): """simple docstring""" return len(a__ ), len(matrix[0] ) def UpperCAmelCase_( a__ ): """simple docstring""" print('''\n'''.join(str(a__ ) for line in matrix ) ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ ) == (2, 2): return default_matrix_multiplication(a__ , a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : int = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Any = actual_strassen(matrix_addition(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(len(a__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(a__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ )[1] != matrix_dimensions(a__ )[0]: SCREAMING_SNAKE_CASE : Any = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(a__ ) SCREAMING_SNAKE_CASE : str = matrix_dimensions(a__ ) SCREAMING_SNAKE_CASE : Tuple = matrix_dimensions(a__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE : str = max(*a__ , *a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(math.pow(2 , math.ceil(math.loga(a__ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = matrixa SCREAMING_SNAKE_CASE : Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(a__ , a__ ) # Removing the additional zeros for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a__ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a__ : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
313
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: if any(not isinstance(a__ , a__ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(a__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(a__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
212
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt') # Using `do_sample=False` to force deterministic output __lowercase =text_generator('This is a test' , do_sample=_lowerCamelCase) self.assertEqual( _lowerCamelCase , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) __lowercase =text_generator(['This is a test', 'This is a second test']) self.assertEqual( _lowerCamelCase , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) __lowercase =text_generator('This is a test' , do_sample=_lowerCamelCase , num_return_sequences=2 , return_tensors=_lowerCamelCase) self.assertEqual( _lowerCamelCase , [ {'generated_token_ids': ANY(_lowerCamelCase)}, {'generated_token_ids': ANY(_lowerCamelCase)}, ] , ) __lowercase =text_generator.model.config.eos_token_id __lowercase ='''<pad>''' __lowercase =text_generator( ['This is a test', 'This is a second test'] , do_sample=_lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowerCamelCase , ) self.assertEqual( _lowerCamelCase , [ [ {'generated_token_ids': ANY(_lowerCamelCase)}, {'generated_token_ids': ANY(_lowerCamelCase)}, ], [ {'generated_token_ids': ANY(_lowerCamelCase)}, {'generated_token_ids': ANY(_lowerCamelCase)}, ], ] , ) @require_tf def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf') # Using `do_sample=False` to force deterministic output __lowercase =text_generator('This is a test' , do_sample=_lowerCamelCase) self.assertEqual( _lowerCamelCase , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) __lowercase =text_generator(['This is a test', 'This is a second test'] , do_sample=_lowerCamelCase) self.assertEqual( _lowerCamelCase , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def __lowerCamelCase ( self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any]): '''simple docstring''' __lowercase =TextGenerationPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase) return text_generator, ["This is a test", "Another test"] def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase ='''Hello I believe in''' __lowercase =pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2') __lowercase =text_generator(_lowerCamelCase) self.assertEqual( _lowerCamelCase , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) __lowercase =text_generator(_lowerCamelCase , stop_sequence=' fe') self.assertEqual(_lowerCamelCase , [{'generated_text': 'Hello I believe in fe'}]) def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =text_generator.model __lowercase =text_generator.tokenizer __lowercase =text_generator('This is a test') self.assertEqual(_lowerCamelCase , [{'generated_text': ANY(_lowerCamelCase)}]) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test')) __lowercase =text_generator('This is a test' , return_full_text=_lowerCamelCase) self.assertEqual(_lowerCamelCase , [{'generated_text': ANY(_lowerCamelCase)}]) self.assertNotIn('This is a test' , outputs[0]['generated_text']) __lowercase =pipeline(task='text-generation' , model=_lowerCamelCase , tokenizer=_lowerCamelCase , return_full_text=_lowerCamelCase) __lowercase =text_generator('This is a test') self.assertEqual(_lowerCamelCase , [{'generated_text': ANY(_lowerCamelCase)}]) self.assertNotIn('This is a test' , outputs[0]['generated_text']) __lowercase =text_generator('This is a test' , return_full_text=_lowerCamelCase) self.assertEqual(_lowerCamelCase , [{'generated_text': ANY(_lowerCamelCase)}]) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test')) __lowercase =text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=_lowerCamelCase) self.assertEqual( _lowerCamelCase , [ [{'generated_text': ANY(_lowerCamelCase)}, {'generated_text': ANY(_lowerCamelCase)}], [{'generated_text': ANY(_lowerCamelCase)}, {'generated_text': ANY(_lowerCamelCase)}], ] , ) if text_generator.tokenizer.pad_token is not None: __lowercase =text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=_lowerCamelCase) self.assertEqual( _lowerCamelCase , [ [{'generated_text': ANY(_lowerCamelCase)}, {'generated_text': ANY(_lowerCamelCase)}], [{'generated_text': ANY(_lowerCamelCase)}, {'generated_text': ANY(_lowerCamelCase)}], ] , ) with self.assertRaises(_lowerCamelCase): __lowercase =text_generator('test' , return_full_text=_lowerCamelCase , return_text=_lowerCamelCase) with self.assertRaises(_lowerCamelCase): __lowercase =text_generator('test' , return_full_text=_lowerCamelCase , return_tensors=_lowerCamelCase) with self.assertRaises(_lowerCamelCase): __lowercase =text_generator('test' , return_text=_lowerCamelCase , return_tensors=_lowerCamelCase) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __lowercase =text_generator('') self.assertEqual(_lowerCamelCase , [{'generated_text': ANY(_lowerCamelCase)}]) else: with self.assertRaises((ValueError, AssertionError)): __lowercase =text_generator('') if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __lowercase =['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)): text_generator('This is a test' * 5_0_0 , max_new_tokens=2_0) __lowercase =text_generator('This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=2_0) # Hole strategy cannot work with self.assertRaises(_lowerCamelCase): text_generator( 'This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def __lowerCamelCase ( self : Tuple): '''simple docstring''' import torch # Classic `model_kwargs` __lowercase =pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa) __lowercase =pipe('This is a test') self.assertEqual( _lowerCamelCase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __lowercase =pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa) self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa) __lowercase =pipe('This is a test') self.assertEqual( _lowerCamelCase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __lowercase =pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto') self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa) __lowercase =pipe('This is a test') self.assertEqual( _lowerCamelCase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def __lowerCamelCase ( self : str): '''simple docstring''' import torch __lowercase =pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa) pipe('This is a test') @require_torch @require_accelerate @require_torch_gpu def __lowerCamelCase ( self : int): '''simple docstring''' import torch __lowercase =pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa) pipe('This is a test' , do_sample=_lowerCamelCase , top_p=0.5) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase ='''Hello world''' __lowercase =pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2') if text_generator.model.framework == "tf": __lowercase =logging.get_logger('transformers.generation.tf_utils') else: __lowercase =logging.get_logger('transformers.generation.utils') __lowercase ='''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_lowerCamelCase) as cl: __lowercase =text_generator(_lowerCamelCase , max_length=1_0 , max_new_tokens=1) self.assertIn(_lowerCamelCase , cl.out) # The user only sets one -> no warning with CaptureLogger(_lowerCamelCase) as cl: __lowercase =text_generator(_lowerCamelCase , max_new_tokens=1) self.assertNotIn(_lowerCamelCase , cl.out) with CaptureLogger(_lowerCamelCase) as cl: __lowercase =text_generator(_lowerCamelCase , max_length=1_0) self.assertNotIn(_lowerCamelCase , cl.out)
166
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ ) return k def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE : Dict = v.T SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = array return tf_weights def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE : int = task_specific_params SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : Any = Path(args.tf_ckpt_path).parent.name a__ : int = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowercase__ = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' lowercase__ = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' lowercase__ = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def _snake_case ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Any = simple_accuracy(a__ , a__ ) _lowerCamelCase : Union[str, Any] = float(fa_score(y_true=a__ , y_pred=a__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = np.array(a__ ) _lowerCamelCase : int = np.array(a__ ) _lowerCamelCase : int = en_sentvecs.shape[0] # mean centering _lowerCamelCase : int = en_sentvecs - np.mean(a__ , axis=0 ) _lowerCamelCase : List[Any] = in_sentvecs - np.mean(a__ , axis=0 ) _lowerCamelCase : int = cdist(a__ , a__ , 'cosine' ) _lowerCamelCase : Optional[int] = np.array(range(a__ ) ) _lowerCamelCase : Tuple = sim.argsort(axis=1 )[:, :10] _lowerCamelCase : Optional[int] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def A_ ( self ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), 'references': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def A_ ( self , lowercase , lowercase ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_lowerCamelCase , _lowerCamelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_lowerCamelCase , _lowerCamelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' )
96
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed UpperCAmelCase_ = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase__ = False elif args.student_type == "gpt2": UpperCAmelCase__ = False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase__ = False def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=a__ , required=a__ , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=a__ , required=a__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=a__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=a__ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=a__ , required=a__ , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=a__ , type=a__ , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=a__ , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=a__ , required=a__ , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=a__ , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=a__ , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=a__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=a__ , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=a__ , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=a__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=a__ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=a__ , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=a__ , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=a__ , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=a__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=a__ , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.""" , ) parser.add_argument("""--n_epoch""" , type=a__ , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=a__ , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=a__ , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=a__ , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=a__ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5e-4 , type=a__ , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=a__ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=a__ , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=a__ , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=a__ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=a__ , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=a__ , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=a__ , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=a__ , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=a__ , default=4000 , help="""Checkpoint interval.""" ) UpperCAmelCase__ = parser.parse_args() sanity_checks(a__ ) # ARGS # init_gpu_params(a__ ) set_seed(a__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(a__ ) , a__ , indent=4 ) git_log(args.dump_path ) UpperCAmelCase__ = MODEL_CLASSES[args.student_type] UpperCAmelCase__ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase__ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase__ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase__ = tokenizer.all_special_tokens.index(a__ ) UpperCAmelCase__ = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) UpperCAmelCase__ = special_tok_ids UpperCAmelCase__ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , """rb""" ) as fp: UpperCAmelCase__ = pickle.load(a__ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , """rb""" ) as fp: UpperCAmelCase__ = pickle.load(a__ ) UpperCAmelCase__ = np.maximum(a__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase__ = 0.0 # do not predict special tokens UpperCAmelCase__ = torch.from_numpy(a__ ) else: UpperCAmelCase__ = None UpperCAmelCase__ = LmSeqsDataset(params=a__ , data=a__ ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) UpperCAmelCase__ = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase__ = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) UpperCAmelCase__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=a__ ) else: UpperCAmelCase__ = student_model_class(a__ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # UpperCAmelCase__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=a__ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(a__ , a__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(a__ , a__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase__ = Distiller( params=a__ , dataset=a__ , token_probs=a__ , student=a__ , teacher=a__ ) distiller.train() logger.info("""Let\'s go get some drinks.""" ) if __name__ == "__main__": main()
346
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase_( a__ , a__ , a__=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE : Any = '''''' else: SCREAMING_SNAKE_CASE : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = val def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ViTMSNConfig() SCREAMING_SNAKE_CASE : Optional[int] = 1_000 SCREAMING_SNAKE_CASE : str = '''datasets/huggingface/label-files''' SCREAMING_SNAKE_CASE : List[str] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(a__ , a__ ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(a__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : str = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 384 SCREAMING_SNAKE_CASE : Any = 1_536 SCREAMING_SNAKE_CASE : List[str] = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = 1_024 SCREAMING_SNAKE_CASE : Optional[int] = 4_096 SCREAMING_SNAKE_CASE : Tuple = 24 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : Dict = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 7 SCREAMING_SNAKE_CASE : Union[str, Any] = 1_024 SCREAMING_SNAKE_CASE : List[Any] = 4_096 SCREAMING_SNAKE_CASE : List[Any] = 24 SCREAMING_SNAKE_CASE : Tuple = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMSNModel(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' )['''target_encoder'''] SCREAMING_SNAKE_CASE : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(a__ ) SCREAMING_SNAKE_CASE : Any = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , base_model=a__ ) model.load_state_dict(a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(a__ , stream=a__ ).raw ) SCREAMING_SNAKE_CASE : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=a__ , image_std=a__ ) SCREAMING_SNAKE_CASE : int = image_processor(images=a__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE : Tuple = model(**a__ ) SCREAMING_SNAKE_CASE : str = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCAmelCase = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex lowerCAmelCase = 10 lowerCAmelCase = 256 def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(a__ ) < MIN_NUM_TOKENS: return None lowercase__ = MinHash(num_perm=a__ ) for token in set(a__ ): min_hash.update(token.encode() ) return min_hash def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return {t for t in NON_ALPHA.split(a__ ) if len(t.strip() ) > 0} class _a : def __init__( self: Any , *, UpperCamelCase_: Tuple = 0.85 , ) -> Tuple: """simple docstring""" lowercase__ = duplication_jaccard_threshold lowercase__ = NUM_PERM lowercase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowercase__ = defaultdict(_lowerCamelCase ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[int] ) -> None: """simple docstring""" lowercase__ = self._index.query(_lowerCamelCase ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCamelCase ) def lowerCamelCase_ ( self: Any ) -> List[List[Dict]]: """simple docstring""" lowercase__ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase__ = [base] + list(_lowerCamelCase ) # reformat the cluster to be a list of dict lowercase__ = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCamelCase ) return duplicate_clusters def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int ) -> None: """simple docstring""" lowercase__ = self.get_duplicate_clusters() with open(_lowerCamelCase , '''w''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = element lowercase__ = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a__ , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = DuplicationIndex(duplication_jaccard_threshold=a__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a__ ) ) , max_queue_size=1_00 ) ): di.add(a__ , a__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = get_tokens(a__ ) lowercase__ = get_tokens(a__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCAmelCase = None def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] for elementa in cluster: lowercase__ = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: lowercase__ = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a__ , a__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase__ = 1 extremes.append(a__ ) return extremes def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" global _shared_dataset lowercase__ = dataset lowercase__ = [] lowercase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=a__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a__ , a__ , ) , total=len(a__ ) , ): extremes_list.append(a__ ) return extremes_list def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.85 ): """simple docstring""" lowercase__ = make_duplicate_clusters(a__ , a__ ) lowercase__ = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} lowercase__ = {} lowercase__ = find_extremes(a__ , a__ , a__ ) for extremes in extremes_clusters: for element in extremes: lowercase__ = element lowercase__ = duplicate_indices - set(extreme_dict.keys() ) lowercase__ = dataset.filter(lambda SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=a__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase__ = element['''base_index'''] in extreme_dict if element["is_extreme"]: lowercase__ = extreme_dict[element['''base_index''']]['''copies'''] print(f'Original dataset size: {len(a__ )}' ) print(f'Number of duplicate clusters: {len(a__ )}' ) print(f'Files in duplicate cluster: {len(a__ )}' ) print(f'Unique files in duplicate cluster: {len(a__ )}' ) print(f'Filtered dataset size: {len(a__ )}' ) return ds_filter, duplicate_clusters
110
import csv import tweepy # Twitter API credentials a__ : Union[str, Any] = '''''' a__ : List[str] = '''''' a__ : Any = '''''' a__ : List[str] = '''''' def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tweepy.OAuthHandler(a__ , a__ ) auth.set_access_token(a__ , a__ ) SCREAMING_SNAKE_CASE : List[str] = tweepy.API(a__ ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE : List[Any] = api.user_timeline(screen_name=a__ , count=200 ) # save most recent tweets alltweets.extend(a__ ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a__ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE : Any = api.user_timeline( screen_name=a__ , count=200 , max_id=a__ ) # save most recent tweets alltweets.extend(a__ ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Dict = alltweets[-1].id - 1 print(F"""...{len(a__ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , '''w''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = csv.writer(a__ ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(a__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
313
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __UpperCAmelCase = '''CompVis/stable-diffusion-v1-1''' __UpperCAmelCase = '''CompVis/stable-diffusion-v1-2''' __UpperCAmelCase = '''CompVis/stable-diffusion-v1-3''' __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' class UpperCamelCase__ ( a__ ): """simple docstring""" def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A = True , ) -> str: super()._init_() SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline( vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , requires_safety_checker=_lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def _UpperCamelCase ( self ) -> Dict[str, Any]: return {k: getattr(self , _lowerCamelCase ) for k in self.config.keys() if not k.startswith('''_''' )} def _UpperCamelCase ( self , _A = "auto" ) -> Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def _UpperCamelCase ( self ) -> List[str]: self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def _UpperCamelCase ( self , _A , _A = 512 , _A = 512 , _A = 50 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ) -> str: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def _UpperCamelCase ( self , _A , _A = 512 , _A = 512 , _A = 50 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ) -> Tuple: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def _UpperCamelCase ( self , _A , _A = 512 , _A = 512 , _A = 50 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ) -> Dict: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def _UpperCamelCase ( self , _A , _A = 512 , _A = 512 , _A = 50 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ) -> Optional[Any]: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def _UpperCamelCase ( self , _A , _A = 512 , _A = 512 , _A = 50 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ) -> Dict: SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(_lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE_ = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE_ = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE_ = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE_ = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
299
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'ibert' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Dict = force_dequant class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
313
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCAmelCase_ ( _A , _A , _A , _A=None , _A=None , _A=None , _A=None , _A=None , ): '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE__ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_A ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_A ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_A ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class UpperCAmelCase__ : """simple docstring""" def __init__( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict=13 , __lowerCamelCase : Tuple=7 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[Any]="relu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Optional[Any]=20 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Dict=1 , __lowerCamelCase : List[Any]=0 , ) -> str: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = bos_token_id def lowercase_ ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = self.eos_token_id # Eos Token SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE__ = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ = self.get_config() SCREAMING_SNAKE_CASE__ = prepare_mam_aaa_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def lowercase_ ( self : Any ) -> str: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowercase_ ( self : int ) -> int: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = MaMaaaModel(config=__lowerCamelCase ).get_decoder().to(__lowerCamelCase ).eval() SCREAMING_SNAKE_CASE__ = inputs_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = inputs_dict['''attention_mask'''] SCREAMING_SNAKE_CASE__ = inputs_dict['''head_mask'''] # first forward pass SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[ '''last_hidden_state''' ] # select random slice SCREAMING_SNAKE_CASE__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-2 ) ) def lowercase_ ( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = MaMaaaModel(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = model.get_encoder() encoder.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = MaMaaaEncoder.from_pretrained(__lowerCamelCase ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = model.get_decoder() decoder.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = MaMaaaDecoder.from_pretrained(__lowerCamelCase ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCAmelCase__ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" a = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a = True a = True a = False a = False def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int ) -> Dict: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = MaMaaaModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase ) def lowercase_ ( self : str ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self : int ) -> int: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertEqual(info['''missing_keys'''] , [] ) def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = copy.deepcopy(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE__ = inputs['''input_ids'''] del inputs["input_ids"] else: SCREAMING_SNAKE_CASE__ = inputs['''input_ids'''] SCREAMING_SNAKE_CASE__ = inputs.get('''decoder_input_ids''' , __lowerCamelCase ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model.get_input_embeddings() if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE__ = wte(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = wte(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = wte(__lowerCamelCase ) with torch.no_grad(): model(**__lowerCamelCase )[0] def lowercase_ ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids.ne(1 ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = MaMaaaForConditionalGeneration(__lowerCamelCase ).eval().to(__lowerCamelCase ) if torch_device == "cuda": model.half() model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ) model.generate(num_beams=4 , do_sample=__lowerCamelCase , early_stopping=__lowerCamelCase , num_return_sequences=3 ) def UpperCAmelCase_ ( _A ): '''simple docstring''' return torch.tensor(_A , dtype=torch.long , device=_A ) _SCREAMING_SNAKE_CASE : Optional[int] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self : List[Any] ) -> Dict: return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) SCREAMING_SNAKE_CASE__ = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) SCREAMING_SNAKE_CASE__ = prepare_mam_aaa_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__lowerCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=__lowerCamelCase ) ) def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(__lowerCamelCase ) # change to intended input SCREAMING_SNAKE_CASE__ = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) SCREAMING_SNAKE_CASE__ = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) SCREAMING_SNAKE_CASE__ = prepare_mam_aaa_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here SCREAMING_SNAKE_CASE__ = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__lowerCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=__lowerCamelCase ) ) def lowercase_ ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) SCREAMING_SNAKE_CASE__ = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = model.generate( input_ids=dct['''input_ids'''].to(__lowerCamelCase ) , attention_mask=dct['''attention_mask'''].to(__lowerCamelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) SCREAMING_SNAKE_CASE__ = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) assert generated == expected_en
314
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
314
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase_ ( _A , _A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase_ ( _A , _A , _A=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE__ = '''''' else: SCREAMING_SNAKE_CASE__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_A , _A ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = dct.pop(_A ) SCREAMING_SNAKE_CASE__ = val def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ViTConfig() SCREAMING_SNAKE_CASE__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = int(vit_name[-12:-10] ) SCREAMING_SNAKE_CASE__ = int(vit_name[-9:-6] ) else: SCREAMING_SNAKE_CASE__ = 10_00 SCREAMING_SNAKE_CASE__ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE__ = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE__ = {int(_A ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = int(vit_name[-6:-4] ) SCREAMING_SNAKE_CASE__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): SCREAMING_SNAKE_CASE__ = 1_92 SCREAMING_SNAKE_CASE__ = 7_68 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 3 elif vit_name[9:].startswith('''small''' ): SCREAMING_SNAKE_CASE__ = 3_84 SCREAMING_SNAKE_CASE__ = 15_36 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): SCREAMING_SNAKE_CASE__ = 7_68 SCREAMING_SNAKE_CASE__ = 23_04 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): SCREAMING_SNAKE_CASE__ = 10_24 SCREAMING_SNAKE_CASE__ = 40_96 SCREAMING_SNAKE_CASE__ = 24 SCREAMING_SNAKE_CASE__ = 16 elif vit_name[4:].startswith('''huge''' ): SCREAMING_SNAKE_CASE__ = 12_80 SCREAMING_SNAKE_CASE__ = 51_20 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 16 # load original model from timm SCREAMING_SNAKE_CASE__ = timm.create_model(_A , pretrained=_A ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ = timm_model.state_dict() if base_model: remove_classification_head_(_A ) SCREAMING_SNAKE_CASE__ = create_rename_keys(_A , _A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , _A ) # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE__ = ViTModel(_A ).eval() else: SCREAMING_SNAKE_CASE__ = ViTForImageClassification(_A ).eval() model.load_state_dict(_A ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: SCREAMING_SNAKE_CASE__ = DeiTImageProcessor(size=config.image_size ) else: SCREAMING_SNAKE_CASE__ = ViTImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = encoding['''pixel_values'''] SCREAMING_SNAKE_CASE__ = model(_A ) if base_model: SCREAMING_SNAKE_CASE__ = timm_model.forward_features(_A ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_A , outputs.pooler_output , atol=1e-3 ) else: SCREAMING_SNAKE_CASE__ = timm_model(_A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_A , outputs.logits , atol=1e-3 ) Path(_A ).mkdir(exist_ok=_A ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_A ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_A ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
314
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> str: super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE__ = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
314
1
from math import ceil def UpperCAmelCase_ ( _A = 10_01 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): SCREAMING_SNAKE_CASE__ = 2 * i + 1 SCREAMING_SNAKE_CASE__ = 2 * i SCREAMING_SNAKE_CASE__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _SCREAMING_SNAKE_CASE : Tuple = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
314
from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "tapas" def __init__( self : int , __lowerCamelCase : Optional[Any]=3_0522 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=1024 , __lowerCamelCase : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]=10.0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=1.0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[str]="ratio" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : Any=32 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str , ) -> str: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
314
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "lxmert" a = {} def __init__( self : Union[str, Any] , __lowerCamelCase : List[str]=3_0522 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Union[str, Any]=9500 , __lowerCamelCase : Union[str, Any]=1600 , __lowerCamelCase : Any=400 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Any=1e-12 , __lowerCamelCase : List[Any]=9 , __lowerCamelCase : Any=5 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[str]=6.67 , __lowerCamelCase : Dict=True , __lowerCamelCase : Any=True , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=True , **__lowerCamelCase : Optional[Any] , ) -> Any: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = num_qa_labels SCREAMING_SNAKE_CASE__ = num_object_labels SCREAMING_SNAKE_CASE__ = num_attr_labels SCREAMING_SNAKE_CASE__ = l_layers SCREAMING_SNAKE_CASE__ = x_layers SCREAMING_SNAKE_CASE__ = r_layers SCREAMING_SNAKE_CASE__ = visual_feat_dim SCREAMING_SNAKE_CASE__ = visual_pos_dim SCREAMING_SNAKE_CASE__ = visual_loss_normalizer SCREAMING_SNAKE_CASE__ = task_matched SCREAMING_SNAKE_CASE__ = task_mask_lm SCREAMING_SNAKE_CASE__ = task_obj_predict SCREAMING_SNAKE_CASE__ = task_qa SCREAMING_SNAKE_CASE__ = visual_obj_loss SCREAMING_SNAKE_CASE__ = visual_attr_loss SCREAMING_SNAKE_CASE__ = visual_feat_loss SCREAMING_SNAKE_CASE__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__lowerCamelCase )
314
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = 0 @slow def lowercase_ ( self : List[str] ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) # Check that tokenizer_type ≠ model_type SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> int: with pytest.raises(__lowerCamelCase ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Tuple: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCamelCase ) else: self.assertEqual(tokenizer.do_lower_case , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : Any ) -> str: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowerCamelCase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : List[str] ) -> Tuple: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai SCREAMING_SNAKE_CASE__ = TOKENIZER_MAPPING.values() SCREAMING_SNAKE_CASE__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Any: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowerCamelCase ) , __lowerCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''Hello, world. How are you?''' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: # Check we can load the tokenizer config of an online model. SCREAMING_SNAKE_CASE__ = get_tokenizer_config('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ = config.pop('''_commit_hash''' , __lowerCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowerCamelCase , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) self.assertDictEqual(__lowerCamelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : int ) -> str: try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : List[Any] ) -> List[Any]: try: AutoConfig.register('''custom''' , __lowerCamelCase ) # Can register in two steps AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowerCamelCase , slow_tokenizer_class=__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained(__lowerCamelCase ) bert_tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizerFast.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : List[str] ) -> str: class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NewTokenizer a = False try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Union[str, Any] ) -> Dict: with self.assertRaisesRegex( __lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ) -> Optional[int]: with self.assertRaisesRegex( __lowerCamelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , revision='''aaaaaa''' ) def lowercase_ ( self : Any ) -> Optional[Any]: # Make sure we have cached the tokenizer. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
314
1
import collections import os import re from pathlib import Path _SCREAMING_SNAKE_CASE : int = '''src/transformers''' # Matches is_xxx_available() _SCREAMING_SNAKE_CASE : List[str] = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _SCREAMING_SNAKE_CASE : Any = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _SCREAMING_SNAKE_CASE : Dict = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _SCREAMING_SNAKE_CASE : Dict = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _SCREAMING_SNAKE_CASE : Tuple = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _SCREAMING_SNAKE_CASE : int = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _SCREAMING_SNAKE_CASE : int = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _SCREAMING_SNAKE_CASE : Tuple = re.compile(r'''^\s*try:''') # Catches a line with else: _SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r'''^\s*else:''') def UpperCAmelCase_ ( _A ): '''simple docstring''' if _re_test_backend.search(_A ) is None: return None SCREAMING_SNAKE_CASE__ = [b[0] for b in _re_backend.findall(_A )] backends.sort() return "_and_".join(_A ) def UpperCAmelCase_ ( _A ): '''simple docstring''' with open(_A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ = f.readlines() SCREAMING_SNAKE_CASE__ = 0 while line_index < len(_A ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_A ): return None # First grab the objects without a specific backend in _import_structure SCREAMING_SNAKE_CASE__ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: SCREAMING_SNAKE_CASE__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_A ): SCREAMING_SNAKE_CASE__ = _re_one_line_import_struct.search(_A ).groups()[0] SCREAMING_SNAKE_CASE__ = re.findall(R'''\[([^\]]+)\]''' , _A ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue SCREAMING_SNAKE_CASE__ = _re_import_struct_key_value.search(_A ) if single_line_import_search is not None: SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_A ) > 0] objects.extend(_A ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 SCREAMING_SNAKE_CASE__ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): SCREAMING_SNAKE_CASE__ = lines[line_index] if _re_import_struct_add_one.search(_A ) is not None: objects.append(_re_import_struct_add_one.search(_A ).groups()[0] ) elif _re_import_struct_add_many.search(_A ) is not None: SCREAMING_SNAKE_CASE__ = _re_import_struct_add_many.search(_A ).groups()[0].split(''', ''' ) SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in imports if len(_A ) > 0] objects.extend(_A ) elif _re_between_brackets.search(_A ) is not None: SCREAMING_SNAKE_CASE__ = _re_between_brackets.search(_A ).groups()[0].split(''', ''' ) SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in imports if len(_A ) > 0] objects.extend(_A ) elif _re_quote_object.search(_A ) is not None: objects.append(_re_quote_object.search(_A ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 SCREAMING_SNAKE_CASE__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend SCREAMING_SNAKE_CASE__ = [] while ( line_index < len(_A ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): SCREAMING_SNAKE_CASE__ = lines[line_index] SCREAMING_SNAKE_CASE__ = _re_import.search(_A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 SCREAMING_SNAKE_CASE__ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_A ): # If the line is an if is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): SCREAMING_SNAKE_CASE__ = lines[line_index] SCREAMING_SNAKE_CASE__ = _re_import.search(_A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 SCREAMING_SNAKE_CASE__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' def find_duplicates(_A ): return [k for k, v in collections.Counter(_A ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] SCREAMING_SNAKE_CASE__ = [] for key in import_dict_objects.keys(): SCREAMING_SNAKE_CASE__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) SCREAMING_SNAKE_CASE__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): SCREAMING_SNAKE_CASE__ = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: SCREAMING_SNAKE_CASE__ = os.path.join(_A , '''__init__.py''' ) SCREAMING_SNAKE_CASE__ = parse_init(_A ) if objects is not None: SCREAMING_SNAKE_CASE__ = analyze_results(*_A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_A ) ) if len(_A ) > 0: raise ValueError('''\n\n'''.join(_A ) ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for path, directories, files in os.walk(_A ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_A ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_A ) / folder).glob('''*.py''' ) ) ) == 0: continue SCREAMING_SNAKE_CASE__ = str((Path(_A ) / folder).relative_to(_A ) ) SCREAMING_SNAKE_CASE__ = short_path.replace(os.path.sep , '''.''' ) submodules.append(_A ) for fname in files: if fname == "__init__.py": continue SCREAMING_SNAKE_CASE__ = str((Path(_A ) / fname).relative_to(_A ) ) SCREAMING_SNAKE_CASE__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_A ) return submodules _SCREAMING_SNAKE_CASE : List[Any] = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def UpperCAmelCase_ ( ): '''simple docstring''' from transformers.utils import direct_transformers_import SCREAMING_SNAKE_CASE__ = direct_transformers_import(_A ) SCREAMING_SNAKE_CASE__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_A , '''__init__.py''' ) , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''' , _A ) ) ) SCREAMING_SNAKE_CASE__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) def UpperCAmelCase_ ( _A=None , _A=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_A ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) a = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) a = list_field( default=[8, 32, 1_28, 5_12] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) a = field( default=A__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) a = field( default=A__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) a = field( default=A__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) a = field(default=A__ , metadata={"help": "Use FP16 to accelerate inference."} ) a = field(default=A__ , metadata={"help": "Benchmark training of model"} ) a = field(default=A__ , metadata={"help": "Verbose memory tracing"} ) a = field( default=A__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) a = field( default=A__ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) a = field(default=A__ , metadata={"help": "Trace memory line by line"} ) a = field(default=A__ , metadata={"help": "Save result to a CSV file"} ) a = field(default=A__ , metadata={"help": "Save all print statements in a log file"} ) a = field(default=A__ , metadata={"help": "Whether to print environment information"} ) a = field( default=A__ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) a = field( default=F'inference_time_{round(time() )}.csv' , metadata={"help": "CSV filename used if saving time results to csv."} , ) a = field( default=F'inference_memory_{round(time() )}.csv' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) a = field( default=F'train_time_{round(time() )}.csv' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) a = field( default=F'train_memory_{round(time() )}.csv' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) a = field( default=F'env_info_{round(time() )}.csv' , metadata={"help": "CSV filename used if saving environment information."} , ) a = field( default=F'log_{round(time() )}.csv' , metadata={"help": "Log filename used if print statements are saved in log."} , ) a = field(default=3 , metadata={"help": "Times an experiment will be run."} ) a = field( default=A__ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def lowercase_ ( self : Optional[int] ) -> Tuple: warnings.warn( f'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , __lowerCamelCase , ) def lowercase_ ( self : Optional[int] ) -> List[str]: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowercase_ ( self : Optional[Any] ) -> List[str]: if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def lowercase_ ( self : Optional[Any] ) -> Any: if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
314
from ... import PretrainedConfig _SCREAMING_SNAKE_CASE : Dict = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a = "nezha" def __init__( self : Optional[Any] , __lowerCamelCase : str=2_1128 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Tuple=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : Any , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = max_relative_position SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = use_cache
314
1
def UpperCAmelCase_ ( _A ): '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
314
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_INIT_CONFIGURATION a = RoFormerTokenizer def __init__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=True , __lowerCamelCase : Tuple="[UNK]" , __lowerCamelCase : int="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : int="[MASK]" , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ) -> Dict: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = pre_tok_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = do_lower_case def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return state def __setstate__( self : int , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__ = PreTokenizer.custom(JiebaPreTokenizer(__lowerCamelCase ) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , **__lowerCamelCase : Tuple , ) -> int: SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return super().save_pretrained(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
314
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _SCREAMING_SNAKE_CASE : Dict = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : int = 14 ) -> None: if group not in primes: raise ValueError('''Unsupported Group''' ) SCREAMING_SNAKE_CASE__ = primes[group]['''prime'''] SCREAMING_SNAKE_CASE__ = primes[group]['''generator'''] SCREAMING_SNAKE_CASE__ = int(hexlify(urandom(32 ) ) , base=16 ) def lowercase_ ( self : List[Any] ) -> str: return hex(self.__private_key )[2:] def lowercase_ ( self : List[Any] ) -> str: SCREAMING_SNAKE_CASE__ = pow(self.generator , self.__private_key , self.prime ) return hex(__lowerCamelCase )[2:] def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> str: SCREAMING_SNAKE_CASE__ = int(__lowerCamelCase , base=16 ) if not self.is_valid_public_key(__lowerCamelCase ): raise ValueError('''Invalid public key''' ) SCREAMING_SNAKE_CASE__ = pow(__lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest() @staticmethod def lowercase_ ( __lowerCamelCase : int , __lowerCamelCase : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__lowerCamelCase , (prime - 1) // 2 , __lowerCamelCase ) == 1 ) @staticmethod def lowercase_ ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int = 14 ) -> str: SCREAMING_SNAKE_CASE__ = int(__lowerCamelCase , base=16 ) SCREAMING_SNAKE_CASE__ = int(__lowerCamelCase , base=16 ) SCREAMING_SNAKE_CASE__ = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''Invalid public key''' ) SCREAMING_SNAKE_CASE__ = pow(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
314
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=100 , __lowerCamelCase : str=5 , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : List[Any]=249 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=17 , __lowerCamelCase : str=25 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=128 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=0.0006 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : Dict=5_0256 , **__lowerCamelCase : str , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
314
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase__ ( A__ ): """simple docstring""" a = ["image_processor", "tokenizer"] a = "BlipImageProcessor" a = ("BertTokenizer", "BertTokenizerFast") def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = False super().__init__(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self : List[str] , __lowerCamelCase : ImageInput = None , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : int , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: SCREAMING_SNAKE_CASE__ = self.tokenizer SCREAMING_SNAKE_CASE__ = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) return text_encoding # add pixel_values SCREAMING_SNAKE_CASE__ = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) else: SCREAMING_SNAKE_CASE__ = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def lowercase_ ( self : Any , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : int ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : Dict , *__lowerCamelCase : Tuple , **__lowerCamelCase : Optional[Any] ) -> Optional[Any]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
314
def UpperCAmelCase_ ( _A = 1_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) SCREAMING_SNAKE_CASE__ = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
314
1
import math import flax.linen as nn import jax.numpy as jnp def UpperCAmelCase_ ( _A , _A , _A = 1 , _A = 1 , _A = 1.0e4 , _A = False , _A = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' SCREAMING_SNAKE_CASE__ = float(embedding_dim // 2 ) SCREAMING_SNAKE_CASE__ = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) SCREAMING_SNAKE_CASE__ = min_timescale * jnp.exp(jnp.arange(_A , dtype=jnp.floataa ) * -log_timescale_increment ) SCREAMING_SNAKE_CASE__ = jnp.expand_dims(_A , 1 ) * jnp.expand_dims(_A , 0 ) # scale embeddings SCREAMING_SNAKE_CASE__ = scale * emb if flip_sin_to_cos: SCREAMING_SNAKE_CASE__ = jnp.concatenate([jnp.cos(_A ), jnp.sin(_A )] , axis=1 ) else: SCREAMING_SNAKE_CASE__ = jnp.concatenate([jnp.sin(_A ), jnp.cos(_A )] , axis=1 ) SCREAMING_SNAKE_CASE__ = jnp.reshape(_A , [jnp.shape(_A )[0], embedding_dim] ) return signal class UpperCAmelCase__ ( nn.Module ): """simple docstring""" a = 32 a = jnp.floataa @nn.compact def __call__( self : Tuple , __lowerCamelCase : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.silu(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(__lowerCamelCase ) return temb class UpperCAmelCase__ ( nn.Module ): """simple docstring""" a = 32 a = False a = 1 @nn.compact def __call__( self : Optional[int] , __lowerCamelCase : str ) -> List[str]: return get_sinusoidal_embeddings( __lowerCamelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
314
import numpy as np from PIL import Image def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "vit_msn" def __init__( self : Union[str, Any] , __lowerCamelCase : Tuple=768 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : int=0.0 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Dict=1e-06 , __lowerCamelCase : Any=224 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Union[str, Any]=True , **__lowerCamelCase : Union[str, Any] , ) -> Optional[int]: super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = qkv_bias
314
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
1
from __future__ import annotations import math import random from typing import Any class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] ) -> None: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 def lowercase_ ( self : int ) -> bool: return self.head == self.tail def lowercase_ ( self : Any , __lowerCamelCase : Any ) -> None: self.data.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.tail + 1 def lowercase_ ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ = self.data[self.head] SCREAMING_SNAKE_CASE__ = self.head + 1 return ret def lowercase_ ( self : Tuple ) -> int: return self.tail - self.head def lowercase_ ( self : str ) -> None: print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Any ) -> None: SCREAMING_SNAKE_CASE__ = data SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 1 def lowercase_ ( self : int ) -> Any: return self.data def lowercase_ ( self : Dict ) -> MyNode | None: return self.left def lowercase_ ( self : Any ) -> MyNode | None: return self.right def lowercase_ ( self : Any ) -> int: return self.height def lowercase_ ( self : List[Any] , __lowerCamelCase : Any ) -> None: SCREAMING_SNAKE_CASE__ = data def lowercase_ ( self : Optional[Any] , __lowerCamelCase : MyNode | None ) -> None: SCREAMING_SNAKE_CASE__ = node def lowercase_ ( self : List[str] , __lowerCamelCase : MyNode | None ) -> None: SCREAMING_SNAKE_CASE__ = node def lowercase_ ( self : Any , __lowerCamelCase : int ) -> None: SCREAMING_SNAKE_CASE__ = height def UpperCAmelCase_ ( _A ): '''simple docstring''' if node is None: return 0 return node.get_height() def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' if a > b: return a return b def UpperCAmelCase_ ( _A ): '''simple docstring''' print('''left rotation node:''' , node.get_data() ) SCREAMING_SNAKE_CASE__ = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_A ) SCREAMING_SNAKE_CASE__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_A ) SCREAMING_SNAKE_CASE__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_A ) return ret def UpperCAmelCase_ ( _A ): '''simple docstring''' print('''right rotation node:''' , node.get_data() ) SCREAMING_SNAKE_CASE__ = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_A ) SCREAMING_SNAKE_CASE__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_A ) SCREAMING_SNAKE_CASE__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_A ) return ret def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = node.get_left() assert left_child is not None node.set_left(left_rotation(_A ) ) return right_rotation(_A ) def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = node.get_right() assert right_child is not None node.set_right(right_rotation(_A ) ) return left_rotation(_A ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' if node is None: return MyNode(_A ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _A ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE__ = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE__ = right_rotation(_A ) else: SCREAMING_SNAKE_CASE__ = lr_rotation(_A ) else: node.set_right(insert_node(node.get_right() , _A ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE__ = node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE__ = rl_rotation(_A ) else: SCREAMING_SNAKE_CASE__ = left_rotation(_A ) SCREAMING_SNAKE_CASE__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_A ) return node def UpperCAmelCase_ ( _A ): '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ = root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE__ = right_child return root.get_data() def UpperCAmelCase_ ( _A ): '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ = root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE__ = left_child return root.get_data() def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = root.get_left() SCREAMING_SNAKE_CASE__ = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE__ = get_left_most(_A ) root.set_data(_A ) root.set_right(del_node(_A , _A ) ) elif left_child is not None: SCREAMING_SNAKE_CASE__ = left_child elif right_child is not None: SCREAMING_SNAKE_CASE__ = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(_A , _A ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_A , _A ) ) if get_height(_A ) - get_height(_A ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE__ = left_rotation(_A ) else: SCREAMING_SNAKE_CASE__ = rl_rotation(_A ) elif get_height(_A ) - get_height(_A ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE__ = right_rotation(_A ) else: SCREAMING_SNAKE_CASE__ = lr_rotation(_A ) SCREAMING_SNAKE_CASE__ = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_A ) return root class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ) -> None: SCREAMING_SNAKE_CASE__ = None def lowercase_ ( self : List[str] ) -> int: return get_height(self.root ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : Any ) -> None: print('''insert:''' + str(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = insert_node(self.root , __lowerCamelCase ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Any ) -> None: print('''delete:''' + str(__lowerCamelCase ) ) if self.root is None: print('''Tree is empty!''' ) return SCREAMING_SNAKE_CASE__ = del_node(self.root , __lowerCamelCase ) def __str__( self : List[Any] , ) -> str: # a level traversale, gives a more intuitive look on the tree SCREAMING_SNAKE_CASE__ = '''''' SCREAMING_SNAKE_CASE__ = MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE__ = self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE__ = 0 while not q.is_empty(): SCREAMING_SNAKE_CASE__ = q.pop() SCREAMING_SNAKE_CASE__ = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__lowerCamelCase ) q.push(__lowerCamelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE__ = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , __lowerCamelCase ) - 1: SCREAMING_SNAKE_CASE__ = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCAmelCase_ ( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() _SCREAMING_SNAKE_CASE : Tuple = AVLtree() _SCREAMING_SNAKE_CASE : int = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
314
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( _A = "AAPL" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(_A ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE__ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
314
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "mvp" a = ["past_key_values"] a = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Tuple , __lowerCamelCase : Dict=5_0267 , __lowerCamelCase : List[str]=1024 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : Optional[Any]=4096 , __lowerCamelCase : Any=16 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=4096 , __lowerCamelCase : Optional[int]=16 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : str=1024 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=100 , __lowerCamelCase : Optional[int]=800 , **__lowerCamelCase : Optional[int] , ) -> int: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = encoder_ffn_dim SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = encoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ = use_prompt SCREAMING_SNAKE_CASE__ = prompt_length SCREAMING_SNAKE_CASE__ = prompt_mid_dim super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' )
314
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (UnCLIPScheduler,) def lowercase_ ( self : List[str] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : str ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Tuple: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : int ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def lowercase_ ( self : int ) -> Tuple: pass def lowercase_ ( self : Dict ) -> Union[str, Any]: pass
314
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE : List[str] = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
1
import argparse from collections import defaultdict import yaml _SCREAMING_SNAKE_CASE : Dict = '''docs/source/en/_toctree.yml''' def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = defaultdict(_A ) for doc in model_doc: counts[doc["local"]] += 1 SCREAMING_SNAKE_CASE__ = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE__ = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE__ = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(_A ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(_A , key=lambda _A : s["title"].lower() ) def UpperCAmelCase_ ( _A=False ): '''simple docstring''' with open(_A , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE__ = content[api_idx]['''sections'''] # Then to the model doc SCREAMING_SNAKE_CASE__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 SCREAMING_SNAKE_CASE__ = api_doc[model_idx]['''sections'''] SCREAMING_SNAKE_CASE__ = [(idx, section) for idx, section in enumerate(_A ) if '''sections''' in section] SCREAMING_SNAKE_CASE__ = False for idx, modality_doc in modalities_docs: SCREAMING_SNAKE_CASE__ = modality_doc['''sections'''] SCREAMING_SNAKE_CASE__ = clean_model_doc_toc(_A ) if old_modality_doc != new_modality_doc: SCREAMING_SNAKE_CASE__ = True if overwrite: SCREAMING_SNAKE_CASE__ = new_modality_doc if diff: if overwrite: SCREAMING_SNAKE_CASE__ = model_doc SCREAMING_SNAKE_CASE__ = api_doc with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_A , allow_unicode=_A ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() check_model_doc(args.fix_and_overwrite)
314
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[str] , **__lowerCamelCase : Dict ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Any , **__lowerCamelCase : List[str] ) -> Any: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[int] , **__lowerCamelCase : int ) -> Dict: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "naver-clova-ix/donut-base-finetuned-docvqa" a = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) a = "document_qa" a = AutoProcessor a = VisionEncoderDecoderModel a = ["image", "text"] a = ["text"] def __init__( self : List[str] , *__lowerCamelCase : Tuple , **__lowerCamelCase : int ) -> Optional[Any]: if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : Any , __lowerCamelCase : "Image" , __lowerCamelCase : str ) -> str: SCREAMING_SNAKE_CASE__ = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' SCREAMING_SNAKE_CASE__ = task_prompt.replace('''{user_input}''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.pre_processor.tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors='''pt''' ).input_ids SCREAMING_SNAKE_CASE__ = self.pre_processor(__lowerCamelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowercase_ ( self : List[str] , __lowerCamelCase : Optional[int] ) -> List[Any]: return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowerCamelCase , ).sequences def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.pre_processor.batch_decode(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) SCREAMING_SNAKE_CASE__ = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) SCREAMING_SNAKE_CASE__ = re.sub(r'''<.*?>''' , '''''' , __lowerCamelCase , count=1 ).strip() # remove first task start token SCREAMING_SNAKE_CASE__ = self.pre_processor.tokenajson(__lowerCamelCase ) return sequence["answer"]
314
def UpperCAmelCase_ ( _A ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
314
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( _A=None ): '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE__ = subparsers.add_parser('''env''' ) else: SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=_A , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.__version__ SCREAMING_SNAKE_CASE__ = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ = is_xpu_available() SCREAMING_SNAKE_CASE__ = is_npu_available() SCREAMING_SNAKE_CASE__ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_A ): SCREAMING_SNAKE_CASE__ = load_config_from_file(args.config_file ).to_dict() SCREAMING_SNAKE_CASE__ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(_A ), '''PyTorch NPU available''': str(_A ), '''System RAM''': F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: SCREAMING_SNAKE_CASE__ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) SCREAMING_SNAKE_CASE__ = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_A , _A ) else F'''\t{accelerate_config}''' ) print(_A ) SCREAMING_SNAKE_CASE__ = accelerate_config return info def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = env_command_parser() SCREAMING_SNAKE_CASE__ = parser.parse_args() env_command(_A ) return 0 if __name__ == "__main__": raise SystemExit(main())
314
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _SCREAMING_SNAKE_CASE : Any = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_A )[0] @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_51: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ = data.reshape(_A , _A , _A , 1 ) return data @deprecated(_A , '''Please use tf.one_hot on tensors.''' ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ = numpy.arange(_A ) * num_classes SCREAMING_SNAKE_CASE__ = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ = 1 return labels_one_hot @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A , _A=False , _A=10 ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_49: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(_A ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_A , _A ) return labels class UpperCAmelCase__ : """simple docstring""" @deprecated( __lowerCamelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=False , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=dtypes.floataa , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=None , ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = random_seed.get_seed(__lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ = dtypes.as_dtype(__lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ = 1_0000 SCREAMING_SNAKE_CASE__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ = numpy.multiply(__lowerCamelCase , 1.0 / 255.0 ) SCREAMING_SNAKE_CASE__ = images SCREAMING_SNAKE_CASE__ = labels SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 @property def lowercase_ ( self : Tuple ) -> List[str]: return self._images @property def lowercase_ ( self : List[Any] ) -> Tuple: return self._labels @property def lowercase_ ( self : Tuple ) -> Tuple: return self._num_examples @property def lowercase_ ( self : Optional[int] ) -> int: return self._epochs_completed def lowercase_ ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=True ) -> str: if fake_data: SCREAMING_SNAKE_CASE__ = [1] * 784 SCREAMING_SNAKE_CASE__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCamelCase )], [fake_label for _ in range(__lowerCamelCase )], ) SCREAMING_SNAKE_CASE__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perma] SCREAMING_SNAKE_CASE__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ = self._num_examples - start SCREAMING_SNAKE_CASE__ = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perm] SCREAMING_SNAKE_CASE__ = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ = self._index_in_epoch SCREAMING_SNAKE_CASE__ = self._images[start:end] SCREAMING_SNAKE_CASE__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_A , '''Please write your own downloading logic.''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if not gfile.Exists(_A ): gfile.MakeDirs(_A ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) if not gfile.Exists(_A ): urllib.request.urlretrieve(_A , _A ) # noqa: S310 with gfile.GFile(_A ) as f: SCREAMING_SNAKE_CASE__ = f.size() print('''Successfully downloaded''' , _A , _A , '''bytes.''' ) return filepath @deprecated( _A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def UpperCAmelCase_ ( _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=50_00 , _A=None , _A=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_A , one_hot=_A , dtype=_A , seed=_A ) SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() return _Datasets(train=_A , validation=_A , test=_A ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ = '''train-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''train-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) if not 0 <= validation_size <= len(_A ): SCREAMING_SNAKE_CASE__ = ( '''Validation size should be between 0 and ''' F'''{len(_A )}. Received: {validation_size}.''' ) raise ValueError(_A ) SCREAMING_SNAKE_CASE__ = train_images[:validation_size] SCREAMING_SNAKE_CASE__ = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ = train_images[validation_size:] SCREAMING_SNAKE_CASE__ = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) return _Datasets(train=_A , validation=_A , test=_A )
314
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_INIT_CONFIGURATION a = RoFormerTokenizer def __init__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=True , __lowerCamelCase : Tuple="[UNK]" , __lowerCamelCase : int="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : int="[MASK]" , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ) -> Dict: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = pre_tok_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = do_lower_case def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return state def __setstate__( self : int , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__ = PreTokenizer.custom(JiebaPreTokenizer(__lowerCamelCase ) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , **__lowerCamelCase : Tuple , ) -> int: SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return super().save_pretrained(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
314
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( _A ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return max(metric_fn(_A , _A ) for gt in ground_truths ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE__ = pd.read_csv(_A , sep='''\t''' , header=_A ) for answer_list in data[1]: SCREAMING_SNAKE_CASE__ = ast.literal_eval(_A ) answers.append(_A ) else: SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [[reference] for reference in references] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE__ = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = args.k SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for hypo, reference in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE__ = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def strip_title(_A ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[:-1] return title SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.rag.question_encoder(_A ) SCREAMING_SNAKE_CASE__ = question_enc_outputs[0] SCREAMING_SNAKE_CASE__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE__ = [] for docs in all_docs: SCREAMING_SNAKE_CASE__ = [strip_title(_A ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_A ) ) return provenance_strings def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A ) SCREAMING_SNAKE_CASE__ = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE__ = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('''Q: {} - A: {}'''.format(_A , _A ) ) return answers def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_A , choices=['''exact''', '''compressed''', '''legacy'''] , type=_A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_A , type=_A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_A , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_A , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_A , type=_A , required=_A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_A , type=_A , required=_A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_A , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_A , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if args.model_type is None: SCREAMING_SNAKE_CASE__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE__ = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE__ = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE__ = args.index_path else: SCREAMING_SNAKE_CASE__ = BartForConditionalGeneration SCREAMING_SNAKE_CASE__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _A ) SCREAMING_SNAKE_CASE__ = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE__ = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_A ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagRetriever.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE__ = [] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = get_args() main(args)
314
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _SCREAMING_SNAKE_CASE : str = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _SCREAMING_SNAKE_CASE : Any = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _SCREAMING_SNAKE_CASE : Optional[int] = '''zero2''' _SCREAMING_SNAKE_CASE : Optional[Any] = '''zero3''' _SCREAMING_SNAKE_CASE : Optional[Any] = [ZEROa, ZEROa] def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parameterized.to_safe_name('''_'''.join(str(_A ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _SCREAMING_SNAKE_CASE : Optional[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class UpperCAmelCase__ ( A__ ): """simple docstring""" @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def lowercase_ ( self : int , __lowerCamelCase : int , __lowerCamelCase : Any ) -> Any: self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def lowercase_ ( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ) -> Union[str, Any]: self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def lowercase_ ( self : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ) -> List[Any]: self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> Optional[int]: self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) def lowercase_ ( self : List[str] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def lowercase_ ( self : str , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int = 10 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , ) -> Tuple: SCREAMING_SNAKE_CASE__ = models[model] SCREAMING_SNAKE_CASE__ = self.run_trainer( stage=__lowerCamelCase , model_name=__lowerCamelCase , eval_steps=__lowerCamelCase , num_train_epochs=1 , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) self.do_checks(__lowerCamelCase ) return output_dir def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int = 10 , __lowerCamelCase : int = 1 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , ) -> int: SCREAMING_SNAKE_CASE__ = self.get_auto_remove_tmp_dir('''./xxx''' , after=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__lowerCamelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files SCREAMING_SNAKE_CASE__ = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() SCREAMING_SNAKE_CASE__ = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] SCREAMING_SNAKE_CASE__ = self.get_launcher(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__lowerCamelCase , env=self.get_env() ) return output_dir def lowercase_ ( self : int , __lowerCamelCase : Tuple=False ) -> Optional[Any]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) SCREAMING_SNAKE_CASE__ = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
314
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=1 / 255 , __lowerCamelCase : Dict=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : Tuple ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Tuple ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Optional[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = self.image_processing_class(do_resize=__lowerCamelCase , do_normalize=__lowerCamelCase , do_rescale=__lowerCamelCase ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE__ = image_processing_a.pad(__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = image_processing_a(__lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase_ ( *_A ): '''simple docstring''' if not isinstance(_A , _A ): SCREAMING_SNAKE_CASE__ = list(_A ) for i in range(len(_A ) ): SCREAMING_SNAKE_CASE__ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_A , _A ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase_ ( _A = None , _A = 1_28 ): '''simple docstring''' if function is None: return functools.partial(_A , starting_batch_size=_A ) SCREAMING_SNAKE_CASE__ = starting_batch_size def decorator(*_A , **_A ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE__ = list(inspect.signature(_A ).parameters.keys() ) # Guard against user error if len(_A ) < (len(_A ) + 1): SCREAMING_SNAKE_CASE__ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_A , *_A , **_A ) except Exception as e: if should_reduce_batch_size(_A ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
314
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "roberta-prelayernorm" def __init__( self : Optional[Any] , __lowerCamelCase : List[Any]=5_0265 , __lowerCamelCase : str=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]="absolute" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=None , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
314
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE : Dict = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''MaskFormerFeatureExtractor'''] _SCREAMING_SNAKE_CASE : str = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] _SCREAMING_SNAKE_CASE : Dict = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "lxmert" a = {} def __init__( self : Union[str, Any] , __lowerCamelCase : List[str]=3_0522 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Union[str, Any]=9500 , __lowerCamelCase : Union[str, Any]=1600 , __lowerCamelCase : Any=400 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Any=1e-12 , __lowerCamelCase : List[Any]=9 , __lowerCamelCase : Any=5 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[str]=6.67 , __lowerCamelCase : Dict=True , __lowerCamelCase : Any=True , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=True , **__lowerCamelCase : Optional[Any] , ) -> Any: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = num_qa_labels SCREAMING_SNAKE_CASE__ = num_object_labels SCREAMING_SNAKE_CASE__ = num_attr_labels SCREAMING_SNAKE_CASE__ = l_layers SCREAMING_SNAKE_CASE__ = x_layers SCREAMING_SNAKE_CASE__ = r_layers SCREAMING_SNAKE_CASE__ = visual_feat_dim SCREAMING_SNAKE_CASE__ = visual_pos_dim SCREAMING_SNAKE_CASE__ = visual_loss_normalizer SCREAMING_SNAKE_CASE__ = task_matched SCREAMING_SNAKE_CASE__ = task_mask_lm SCREAMING_SNAKE_CASE__ = task_obj_predict SCREAMING_SNAKE_CASE__ = task_qa SCREAMING_SNAKE_CASE__ = visual_obj_loss SCREAMING_SNAKE_CASE__ = visual_attr_loss SCREAMING_SNAKE_CASE__ = visual_feat_loss SCREAMING_SNAKE_CASE__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__lowerCamelCase )
314
1
def UpperCAmelCase_ ( _A = 10_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE__ = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE__ = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE__ = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE__ = candidate return product if __name__ == "__main__": print(F"{solution() = }")
314
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _SCREAMING_SNAKE_CASE : Optional[int] = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ = char SCREAMING_SNAKE_CASE__ = set(_A ) return pairs class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , **__lowerCamelCase : Optional[int] , ) -> Union[str, Any]: super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = merges_file SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 3 self.add_from_file(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ = merges_handle.read().split('''\n''' )[:-1] SCREAMING_SNAKE_CASE__ = [tuple(merge.split()[:-1] ) for merge in merges] SCREAMING_SNAKE_CASE__ = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE__ = {} def lowercase_ ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowercase_ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self : Dict ) -> str: return len(self.encoder ) def lowercase_ ( self : List[Any] ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : Any , __lowerCamelCase : Any ) -> Any: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = bigram SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE__ = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''@@ '''.join(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = word[:-4] SCREAMING_SNAKE_CASE__ = word return word def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = re.findall(r'''\S+\n?''' , __lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def lowercase_ ( self : str , __lowerCamelCase : Optional[int] ) -> Optional[int]: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] ) -> Dict: return self.decoder.get(__lowerCamelCase , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase_ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.merges_file , __lowerCamelCase ) return out_vocab_file, out_merge_file def lowercase_ ( self : int , __lowerCamelCase : Tuple ) -> Optional[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): try: with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return SCREAMING_SNAKE_CASE__ = f.readlines() for lineTmp in lines: SCREAMING_SNAKE_CASE__ = lineTmp.strip() SCREAMING_SNAKE_CASE__ = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) SCREAMING_SNAKE_CASE__ = line[:idx] SCREAMING_SNAKE_CASE__ = len(self.encoder )
314
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _SCREAMING_SNAKE_CASE : Any = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
314
1
import numpy as np from PIL import Image def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> str: super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE__ = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
314
1
import string def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''''' for i in sequence: SCREAMING_SNAKE_CASE__ = ord(_A ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = string.ascii_letters SCREAMING_SNAKE_CASE__ = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_A )] if c in letters else c for c in sequence ) def UpperCAmelCase_ ( ): '''simple docstring''' from timeit import timeit print('''Running performance benchmarks...''' ) SCREAMING_SNAKE_CASE__ = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=_A )} seconds''' ) print(F'''> atbash(): {timeit("atbash(printable)" , setup=_A )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"{example} encrypted in atbash: {atbash(example)}") benchmark()
314
from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "tapas" def __init__( self : int , __lowerCamelCase : Optional[Any]=3_0522 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=1024 , __lowerCamelCase : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]=10.0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=1.0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[str]="ratio" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : Any=32 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str , ) -> str: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
314
1
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = 0 @slow def lowercase_ ( self : List[str] ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) # Check that tokenizer_type ≠ model_type SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> int: with pytest.raises(__lowerCamelCase ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Tuple: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCamelCase ) else: self.assertEqual(tokenizer.do_lower_case , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : Any ) -> str: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowerCamelCase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : List[str] ) -> Tuple: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai SCREAMING_SNAKE_CASE__ = TOKENIZER_MAPPING.values() SCREAMING_SNAKE_CASE__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Any: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowerCamelCase ) , __lowerCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''Hello, world. How are you?''' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: # Check we can load the tokenizer config of an online model. SCREAMING_SNAKE_CASE__ = get_tokenizer_config('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ = config.pop('''_commit_hash''' , __lowerCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowerCamelCase , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) self.assertDictEqual(__lowerCamelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : int ) -> str: try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : List[Any] ) -> List[Any]: try: AutoConfig.register('''custom''' , __lowerCamelCase ) # Can register in two steps AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowerCamelCase , slow_tokenizer_class=__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained(__lowerCamelCase ) bert_tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizerFast.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : List[str] ) -> str: class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NewTokenizer a = False try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Union[str, Any] ) -> Dict: with self.assertRaisesRegex( __lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ) -> Optional[int]: with self.assertRaisesRegex( __lowerCamelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , revision='''aaaaaa''' ) def lowercase_ ( self : Any ) -> Optional[Any]: # Make sure we have cached the tokenizer. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
314
1
import re def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(_A , _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
314
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def UpperCAmelCase_ ( _A , _A , _A=0 ): '''simple docstring''' if name is None: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}''' SCREAMING_SNAKE_CASE__ = fmt.format(_A ) # Print and recurse (if needed). if isinstance(_A , _A ): if msg is not None: print(_A ) for k in val.keys(): recursive_print(_A , val[k] , spaces + 2 ) elif isinstance(_A , torch.Tensor ): print(_A , ''':''' , val.size() ) else: print(_A , ''':''' , _A ) def UpperCAmelCase_ ( _A , _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] SCREAMING_SNAKE_CASE__ = (num_heads, hidden_size, num_splits) + input_shape[1:] SCREAMING_SNAKE_CASE__ = param.view(*_A ) SCREAMING_SNAKE_CASE__ = param.transpose(0 , 2 ) SCREAMING_SNAKE_CASE__ = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] SCREAMING_SNAKE_CASE__ = (num_heads, num_splits, hidden_size) + input_shape[1:] SCREAMING_SNAKE_CASE__ = param.view(*_A ) SCREAMING_SNAKE_CASE__ = param.transpose(0 , 1 ).contiguous() SCREAMING_SNAKE_CASE__ = param.view(*_A ) return param def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} # old versions did not store training args SCREAMING_SNAKE_CASE__ = input_state_dict.get('''args''' , _A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) SCREAMING_SNAKE_CASE__ = ds_args.padded_vocab_size SCREAMING_SNAKE_CASE__ = ds_args.max_position_embeddings SCREAMING_SNAKE_CASE__ = ds_args.hidden_size SCREAMING_SNAKE_CASE__ = ds_args.num_layers SCREAMING_SNAKE_CASE__ = ds_args.num_attention_heads SCREAMING_SNAKE_CASE__ = ds_args.ffn_hidden_size # pprint(config) # The number of heads. SCREAMING_SNAKE_CASE__ = config.n_head # The hidden_size per head. SCREAMING_SNAKE_CASE__ = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): SCREAMING_SNAKE_CASE__ = input_state_dict['''checkpoint_version'''] else: SCREAMING_SNAKE_CASE__ = 0.0 # The model. SCREAMING_SNAKE_CASE__ = input_state_dict['''model'''] # The language model. SCREAMING_SNAKE_CASE__ = model['''language_model'''] # The embeddings. SCREAMING_SNAKE_CASE__ = lm['''embedding'''] # The word embeddings. SCREAMING_SNAKE_CASE__ = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. SCREAMING_SNAKE_CASE__ = word_embeddings[: config.vocab_size, :] SCREAMING_SNAKE_CASE__ = word_embeddings # The position embeddings. SCREAMING_SNAKE_CASE__ = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] SCREAMING_SNAKE_CASE__ = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. SCREAMING_SNAKE_CASE__ = pos_embeddings # The transformer. SCREAMING_SNAKE_CASE__ = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. SCREAMING_SNAKE_CASE__ = re.compile(R'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. SCREAMING_SNAKE_CASE__ = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. SCREAMING_SNAKE_CASE__ = layer_re.match(_A ) # Stop if that's not a layer if m is None: break # The index of the layer. SCREAMING_SNAKE_CASE__ = int(m.group(1 ) ) # The name of the operation. SCREAMING_SNAKE_CASE__ = m.group(2 ) # Is it a weight or a bias? SCREAMING_SNAKE_CASE__ = m.group(3 ) # The name of the layer. SCREAMING_SNAKE_CASE__ = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): SCREAMING_SNAKE_CASE__ = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' SCREAMING_SNAKE_CASE__ = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. SCREAMING_SNAKE_CASE__ = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _A , _A ) SCREAMING_SNAKE_CASE__ = causal_mask # Insert a "dummy" tensor for masked_bias. SCREAMING_SNAKE_CASE__ = torch.tensor(-1e4 , dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = masked_bias SCREAMING_SNAKE_CASE__ = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. SCREAMING_SNAKE_CASE__ = out_val.transpose(0 , 1 ).contiguous() # Store. SCREAMING_SNAKE_CASE__ = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Store. No change of shape. SCREAMING_SNAKE_CASE__ = out_val # Transpose the weights. elif weight_or_bias == "weight": SCREAMING_SNAKE_CASE__ = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. SCREAMING_SNAKE_CASE__ = transformer['''final_layernorm.weight'''] SCREAMING_SNAKE_CASE__ = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. SCREAMING_SNAKE_CASE__ = word_embeddings # It should be done! return output_state_dict def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=_A , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=_A , help='''An optional config json file describing the pre-trained model.''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() # Extract the basename. SCREAMING_SNAKE_CASE__ = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location='''cpu''' ) else: SCREAMING_SNAKE_CASE__ = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) SCREAMING_SNAKE_CASE__ = input_state_dict.get('''args''' , _A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: SCREAMING_SNAKE_CASE__ = '''gelu_fast''' elif ds_args.openai_gelu: SCREAMING_SNAKE_CASE__ = '''gelu_new''' else: SCREAMING_SNAKE_CASE__ = '''gelu''' else: # in the very early days this used to be "gelu_new" SCREAMING_SNAKE_CASE__ = '''gelu_new''' # Spell out all parameters in case the defaults change. SCREAMING_SNAKE_CASE__ = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.0_2 , summary_type='''cls_index''' , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: SCREAMING_SNAKE_CASE__ = GPTaConfig.from_json_file(args.config_file ) SCREAMING_SNAKE_CASE__ = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) SCREAMING_SNAKE_CASE__ = convert_megatron_checkpoint(_A , _A , _A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_A , _A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: SCREAMING_SNAKE_CASE__ = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": SCREAMING_SNAKE_CASE__ = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": SCREAMING_SNAKE_CASE__ = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: SCREAMING_SNAKE_CASE__ = '''gpt2''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = type(_A ).__name__ SCREAMING_SNAKE_CASE__ = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(_A ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(_A ) # Store the state_dict to file. SCREAMING_SNAKE_CASE__ = os.path.join(_A , '''pytorch_model.bin''' ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(_A , _A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
314
from ... import PretrainedConfig _SCREAMING_SNAKE_CASE : Dict = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a = "nezha" def __init__( self : Optional[Any] , __lowerCamelCase : str=2_1128 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Tuple=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : Any , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = max_relative_position SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = use_cache
314
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int=13 , __lowerCamelCase : Any=32 , __lowerCamelCase : Dict=3 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : Any=[10, 20, 30, 40] , __lowerCamelCase : Union[str, Any]=[2, 2, 3, 2] , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : str=True , __lowerCamelCase : Any=37 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Optional[Any]=10 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Union[str, Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase : Optional[int]=[2, 3, 4] , __lowerCamelCase : int=None , ) -> List[Any]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = num_stages SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = out_features SCREAMING_SNAKE_CASE__ = out_indices SCREAMING_SNAKE_CASE__ = scope def lowercase_ ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def lowercase_ ( self : str ) -> Optional[Any]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase_ ( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = ConvNextModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = ConvNextForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) a = True a = False a = False a = False a = False def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ConvNextModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def lowercase_ ( self : str ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def lowercase_ ( self : Optional[Any] ) -> List[str]: pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def lowercase_ ( self : Union[str, Any] ) -> int: pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def lowercase_ ( self : Any ) -> Dict: pass def lowercase_ ( self : str ) -> str: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : str ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: def check_hidden_states_output(__lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE__ = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def lowercase_ ( self : str ) -> List[str]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = ConvNextModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self : Optional[int] ) -> List[str]: return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def lowercase_ ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__lowerCamelCase , return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class UpperCAmelCase__ ( unittest.TestCase , A__ ): """simple docstring""" a = (ConvNextBackbone,) if is_torch_available() else () a = ConvNextConfig a = False def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = ConvNextModelTester(self )
314
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_INIT_CONFIGURATION a = RoFormerTokenizer def __init__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=True , __lowerCamelCase : Tuple="[UNK]" , __lowerCamelCase : int="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : int="[MASK]" , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ) -> Dict: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = pre_tok_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = do_lower_case def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return state def __setstate__( self : int , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__ = PreTokenizer.custom(JiebaPreTokenizer(__lowerCamelCase ) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , **__lowerCamelCase : Tuple , ) -> int: SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return super().save_pretrained(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
314
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : float , __lowerCamelCase : Callable , __lowerCamelCase : int , __lowerCamelCase : float = 1.0 , __lowerCamelCase : str = None , ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE__ = initial_learning_rate SCREAMING_SNAKE_CASE__ = warmup_steps SCREAMING_SNAKE_CASE__ = power SCREAMING_SNAKE_CASE__ = decay_schedule_fn SCREAMING_SNAKE_CASE__ = name def __call__( self : str , __lowerCamelCase : Tuple ) -> int: with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE__ = tf.cast(__lowerCamelCase , tf.floataa ) SCREAMING_SNAKE_CASE__ = tf.cast(self.warmup_steps , tf.floataa ) SCREAMING_SNAKE_CASE__ = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE__ = self.initial_learning_rate * tf.math.pow(__lowerCamelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=__lowerCamelCase , ) def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase_ ( _A , _A , _A , _A = 0.0 , _A = 0.9 , _A = 0.9_9_9 , _A = 1e-8 , _A = None , _A = None , _A = 0.0 , _A = 1.0 , _A = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_A , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_A , ) if num_warmup_steps: SCREAMING_SNAKE_CASE__ = WarmUp( initial_learning_rate=_A , decay_schedule_fn=_A , warmup_steps=_A , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE__ = AdamWeightDecay( learning_rate=_A , weight_decay_rate=_A , beta_a=_A , beta_a=_A , epsilon=_A , clipnorm=_A , global_clipnorm=_A , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_A , ) else: SCREAMING_SNAKE_CASE__ = tf.keras.optimizers.Adam( learning_rate=_A , beta_a=_A , beta_a=_A , epsilon=_A , clipnorm=_A , global_clipnorm=_A , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , __lowerCamelCase : float = 0.9 , __lowerCamelCase : float = 0.999 , __lowerCamelCase : float = 1e-7 , __lowerCamelCase : bool = False , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : str = "AdamWeightDecay" , **__lowerCamelCase : List[str] , ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = weight_decay_rate SCREAMING_SNAKE_CASE__ = include_in_weight_decay SCREAMING_SNAKE_CASE__ = exclude_from_weight_decay @classmethod def lowercase_ ( cls : List[Any] , __lowerCamelCase : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = {'''WarmUp''': WarmUp} return super(__lowerCamelCase , cls ).from_config(__lowerCamelCase , custom_objects=__lowerCamelCase ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ) -> Optional[int]: super(__lowerCamelCase , self )._prepare_local(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self : str , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : int ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = list(zip(*__lowerCamelCase ) ) return super(__lowerCamelCase , self ).apply_gradients(zip(__lowerCamelCase , __lowerCamelCase ) , name=__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE__ = apply_state or {} SCREAMING_SNAKE_CASE__ = apply_state.get((var_device, var_dtype) ) if coefficients is None: SCREAMING_SNAKE_CASE__ = self._fallback_apply_state(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Any=None ) -> Any: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_lr(var.device , var.dtype.base_dtype , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self._decay_weights_op(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) with tf.control_dependencies([decay] ): return super(__lowerCamelCase , self )._resource_apply_dense(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str]=None ) -> Dict: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_lr(var.device , var.dtype.base_dtype , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self._decay_weights_op(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) with tf.control_dependencies([decay] ): return super(__lowerCamelCase , self )._resource_apply_sparse(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowercase_ ( self : List[str] , __lowerCamelCase : int ) -> List[Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__lowerCamelCase , __lowerCamelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__lowerCamelCase , __lowerCamelCase ) is not None: return False return True class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = None @property def lowercase_ ( self : str ) -> str: if self._accum_steps is None: SCREAMING_SNAKE_CASE__ = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=__lowerCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self : List[str] ) -> Any: if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[int] , __lowerCamelCase : Dict ) -> Optional[int]: if not self._gradients: SCREAMING_SNAKE_CASE__ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__lowerCamelCase ) , trainable=__lowerCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(__lowerCamelCase ) != len(self._gradients ): raise ValueError(f'''Expected {len(self._gradients )} gradients, but got {len(__lowerCamelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , __lowerCamelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__lowerCamelCase ) self._accum_steps.assign_add(1 ) def lowercase_ ( self : Any ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__lowerCamelCase ) )
314
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=100 , __lowerCamelCase : str=5 , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : List[Any]=249 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=17 , __lowerCamelCase : str=25 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=128 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=0.0006 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : Dict=5_0256 , **__lowerCamelCase : str , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
314
1
from __future__ import annotations import time import numpy as np _SCREAMING_SNAKE_CASE : Optional[int] = [8, 5, 9, 7] _SCREAMING_SNAKE_CASE : Optional[int] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _SCREAMING_SNAKE_CASE : Tuple = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ) -> None: SCREAMING_SNAKE_CASE__ = claim_vector SCREAMING_SNAKE_CASE__ = allocated_resources_table SCREAMING_SNAKE_CASE__ = maximum_claim_table def lowercase_ ( self : Tuple ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowercase_ ( self : Dict ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowercase_ ( self : Optional[int] ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowercase_ ( self : Optional[int] ) -> dict[int, list[int]]: return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def lowercase_ ( self : List[str] , **__lowerCamelCase : Any ) -> None: SCREAMING_SNAKE_CASE__ = self.__need() SCREAMING_SNAKE_CASE__ = self.__allocated_resources_table SCREAMING_SNAKE_CASE__ = self.__available_resources() SCREAMING_SNAKE_CASE__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: SCREAMING_SNAKE_CASE__ = False for each_need in need_list: SCREAMING_SNAKE_CASE__ = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: SCREAMING_SNAKE_CASE__ = False break if execution: SCREAMING_SNAKE_CASE__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: SCREAMING_SNAKE_CASE__ = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack SCREAMING_SNAKE_CASE__ = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def lowercase_ ( self : str ) -> Optional[Any]: print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}''' + ''' '''.join(f'''{it:>8}''' for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}''' + ''' '''.join(f'''{it:>8}''' for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
314
def UpperCAmelCase_ ( _A = 1_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) SCREAMING_SNAKE_CASE__ = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
314
1
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.exp(_A ) SCREAMING_SNAKE_CASE__ = torch.sum(_A , dim=1 ) # sum of exp(x_i) SCREAMING_SNAKE_CASE__ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_A ) - B / A class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Optional[Any] ) -> Optional[int]: super().__init__() SCREAMING_SNAKE_CASE__ = config.output_attentions SCREAMING_SNAKE_CASE__ = config.output_hidden_states SCREAMING_SNAKE_CASE__ = nn.ModuleList([BertLayer(__lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) SCREAMING_SNAKE_CASE__ = nn.ModuleList([BertHighway(__lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) SCREAMING_SNAKE_CASE__ = [-1 for _ in range(config.num_hidden_layers )] def lowercase_ ( self : Tuple , __lowerCamelCase : List[str] ) -> str: if (type(__lowerCamelCase ) is float) or (type(__lowerCamelCase ) is int): for i in range(len(self.early_exit_entropy ) ): SCREAMING_SNAKE_CASE__ = x else: SCREAMING_SNAKE_CASE__ = x def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowercase_ ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[str]=None , ) -> Any: SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE__ = layer_module( __lowerCamelCase , __lowerCamelCase , head_mask[i] , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if self.output_attentions: SCREAMING_SNAKE_CASE__ = all_attentions + (layer_outputs[1],) SCREAMING_SNAKE_CASE__ = (hidden_states,) if self.output_hidden_states: SCREAMING_SNAKE_CASE__ = current_outputs + (all_hidden_states,) if self.output_attentions: SCREAMING_SNAKE_CASE__ = current_outputs + (all_attentions,) SCREAMING_SNAKE_CASE__ = self.highway[i](__lowerCamelCase ) # logits, pooled_output if not self.training: SCREAMING_SNAKE_CASE__ = highway_exit[0] SCREAMING_SNAKE_CASE__ = entropy(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy SCREAMING_SNAKE_CASE__ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: SCREAMING_SNAKE_CASE__ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__lowerCamelCase , i + 1 ) else: SCREAMING_SNAKE_CASE__ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE__ = (hidden_states,) if self.output_hidden_states: SCREAMING_SNAKE_CASE__ = outputs + (all_hidden_states,) if self.output_attentions: SCREAMING_SNAKE_CASE__ = outputs + (all_attentions,) SCREAMING_SNAKE_CASE__ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , A__ , ) class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Dict ) -> int: super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = BertEmbeddings(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = DeeBertEncoder(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BertPooler(__lowerCamelCase ) self.init_weights() def lowercase_ ( self : List[Any] ) -> List[str]: self.encoder.init_highway_pooler(self.pooler ) def lowercase_ ( self : int ) -> str: return self.embeddings.word_embeddings def lowercase_ ( self : List[Any] , __lowerCamelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = value def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] ) -> Optional[int]: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__lowerCamelCase ) @add_start_docstrings_to_model_forward(__lowerCamelCase ) def lowercase_ ( self : Any , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Tuple=None , ) -> Union[str, Any]: if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: SCREAMING_SNAKE_CASE__ = input_ids.size() elif inputs_embeds is not None: SCREAMING_SNAKE_CASE__ = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) SCREAMING_SNAKE_CASE__ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: SCREAMING_SNAKE_CASE__ = torch.ones(__lowerCamelCase , device=__lowerCamelCase ) if encoder_attention_mask is None: SCREAMING_SNAKE_CASE__ = torch.ones(__lowerCamelCase , device=__lowerCamelCase ) if token_type_ids is None: SCREAMING_SNAKE_CASE__ = torch.zeros(__lowerCamelCase , dtype=torch.long , device=__lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. SCREAMING_SNAKE_CASE__ = self.get_extended_attention_mask(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: SCREAMING_SNAKE_CASE__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: SCREAMING_SNAKE_CASE__ = encoder_attention_mask[:, None, None, :] SCREAMING_SNAKE_CASE__ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility SCREAMING_SNAKE_CASE__ = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] SCREAMING_SNAKE_CASE__ = self.get_head_mask(__lowerCamelCase , self.config.num_hidden_layers ) SCREAMING_SNAKE_CASE__ = self.embeddings( input_ids=__lowerCamelCase , position_ids=__lowerCamelCase , token_type_ids=__lowerCamelCase , inputs_embeds=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.encoder( __lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] SCREAMING_SNAKE_CASE__ = self.pooler(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = message SCREAMING_SNAKE_CASE__ = exit_layer # start from 1! class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Optional[int] ) -> Any: super().__init__() SCREAMING_SNAKE_CASE__ = BertPooler(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.num_labels ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : Dict ) -> Optional[int]: # Pooler SCREAMING_SNAKE_CASE__ = encoder_outputs[0] SCREAMING_SNAKE_CASE__ = self.pooler(__lowerCamelCase ) # "return" pooler_output # BertModel SCREAMING_SNAKE_CASE__ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification SCREAMING_SNAKE_CASE__ = bmodel_output[1] SCREAMING_SNAKE_CASE__ = self.dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.classifier(__lowerCamelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , A__ , ) class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : Dict , __lowerCamelCase : Optional[Any] ) -> Any: super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = config.num_hidden_layers SCREAMING_SNAKE_CASE__ = DeeBertModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__lowerCamelCase ) def lowercase_ ( self : int , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Union[str, Any]=-1 , __lowerCamelCase : Tuple=False , ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.num_layers try: SCREAMING_SNAKE_CASE__ = self.bert( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , position_ids=__lowerCamelCase , head_mask=__lowerCamelCase , inputs_embeds=__lowerCamelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits SCREAMING_SNAKE_CASE__ = outputs[1] SCREAMING_SNAKE_CASE__ = self.dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.classifier(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE__ = e.message SCREAMING_SNAKE_CASE__ = e.exit_layer SCREAMING_SNAKE_CASE__ = outputs[0] if not self.training: SCREAMING_SNAKE_CASE__ = entropy(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ = MSELoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE__ = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE__ = highway_exit[0] if not self.training: highway_logits_all.append(__lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ = MSELoss() SCREAMING_SNAKE_CASE__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowerCamelCase ) if train_highway: SCREAMING_SNAKE_CASE__ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE__ = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
314
import numpy as np from PIL import Image def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _SCREAMING_SNAKE_CASE : int = datasets.load_iris() _SCREAMING_SNAKE_CASE : Optional[int] = np.array(data['''data''']) _SCREAMING_SNAKE_CASE : Any = np.array(data['''target''']) _SCREAMING_SNAKE_CASE : Union[str, Any] = data['''target_names'''] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = train_test_split(X, y) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' return np.linalg.norm(np.array(_A ) - np.array(_A ) ) def UpperCAmelCase_ ( _A , _A , _A , _A , _A=5 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = zip(_A , _A ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE__ = [] for data_point in data: SCREAMING_SNAKE_CASE__ = euclidean_distance(data_point[0] , _A ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE__ = [i[1] for i in sorted(_A )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE__ = Counter(_A ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
314
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
1
from __future__ import annotations _SCREAMING_SNAKE_CASE : Union[str, Any] = list[tuple[int, int]] _SCREAMING_SNAKE_CASE : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE : int = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class UpperCAmelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , __lowerCamelCase : Node | None , ) -> str: SCREAMING_SNAKE_CASE__ = pos_x SCREAMING_SNAKE_CASE__ = pos_y SCREAMING_SNAKE_CASE__ = (pos_y, pos_x) SCREAMING_SNAKE_CASE__ = goal_x SCREAMING_SNAKE_CASE__ = goal_y SCREAMING_SNAKE_CASE__ = g_cost SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = self.calculate_heuristic() def lowercase_ ( self : str ) -> float: SCREAMING_SNAKE_CASE__ = abs(self.pos_x - self.goal_x ) SCREAMING_SNAKE_CASE__ = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : List[str] , __lowerCamelCase : Dict ) -> bool: return self.f_cost < other.f_cost class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ) -> Dict: SCREAMING_SNAKE_CASE__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [self.start] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = False def lowercase_ ( self : Tuple ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE__ = True return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path SCREAMING_SNAKE_CASE__ = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def lowercase_ ( self : str , __lowerCamelCase : Node ) -> list[Node]: SCREAMING_SNAKE_CASE__ = [] for action in delta: SCREAMING_SNAKE_CASE__ = parent.pos_x + action[1] SCREAMING_SNAKE_CASE__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Node | None ) -> Path: SCREAMING_SNAKE_CASE__ = node SCREAMING_SNAKE_CASE__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE__ = current_node.parent path.reverse() return path if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = (0, 0) _SCREAMING_SNAKE_CASE : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') _SCREAMING_SNAKE_CASE : str = GreedyBestFirst(init, goal) _SCREAMING_SNAKE_CASE : Any = greedy_bf.search() if path: for pos_x, pos_y in path: _SCREAMING_SNAKE_CASE : str = 2 for elem in grid: print(elem)
314
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( _A = "AAPL" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(_A ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE__ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
314
1
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
314
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (UnCLIPScheduler,) def lowercase_ ( self : List[str] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : str ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Tuple: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : int ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def lowercase_ ( self : int ) -> Tuple: pass def lowercase_ ( self : Dict ) -> Union[str, Any]: pass
314
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = MODEL_FOR_CAUSAL_LM_MAPPING a = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowercase_ ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE__ = text_generator('''This is a test''' , do_sample=__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) SCREAMING_SNAKE_CASE__ = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( __lowerCamelCase , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) SCREAMING_SNAKE_CASE__ = text_generator('''This is a test''' , do_sample=__lowerCamelCase , num_return_sequences=2 , return_tensors=__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ {'''generated_token_ids''': ANY(__lowerCamelCase )}, {'''generated_token_ids''': ANY(__lowerCamelCase )}, ] , ) SCREAMING_SNAKE_CASE__ = text_generator.model.config.eos_token_id SCREAMING_SNAKE_CASE__ = '''<pad>''' SCREAMING_SNAKE_CASE__ = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=__lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__lowerCamelCase , ) self.assertEqual( __lowerCamelCase , [ [ {'''generated_token_ids''': ANY(__lowerCamelCase )}, {'''generated_token_ids''': ANY(__lowerCamelCase )}, ], [ {'''generated_token_ids''': ANY(__lowerCamelCase )}, {'''generated_token_ids''': ANY(__lowerCamelCase )}, ], ] , ) @require_tf def lowercase_ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE__ = text_generator('''This is a test''' , do_sample=__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) SCREAMING_SNAKE_CASE__ = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def lowercase_ ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = TextGenerationPipeline(model=__lowerCamelCase , tokenizer=__lowerCamelCase ) return text_generator, ["This is a test", "Another test"] def lowercase_ ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = '''Hello I believe in''' SCREAMING_SNAKE_CASE__ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE__ = text_generator(__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) SCREAMING_SNAKE_CASE__ = text_generator(__lowerCamelCase , stop_sequence=''' fe''' ) self.assertEqual(__lowerCamelCase , [{'''generated_text''': '''Hello I believe in fe'''}] ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = text_generator.model SCREAMING_SNAKE_CASE__ = text_generator.tokenizer SCREAMING_SNAKE_CASE__ = text_generator('''This is a test''' ) self.assertEqual(__lowerCamelCase , [{'''generated_text''': ANY(__lowerCamelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) SCREAMING_SNAKE_CASE__ = text_generator('''This is a test''' , return_full_text=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , [{'''generated_text''': ANY(__lowerCamelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) SCREAMING_SNAKE_CASE__ = pipeline(task='''text-generation''' , model=__lowerCamelCase , tokenizer=__lowerCamelCase , return_full_text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = text_generator('''This is a test''' ) self.assertEqual(__lowerCamelCase , [{'''generated_text''': ANY(__lowerCamelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) SCREAMING_SNAKE_CASE__ = text_generator('''This is a test''' , return_full_text=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , [{'''generated_text''': ANY(__lowerCamelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) SCREAMING_SNAKE_CASE__ = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: SCREAMING_SNAKE_CASE__ = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], ] , ) with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = text_generator('''test''' , return_full_text=__lowerCamelCase , return_text=__lowerCamelCase ) with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = text_generator('''test''' , return_full_text=__lowerCamelCase , return_tensors=__lowerCamelCase ) with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = text_generator('''test''' , return_text=__lowerCamelCase , return_tensors=__lowerCamelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): SCREAMING_SNAKE_CASE__ = text_generator('''''' ) self.assertEqual(__lowerCamelCase , [{'''generated_text''': ANY(__lowerCamelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): SCREAMING_SNAKE_CASE__ = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. SCREAMING_SNAKE_CASE__ = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) SCREAMING_SNAKE_CASE__ = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__lowerCamelCase ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def lowercase_ ( self : Any ) -> List[str]: import torch # Classic `model_kwargs` SCREAMING_SNAKE_CASE__ = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE__ = pipe('''This is a test''' ) self.assertEqual( __lowerCamelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) SCREAMING_SNAKE_CASE__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE__ = pipe('''This is a test''' ) self.assertEqual( __lowerCamelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 SCREAMING_SNAKE_CASE__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) SCREAMING_SNAKE_CASE__ = pipe('''This is a test''' ) self.assertEqual( __lowerCamelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def lowercase_ ( self : Union[str, Any] ) -> List[Any]: import torch SCREAMING_SNAKE_CASE__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def lowercase_ ( self : str ) -> int: import torch SCREAMING_SNAKE_CASE__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=__lowerCamelCase , top_p=0.5 ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = '''Hello world''' SCREAMING_SNAKE_CASE__ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": SCREAMING_SNAKE_CASE__ = logging.get_logger('''transformers.generation.tf_utils''' ) else: SCREAMING_SNAKE_CASE__ = logging.get_logger('''transformers.generation.utils''' ) SCREAMING_SNAKE_CASE__ = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__lowerCamelCase ) as cl: SCREAMING_SNAKE_CASE__ = text_generator(__lowerCamelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(__lowerCamelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(__lowerCamelCase ) as cl: SCREAMING_SNAKE_CASE__ = text_generator(__lowerCamelCase , max_new_tokens=1 ) self.assertNotIn(__lowerCamelCase , cl.out ) with CaptureLogger(__lowerCamelCase ) as cl: SCREAMING_SNAKE_CASE__ = text_generator(__lowerCamelCase , max_length=10 ) self.assertNotIn(__lowerCamelCase , cl.out )
314
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location='''cpu''' ) SCREAMING_SNAKE_CASE__ = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository SCREAMING_SNAKE_CASE__ = {} for k, v in state_dict.items(): if "pred_layer" in k: SCREAMING_SNAKE_CASE__ = v else: SCREAMING_SNAKE_CASE__ = v SCREAMING_SNAKE_CASE__ = chkpt['''params'''] SCREAMING_SNAKE_CASE__ = {n: v for n, v in config.items() if not isinstance(_A , (torch.FloatTensor, numpy.ndarray) )} SCREAMING_SNAKE_CASE__ = chkpt['''dico_word2id'''] SCREAMING_SNAKE_CASE__ = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(_A , _A ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_A , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_A , indent=2 ) + '''\n''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
314
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[str] , **__lowerCamelCase : Dict ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Any , **__lowerCamelCase : List[str] ) -> Any: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[int] , **__lowerCamelCase : int ) -> Dict: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = botoa.client('''iam''' ) SCREAMING_SNAKE_CASE__ = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_A , AssumeRolePolicyDocument=json.dumps(_A , indent=2 ) ) SCREAMING_SNAKE_CASE__ = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=_A , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(_A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = botoa.client('''iam''' ) return iam_client.get_role(RoleName=_A )["Role"]["Arn"] def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , _A , ) SCREAMING_SNAKE_CASE__ = None if credentials_configuration == 0: SCREAMING_SNAKE_CASE__ = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) SCREAMING_SNAKE_CASE__ = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) SCREAMING_SNAKE_CASE__ = _ask_field('''AWS Access Key ID: ''' ) SCREAMING_SNAKE_CASE__ = aws_access_key_id SCREAMING_SNAKE_CASE__ = _ask_field('''AWS Secret Access Key: ''' ) SCREAMING_SNAKE_CASE__ = aws_secret_access_key SCREAMING_SNAKE_CASE__ = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) SCREAMING_SNAKE_CASE__ = aws_region SCREAMING_SNAKE_CASE__ = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , _A , ) if role_management == 0: SCREAMING_SNAKE_CASE__ = _ask_field('''Enter your IAM role name: ''' ) else: SCREAMING_SNAKE_CASE__ = '''accelerate_sagemaker_execution_role''' print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(_A ) SCREAMING_SNAKE_CASE__ = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) SCREAMING_SNAKE_CASE__ = None if is_custom_docker_image: SCREAMING_SNAKE_CASE__ = _ask_field('''Enter your Docker image: ''' , lambda _A : str(_A ).lower() ) SCREAMING_SNAKE_CASE__ = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) SCREAMING_SNAKE_CASE__ = None if is_sagemaker_inputs_enabled: SCREAMING_SNAKE_CASE__ = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda _A : str(_A ).lower() , ) SCREAMING_SNAKE_CASE__ = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) SCREAMING_SNAKE_CASE__ = None if is_sagemaker_metrics_enabled: SCREAMING_SNAKE_CASE__ = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda _A : str(_A ).lower() , ) SCREAMING_SNAKE_CASE__ = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) if use_dynamo: SCREAMING_SNAKE_CASE__ = '''dynamo_''' SCREAMING_SNAKE_CASE__ = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) SCREAMING_SNAKE_CASE__ = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) if use_custom_options: SCREAMING_SNAKE_CASE__ = _ask_options( '''Which mode do you want to use?''' , _A , lambda _A : TORCH_DYNAMO_MODES[int(_A )] , default='''default''' , ) SCREAMING_SNAKE_CASE__ = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) SCREAMING_SNAKE_CASE__ = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) SCREAMING_SNAKE_CASE__ = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: SCREAMING_SNAKE_CASE__ = _ask_options( _A , _A , lambda _A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" SCREAMING_SNAKE_CASE__ = _ask_field(_A , lambda _A : str(_A ).lower() , default='''ml.p3.2xlarge''' ) SCREAMING_SNAKE_CASE__ = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): SCREAMING_SNAKE_CASE__ = _ask_field( '''How many machines do you want use? [1]: ''' , _A , default=1 , ) SCREAMING_SNAKE_CASE__ = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=_A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_A , use_cpu=_A , dynamo_config=_A , eca_instance_type=_A , profile=_A , region=_A , iam_role_name=_A , mixed_precision=_A , num_machines=_A , sagemaker_inputs_file=_A , sagemaker_metrics_file=_A , )
314
def UpperCAmelCase_ ( _A ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
314
1
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _SCREAMING_SNAKE_CASE : Optional[Any] = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _SCREAMING_SNAKE_CASE : Any = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = SavedModel() SCREAMING_SNAKE_CASE__ = [] with open(os.path.join(_A , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: SCREAMING_SNAKE_CASE__ = json.load(_A )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_A )] ) with open(_A , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) SCREAMING_SNAKE_CASE__ = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want SCREAMING_SNAKE_CASE__ = sorted(_A ) SCREAMING_SNAKE_CASE__ = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_A ) if strict and len(_A ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(_A ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*_A , sep='''\n''' ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
314
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _SCREAMING_SNAKE_CASE : Any = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_A )[0] @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_51: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ = data.reshape(_A , _A , _A , 1 ) return data @deprecated(_A , '''Please use tf.one_hot on tensors.''' ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ = numpy.arange(_A ) * num_classes SCREAMING_SNAKE_CASE__ = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ = 1 return labels_one_hot @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A , _A=False , _A=10 ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_49: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(_A ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_A , _A ) return labels class UpperCAmelCase__ : """simple docstring""" @deprecated( __lowerCamelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=False , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=dtypes.floataa , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=None , ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = random_seed.get_seed(__lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ = dtypes.as_dtype(__lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ = 1_0000 SCREAMING_SNAKE_CASE__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ = numpy.multiply(__lowerCamelCase , 1.0 / 255.0 ) SCREAMING_SNAKE_CASE__ = images SCREAMING_SNAKE_CASE__ = labels SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 @property def lowercase_ ( self : Tuple ) -> List[str]: return self._images @property def lowercase_ ( self : List[Any] ) -> Tuple: return self._labels @property def lowercase_ ( self : Tuple ) -> Tuple: return self._num_examples @property def lowercase_ ( self : Optional[int] ) -> int: return self._epochs_completed def lowercase_ ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=True ) -> str: if fake_data: SCREAMING_SNAKE_CASE__ = [1] * 784 SCREAMING_SNAKE_CASE__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCamelCase )], [fake_label for _ in range(__lowerCamelCase )], ) SCREAMING_SNAKE_CASE__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perma] SCREAMING_SNAKE_CASE__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ = self._num_examples - start SCREAMING_SNAKE_CASE__ = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perm] SCREAMING_SNAKE_CASE__ = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ = self._index_in_epoch SCREAMING_SNAKE_CASE__ = self._images[start:end] SCREAMING_SNAKE_CASE__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_A , '''Please write your own downloading logic.''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if not gfile.Exists(_A ): gfile.MakeDirs(_A ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) if not gfile.Exists(_A ): urllib.request.urlretrieve(_A , _A ) # noqa: S310 with gfile.GFile(_A ) as f: SCREAMING_SNAKE_CASE__ = f.size() print('''Successfully downloaded''' , _A , _A , '''bytes.''' ) return filepath @deprecated( _A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def UpperCAmelCase_ ( _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=50_00 , _A=None , _A=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_A , one_hot=_A , dtype=_A , seed=_A ) SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() return _Datasets(train=_A , validation=_A , test=_A ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ = '''train-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''train-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) if not 0 <= validation_size <= len(_A ): SCREAMING_SNAKE_CASE__ = ( '''Validation size should be between 0 and ''' F'''{len(_A )}. Received: {validation_size}.''' ) raise ValueError(_A ) SCREAMING_SNAKE_CASE__ = train_images[:validation_size] SCREAMING_SNAKE_CASE__ = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ = train_images[validation_size:] SCREAMING_SNAKE_CASE__ = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) return _Datasets(train=_A , validation=_A , test=_A )
314
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE__ = TextStreamer(__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE__ = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE__ = TextIteratorStreamer(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} SCREAMING_SNAKE_CASE__ = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() SCREAMING_SNAKE_CASE__ = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE__ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE__ = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE__ = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[Any]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''distilgpt2''' ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE__ = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE__ = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowercase_ ( self : str ) -> str: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} SCREAMING_SNAKE_CASE__ = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = '''''' for new_text in streamer: streamer_text += new_text
314
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( _A ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return max(metric_fn(_A , _A ) for gt in ground_truths ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE__ = pd.read_csv(_A , sep='''\t''' , header=_A ) for answer_list in data[1]: SCREAMING_SNAKE_CASE__ = ast.literal_eval(_A ) answers.append(_A ) else: SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [[reference] for reference in references] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE__ = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = args.k SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for hypo, reference in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE__ = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def strip_title(_A ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[:-1] return title SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.rag.question_encoder(_A ) SCREAMING_SNAKE_CASE__ = question_enc_outputs[0] SCREAMING_SNAKE_CASE__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE__ = [] for docs in all_docs: SCREAMING_SNAKE_CASE__ = [strip_title(_A ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_A ) ) return provenance_strings def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A ) SCREAMING_SNAKE_CASE__ = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE__ = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('''Q: {} - A: {}'''.format(_A , _A ) ) return answers def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_A , choices=['''exact''', '''compressed''', '''legacy'''] , type=_A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_A , type=_A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_A , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_A , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_A , type=_A , required=_A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_A , type=_A , required=_A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_A , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_A , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if args.model_type is None: SCREAMING_SNAKE_CASE__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE__ = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE__ = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE__ = args.index_path else: SCREAMING_SNAKE_CASE__ = BartForConditionalGeneration SCREAMING_SNAKE_CASE__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _A ) SCREAMING_SNAKE_CASE__ = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE__ = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_A ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagRetriever.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE__ = [] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = get_args() main(args)
314
1
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = '''▁''' _SCREAMING_SNAKE_CASE : List[str] = {'''vocab_file''': '''prophetnet.tokenizer'''} _SCREAMING_SNAKE_CASE : List[Any] = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } _SCREAMING_SNAKE_CASE : Any = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } _SCREAMING_SNAKE_CASE : Optional[Any] = { '''microsoft/xprophetnet-large-wiki100-cased''': 512, } def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = collections.OrderedDict() with open(_A , '''r''' , encoding='''utf-8''' ) as reader: SCREAMING_SNAKE_CASE__ = reader.readlines() for index, token in enumerate(_A ): SCREAMING_SNAKE_CASE__ = token.rstrip('''\n''' ) SCREAMING_SNAKE_CASE__ = index return vocab class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple="[SEP]" , __lowerCamelCase : List[Any]="[SEP]" , __lowerCamelCase : List[Any]="[SEP]" , __lowerCamelCase : str="[UNK]" , __lowerCamelCase : Optional[Any]="[PAD]" , __lowerCamelCase : Any="[CLS]" , __lowerCamelCase : Any="[MASK]" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Dict , ) -> None: SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab SCREAMING_SNAKE_CASE__ = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10 ): SCREAMING_SNAKE_CASE__ = f'''[unused{i}]''' SCREAMING_SNAKE_CASE__ = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(__lowerCamelCase ) def __getstate__( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : Any , __lowerCamelCase : Dict ) -> int: SCREAMING_SNAKE_CASE__ = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return ([0] * len(__lowerCamelCase )) + [1] return ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self : int ) -> Tuple: return len(self.sp_model ) + self.fairseq_offset def lowercase_ ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self : List[Any] , __lowerCamelCase : str ) -> str: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ ( self : List[str] , __lowerCamelCase : Union[str, Any] ) -> Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase , ''' ''' ).strip() return out_string def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def lowercase_ ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
314
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=1 / 255 , __lowerCamelCase : Dict=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : Tuple ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Tuple ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Optional[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = self.image_processing_class(do_resize=__lowerCamelCase , do_normalize=__lowerCamelCase , do_rescale=__lowerCamelCase ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE__ = image_processing_a.pad(__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = image_processing_a(__lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
1