code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations import typing from collections import Counter def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase__ , max_perimeter + 1 ): lowercase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase__ ): lowercase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def UpperCamelCase ( lowerCAmelCase__ = 1000 ): '''simple docstring''' lowercase = pythagorean_triple(lowerCAmelCase__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F'Perimeter {solution()} has maximum solutions')
101
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
312
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowercase ( _snake_case : Dataset , _snake_case : Dict[str, str] ) ->List[str]: """simple docstring""" __snake_case : str = args.log_outputs __snake_case : Union[str, Any] = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric __snake_case : Dict = load_metric('''wer''' ) __snake_case : str = load_metric('''cer''' ) # compute metrics __snake_case : List[Any] = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) __snake_case : Any = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results __snake_case : List[Any] = f"""WER: {wer_result}\nCER: {cer_result}""" print(_snake_case ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(_snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case : Optional[Any] = f"""log_{dataset_id}_predictions.txt""" __snake_case : Optional[int] = f"""log_{dataset_id}_targets.txt""" with open(_snake_case , '''w''' ) as p, open(_snake_case , '''w''' ) as t: # mapping function to write output def write_to_file(_snake_case : Dict , _snake_case : List[str] ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(_snake_case , with_indices=_snake_case ) def lowercase ( _snake_case : str ) ->str: """simple docstring""" __snake_case : Any = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case : Dict = re.sub(_snake_case , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case : Union[str, Any] = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: __snake_case : List[str] = ''' '''.join(text.split(_snake_case ) ) return text def lowercase ( _snake_case : Dict ) ->Any: """simple docstring""" __snake_case : Tuple = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case : Dict = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case : Union[str, Any] = feature_extractor.sampling_rate # resample audio __snake_case : Union[str, Any] = dataset.cast_column('''audio''' , Audio(sampling_rate=_snake_case ) ) # load eval pipeline if args.device is None: __snake_case : str = 0 if torch.cuda.is_available() else -1 __snake_case : Tuple = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(_snake_case : Union[str, Any] ): __snake_case : Any = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case : str = prediction['''text'''] __snake_case : Union[str, Any] = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples __snake_case : Optional[Any] = dataset.map(_snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_snake_case , _snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() main(args)
102
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['image_processor', 'tokenizer'] _lowerCamelCase : Tuple = 'OwlViTImageProcessor' _lowerCamelCase : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any ): A_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) A_ = kwargs.pop("feature_extractor" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="max_length" , UpperCAmelCase : Optional[Any]="np" , **UpperCAmelCase : Optional[int] ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCAmelCase , UpperCAmelCase ) or (isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(text[0] , UpperCAmelCase )): A_ = [self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )] elif isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(text[0] , UpperCAmelCase ): A_ = [] # Maximum number of queries across batch A_ = max([len(UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase ) != max_num_queries: A_ = t + [" "] * (max_num_queries - len(UpperCAmelCase )) A_ = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) encodings.append(UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": A_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) A_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) A_ = BatchEncoding() A_ = input_ids A_ = attention_mask if query_images is not None: A_ = BatchEncoding() A_ = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ).pixel_values A_ = query_pixel_values if images is not None: A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def __A ( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ): return self.image_processor.post_process(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : str , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): return self.image_processor.post_process_object_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : int ): return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def __A ( self : Optional[Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
312
0
import argparse import os import re import packaging.version A__ : Dict = '''examples/''' A__ : Any = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } A__ : Any = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } A__ : Any = '''README.md''' def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : List[Any] ,__UpperCamelCase : List[Any] ): with open(__UpperCamelCase ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: lowerCAmelCase_ : Tuple = f.read() lowerCAmelCase_ , lowerCAmelCase_ : Dict = REPLACE_PATTERNS[pattern] lowerCAmelCase_ : Tuple = replace.replace('''VERSION''' ,__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = re_pattern.sub(__UpperCamelCase ,__UpperCamelCase ) with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__UpperCamelCase ) def UpperCamelCase( __UpperCamelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(__UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ,pattern='''examples''' ) def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : List[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) if not patch: update_version_in_examples(__UpperCamelCase ) def UpperCamelCase( ): lowerCAmelCase_ : List[str] = '''🤗 Transformers currently provides the following architectures''' lowerCAmelCase_ : List[Any] = '''1. Want to contribute a new model?''' with open(__UpperCamelCase ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: lowerCAmelCase_ : Union[str, Any] = f.readlines() # Find the start of the list. lowerCAmelCase_ : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase_ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowerCAmelCase_ : int = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__UpperCamelCase ) def UpperCamelCase( ): with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: lowerCAmelCase_ : Optional[Any] = f.read() lowerCAmelCase_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__UpperCamelCase ).groups()[0] return packaging.version.parse(__UpperCamelCase ) def UpperCamelCase( __UpperCamelCase : Dict=False ): lowerCAmelCase_ : Union[str, Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowerCAmelCase_ : List[str] = default_version.base_version elif patch: lowerCAmelCase_ : int = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: lowerCAmelCase_ : int = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. lowerCAmelCase_ : Optional[Any] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(__UpperCamelCase ) == 0: lowerCAmelCase_ : List[str] = default_version print(f"""Updating version to {version}.""" ) global_version_update(__UpperCamelCase ,patch=__UpperCamelCase ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def UpperCamelCase( ): lowerCAmelCase_ : Any = get_version() lowerCAmelCase_ : int = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" lowerCAmelCase_ : Optional[Any] = current_version.base_version # Check with the user we got that right. lowerCAmelCase_ : Optional[Any] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(__UpperCamelCase ) == 0: lowerCAmelCase_ : int = dev_version print(f"""Updating version to {version}.""" ) global_version_update(__UpperCamelCase ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') A__ : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
103
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Dict , UpperCAmelCase : int = 768 , ): super().__init__() A_ = nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) A_ = nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def __A ( self : str , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ): A_ = nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) A_ = nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def __A ( self : Dict , UpperCAmelCase : List[Any] ): A_ = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self : int , UpperCAmelCase : int ): A_ = (embeds * self.std) + self.mean return embeds
312
0
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowerCAmelCase__ = False try: lowerCAmelCase__ = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : str = None ,lowercase__ : list = [] ): __lowercase = 0 __lowercase = choices __lowercase = prompt if sys.platform == "win32": __lowercase = '''*''' else: __lowercase = '''➔ ''' def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] ,3_2 ,lowercase__ ) else: forceWrite(self.choices[index] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): if index == self.position: forceWrite(F" {self.arrow_char} " ) self.write_choice(lowercase__ ) else: forceWrite(F" {self.choices[index]}" ) reset_cursor() def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Direction ,lowercase__ : int = 1 ): __lowercase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(lowercase__ ) move_cursor(lowercase__ ,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def SCREAMING_SNAKE_CASE ( self : Any ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def SCREAMING_SNAKE_CASE ( self : List[str] ): move_cursor(len(self.choices ) - self.position ,'''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def SCREAMING_SNAKE_CASE ( self : str ): move_cursor(len(self.choices ) - self.position ,'''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(lowercase__ )] for number in range(1_0 )] ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = int(chr(self.current_selection ) ) __lowercase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP ,-movement ) elif self.position < index: self.move_direction(Direction.DOWN ,lowercase__ ) else: return else: return def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt ,'''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' ,'''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' ,'''\n''' ) __lowercase = default_choice for i in range(len(self.choices ) ): self.print_choice(lowercase__ ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position ,'''UP''' ) with cursor.hide(): while True: if in_colab: try: __lowercase = int(builtins.input() ) except ValueError: __lowercase = default_choice else: __lowercase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 ,'''UP''' ) clear_line() self.write_choice(lowercase__ ,'''\n''' ) return choice
104
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __snake_case ( __UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ,): """simple docstring""" A_ , A_ = coefficient_matrix.shape A_ , A_ = constant_matrix.shape if rowsa != colsa: A_ = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if colsa != 1: A_ = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if rowsa != rowsa: A_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: A_ = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(__UpperCamelCase )} and {rowsa}''' ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) A_ = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) A_ , A_ = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): A_ = [] for row in range(__UpperCamelCase ): A_ = 0 for col in range(__UpperCamelCase ): if col == row: A_ = table[row][col] elif col == cols - 1: A_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ = (temp + val) / denom new_val.append(__UpperCamelCase ) A_ = new_val return [float(__UpperCamelCase ) for i in new_val] def __snake_case ( __UpperCamelCase : NDArray[floataa] ): """simple docstring""" A_ , A_ = table.shape A_ = True for i in range(0 ,__UpperCamelCase ): A_ = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): lowerCamelCase : Tuple =["""pixel_values"""] def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = PILImageResampling.BILINEAR , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 255 , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> None: super().__init__(**lowerCAmelCase__ ) a : Union[str, Any] = size if size is not None else {"shortest_edge": 224} a : int = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) a : int = crop_size if crop_size is not None else {"height": 256, "width": 256} a : str = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) a : Dict = do_resize a : List[Any] = size a : Any = resample a : Dict = do_rescale a : Optional[Any] = rescale_factor a : List[Any] = do_center_crop a : List[str] = crop_size a : int = do_flip_channel_order def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = PIL.Image.BILINEAR , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: a : int = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) a : Optional[int] = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: a : Union[str, Any] = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Optional[Any]: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> np.ndarray: return flip_channel_order(lowerCAmelCase__ , data_format=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ) -> PIL.Image.Image: a : Dict = do_resize if do_resize is not None else self.do_resize a : int = resample if resample is not None else self.resample a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale a : Any = rescale_factor if rescale_factor is not None else self.rescale_factor a : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop a : List[str] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) a : str = size if size is not None else self.size a : Optional[int] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) a : Tuple = crop_size if crop_size is not None else self.crop_size a : Union[str, Any] = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) a : Tuple = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. a : Optional[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: a : Any = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: a : Optional[int] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: a : Optional[Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: a : Union[str, Any] = [self.flip_channel_order(image=lowerCAmelCase__ ) for image in images] a : int = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] a : Optional[int] = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple: a : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowerCAmelCase__ ): a : Dict = target_sizes.numpy() a : int = [] for idx in range(len(lowerCAmelCase__ ) ): a : str = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowerCAmelCase__ ) a : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: a : List[str] = logits.argmax(dim=1 ) a : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
105
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __snake_case ( ): """simple docstring""" A_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } A_ = Dataset.from_dict(__UpperCamelCase ) return dataset class _a ( snake_case_ ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = get_dataset() A_ = make_duplicate_clusters(UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __A ( self : List[Any] ): A_ = get_dataset() A_ , A_ = deduplicate_dataset(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 2 ) print(UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , UpperCAmelCase )
312
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection lowerCAmelCase__ : Optional[Any] = len(A_ ) lowerCAmelCase__ : Tuple = max(A_ ) lowerCAmelCase__ : Optional[int] = min(A_ ) # create the counting array lowerCAmelCase__ : Optional[int] = coll_max + 1 - coll_min lowerCAmelCase__ : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , A_ ): lowerCAmelCase__ : Dict = counting_arr[i] + counting_arr[i - 1] # create the output collection lowerCAmelCase__ : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , A_ ) ): lowerCAmelCase__ : List[str] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __SCREAMING_SNAKE_CASE ( A_ ): return "".join([chr(A_ ) for i in counting_sort([ord(A_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" __UpperCamelCase : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase : Dict = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
106
import os from typing import Dict, List, Tuple, TypeVar, Union __a :Any = TypeVar('T') __a :Union[str, Any] = Union[List[T], Tuple[T, ...]] __a :List[str] = Union[T, List[T], Dict[str, T]] __a :Any = Union[str, bytes, os.PathLike]
312
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : Dict = '▁' __lowerCAmelCase : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase : Tuple = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } __lowerCAmelCase : List[Any] = { 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off __lowerCAmelCase : List[str] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : List[int] = [] def __init__( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : Union[str, Any]="</s>" , __lowerCamelCase : Optional[int]="</s>" , __lowerCamelCase : Tuple="<s>" , __lowerCamelCase : Union[str, Any]="<unk>" , __lowerCamelCase : Tuple="<pad>" , __lowerCamelCase : Optional[int]="<mask>" , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=None , __lowerCamelCase : str=None , __lowerCamelCase : Optional[Dict[str, Any]] = None , __lowerCamelCase : Dict=None , __lowerCamelCase : str=False , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs a = legacy_behaviour super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenizer_file=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , ) a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token a = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a = 1 a = len(self.sp_model ) a = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__lowerCamelCase ) } a = {v: k for k, v in self.lang_code_to_id.items()} a = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) a = src_lang if src_lang is not None else "eng_Latn" a = self.lang_code_to_id[self._src_lang] a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Any ) -> Dict: a = self.__dict__.copy() a = None a = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , __lowerCamelCase : List[str] ) -> Tuple: a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __UpperCAmelCase ( self : List[str] ) -> Any: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCAmelCase ( self : Dict ) -> str: return self._src_lang @src_lang.setter def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : str ) -> None: a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) a = [1] * len(self.prefix_tokens ) a = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones def __UpperCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] , __lowerCamelCase : Optional[str] , **__lowerCamelCase : List[str] ) -> Tuple: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a = src_lang a = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) a = self.convert_tokens_to_ids(__lowerCamelCase ) a = tgt_lang_id return inputs def __UpperCAmelCase ( self : int ) -> List[str]: a = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self : str , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def __UpperCAmelCase ( self : str , __lowerCamelCase : str ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : str ) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Optional[int] ) -> Optional[Any]: a = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str = "eng_Latn" , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : str = "fra_Latn" , **__lowerCamelCase : Optional[int] , ) -> BatchEncoding: a = src_lang a = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self : Any ) -> str: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : List[Any] ) -> None: a = self.lang_code_to_id[src_lang] if self.legacy_behaviour: a = [] a = [self.eos_token_id, self.cur_lang_code] else: a = [self.cur_lang_code] a = [self.eos_token_id] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : str ) -> None: a = self.lang_code_to_id[lang] if self.legacy_behaviour: a = [] a = [self.eos_token_id, self.cur_lang_code] else: a = [self.cur_lang_code] a = [self.eos_token_id]
107
__a :Dict = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
312
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a__ ( SCREAMING_SNAKE_CASE : Dataset , SCREAMING_SNAKE_CASE : Dict[str, str] ): '''simple docstring''' lowerCAmelCase : Dict = args.log_outputs lowerCAmelCase : List[str] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric lowerCAmelCase : int = load_metric("wer" ) lowerCAmelCase : str = load_metric("cer" ) # compute metrics lowerCAmelCase : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) lowerCAmelCase : str = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results lowerCAmelCase : List[str] = f"""WER: {wer_result}\nCER: {cer_result}""" print(SCREAMING_SNAKE_CASE ) with open(f"""{dataset_id}_eval_results.txt""" , "w" ) as f: f.write(SCREAMING_SNAKE_CASE ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowerCAmelCase : Optional[Any] = f"""log_{dataset_id}_predictions.txt""" lowerCAmelCase : Tuple = f"""log_{dataset_id}_targets.txt""" with open(SCREAMING_SNAKE_CASE , "w" ) as p, open(SCREAMING_SNAKE_CASE , "w" ) as t: # mapping function to write output def write_to_file(SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ): p.write(f"""{i}""" + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f"""{i}""" + "\n" ) t.write(batch["target"] + "\n" ) result.map(SCREAMING_SNAKE_CASE , with_indices=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowerCAmelCase : List[str] = re.sub(SCREAMING_SNAKE_CASE , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowerCAmelCase : Dict = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: lowerCAmelCase : List[str] = " ".join(text.split(SCREAMING_SNAKE_CASE ) ) return text def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Any = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=SCREAMING_SNAKE_CASE ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowerCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained(args.model_id ) lowerCAmelCase : Dict = feature_extractor.sampling_rate # resample audio lowerCAmelCase : Any = dataset.cast_column("audio" , Audio(sampling_rate=SCREAMING_SNAKE_CASE ) ) # load eval pipeline if args.device is None: lowerCAmelCase : int = 0 if torch.cuda.is_available() else -1 lowerCAmelCase : Union[str, Any] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(SCREAMING_SNAKE_CASE : Optional[int] ): lowerCAmelCase : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowerCAmelCase : List[Any] = prediction["text"] lowerCAmelCase : int = normalize_text(batch["sentence"] ) return batch # run inference on all examples lowerCAmelCase : List[str] = dataset.map(SCREAMING_SNAKE_CASE , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) lowerCAmelCase__ = parser.parse_args() main(args)
108
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(e for e in range(3 ,__UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
312
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer A: Any = logging.get_logger(__name__) A: Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} A: Union[str, Any] = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } A: Tuple = { "roberta-base": 5_1_2, "roberta-large": 5_1_2, "roberta-large-mnli": 5_1_2, "distilroberta-base": 5_1_2, "roberta-base-openai-detector": 5_1_2, "roberta-large-openai-detector": 5_1_2, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : int = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : str = ['input_ids', 'attention_mask'] __lowerCAmelCase : List[Any] = RobertaTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="replace" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , errors=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCAmelCase : int = getattr(_SCREAMING_SNAKE_CASE , pre_tok_state.pop("""type""" ) ) UpperCAmelCase : List[str] = add_prefix_space UpperCAmelCase : Optional[Any] = pre_tok_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = add_prefix_space UpperCAmelCase : Optional[int] = """post_processor""" UpperCAmelCase : str = getattr(self.backend_tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: UpperCAmelCase : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase : int = tuple(state["""sep"""] ) if "cls" in state: UpperCAmelCase : Dict = tuple(state["""cls"""] ) UpperCAmelCase : Optional[Any] = False if state.get("""add_prefix_space""" , _SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCAmelCase : Optional[int] = add_prefix_space UpperCAmelCase : Union[str, Any] = True if state.get("""trim_offsets""" , _SCREAMING_SNAKE_CASE ) != trim_offsets: UpperCAmelCase : int = trim_offsets UpperCAmelCase : Union[str, Any] = True if changes_to_apply: UpperCAmelCase : List[Any] = getattr(_SCREAMING_SNAKE_CASE , state.pop("""type""" ) ) UpperCAmelCase : Optional[int] = component_class(**_SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else value UpperCAmelCase : Any = value def SCREAMING_SNAKE_CASE ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase : List[str] = kwargs.get("""is_split_into_words""" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase : Tuple = kwargs.get("""is_split_into_words""" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase : str = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Dict = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
109
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _a : """simple docstring""" @property def __A ( self : Union[str, Any] ): return self.get_dummy_input() @property def __A ( self : int ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=False , ): A_ = 4 A_ = 32 A_ = (32, 32) A_ = torch.manual_seed(0 ) A_ = torch.device(UpperCAmelCase ) A_ = (batch_size, num_channels) + sizes A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ) A_ = {"hidden_states": hidden_states} if include_temb: A_ = 128 A_ = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase , device=UpperCAmelCase ) if include_res_hidden_states_tuple: A_ = torch.manual_seed(1 ) A_ = (randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ),) if include_encoder_hidden_states: A_ = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase ) if include_skip_sample: A_ = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase , device=UpperCAmelCase ) return dummy_input def __A ( self : Optional[int] ): A_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": A_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) A_ = self.dummy_input return init_dict, inputs_dict def __A ( self : List[str] , UpperCAmelCase : Optional[Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) unet_block.to(UpperCAmelCase ) unet_block.eval() with torch.no_grad(): A_ = unet_block(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] self.assertEqual(output.shape , self.output_shape ) A_ = output[0, -1, -3:, -3:] A_ = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def __A ( self : Union[str, Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() A_ = model(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] A_ = torch.device(UpperCAmelCase ) A_ = randn_tensor(output.shape , device=UpperCAmelCase ) A_ = torch.nn.functional.mse_loss(UpperCAmelCase , UpperCAmelCase ) loss.backward()
312
0
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): @property def UpperCAmelCase__ ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : List[Any] =ort.SessionOptions() lowerCamelCase_ : Union[str, Any] =False return options def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Any =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) lowerCamelCase_ : Any =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lowerCamelCase_ : Dict =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default lowerCamelCase_ : str =OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : int ="A red cat sitting on a park bench" lowerCamelCase_ : List[str] =np.random.RandomState(0 ) lowerCamelCase_ : str =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=snake_case__ , output_type="np" , ) lowerCamelCase_ : Any =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
144
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __a :int = True except ImportError: __a :Optional[Any] = False try: from torch.hub import _get_torch_home __a :Optional[Any] = _get_torch_home() except ImportError: __a :Tuple = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) __a :Optional[Any] = os.path.join(torch_cache_home, 'transformers') __a :int = 'https://cdn.huggingface.co' __a :Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' __a :Optional[Any] = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) __a :str = os.path.join(PATH, 'config.yaml') __a :str = os.path.join(PATH, 'attributes.txt') __a :Optional[Any] = os.path.join(PATH, 'objects.txt') __a :Optional[int] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) __a :Dict = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) __a :List[Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) __a :List[str] = 'pytorch_model.bin' __a :Tuple = 'config.yaml' def __snake_case ( __UpperCamelCase : Optional[Any]=OBJECTS ,__UpperCamelCase : List[str]=ATTRIBUTES ): """simple docstring""" A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = OrderedDict() with open(__UpperCamelCase ,"rb" ) as f: A_ = pkl.load(__UpperCamelCase )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): A_ = ckp.pop(__UpperCamelCase ) if isinstance(__UpperCamelCase ,np.ndarray ): A_ = torch.tensor(__UpperCamelCase ) else: assert isinstance(__UpperCamelCase ,torch.tensor ), type(__UpperCamelCase ) A_ = v return r class _a : """simple docstring""" _lowerCamelCase : Union[str, Any] = {} def __init__( self : str , UpperCAmelCase : dict , UpperCAmelCase : str = "root" , UpperCAmelCase : List[str]=0 ): A_ = name A_ = level A_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() A_ = copy.deepcopy(UpperCAmelCase ) A_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) A_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) A_ = d def __repr__( self : Optional[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Any ): A_ = val A_ = val A_ = key.split("." ) A_ = len(UpperCAmelCase ) - 1 A_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , ".".join(levels[i:] ) , UpperCAmelCase ) if l == last_level: A_ = val else: A_ = pointer[l] def __A ( self : List[str] ): return self._pointer def __A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : int ): with open(f'''{file_name}''' , "w" ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): with open(f'''{file_name}''' , "w" ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def __A ( UpperCAmelCase : Optional[int] ): with open(UpperCAmelCase ) as stream: A_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self : str ): A_ = " " if self._name != "root": A_ = f'''{t * (self._level-1)}{self._name}:\n''' else: A_ = "" A_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n''' A_ = level return r[:-1] @classmethod def __A ( cls : Optional[Any] , UpperCAmelCase : str , **UpperCAmelCase : str ): A_ , A_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def __A ( cls : int , UpperCAmelCase : str , **UpperCAmelCase : int ): A_ = kwargs.pop("cache_dir" , UpperCAmelCase ) A_ = kwargs.pop("force_download" , UpperCAmelCase ) A_ = kwargs.pop("resume_download" , UpperCAmelCase ) A_ = kwargs.pop("proxies" , UpperCAmelCase ) A_ = kwargs.pop("local_files_only" , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): A_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): A_ = pretrained_model_name_or_path else: A_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached A_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError A_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: A_ = "Can't load config for" raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(UpperCAmelCase ), kwargs def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = torch.load("dump.pt" ,map_location=in_tensor.device ) A_ = in_tensor.numpy() A_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ), ( f'''{sum([1 for x in np.isclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = urlparse(__UpperCamelCase ) return parsed.scheme in ("http", "https") def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str=True ): """simple docstring""" A_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX A_ = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : int=0 ,__UpperCamelCase : int=None ,): """simple docstring""" A_ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join("{}/{}".format(__UpperCamelCase ,__UpperCamelCase ) for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent A_ = {"user-agent": ua} if resume_size > 0: A_ = "bytes=%d-" % (resume_size,) A_ = requests.get(__UpperCamelCase ,stream=__UpperCamelCase ,proxies=__UpperCamelCase ,headers=__UpperCamelCase ) if response.status_code == 416: # Range not satisfiable return A_ = response.headers.get("Content-Length" ) A_ = resume_size + int(__UpperCamelCase ) if content_length is not None else None A_ = tqdm( unit="B" ,unit_scale=__UpperCamelCase ,total=__UpperCamelCase ,initial=__UpperCamelCase ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__UpperCamelCase ) ) temp_file.write(__UpperCamelCase ) progress.close() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any=None ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : Any=10 ,__UpperCamelCase : int=False ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : str=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = None if not local_files_only: try: A_ = requests.head(__UpperCamelCase ,allow_redirects=__UpperCamelCase ,proxies=__UpperCamelCase ,timeout=__UpperCamelCase ) if response.status_code == 200: A_ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass A_ = url_to_filename(__UpperCamelCase ,__UpperCamelCase ) # get cache path to put the file A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__UpperCamelCase ): return cache_path else: A_ = [ file for file in fnmatch.filter(os.listdir(__UpperCamelCase ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(__UpperCamelCase ) > 0: return os.path.join(__UpperCamelCase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(__UpperCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. A_ = cache_path + ".lock" with FileLock(__UpperCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__UpperCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: A_ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(__UpperCamelCase ,"a+b" ) as f: yield f A_ = _resumable_file_manager if os.path.exists(__UpperCamelCase ): A_ = os.stat(__UpperCamelCase ).st_size else: A_ = 0 else: A_ = partial(tempfile.NamedTemporaryFile ,dir=__UpperCamelCase ,delete=__UpperCamelCase ) A_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,__UpperCamelCase ,temp_file.name ,) http_get( __UpperCamelCase ,__UpperCamelCase ,proxies=__UpperCamelCase ,resume_size=__UpperCamelCase ,user_agent=__UpperCamelCase ,) os.replace(temp_file.name ,__UpperCamelCase ) A_ = {"url": url, "etag": etag} A_ = cache_path + ".json" with open(__UpperCamelCase ,"w" ) as meta_file: json.dump(__UpperCamelCase ,__UpperCamelCase ) return cache_path def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : str=None ): """simple docstring""" A_ = url.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) A_ = url_hash.hexdigest() if etag: A_ = etag.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : Any=False ,__UpperCamelCase : Optional[int]=None ,__UpperCamelCase : Optional[Any]=False ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Optional[Any]=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if is_remote_url(__UpperCamelCase ): # URL, so get it from the cache (downloading if necessary) A_ = get_from_cache( __UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,user_agent=__UpperCamelCase ,local_files_only=__UpperCamelCase ,) elif os.path.exists(__UpperCamelCase ): # File, and it exists. A_ = url_or_filename elif urlparse(__UpperCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(__UpperCamelCase ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(__UpperCamelCase ) ) if extract_compressed_file: if not is_zipfile(__UpperCamelCase ) and not tarfile.is_tarfile(__UpperCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" A_ , A_ = os.path.split(__UpperCamelCase ) A_ = output_file.replace("." ,"-" ) + "-extracted" A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) if os.path.isdir(__UpperCamelCase ) and os.listdir(__UpperCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions A_ = output_path + ".lock" with FileLock(__UpperCamelCase ): shutil.rmtree(__UpperCamelCase ,ignore_errors=__UpperCamelCase ) os.makedirs(__UpperCamelCase ) if is_zipfile(__UpperCamelCase ): with ZipFile(__UpperCamelCase ,"r" ) as zip_file: zip_file.extractall(__UpperCamelCase ) zip_file.close() elif tarfile.is_tarfile(__UpperCamelCase ): A_ = tarfile.open(__UpperCamelCase ) tar_file.extractall(__UpperCamelCase ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(__UpperCamelCase ) ) return output_path_extracted return output_path def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any="," ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase ) as f: A_ = eval(f.read() ) else: A_ = requests.get(__UpperCamelCase ) try: A_ = requests.json() except Exception: A_ = req.content.decode() assert data is not None, "could not connect" try: A_ = eval(__UpperCamelCase ) except Exception: A_ = data.split("\n" ) req.close() return data def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = requests.get(__UpperCamelCase ) A_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__UpperCamelCase ) with open(__UpperCamelCase ,"rb" ) as stream: A_ = pkl.load(__UpperCamelCase ) A_ = weights.pop("model" ) A_ = {} for k, v in model.items(): A_ = torch.from_numpy(__UpperCamelCase ) if "running_var" in k: A_ = torch.tensor([0] ) A_ = k.replace("running_var" ,"num_batches_tracked" ) A_ = zero return new def __snake_case ( ): """simple docstring""" print(f'''{os.path.abspath(os.path.join(__UpperCamelCase ,os.pardir ) )}/demo.ipynb''' ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int]="RGB" ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): A_ = cva.imread(__UpperCamelCase ) else: A_ = get_image_from_url(__UpperCamelCase ) assert img is not None, f'''could not connect to: {im}''' A_ = cva.cvtColor(__UpperCamelCase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": A_ = img[:, :, ::-1] return img def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[str]=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(__UpperCamelCase ) ,__UpperCamelCase ))
312
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Tuple = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _A( snake_case_ ): """simple docstring""" UpperCamelCase : List[Any] = 'trajectory_transformer' UpperCamelCase : List[str] = ['past_key_values'] UpperCamelCase : List[str] = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _A=100 , _A=5 , _A=1 , _A=1 , _A=249 , _A=6 , _A=17 , _A=25 , _A=4 , _A=4 , _A=128 , _A=0.1 , _A=0.1 , _A=0.1 , _A=0.0_0_0_6 , _A=512 , _A=0.0_2 , _A=1e-1_2 , _A=1 , _A=True , _A=1 , _A=50256 , _A=50256 , **_A , ): __A : Optional[Any] = vocab_size __A : Any = action_weight __A : List[str] = reward_weight __A : int = value_weight __A : List[Any] = max_position_embeddings __A : List[Any] = block_size __A : Optional[int] = action_dim __A : str = observation_dim __A : List[Any] = transition_dim __A : Union[str, Any] = learning_rate __A : int = n_layer __A : Optional[Any] = n_head __A : Optional[Any] = n_embd __A : List[str] = embd_pdrop __A : List[Any] = attn_pdrop __A : str = resid_pdrop __A : Union[str, Any] = initializer_range __A : Optional[int] = layer_norm_eps __A : List[str] = kaiming_initializer_range __A : Tuple = use_cache super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A )
280
from __future__ import annotations def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(__UpperCamelCase ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
312
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _lowerCamelCase ( lowercase : Optional[Any] ) -> Optional[int]: if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def _lowerCamelCase ( lowercase : str ) -> Any: for char in word: _a = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def _lowerCamelCase ( lowercase : List[str] ) -> List[str]: _a = set() for token in tokens: _a = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) _a = list(__UpperCamelCase ) return word_list def _lowerCamelCase ( lowercase : List[str] , lowercase : set() ) -> Optional[int]: if not chinese_word_set: return bert_tokens _a = max([len(__UpperCamelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(__UpperCamelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start , __UpperCamelCase ) for i in range(__UpperCamelCase , 1 , -1 ): _a = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _a = "##" + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def _lowerCamelCase ( lowercase : List[str] , lowercase : LTP , lowercase : BertTokenizer ) -> Union[str, Any]: _a = [] for i in range(0 , len(__UpperCamelCase ) , 100 ): _a = ltp_tokenizer.seg(lines[i : i + 100] )[0] _a = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) _a = [] for i in range(0 , len(__UpperCamelCase ) , 100 ): _a = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__UpperCamelCase , truncation=__UpperCamelCase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) _a = [] for input_ids, chinese_word in zip(__UpperCamelCase , __UpperCamelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) _a = add_sub_symbol(__UpperCamelCase , __UpperCamelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def _lowerCamelCase ( lowercase : int ) -> Any: with open(args.file_name , "r" , encoding="utf-8" ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _a = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') lowerCAmelCase_ : Optional[int] = parser.parse_args() main(args)
63
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __a :int = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : int = 101 ): A_ = length def __len__( self : int ): return self.length def __getitem__( self : Optional[int] , UpperCAmelCase : Optional[int] ): return i class _a : """simple docstring""" def __call__( self : Any , UpperCAmelCase : Optional[Any] ): return {"input_ids": torch.tensor(UpperCAmelCase ), "labels": torch.tensor(UpperCAmelCase )} class _a ( nn.Module ): """simple docstring""" def __init__( self : int ): super().__init__() # Add some (unused) params otherwise DDP will complain. A_ = nn.Linear(120 , 80 ) def __A ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Tuple=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _a ( snake_case_ ): """simple docstring""" @require_torch_neuroncore def __A ( self : List[str] ): A_ = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _a ( snake_case_ ): """simple docstring""" @require_torch_multi_gpu def __A ( self : List[str] ): A_ = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __a :Union[str, Any] = HfArgumentParser((TrainingArguments,)) __a :Tuple = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __a :int = DummyDataset(dataset_length) def __snake_case ( __UpperCamelCase : EvalPrediction ): """simple docstring""" A_ = list(range(len(__UpperCamelCase ) ) ) A_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} __a :str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __a :str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Optional[int] = 2 __a :List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Union[str, Any] = None
312
0
'''simple docstring''' from __future__ import annotations import math UpperCAmelCase_ : Tuple = '2020.9.26' UpperCAmelCase_ : Any = 'xcodz-dot, cclaus, dhruvmanila' def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if not all(isinstance(__UpperCamelCase , (float, int) ) for val in locals().values() ): _SCREAMING_SNAKE_CASE : Tuple = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Any = ((x * distance) / (z + distance)) * scale _SCREAMING_SNAKE_CASE : Union[str, Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("""Axis must be a str""" ) _SCREAMING_SNAKE_CASE : List[str] = locals() del input_variables["axis"] if not all(isinstance(__UpperCamelCase , (float, int) ) for val in input_variables.values() ): _SCREAMING_SNAKE_CASE : List[str] = ( """Input values except axis must either be float or int: """ f"""{list(input_variables.values() )}""" ) raise TypeError(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": _SCREAMING_SNAKE_CASE : Any = x * math.cos(__UpperCamelCase ) - y * math.sin(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = y * math.cos(__UpperCamelCase ) + x * math.sin(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = z elif axis == "x": _SCREAMING_SNAKE_CASE : Dict = y * math.cos(__UpperCamelCase ) - z * math.sin(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : int = z * math.cos(__UpperCamelCase ) + y * math.sin(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = x elif axis == "y": _SCREAMING_SNAKE_CASE : Tuple = x * math.cos(__UpperCamelCase ) - z * math.sin(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Dict = z * math.cos(__UpperCamelCase ) + x * math.sin(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : int = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }") print(F"{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }")
200
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __a :Any = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = "huggingface/label-files" A_ = "imagenet-1k-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = {v: k for k, v in idalabel.items()} A_ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" A_ = BitConfig( conv_layer=__UpperCamelCase ,num_labels=1000 ,idalabel=__UpperCamelCase ,labelaid=__UpperCamelCase ,) return config def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if "stem.conv" in name: A_ = name.replace("stem.conv" ,"bit.embedder.convolution" ) if "blocks" in name: A_ = name.replace("blocks" ,"layers" ) if "head.fc" in name: A_ = name.replace("head.fc" ,"classifier.1" ) if name.startswith("norm" ): A_ = "bit." + name if "bit" not in name and "classifier" not in name: A_ = "bit.encoder." + name return name def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Tuple=False ): """simple docstring""" A_ = get_config(__UpperCamelCase ) # load original model from timm A_ = create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model A_ = timm_model.state_dict() for key in state_dict.copy().keys(): A_ = state_dict.pop(__UpperCamelCase ) A_ = val.squeeze() if "head" in key else val # load HuggingFace model A_ = BitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # create image processor A_ = create_transform(**resolve_data_config({} ,model=__UpperCamelCase ) ) A_ = transform.transforms A_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A_ = BitImageProcessor( do_resize=__UpperCamelCase ,size={"shortest_edge": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=__UpperCamelCase ,crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} ,do_normalize=__UpperCamelCase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) A_ = prepare_img() A_ = transform(__UpperCamelCase ).unsqueeze(0 ) A_ = processor(__UpperCamelCase ,return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ) # verify logits with torch.no_grad(): A_ = model(__UpperCamelCase ) A_ = outputs.logits print("Logits:" ,logits[0, :3] ) print("Predicted class:" ,model.config.idalabel[logits.argmax(-1 ).item()] ) A_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __a :str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
312
0
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case : '''simple docstring''' def __init__( self : Tuple, _lowerCamelCase : Any, _lowerCamelCase : Dict=13, _lowerCamelCase : str=30, _lowerCamelCase : Optional[int]=2, _lowerCamelCase : Any=3, _lowerCamelCase : List[Any]=True, _lowerCamelCase : Optional[int]=True, _lowerCamelCase : Tuple=32, _lowerCamelCase : Dict=2, _lowerCamelCase : Dict=4, _lowerCamelCase : Dict=37, _lowerCamelCase : Optional[int]="gelu", _lowerCamelCase : Union[str, Any]=0.1, _lowerCamelCase : Dict=0.1, _lowerCamelCase : Optional[int]=10, _lowerCamelCase : int=0.02, _lowerCamelCase : Tuple=3, _lowerCamelCase : int=0.6, _lowerCamelCase : Optional[int]=None, ): '''simple docstring''' __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = mask_ratio __A = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __A = (image_size // patch_size) ** 2 __A = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size], self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=_lowerCamelCase, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : Union[str, Any], _lowerCamelCase : Union[str, Any], _lowerCamelCase : int ): '''simple docstring''' __A = TFViTMAEModel(config=_lowerCamelCase ) __A = model(_lowerCamelCase, training=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Dict, _lowerCamelCase : str, _lowerCamelCase : Tuple ): '''simple docstring''' __A = TFViTMAEForPreTraining(_lowerCamelCase ) __A = model(_lowerCamelCase, training=_lowerCamelCase ) # expected sequence length = num_patches __A = (self.image_size // self.patch_size) ** 2 __A = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __A = 1 __A = TFViTMAEForPreTraining(_lowerCamelCase ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(_lowerCamelCase, training=_lowerCamelCase ) __A = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = self.prepare_config_and_inputs() ((__A) , (__A) , (__A)) = config_and_inputs __A = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class snake_case ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' A_ : str = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () A_ : Union[str, Any] = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} A_ : str = False A_ : List[Any] = False A_ : List[str] = False A_ : List[str] = False def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' __A = TFViTMAEModelTester(self ) __A = ConfigTester(self, config_class=_lowerCamelCase, has_text_modality=_lowerCamelCase, hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase, tf.keras.layers.Layer ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(_lowerCamelCase ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ['''pixel_values'''] self.assertListEqual(arg_names[:1], _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' # make the mask reproducible np.random.seed(2 ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = int((config.image_size // config.patch_size) ** 2 ) __A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __A = model_class(_lowerCamelCase ) __A = self._prepare_for_class(_lowerCamelCase, _lowerCamelCase ) __A = model(_lowerCamelCase, noise=_lowerCamelCase ) __A = copy.deepcopy(self._prepare_for_class(_lowerCamelCase, _lowerCamelCase ) ) __A = model(**_lowerCamelCase, noise=_lowerCamelCase ) __A = outputs_dict[0].numpy() __A = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1e-6 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' # make the mask reproducible np.random.seed(2 ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = int((config.image_size // config.patch_size) ** 2 ) __A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCamelCase : str ): __A = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCamelCase ): __A = v.numpy() else: __A = np.array(_lowerCamelCase ) return inputs_np_dict for model_class in self.all_model_classes: __A = model_class(_lowerCamelCase ) __A = self._prepare_for_class(_lowerCamelCase, _lowerCamelCase ) __A = prepare_numpy_arrays(_lowerCamelCase ) __A = model(_lowerCamelCase, noise=_lowerCamelCase ) __A = model(**_lowerCamelCase, noise=_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : List[Any], _lowerCamelCase : Any, _lowerCamelCase : Optional[int] ): '''simple docstring''' # make masks reproducible np.random.seed(2 ) __A = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __A = tf.constant(_lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __A = tf_noise super().check_pt_tf_models(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' # make mask reproducible np.random.seed(2 ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCamelCase ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(_lowerCamelCase, _lowerCamelCase ),) if isinstance(_lowerCamelCase, _lowerCamelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCamelCase, '''_keras_serializable''', _lowerCamelCase ) } __A = int((config.image_size // config.patch_size) ** 2 ) __A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __A = tf.convert_to_tensor(_lowerCamelCase ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: __A = main_layer_class(_lowerCamelCase ) __A = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __A = tf.keras.Model(_lowerCamelCase, outputs=main_layer(_lowerCamelCase ) ) __A = model(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: __A = os.path.join(_lowerCamelCase, '''keras_model.h5''' ) model.save(_lowerCamelCase ) __A = tf.keras.models.load_model( _lowerCamelCase, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCamelCase, tf.keras.Model ) __A = model(_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase, _lowerCamelCase ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' # make mask reproducible np.random.seed(2 ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = int((config.image_size // config.patch_size) ** 2 ) __A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __A = model_class(_lowerCamelCase ) __A = self._prepare_for_class(_lowerCamelCase, _lowerCamelCase ) __A = model(_lowerCamelCase, noise=_lowerCamelCase ) if model_class.__name__ == "TFViTMAEModel": __A = outputs.last_hidden_state.numpy() __A = 0 else: __A = outputs.logits.numpy() __A = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase, saved_model=_lowerCamelCase ) __A = model_class.from_pretrained(_lowerCamelCase ) __A = model(_lowerCamelCase, noise=_lowerCamelCase ) if model_class.__name__ == "TFViTMAEModel": __A = after_outputs['''last_hidden_state'''].numpy() __A = 0 else: __A = after_outputs['''logits'''].numpy() __A = 0 __A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase, 1e-5 ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' # make mask reproducible np.random.seed(2 ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = int((config.image_size // config.patch_size) ** 2 ) __A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __A = model_class(_lowerCamelCase ) __A = self._prepare_for_class(_lowerCamelCase, _lowerCamelCase ) __A = model(_lowerCamelCase, noise=_lowerCamelCase ) __A = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCamelCase ) __A = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __A = model_class.from_config(model.config ) __A = new_model(_lowerCamelCase ) # Build model new_model.set_weights(model.get_weights() ) __A = new_model(_lowerCamelCase, noise=_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase, _lowerCamelCase ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.''' ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' pass @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(_lowerCamelCase ) def lowerCAmelCase ( ): """simple docstring""" __A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' # make random mask reproducible across the PT and TF model np.random.seed(2 ) __A = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=_lowerCamelCase, return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __A = ViTMAEConfig() __A = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __A = np.random.uniform(size=(1, num_patches) ) # forward pass __A = model(**_lowerCamelCase, noise=_lowerCamelCase ) # verify the logits __A = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape, _lowerCamelCase ) __A = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], _lowerCamelCase, atol=1e-4 )
266
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __a :Dict = get_logger(__name__) __a :Union[str, Any] = Path(__file__).parent / 'model_card_template.md' __a :Tuple = uuida().hex __a :List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __a :Union[str, Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __a :Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __snake_case ( __UpperCamelCase : Union[Dict, str, None] = None ): """simple docstring""" A_ = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" ,"" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent return ua def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if token is None: A_ = HfFolder.get_token() if organization is None: A_ = whoami(__UpperCamelCase )["name"] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__UpperCamelCase ,"local_rank" ) and args.local_rank not in [-1, 0]: return A_ = args.hub_token if hasattr(__UpperCamelCase ,"hub_token" ) else None A_ = get_full_repo_name(__UpperCamelCase ,token=__UpperCamelCase ) A_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" ,license="apache-2.0" ,library_name="diffusers" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=__UpperCamelCase ,model_name=__UpperCamelCase ,repo_name=__UpperCamelCase ,dataset_name=args.dataset_name if hasattr(__UpperCamelCase ,"dataset_name" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase ,"gradient_accumulation_steps" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta1" ) else None ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta2" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase ,"adam_weight_decay" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase ,"adam_epsilon" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase ,"lr_scheduler" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase ,"lr_warmup_steps" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase ,"ema_inv_gamma" ) else None ,ema_power=args.ema_power if hasattr(__UpperCamelCase ,"ema_power" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase ,"ema_max_decay" ) else None ,mixed_precision=args.mixed_precision ,) A_ = os.path.join(args.output_dir ,"README.md" ) model_card.save(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash A_ = str(Path(__UpperCamelCase ).as_posix() ) A_ = re.search(R"snapshots/([^/]+)/" ,__UpperCamelCase ) if search is None: return None A_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __a :str = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __a :List[Any] = os.path.join(hf_cache_home, 'diffusers') def __snake_case ( __UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: A_ = DIFFUSERS_CACHE if old_cache_dir is None: A_ = old_diffusers_cache A_ = Path(__UpperCamelCase ).expanduser() A_ = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A_ = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase ,__UpperCamelCase ) try: os.symlink(__UpperCamelCase ,__UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __a :Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __a :Optional[int] = 0 else: with open(cache_version_file) as f: try: __a :Dict = int(f.read()) except ValueError: __a :str = 0 if cache_version < 1: __a :Optional[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __a :Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if variant is not None: A_ = weights_name.split("." ) A_ = splits[:-1] + [variant] + splits[-1:] A_ = ".".join(__UpperCamelCase ) return weights_name def __snake_case ( __UpperCamelCase : Optional[Any] ,*, __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int]=None ,): """simple docstring""" A_ = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ): # Load from a PyTorch checkpoint A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ): A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: A_ = hf_hub_download( __UpperCamelCase ,filename=_add_variant(__UpperCamelCase ,__UpperCamelCase ) ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' ,__UpperCamelCase ,) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase ,__UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase ,__UpperCamelCase )}\' so that the correct variant file can be added.''' ,__UpperCamelCase ,) try: # 2. Load model file as usual A_ = hf_hub_download( __UpperCamelCase ,filename=__UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
312
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=snake_case_ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __lowerCAmelCase ( metaclass=snake_case_ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __lowerCAmelCase ( metaclass=snake_case_ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __lowerCAmelCase ( metaclass=snake_case_ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __lowerCAmelCase ( metaclass=snake_case_ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __lowerCAmelCase ( metaclass=snake_case_ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
316
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a = logging.get_logger(__name__) _a = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class A_ ( snake_case_ ): _lowercase : Optional[Any] = 'codegen' _lowercase : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , UpperCAmelCase : str=5_0_4_0_0 , UpperCAmelCase : str=2_0_4_8 , UpperCAmelCase : Optional[Any]=2_0_4_8 , UpperCAmelCase : Tuple=4_0_9_6 , UpperCAmelCase : str=2_8 , UpperCAmelCase : int=1_6 , UpperCAmelCase : int=6_4 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]="gelu_new" , UpperCAmelCase : str=0.0 , UpperCAmelCase : int=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=1E-5 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : int=True , UpperCAmelCase : Union[str, Any]=5_0_2_5_6 , UpperCAmelCase : Dict=5_0_2_5_6 , UpperCAmelCase : Dict=False , **UpperCAmelCase : Any , ) -> Tuple: __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = n_ctx __lowerCAmelCase: int = n_positions __lowerCAmelCase: Optional[Any] = n_embd __lowerCAmelCase: str = n_layer __lowerCAmelCase: Tuple = n_head __lowerCAmelCase: List[Any] = n_inner __lowerCAmelCase: int = rotary_dim __lowerCAmelCase: Tuple = activation_function __lowerCAmelCase: int = resid_pdrop __lowerCAmelCase: Dict = embd_pdrop __lowerCAmelCase: Dict = attn_pdrop __lowerCAmelCase: Optional[int] = layer_norm_epsilon __lowerCAmelCase: List[str] = initializer_range __lowerCAmelCase: Dict = use_cache __lowerCAmelCase: List[Any] = bos_token_id __lowerCAmelCase: Optional[Any] = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class A_ ( snake_case_ ): def __init__( self : Optional[int] , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ) -> Any: super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , 'pad_token_id' , UpperCAmelCase ): # TODO: how to do that better? __lowerCAmelCase: List[Any] = 0 @property def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Any = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction='inputs' ) __lowerCAmelCase: List[str] = {0: 'batch', 1: 'past_sequence + sequence'} else: __lowerCAmelCase: str = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self._config.n_layer @property def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: return self._config.n_head def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase: str = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowerCAmelCase: Dict = seqlen + 2 __lowerCAmelCase: str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase: Optional[Any] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] __lowerCAmelCase: Optional[int] = common_inputs['attention_mask'] if self.use_past: __lowerCAmelCase: Any = ordered_inputs['attention_mask'].dtype __lowerCAmelCase: List[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase ( self : str ) -> int: return 1_3
322
import functools from typing import Any def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : list[str] ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or len(__UpperCamelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not all( isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie A_ = {} A_ = "WORD_KEEPER" for word in words: A_ = trie for c in word: if c not in trie_node: A_ = {} A_ = trie_node[c] A_ = True A_ = len(__UpperCamelCase ) # Dynamic programming method @functools.cache def is_breakable(__UpperCamelCase : int ) -> bool: if index == len_string: return True A_ = trie for i in range(__UpperCamelCase ,__UpperCamelCase ): A_ = trie_node.get(string[i] ,__UpperCamelCase ) if trie_node is None: return False if trie_node.get(__UpperCamelCase ,__UpperCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( snake_case_ ): UpperCAmelCase__ : str = ['pixel_values'] def __init__( self, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = 1 / 255, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = IMAGENET_DEFAULT_MEAN, SCREAMING_SNAKE_CASE_ = IMAGENET_DEFAULT_STD, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = size if size is not None else {'shortest_edge': 224} UpperCamelCase : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_, param_name='crop_size' ) UpperCamelCase : int = do_resize UpperCamelCase : Union[str, Any] = size UpperCamelCase : Tuple = resample UpperCamelCase : Optional[int] = do_center_crop UpperCamelCase : Dict = crop_size UpperCamelCase : List[Any] = do_rescale UpperCamelCase : Tuple = rescale_factor UpperCamelCase : Optional[int] = do_normalize UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> Dict: UpperCamelCase : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: UpperCamelCase : int = int((256 / 224) * size['shortest_edge'] ) UpperCamelCase : int = get_resize_output_image_size(SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}""" ) return resize( SCREAMING_SNAKE_CASE_, size=(size_dict['height'], size_dict['width']), resample=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> Dict: UpperCamelCase : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys \'height\' and \'width\'. Got {size.keys()}""" ) return center_crop(SCREAMING_SNAKE_CASE_, size=(size['height'], size['width']), data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> Any: return rescale(SCREAMING_SNAKE_CASE_, scale=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> int: return normalize(SCREAMING_SNAKE_CASE_, mean=SCREAMING_SNAKE_CASE_, std=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST, **SCREAMING_SNAKE_CASE_, ) -> Tuple: UpperCamelCase : str = do_resize if do_resize is not None else self.do_resize UpperCamelCase : Union[str, Any] = resample if resample is not None else self.resample UpperCamelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase : int = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : str = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : int = image_mean if image_mean is not None else self.image_mean UpperCamelCase : Any = image_std if image_std is not None else self.image_std UpperCamelCase : Dict = size if size is not None else self.size UpperCamelCase : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = crop_size if crop_size is not None else self.crop_size UpperCamelCase : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_, param_name='crop_size' ) UpperCamelCase : List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase : Dict = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase : Any = [self.resize(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: UpperCamelCase : Dict = [self.center_crop(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase : Union[str, Any] = [self.rescale(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase : Union[str, Any] = [self.normalize(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : List[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : List[Any] = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_, tensor_type=SCREAMING_SNAKE_CASE_ )
119
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __a :List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __a :Union[str, Any] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __a :Optional[int] = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } __a :str = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = ElectraTokenizer def __init__( self : Tuple , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=True , UpperCAmelCase : Any="[UNK]" , UpperCAmelCase : Union[str, Any]="[SEP]" , UpperCAmelCase : List[Any]="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : List[Any]="[MASK]" , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Union[str, Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
312
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Union[str, Any] = LxmertConfig.from_json_file(__UpperCamelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) _A : Dict = LxmertForPreTraining(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__UpperCamelCase,__UpperCamelCase,__UpperCamelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(),__UpperCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
26
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __a :Optional[Any] = logging.get_logger(__name__) __a :Dict[Optional[str], Type[Formatter]] = {} __a :Dict[Optional[str], str] = {} __a :Dict[Optional[str], Exception] = {} def __snake_case ( __UpperCamelCase : type ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ,): """simple docstring""" A_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) A_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) A_ = format_type def __snake_case ( __UpperCamelCase : Exception ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ): """simple docstring""" A_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: __a :List[Any] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: __a :List[str] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: __a :Tuple = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __snake_case ( __UpperCamelCase : Optional[str] ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __snake_case ( __UpperCamelCase : Optional[str] ,**__UpperCamelCase : List[Any] ): """simple docstring""" A_ = get_format_type_from_alias(__UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
312
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> Optional[Any]: lowercase__ : List[Any] = tempfile.mkdtemp() # fmt: off lowercase__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowercase__ : Dict = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Dict , **lowercase_ : Tuple ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , **lowercase_ : Dict ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Optional[int] ) -> str: lowercase__ : int = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowercase__ : Tuple = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict ) -> Optional[Any]: lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : Optional[Any] = self.get_image_processor() lowercase__ : List[str] = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def __UpperCamelCase ( self : str ) -> Dict: lowercase__ : int = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : List[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase__ : Optional[int] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowercase__ : str = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: lowercase__ : Tuple = self.get_image_processor() lowercase__ : Optional[Any] = self.get_tokenizer() lowercase__ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase__ : Optional[int] = self.prepare_image_inputs() lowercase__ : str = image_processor(lowercase_ , return_tensors="np" ) lowercase__ : Tuple = processor(images=lowercase_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: lowercase__ : List[str] = self.get_image_processor() lowercase__ : Dict = self.get_tokenizer() lowercase__ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase__ : Union[str, Any] = "lower newer" lowercase__ : Union[str, Any] = processor(text=lowercase_ ) lowercase__ : str = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: lowercase__ : Union[str, Any] = self.get_image_processor() lowercase__ : List[str] = self.get_tokenizer() lowercase__ : Tuple = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase__ : int = "lower newer" lowercase__ : int = self.prepare_image_inputs() lowercase__ : int = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(lowercase_ ): processor() def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: lowercase__ : Optional[int] = self.get_image_processor() lowercase__ : List[str] = self.get_tokenizer() lowercase__ : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : List[str] = processor.batch_decode(lowercase_ ) lowercase__ : Dict = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: lowercase__ : Union[str, Any] = self.get_image_processor() lowercase__ : str = self.get_tokenizer() lowercase__ : str = VisionTextDualEncoderProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase__ : List[str] = "lower newer" lowercase__ : Tuple = self.prepare_image_inputs() lowercase__ : Dict = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
87
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a :int = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
312
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(A) return image @property def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def _lowerCamelCase ( self : Dict) -> Any: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(A) @property def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" def extract(*A : Tuple , **A : Tuple): class __lowerCAmelCase : def __init__( self : str) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = torch.ones([0]) def _lowerCamelCase ( self : List[Any] , A : List[str]) -> str: """simple docstring""" self.pixel_values.to(A) return self return Out() return extract def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.dummy_cond_unet _UpperCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=A , set_alpha_to_one=A , ) _UpperCAmelCase = self.dummy_vae _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk _UpperCAmelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase = sd_pipe.to(A) sd_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = torch.Generator(device=A).manual_seed(0) _UpperCAmelCase = sd_pipe([prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') _UpperCAmelCase = output.images _UpperCAmelCase = torch.Generator(device=A).manual_seed(0) _UpperCAmelCase = sd_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=A , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.dummy_cond_unet _UpperCAmelCase = PNDMScheduler(skip_prk_steps=A) _UpperCAmelCase = self.dummy_vae _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk _UpperCAmelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase = sd_pipe.to(A) sd_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = torch.Generator(device=A).manual_seed(0) _UpperCAmelCase = sd_pipe([prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') _UpperCAmelCase = output.images _UpperCAmelCase = torch.Generator(device=A).manual_seed(0) _UpperCAmelCase = sd_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=A , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Any) -> Optional[int]: """simple docstring""" _UpperCAmelCase = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=A) assert isinstance(A , A) assert isinstance(pipe.scheduler , A) assert pipe.safety_checker is None _UpperCAmelCase = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A) _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(A) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.dummy_cond_unet _UpperCAmelCase = PNDMScheduler(skip_prk_steps=A) _UpperCAmelCase = self.dummy_vae _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 _UpperCAmelCase = unet.half() _UpperCAmelCase = vae.half() _UpperCAmelCase = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase = sd_pipe.to(A) sd_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=A) _UpperCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) _UpperCAmelCase = sd_pipe.to(A) sd_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _UpperCAmelCase = 40_03_66_03_46 _UpperCAmelCase = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase = torch.manual_seed(A) _UpperCAmelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase = torch.manual_seed(A) _UpperCAmelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=A) _UpperCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) _UpperCAmelCase = sd_pipe.to(A) sd_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = 'padme amidala taking a bath artwork, safe for work, no nudity' _UpperCAmelCase = 27_34_97_17_55 _UpperCAmelCase = 7 _UpperCAmelCase = torch.manual_seed(A) _UpperCAmelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 _UpperCAmelCase = torch.manual_seed(A) _UpperCAmelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') _UpperCAmelCase = sd_pipe.to(A) sd_pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _UpperCAmelCase = 10_44_35_52_34 _UpperCAmelCase = 12 _UpperCAmelCase = torch.manual_seed(A) _UpperCAmelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-7 _UpperCAmelCase = torch.manual_seed(A) _UpperCAmelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1]) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
339
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()} ) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def __A ( self : str , UpperCAmelCase : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , UpperCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) A_ = copy.deepcopy(self ) A_ = self.label_schema.copy() A_ = features[self.label_column] A_ = label_schema return task_template @property def __A ( self : List[str] ): return { self.audio_column: "audio", self.label_column: "labels", }
312
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: A__ : Optional[Any] = None try: import msvcrt except ImportError: A__ : List[Any] = None try: import fcntl except ImportError: A__ : List[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: A__ : List[str] = OSError # Data # ------------------------------------------------ A__ : str = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] A__ : List[Any] = '3.0.12' A__ : Optional[int] = None def _snake_case ( ) -> int: global _logger lowerCamelCase_ : Optional[Any] =_logger or logging.getLogger(__name__ ) return _logger class lowercase__ ( snake_case_ ): def __init__( self : Any , snake_case__ : List[str] ): lowerCamelCase_ : List[Any] =lock_file return None def __str__( self : Dict ): lowerCamelCase_ : Dict =F"""The file lock \'{self.lock_file}\' could not be acquired.""" return temp class lowercase__ : def __init__( self : Tuple , snake_case__ : List[str] ): lowerCamelCase_ : Optional[int] =lock return None def __enter__( self : List[str] ): return self.lock def __exit__( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : str ): self.lock.release() return None class lowercase__ : def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : int=-1 , snake_case__ : int=None ): lowerCamelCase_ : Optional[int] =max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowerCamelCase_ : Any =self.hash_filename_if_too_long(snake_case__ , snake_case__ ) # The path to the lock file. lowerCamelCase_ : str =lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowerCamelCase_ : Dict =None # The default timeout value. lowerCamelCase_ : List[str] =timeout # We use this lock primarily for the lock counter. lowerCamelCase_ : List[str] =threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowerCamelCase_ : int =0 return None @property def UpperCAmelCase__ ( self : int ): return self._lock_file @property def UpperCAmelCase__ ( self : Optional[int] ): return self._timeout @timeout.setter def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Dict ): lowerCamelCase_ : Tuple =float(snake_case__ ) return None def UpperCAmelCase__ ( self : Union[str, Any] ): raise NotImplementedError() def UpperCAmelCase__ ( self : Union[str, Any] ): raise NotImplementedError() @property def UpperCAmelCase__ ( self : Optional[int] ): return self._lock_file_fd is not None def UpperCAmelCase__ ( self : str , snake_case__ : Optional[Any]=None , snake_case__ : List[str]=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: lowerCamelCase_ : int =self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowerCamelCase_ : Union[str, Any] =id(self ) lowerCamelCase_ : int =self._lock_file lowerCamelCase_ : List[str] =time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(snake_case__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowerCamelCase_ : List[str] =max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : Optional[Any]=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowerCamelCase_ : Dict =id(self ) lowerCamelCase_ : Any =self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() lowerCamelCase_ : str =0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : List[Any] ): self.acquire() return self def __exit__( self : Any , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Tuple ): self.release() return None def __del__( self : Optional[Any] ): self.release(force=snake_case__ ) return None def UpperCAmelCase__ ( self : Dict , snake_case__ : str , snake_case__ : int ): lowerCamelCase_ : str =os.path.basename(snake_case__ ) if len(snake_case__ ) > max_length and max_length > 0: lowerCamelCase_ : Optional[Any] =os.path.dirname(snake_case__ ) lowerCamelCase_ : Dict =str(hash(snake_case__ ) ) lowerCamelCase_ : Optional[int] =filename[: max_length - len(snake_case__ ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(snake_case__ , snake_case__ ) else: return path class lowercase__ ( snake_case_ ): def __init__( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[int]=-1 , snake_case__ : Dict=None ): from .file_utils import relative_to_absolute_path super().__init__(snake_case__ , timeout=snake_case__ , max_filename_length=snake_case__ ) lowerCamelCase_ : Any ="\\\\?\\" + relative_to_absolute_path(self.lock_file ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : Tuple =os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowerCamelCase_ : Dict =os.open(self._lock_file , snake_case__ ) except OSError: pass else: try: msvcrt.locking(snake_case__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(snake_case__ ) else: lowerCamelCase_ : Union[str, Any] =fd return None def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Union[str, Any] =self._lock_file_fd lowerCamelCase_ : Dict =None msvcrt.locking(snake_case__ , msvcrt.LK_UNLCK , 1 ) os.close(snake_case__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowercase__ ( snake_case_ ): def __init__( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[str]=-1 , snake_case__ : str=None ): lowerCamelCase_ : Dict =os.statvfs(os.path.dirname(snake_case__ ) ).f_namemax super().__init__(snake_case__ , timeout=snake_case__ , max_filename_length=snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : str =os.O_RDWR | os.O_CREAT | os.O_TRUNC lowerCamelCase_ : Optional[int] =os.open(self._lock_file , snake_case__ ) try: fcntl.flock(snake_case__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(snake_case__ ) else: lowerCamelCase_ : int =fd return None def UpperCAmelCase__ ( self : str ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition lowerCamelCase_ : Optional[int] =self._lock_file_fd lowerCamelCase_ : List[str] =None fcntl.flock(snake_case__ , fcntl.LOCK_UN ) os.close(snake_case__ ) return None class lowercase__ ( snake_case_ ): def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : Dict =os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowerCamelCase_ : Tuple =os.open(self._lock_file , snake_case__ ) except OSError: pass else: lowerCamelCase_ : str =fd return None def UpperCAmelCase__ ( self : Optional[int] ): os.close(self._lock_file_fd ) lowerCamelCase_ : Union[str, Any] =None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None A__ : Tuple = None if msvcrt: A__ : Tuple = WindowsFileLock elif fcntl: A__ : Optional[Any] = UnixFileLock else: A__ : str = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
144
def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,16 ) for i in range(0 ,len(__UpperCamelCase ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) UpperCAmelCase : str = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['BeitFeatureExtractor'] UpperCAmelCase : Tuple = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
280
import cva import numpy as np class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : float , UpperCAmelCase : int ): if k in (0.04, 0.06): A_ = k A_ = window_size else: raise ValueError("invalid k value" ) def __str__( self : Optional[Any] ): return str(self.k ) def __A ( self : int , UpperCAmelCase : str ): A_ = cva.imread(UpperCAmelCase , 0 ) A_ , A_ = img.shape A_ = [] A_ = img.copy() A_ = cva.cvtColor(UpperCAmelCase , cva.COLOR_GRAY2RGB ) A_ , A_ = np.gradient(UpperCAmelCase ) A_ = dx**2 A_ = dy**2 A_ = dx * dy A_ = 0.04 A_ = self.window_size // 2 for y in range(UpperCAmelCase , h - offset ): for x in range(UpperCAmelCase , w - offset ): A_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = (wxx * wyy) - (wxy**2) A_ = wxx + wyy A_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __a :List[str] = HarrisCorner(0.04, 3) __a , __a :str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
312
0
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : str ) -> Tuple: _a = len(__UpperCamelCase ) _a = len(__UpperCamelCase ) _a = ( first_str_length if first_str_length > second_str_length else second_str_length ) _a = [] for char_count in range(__UpperCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__UpperCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
63
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
312
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase_ : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCAmelCase_ : Optional[Any] = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer_dir shutil.copy( os.path.join(__snake_case , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = """src/transformers""" shutil.rmtree(self.transformer_dir ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None ): _SCREAMING_SNAKE_CASE : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _SCREAMING_SNAKE_CASE : Tuple = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _SCREAMING_SNAKE_CASE : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _SCREAMING_SNAKE_CASE : str = black.format_str(__snake_case , mode=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(__snake_case , """w""" , newline="""\n""" ) as f: f.write(__snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__snake_case ) with open(__snake_case , """r""" ) as f: self.assertTrue(f.read() , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(__snake_case , __snake_case ) def UpperCAmelCase_ ( self ): # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , __snake_case , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , __snake_case ) , ) # Copy consistency with a really long name _SCREAMING_SNAKE_CASE : Tuple = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub("""Bert""" , __snake_case , __snake_case ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , __snake_case , overwrite_result=re.sub("""Bert""" , """TestModel""" , __snake_case ) , ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _SCREAMING_SNAKE_CASE : List[str] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _SCREAMING_SNAKE_CASE : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _SCREAMING_SNAKE_CASE : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) self.assertFalse(__snake_case ) self.assertEqual(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__snake_case ) _SCREAMING_SNAKE_CASE : List[str] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _SCREAMING_SNAKE_CASE : List[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _SCREAMING_SNAKE_CASE : Optional[int] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(__snake_case , __snake_case )
200
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['image_processor', 'tokenizer'] _lowerCamelCase : Tuple = 'OwlViTImageProcessor' _lowerCamelCase : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any ): A_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) A_ = kwargs.pop("feature_extractor" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="max_length" , UpperCAmelCase : Optional[Any]="np" , **UpperCAmelCase : Optional[int] ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCAmelCase , UpperCAmelCase ) or (isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(text[0] , UpperCAmelCase )): A_ = [self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )] elif isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(text[0] , UpperCAmelCase ): A_ = [] # Maximum number of queries across batch A_ = max([len(UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase ) != max_num_queries: A_ = t + [" "] * (max_num_queries - len(UpperCAmelCase )) A_ = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) encodings.append(UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": A_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) A_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) A_ = BatchEncoding() A_ = input_ids A_ = attention_mask if query_images is not None: A_ = BatchEncoding() A_ = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ).pixel_values A_ = query_pixel_values if images is not None: A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def __A ( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ): return self.image_processor.post_process(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : str , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): return self.image_processor.post_process_object_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : int ): return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def __A ( self : Optional[Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
312
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{\"default\": {\"dataset_size\": 42}}''' ) __A = DatasetInfosDict.from_directory(__UpperCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=4_2 , ), ] , ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = str(__UpperCamelCase ) dataset_info.write_to_directory(__UpperCamelCase ) __A = DatasetInfo.from_directory(__UpperCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__UpperCamelCase , '''dataset_info.json''' ) ) def lowerCAmelCase ( ): """simple docstring""" __A = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) __A = dataset_info._to_yaml_dict() assert sorted(__UpperCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __A = yaml.safe_dump(__UpperCamelCase ) __A = yaml.safe_load(__UpperCamelCase ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase ( ): """simple docstring""" __A = DatasetInfo() __A = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=4_2 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=4_2 ), '''v2''': DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = str(__UpperCamelCase ) dataset_infos_dict.write_to_directory(__UpperCamelCase ) __A = DatasetInfosDict.from_directory(__UpperCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __A = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __A = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__UpperCamelCase , '''README.md''' ) )
266
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Dict , UpperCAmelCase : int = 768 , ): super().__init__() A_ = nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) A_ = nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def __A ( self : str , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ): A_ = nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) A_ = nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def __A ( self : Dict , UpperCAmelCase : List[Any] ): A_ = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self : int , UpperCAmelCase : int ): A_ = (embeds * self.std) + self.mean return embeds
312
0
"""simple docstring""" def A ( snake_case :int = 1_0_0_0 ) -> str: __UpperCamelCase = 2**power __UpperCamelCase = 0 while n: __UpperCamelCase , __UpperCamelCase = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
316
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __snake_case ( __UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ,): """simple docstring""" A_ , A_ = coefficient_matrix.shape A_ , A_ = constant_matrix.shape if rowsa != colsa: A_ = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if colsa != 1: A_ = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if rowsa != rowsa: A_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: A_ = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(__UpperCamelCase )} and {rowsa}''' ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) A_ = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) A_ , A_ = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): A_ = [] for row in range(__UpperCamelCase ): A_ = 0 for col in range(__UpperCamelCase ): if col == row: A_ = table[row][col] elif col == cols - 1: A_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ = (temp + val) / denom new_val.append(__UpperCamelCase ) A_ = new_val return [float(__UpperCamelCase ) for i in new_val] def __snake_case ( __UpperCamelCase : NDArray[floataa] ): """simple docstring""" A_ , A_ = table.shape A_ = True for i in range(0 ,__UpperCamelCase ): A_ = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
312
0
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class A_ ( snake_case_ ): def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any]=1_0_2_4 , UpperCAmelCase : List[str]=1_0_2_4 , UpperCAmelCase : List[Any]=3.6 ) -> Union[str, Any]: __lowerCAmelCase: Tuple = tokenizer __lowerCAmelCase: Any = tokenizer.bos_token_id __lowerCAmelCase: Optional[int] = dataset __lowerCAmelCase: Dict = seq_length __lowerCAmelCase: Dict = seq_length * chars_per_token * num_of_sequences def __iter__( self : Dict ) -> int: __lowerCAmelCase: int = iter(self.dataset ) __lowerCAmelCase: List[str] = True while more_examples: __lowerCAmelCase , __lowerCAmelCase: int = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCAmelCase )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __lowerCAmelCase: Union[str, Any] = False break __lowerCAmelCase: Optional[Any] = tokenizer(UpperCAmelCase , truncation=UpperCAmelCase )['input_ids'] __lowerCAmelCase: List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCAmelCase ) , self.seq_length ): __lowerCAmelCase: int = all_token_ids[i : i + self.seq_length] if len(UpperCAmelCase ) == self.seq_length: yield torch.tensor(UpperCAmelCase ) def _a ( SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" __lowerCAmelCase: Optional[Any] = {'streaming': True} __lowerCAmelCase: int = load_dataset(args.dataset_name , split='train' , **__UpperCamelCase ) __lowerCAmelCase: List[Any] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) __lowerCAmelCase: Tuple = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def _a ( SCREAMING_SNAKE_CASE : Dict ) -> str: """simple docstring""" model.eval() __lowerCAmelCase: int = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): __lowerCAmelCase: List[Any] = model(__UpperCamelCase , labels=__UpperCamelCase ) __lowerCAmelCase: Any = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __lowerCAmelCase: Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: __lowerCAmelCase: Any = torch.exp(__UpperCamelCase ) except OverflowError: __lowerCAmelCase: List[str] = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator _a = Accelerator() # Parse configuration _a = HfArgumentParser(EvaluationArguments) _a = parser.parse_args() set_seed(args.seed) # Logging _a = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer _a = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _a = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _a = create_dataloader(args) # Prepare everything with our `accelerator`. _a = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') _a = evaluate(args) logger.info(f"loss/eval: {eval_loss}, perplexity: {perplexity}")
322
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __snake_case ( ): """simple docstring""" A_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } A_ = Dataset.from_dict(__UpperCamelCase ) return dataset class _a ( snake_case_ ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = get_dataset() A_ = make_duplicate_clusters(UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __A ( self : List[Any] ): A_ = get_dataset() A_ , A_ = deduplicate_dataset(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 2 ) print(UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , UpperCAmelCase )
312
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def UpperCamelCase ( ) -> int: UpperCamelCase : List[Any] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } UpperCamelCase : Union[str, Any] = Dataset.from_dict(__UpperCamelCase ) return dataset class lowerCAmelCase_ ( snake_case_ ): def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Dict = get_dataset() UpperCamelCase : Dict = make_duplicate_clusters(SCREAMING_SNAKE_CASE_, 0.85 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = get_dataset() UpperCamelCase , UpperCamelCase : Dict = deduplicate_dataset(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), 2 ) print(SCREAMING_SNAKE_CASE_ ) self.assertEqual(duplicate_clusters[0][0]['copies'], 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'], SCREAMING_SNAKE_CASE_ )
119
import os from typing import Dict, List, Tuple, TypeVar, Union __a :Any = TypeVar('T') __a :Union[str, Any] = Union[List[T], Tuple[T, ...]] __a :List[str] = Union[T, List[T], Dict[str, T]] __a :Any = Union[str, bytes, os.PathLike]
312
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowercase : _a = None _a = False _a = False _a = False _a = None _a = None _a = False _a = False _a = False _a = True _a = None _a = 1 _a = None _a = False _a = None _a = None def a__ ( self ) -> Tuple: return self.__class__(**{k: copy.deepcopy(_a ) for k, v in self.__dict__.items()} )
26
__a :Dict = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
312
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class snake_case_ ( snake_case_ ): __A : Dict = 'ernie_m' __A : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : List[str] , lowercase_ : int = 25_00_02 , lowercase_ : int = 7_68 , lowercase_ : int = 12 , lowercase_ : int = 12 , lowercase_ : int = 30_72 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 5_14 , lowercase_ : float = 0.02 , lowercase_ : int = 1 , lowercase_ : float = 1E-05 , lowercase_ : Dict=None , lowercase_ : Any=False , lowercase_ : Tuple=0.0 , **lowercase_ : str , ) -> int: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowercase__ : List[Any] = vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[int] = intermediate_size lowercase__ : str = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : Optional[int] = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : List[str] = initializer_range lowercase__ : Optional[int] = layer_norm_eps lowercase__ : Any = classifier_dropout lowercase__ : Dict = is_decoder lowercase__ : Optional[Any] = act_dropout
87
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(e for e in range(3 ,__UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
312
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] _UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) UpperCAmelCase__ = make_dataset() def A ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> List[str]: '''simple docstring''' for triplet in permutations(__UpperCamelCase , 3 ): if sum(__UpperCamelCase ) == target: return tuple(sorted(__UpperCamelCase ) ) return (0, 0, 0) def A ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' arr.sort() _UpperCAmelCase = len(__UpperCamelCase ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _UpperCAmelCase = '\ntriplet_sum1(*dataset)\n' _UpperCAmelCase = '\ntriplet_sum2(*dataset)\n' _UpperCAmelCase = repeat(setup=__UpperCamelCase , stmt=__UpperCamelCase , repeat=5 , number=10_000 ) _UpperCAmelCase = repeat(setup=__UpperCamelCase , stmt=__UpperCamelCase , repeat=5 , number=10_000 ) return (min(__UpperCamelCase ), min(__UpperCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase__ = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
339
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _a : """simple docstring""" @property def __A ( self : Union[str, Any] ): return self.get_dummy_input() @property def __A ( self : int ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=False , ): A_ = 4 A_ = 32 A_ = (32, 32) A_ = torch.manual_seed(0 ) A_ = torch.device(UpperCAmelCase ) A_ = (batch_size, num_channels) + sizes A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ) A_ = {"hidden_states": hidden_states} if include_temb: A_ = 128 A_ = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase , device=UpperCAmelCase ) if include_res_hidden_states_tuple: A_ = torch.manual_seed(1 ) A_ = (randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ),) if include_encoder_hidden_states: A_ = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase ) if include_skip_sample: A_ = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase , device=UpperCAmelCase ) return dummy_input def __A ( self : Optional[int] ): A_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": A_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) A_ = self.dummy_input return init_dict, inputs_dict def __A ( self : List[str] , UpperCAmelCase : Optional[Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) unet_block.to(UpperCAmelCase ) unet_block.eval() with torch.no_grad(): A_ = unet_block(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] self.assertEqual(output.shape , self.output_shape ) A_ = output[0, -1, -3:, -3:] A_ = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def __A ( self : Union[str, Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() A_ = model(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] A_ = torch.device(UpperCAmelCase ) A_ = randn_tensor(output.shape , device=UpperCAmelCase ) A_ = torch.nn.functional.mse_loss(UpperCAmelCase , UpperCAmelCase ) loss.backward()
312
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _snake_case ( lowerCamelCase__ : str="ro" , lowerCamelCase__ : Optional[int]="en" , lowerCamelCase__ : Optional[int]="wmt16" , lowerCamelCase__ : int=None ) -> List[Any]: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) lowerCamelCase_ : str =F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) lowerCamelCase_ : int =datasets.load_dataset(__UpperCamelCase , __UpperCamelCase ) if save_dir is None: lowerCamelCase_ : str =F"""{dataset}-{pair}""" lowerCamelCase_ : Optional[int] =Path(__UpperCamelCase ) save_dir.mkdir(exist_ok=__UpperCamelCase ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets lowerCamelCase_ : int ="val" if split == "validation" else split lowerCamelCase_ : List[Any] =save_dir.joinpath(F"""{fn}.source""" ) lowerCamelCase_ : Optional[int] =save_dir.joinpath(F"""{fn}.target""" ) lowerCamelCase_ : Any =src_path.open("w+" ) lowerCamelCase_ : int =tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowerCamelCase_ : List[Any] =x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
144
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __a :int = True except ImportError: __a :Optional[Any] = False try: from torch.hub import _get_torch_home __a :Optional[Any] = _get_torch_home() except ImportError: __a :Tuple = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) __a :Optional[Any] = os.path.join(torch_cache_home, 'transformers') __a :int = 'https://cdn.huggingface.co' __a :Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' __a :Optional[Any] = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) __a :str = os.path.join(PATH, 'config.yaml') __a :str = os.path.join(PATH, 'attributes.txt') __a :Optional[Any] = os.path.join(PATH, 'objects.txt') __a :Optional[int] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) __a :Dict = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) __a :List[Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) __a :List[str] = 'pytorch_model.bin' __a :Tuple = 'config.yaml' def __snake_case ( __UpperCamelCase : Optional[Any]=OBJECTS ,__UpperCamelCase : List[str]=ATTRIBUTES ): """simple docstring""" A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = OrderedDict() with open(__UpperCamelCase ,"rb" ) as f: A_ = pkl.load(__UpperCamelCase )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): A_ = ckp.pop(__UpperCamelCase ) if isinstance(__UpperCamelCase ,np.ndarray ): A_ = torch.tensor(__UpperCamelCase ) else: assert isinstance(__UpperCamelCase ,torch.tensor ), type(__UpperCamelCase ) A_ = v return r class _a : """simple docstring""" _lowerCamelCase : Union[str, Any] = {} def __init__( self : str , UpperCAmelCase : dict , UpperCAmelCase : str = "root" , UpperCAmelCase : List[str]=0 ): A_ = name A_ = level A_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() A_ = copy.deepcopy(UpperCAmelCase ) A_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) A_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) A_ = d def __repr__( self : Optional[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Any ): A_ = val A_ = val A_ = key.split("." ) A_ = len(UpperCAmelCase ) - 1 A_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , ".".join(levels[i:] ) , UpperCAmelCase ) if l == last_level: A_ = val else: A_ = pointer[l] def __A ( self : List[str] ): return self._pointer def __A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : int ): with open(f'''{file_name}''' , "w" ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): with open(f'''{file_name}''' , "w" ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def __A ( UpperCAmelCase : Optional[int] ): with open(UpperCAmelCase ) as stream: A_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self : str ): A_ = " " if self._name != "root": A_ = f'''{t * (self._level-1)}{self._name}:\n''' else: A_ = "" A_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n''' A_ = level return r[:-1] @classmethod def __A ( cls : Optional[Any] , UpperCAmelCase : str , **UpperCAmelCase : str ): A_ , A_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def __A ( cls : int , UpperCAmelCase : str , **UpperCAmelCase : int ): A_ = kwargs.pop("cache_dir" , UpperCAmelCase ) A_ = kwargs.pop("force_download" , UpperCAmelCase ) A_ = kwargs.pop("resume_download" , UpperCAmelCase ) A_ = kwargs.pop("proxies" , UpperCAmelCase ) A_ = kwargs.pop("local_files_only" , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): A_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): A_ = pretrained_model_name_or_path else: A_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached A_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError A_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: A_ = "Can't load config for" raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(UpperCAmelCase ), kwargs def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = torch.load("dump.pt" ,map_location=in_tensor.device ) A_ = in_tensor.numpy() A_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ), ( f'''{sum([1 for x in np.isclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = urlparse(__UpperCamelCase ) return parsed.scheme in ("http", "https") def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str=True ): """simple docstring""" A_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX A_ = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : int=0 ,__UpperCamelCase : int=None ,): """simple docstring""" A_ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join("{}/{}".format(__UpperCamelCase ,__UpperCamelCase ) for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent A_ = {"user-agent": ua} if resume_size > 0: A_ = "bytes=%d-" % (resume_size,) A_ = requests.get(__UpperCamelCase ,stream=__UpperCamelCase ,proxies=__UpperCamelCase ,headers=__UpperCamelCase ) if response.status_code == 416: # Range not satisfiable return A_ = response.headers.get("Content-Length" ) A_ = resume_size + int(__UpperCamelCase ) if content_length is not None else None A_ = tqdm( unit="B" ,unit_scale=__UpperCamelCase ,total=__UpperCamelCase ,initial=__UpperCamelCase ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__UpperCamelCase ) ) temp_file.write(__UpperCamelCase ) progress.close() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any=None ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : Any=10 ,__UpperCamelCase : int=False ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : str=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = None if not local_files_only: try: A_ = requests.head(__UpperCamelCase ,allow_redirects=__UpperCamelCase ,proxies=__UpperCamelCase ,timeout=__UpperCamelCase ) if response.status_code == 200: A_ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass A_ = url_to_filename(__UpperCamelCase ,__UpperCamelCase ) # get cache path to put the file A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__UpperCamelCase ): return cache_path else: A_ = [ file for file in fnmatch.filter(os.listdir(__UpperCamelCase ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(__UpperCamelCase ) > 0: return os.path.join(__UpperCamelCase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(__UpperCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. A_ = cache_path + ".lock" with FileLock(__UpperCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__UpperCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: A_ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(__UpperCamelCase ,"a+b" ) as f: yield f A_ = _resumable_file_manager if os.path.exists(__UpperCamelCase ): A_ = os.stat(__UpperCamelCase ).st_size else: A_ = 0 else: A_ = partial(tempfile.NamedTemporaryFile ,dir=__UpperCamelCase ,delete=__UpperCamelCase ) A_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,__UpperCamelCase ,temp_file.name ,) http_get( __UpperCamelCase ,__UpperCamelCase ,proxies=__UpperCamelCase ,resume_size=__UpperCamelCase ,user_agent=__UpperCamelCase ,) os.replace(temp_file.name ,__UpperCamelCase ) A_ = {"url": url, "etag": etag} A_ = cache_path + ".json" with open(__UpperCamelCase ,"w" ) as meta_file: json.dump(__UpperCamelCase ,__UpperCamelCase ) return cache_path def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : str=None ): """simple docstring""" A_ = url.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) A_ = url_hash.hexdigest() if etag: A_ = etag.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : Any=False ,__UpperCamelCase : Optional[int]=None ,__UpperCamelCase : Optional[Any]=False ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Optional[Any]=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if is_remote_url(__UpperCamelCase ): # URL, so get it from the cache (downloading if necessary) A_ = get_from_cache( __UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,user_agent=__UpperCamelCase ,local_files_only=__UpperCamelCase ,) elif os.path.exists(__UpperCamelCase ): # File, and it exists. A_ = url_or_filename elif urlparse(__UpperCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(__UpperCamelCase ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(__UpperCamelCase ) ) if extract_compressed_file: if not is_zipfile(__UpperCamelCase ) and not tarfile.is_tarfile(__UpperCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" A_ , A_ = os.path.split(__UpperCamelCase ) A_ = output_file.replace("." ,"-" ) + "-extracted" A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) if os.path.isdir(__UpperCamelCase ) and os.listdir(__UpperCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions A_ = output_path + ".lock" with FileLock(__UpperCamelCase ): shutil.rmtree(__UpperCamelCase ,ignore_errors=__UpperCamelCase ) os.makedirs(__UpperCamelCase ) if is_zipfile(__UpperCamelCase ): with ZipFile(__UpperCamelCase ,"r" ) as zip_file: zip_file.extractall(__UpperCamelCase ) zip_file.close() elif tarfile.is_tarfile(__UpperCamelCase ): A_ = tarfile.open(__UpperCamelCase ) tar_file.extractall(__UpperCamelCase ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(__UpperCamelCase ) ) return output_path_extracted return output_path def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any="," ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase ) as f: A_ = eval(f.read() ) else: A_ = requests.get(__UpperCamelCase ) try: A_ = requests.json() except Exception: A_ = req.content.decode() assert data is not None, "could not connect" try: A_ = eval(__UpperCamelCase ) except Exception: A_ = data.split("\n" ) req.close() return data def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = requests.get(__UpperCamelCase ) A_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__UpperCamelCase ) with open(__UpperCamelCase ,"rb" ) as stream: A_ = pkl.load(__UpperCamelCase ) A_ = weights.pop("model" ) A_ = {} for k, v in model.items(): A_ = torch.from_numpy(__UpperCamelCase ) if "running_var" in k: A_ = torch.tensor([0] ) A_ = k.replace("running_var" ,"num_batches_tracked" ) A_ = zero return new def __snake_case ( ): """simple docstring""" print(f'''{os.path.abspath(os.path.join(__UpperCamelCase ,os.pardir ) )}/demo.ipynb''' ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int]="RGB" ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): A_ = cva.imread(__UpperCamelCase ) else: A_ = get_image_from_url(__UpperCamelCase ) assert img is not None, f'''could not connect to: {im}''' A_ = cva.cvtColor(__UpperCamelCase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": A_ = img[:, :, ::-1] return img def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[str]=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(__UpperCamelCase ) ,__UpperCamelCase ))
312
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu UpperCAmelCase : Dict = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, '''r''', encoding='''utf-8''') as f: UpperCAmelCase : str = json.load(f) @require_torch class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self , _A ): return FSMTTokenizer.from_pretrained(_A ) def UpperCAmelCase_ ( self , _A ): __A : int = FSMTForConditionalGeneration.from_pretrained(_A ).to(_A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def UpperCAmelCase_ ( self , _A , _A ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __A : Tuple = F"""facebook/wmt19-{pair}""" __A : List[Any] = self.get_tokenizer(_A ) __A : Union[str, Any] = self.get_model(_A ) __A : Any = bleu_data[pair]['src'] __A : Any = bleu_data[pair]['tgt'] __A : Tuple = tokenizer(_A , return_tensors='pt' , truncation=_A , padding='longest' ).to(_A ) __A : Tuple = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __A : str = tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) __A : Dict = calculate_bleu(_A , _A ) print(_A ) self.assertGreaterEqual(scores['bleu'] , _A )
280
from __future__ import annotations def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(__UpperCamelCase ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
312
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) def _lowerCamelCase ( lowercase : Dict ) -> List[str]: _a = r"\w+[.]\d+" _a = re.findall(__UpperCamelCase , __UpperCamelCase ) for pat in pats: _a = key.replace(__UpperCamelCase , "_".join(pat.split("." ) ) ) return key def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : int ) -> List[Any]: _a = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _a = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _a = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _a = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer _a = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _a = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _a = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": _a = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _a = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _a = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _lowerCamelCase ( lowercase : List[str] , lowercase : List[str] , lowercase : int=42 ) -> Union[str, Any]: _a = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _a = flax_model.init_weights(PRNGKey(__UpperCamelCase ) ) _a = flatten_dict(__UpperCamelCase ) _a = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _a = rename_key(__UpperCamelCase ) _a = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters _a , _a = rename_key_and_reshape_tensor(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown _a = jnp.asarray(__UpperCamelCase ) return unflatten_dict(__UpperCamelCase )
63
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __a :int = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : int = 101 ): A_ = length def __len__( self : int ): return self.length def __getitem__( self : Optional[int] , UpperCAmelCase : Optional[int] ): return i class _a : """simple docstring""" def __call__( self : Any , UpperCAmelCase : Optional[Any] ): return {"input_ids": torch.tensor(UpperCAmelCase ), "labels": torch.tensor(UpperCAmelCase )} class _a ( nn.Module ): """simple docstring""" def __init__( self : int ): super().__init__() # Add some (unused) params otherwise DDP will complain. A_ = nn.Linear(120 , 80 ) def __A ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Tuple=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _a ( snake_case_ ): """simple docstring""" @require_torch_neuroncore def __A ( self : List[str] ): A_ = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _a ( snake_case_ ): """simple docstring""" @require_torch_multi_gpu def __A ( self : List[str] ): A_ = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __a :Union[str, Any] = HfArgumentParser((TrainingArguments,)) __a :Tuple = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __a :int = DummyDataset(dataset_length) def __snake_case ( __UpperCamelCase : EvalPrediction ): """simple docstring""" A_ = list(range(len(__UpperCamelCase ) ) ) A_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} __a :str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __a :str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Optional[int] = 2 __a :List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Union[str, Any] = None
312
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowercase__ ( snake_case_ ): '''simple docstring''' A_ : Dict = 'gpt_bigcode' A_ : Dict = ['past_key_values'] A_ : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __snake_case=5_0257 , __snake_case=1024 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=None , __snake_case="gelu_pytorch_tanh" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=1e-5 , __snake_case=0.02 , __snake_case=True , __snake_case=True , __snake_case=5_0256 , __snake_case=5_0256 , __snake_case=True , __snake_case=True , __snake_case=True , **__snake_case , ): _SCREAMING_SNAKE_CASE : List[Any] = vocab_size _SCREAMING_SNAKE_CASE : int = n_positions _SCREAMING_SNAKE_CASE : List[str] = n_embd _SCREAMING_SNAKE_CASE : str = n_layer _SCREAMING_SNAKE_CASE : List[str] = n_head _SCREAMING_SNAKE_CASE : List[str] = n_inner _SCREAMING_SNAKE_CASE : Optional[Any] = activation_function _SCREAMING_SNAKE_CASE : Tuple = resid_pdrop _SCREAMING_SNAKE_CASE : Dict = embd_pdrop _SCREAMING_SNAKE_CASE : List[str] = attn_pdrop _SCREAMING_SNAKE_CASE : List[Any] = layer_norm_epsilon _SCREAMING_SNAKE_CASE : str = initializer_range _SCREAMING_SNAKE_CASE : Optional[int] = scale_attn_weights _SCREAMING_SNAKE_CASE : Optional[Any] = use_cache _SCREAMING_SNAKE_CASE : List[str] = attention_softmax_in_fpaa _SCREAMING_SNAKE_CASE : Optional[Any] = scale_attention_softmax_in_fpaa _SCREAMING_SNAKE_CASE : Dict = multi_query _SCREAMING_SNAKE_CASE : Optional[int] = bos_token_id _SCREAMING_SNAKE_CASE : Union[str, Any] = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
200
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __a :Any = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = "huggingface/label-files" A_ = "imagenet-1k-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = {v: k for k, v in idalabel.items()} A_ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" A_ = BitConfig( conv_layer=__UpperCamelCase ,num_labels=1000 ,idalabel=__UpperCamelCase ,labelaid=__UpperCamelCase ,) return config def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if "stem.conv" in name: A_ = name.replace("stem.conv" ,"bit.embedder.convolution" ) if "blocks" in name: A_ = name.replace("blocks" ,"layers" ) if "head.fc" in name: A_ = name.replace("head.fc" ,"classifier.1" ) if name.startswith("norm" ): A_ = "bit." + name if "bit" not in name and "classifier" not in name: A_ = "bit.encoder." + name return name def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Tuple=False ): """simple docstring""" A_ = get_config(__UpperCamelCase ) # load original model from timm A_ = create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model A_ = timm_model.state_dict() for key in state_dict.copy().keys(): A_ = state_dict.pop(__UpperCamelCase ) A_ = val.squeeze() if "head" in key else val # load HuggingFace model A_ = BitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # create image processor A_ = create_transform(**resolve_data_config({} ,model=__UpperCamelCase ) ) A_ = transform.transforms A_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A_ = BitImageProcessor( do_resize=__UpperCamelCase ,size={"shortest_edge": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=__UpperCamelCase ,crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} ,do_normalize=__UpperCamelCase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) A_ = prepare_img() A_ = transform(__UpperCamelCase ).unsqueeze(0 ) A_ = processor(__UpperCamelCase ,return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ) # verify logits with torch.no_grad(): A_ = model(__UpperCamelCase ) A_ = outputs.logits print("Logits:" ,logits[0, :3] ) print("Predicted class:" ,model.config.idalabel[logits.argmax(-1 ).item()] ) A_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __a :str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
312
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" assert column_title.isupper() __A = 0 __A = len(__UpperCamelCase ) - 1 __A = 0 while index >= 0: __A = (ord(column_title[index] ) - 6_4) * pow(2_6 , __UpperCamelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
266
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __a :Dict = get_logger(__name__) __a :Union[str, Any] = Path(__file__).parent / 'model_card_template.md' __a :Tuple = uuida().hex __a :List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __a :Union[str, Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __a :Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __snake_case ( __UpperCamelCase : Union[Dict, str, None] = None ): """simple docstring""" A_ = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" ,"" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent return ua def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if token is None: A_ = HfFolder.get_token() if organization is None: A_ = whoami(__UpperCamelCase )["name"] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__UpperCamelCase ,"local_rank" ) and args.local_rank not in [-1, 0]: return A_ = args.hub_token if hasattr(__UpperCamelCase ,"hub_token" ) else None A_ = get_full_repo_name(__UpperCamelCase ,token=__UpperCamelCase ) A_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" ,license="apache-2.0" ,library_name="diffusers" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=__UpperCamelCase ,model_name=__UpperCamelCase ,repo_name=__UpperCamelCase ,dataset_name=args.dataset_name if hasattr(__UpperCamelCase ,"dataset_name" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase ,"gradient_accumulation_steps" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta1" ) else None ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta2" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase ,"adam_weight_decay" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase ,"adam_epsilon" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase ,"lr_scheduler" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase ,"lr_warmup_steps" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase ,"ema_inv_gamma" ) else None ,ema_power=args.ema_power if hasattr(__UpperCamelCase ,"ema_power" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase ,"ema_max_decay" ) else None ,mixed_precision=args.mixed_precision ,) A_ = os.path.join(args.output_dir ,"README.md" ) model_card.save(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash A_ = str(Path(__UpperCamelCase ).as_posix() ) A_ = re.search(R"snapshots/([^/]+)/" ,__UpperCamelCase ) if search is None: return None A_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __a :str = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __a :List[Any] = os.path.join(hf_cache_home, 'diffusers') def __snake_case ( __UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: A_ = DIFFUSERS_CACHE if old_cache_dir is None: A_ = old_diffusers_cache A_ = Path(__UpperCamelCase ).expanduser() A_ = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A_ = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase ,__UpperCamelCase ) try: os.symlink(__UpperCamelCase ,__UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __a :Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __a :Optional[int] = 0 else: with open(cache_version_file) as f: try: __a :Dict = int(f.read()) except ValueError: __a :str = 0 if cache_version < 1: __a :Optional[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __a :Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if variant is not None: A_ = weights_name.split("." ) A_ = splits[:-1] + [variant] + splits[-1:] A_ = ".".join(__UpperCamelCase ) return weights_name def __snake_case ( __UpperCamelCase : Optional[Any] ,*, __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int]=None ,): """simple docstring""" A_ = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ): # Load from a PyTorch checkpoint A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ): A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: A_ = hf_hub_download( __UpperCamelCase ,filename=_add_variant(__UpperCamelCase ,__UpperCamelCase ) ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' ,__UpperCamelCase ,) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase ,__UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase ,__UpperCamelCase )}\' so that the correct variant file can be added.''' ,__UpperCamelCase ,) try: # 2. Load model file as usual A_ = hf_hub_download( __UpperCamelCase ,filename=__UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
312
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCamelCase : str = logging.get_logger(__name__) class __lowerCAmelCase ( snake_case_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
316
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
0
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _a = False class A_ ( unittest.TestCase ): pass @slow @require_torch_gpu class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : str ) -> Optional[Any]: __lowerCAmelCase: Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowerCAmelCase: int = torch.manual_seed(0 ) __lowerCAmelCase: Union[str, Any] = pipe( image=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowerCAmelCase: int = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: str = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
322
import functools from typing import Any def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : list[str] ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or len(__UpperCamelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not all( isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie A_ = {} A_ = "WORD_KEEPER" for word in words: A_ = trie for c in word: if c not in trie_node: A_ = {} A_ = trie_node[c] A_ = True A_ = len(__UpperCamelCase ) # Dynamic programming method @functools.cache def is_breakable(__UpperCamelCase : int ) -> bool: if index == len_string: return True A_ = trie for i in range(__UpperCamelCase ,__UpperCamelCase ): A_ = trie_node.get(string[i] ,__UpperCamelCase ) if trie_node is None: return False if trie_node.get(__UpperCamelCase ,__UpperCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
__UpperCAmelCase = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
119
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __a :List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __a :Union[str, Any] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __a :Optional[int] = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } __a :str = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = ElectraTokenizer def __init__( self : Tuple , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=True , UpperCAmelCase : Any="[UNK]" , UpperCAmelCase : Union[str, Any]="[SEP]" , UpperCAmelCase : List[Any]="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : List[Any]="[MASK]" , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Union[str, Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
312
0
from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = str(__UpperCamelCase ) return len(__UpperCamelCase ) == 9 and set(__UpperCamelCase ) == set("""123456789""" ) def lowerCAmelCase_ ( ): for base_num in range(9999,4999,-1 ): _A : List[str] = 100002 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate for base_num in range(333,99,-1 ): _A : Optional[Any] = 1002003 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate return None if __name__ == "__main__": print(f"""{solution() = }""")
26
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __a :Optional[Any] = logging.get_logger(__name__) __a :Dict[Optional[str], Type[Formatter]] = {} __a :Dict[Optional[str], str] = {} __a :Dict[Optional[str], Exception] = {} def __snake_case ( __UpperCamelCase : type ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ,): """simple docstring""" A_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) A_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) A_ = format_type def __snake_case ( __UpperCamelCase : Exception ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ): """simple docstring""" A_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: __a :List[Any] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: __a :List[str] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: __a :Tuple = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __snake_case ( __UpperCamelCase : Optional[str] ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __snake_case ( __UpperCamelCase : Optional[str] ,**__UpperCamelCase : List[Any] ): """simple docstring""" A_ = get_format_type_from_alias(__UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
312
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase_ ( ): lowercase__ : Dict = torch.nn.Linear(2 , 4) lowercase__ : Tuple = torch.optim.AdamW(model.parameters() , lr=1.0) lowercase__ : Optional[int] = torch.optim.lr_scheduler.OneCycleLR(__UpperCamelCase , max_lr=0.01 , steps_per_epoch=2 , epochs=1) lowercase__ : Any = DataLoader(TensorDataset(torch.tensor([1, 2, 3]))) lowercase__ : Any = DataLoader(TensorDataset(torch.tensor([4, 5, 6]))) return model, optimizer, scheduler, train_dl, valid_dl def lowercase_ ( _lowerCamelCase : Tuple): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : Optional[int] = torch.nn.Linear(*tuple(model.weight.T.shape)).state_dict() model.load_state_dict(__UpperCamelCase) class snake_case_ ( snake_case_ ): @require_cuda def __UpperCamelCase ( self : Any ) -> Optional[Any]: lowercase__ : Dict = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowercase_ ): lowercase__ : Any = Accelerator(cpu=lowercase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: lowercase__ : Union[str, Any] = Accelerator() lowercase__ : Optional[int] = GradientState() assert state.num_steps == 1 lowercase__ : Dict = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowercase__ : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def __UpperCamelCase ( self : List[str] ) -> Dict: lowercase__ : Any = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = create_components() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[Any] = accelerator.prepare(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __UpperCamelCase ( self : Dict ) -> Tuple: lowercase__ : Dict = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = create_components() accelerator.prepare(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __UpperCamelCase ( self : List[str] ) -> Dict: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowercase_ : Dict , **lowercase_ : List[Any] ): pass with patch("torch.cuda.set_device" , lowercase_ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): lowercase__ : Optional[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: lowercase__ : str = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = create_components() accelerator.prepare(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = get_signature(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) def __UpperCamelCase ( self : Tuple ) -> Dict: lowercase__ : List[str] = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : int = create_components() accelerator.prepare(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = get_signature(lowercase_ ) # saving hook def save_config(lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] ): lowercase__ : Union[str, Any] = {"class_name": models[0].__class__.__name__} with open(os.path.join(lowercase_ , "data.json" ) , "w" ) as f: json.dump(lowercase_ , lowercase_ ) # loading hook def load_config(lowercase_ : Optional[int] , lowercase_ : str ): with open(os.path.join(lowercase_ , "data.json" ) , "r" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Any = config["class_name"] lowercase__ : Optional[int] = accelerator.register_save_state_pre_hook(lowercase_ ) lowercase__ : Optional[Any] = accelerator.register_load_state_pre_hook(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match with hooks load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded lowercase__ : Tuple = "random" # make sure loaded weights match with hooks accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match with hooks removed load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded lowercase__ : List[str] = "random" # make sure loaded weights match with hooks removed accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __UpperCamelCase ( self : Dict ) -> Dict: lowercase__ : List[str] = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = create_components() lowercase__ : Dict = None # This should work lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) self.assertTrue(dummy_obj is None ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowercase__ : List[Any] = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = create_components() lowercase__ : int = [1, 2, 3] # This should work lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[Any] = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase_ , "_is_accelerate_prepared" , lowercase_ ) , lowercase_ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __UpperCamelCase ( self : List[Any] ) -> Tuple: from transformers import AutoModelForCausalLM lowercase__ : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase_ , device_map={"": 0} , ) lowercase__ : int = Accelerator() # This should work lowercase__ : List[str] = accelerator.prepare(lowercase_ ) @slow @require_bnb def __UpperCamelCase ( self : List[str] ) -> List[str]: from transformers import AutoModelForCausalLM lowercase__ : Tuple = Accelerator() with init_empty_weights(): lowercase__ : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowercase__ : Dict = infer_auto_device_map(lowercase_ ) lowercase__ : Optional[Any] = "cpu" lowercase__ : List[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=lowercase_ , load_in_abit=lowercase_ , llm_inta_enable_fpaa_cpu_offload=lowercase_ ) # This should not work and get value error with self.assertRaises(lowercase_ ): lowercase__ : Union[str, Any] = accelerator.prepare(lowercase_ ) @slow @require_bnb @require_multi_gpu def __UpperCamelCase ( self : Any ) -> List[str]: from transformers import AutoModelForCausalLM lowercase__ : int = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowercase__ : Union[str, Any] = infer_auto_device_map(lowercase_ ) lowercase__ : List[Any] = 1 lowercase__ : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase_ , device_map=lowercase_ , ) lowercase__ : str = Accelerator() # This should not work and get value error with self.assertRaises(lowercase_ ): lowercase__ : Tuple = accelerator.prepare(lowercase_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: from transformers import AutoModelForCausalLM with init_empty_weights(): lowercase__ : int = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) lowercase__ : Any = infer_auto_device_map(lowercase_ ) lowercase__ : int = 1 lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase_ , device_map=lowercase_ , ) lowercase__ : str = Accelerator() # This should work lowercase__ : Optional[Any] = accelerator.prepare(lowercase_ ) @require_cuda def __UpperCamelCase ( self : List[Any] ) -> List[Any]: lowercase__ : Union[str, Any] = torch.nn.Linear(10 , 10 ) lowercase__ : int = torch.optim.SGD(model.parameters() , lr=0.01 ) lowercase__ : int = Accelerator(cpu=lowercase_ ) lowercase__ : List[Any] = accelerator.prepare(lowercase_ )
87
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a :int = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
312
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class __lowerCAmelCase : @property def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" return self.get_dummy_input() @property def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.") def _lowerCamelCase ( self : Union[str, Any] , A : List[Any]=True , A : str=False , A : Tuple=False , A : Optional[Any]=False , ) -> Any: """simple docstring""" _UpperCAmelCase = 4 _UpperCAmelCase = 32 _UpperCAmelCase = (32, 32) _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = torch.device(A) _UpperCAmelCase = (batch_size, num_channels) + sizes _UpperCAmelCase = randn_tensor(A , generator=A , device=A) _UpperCAmelCase = {'hidden_states': hidden_states} if include_temb: _UpperCAmelCase = 1_28 _UpperCAmelCase = randn_tensor((batch_size, temb_channels) , generator=A , device=A) if include_res_hidden_states_tuple: _UpperCAmelCase = torch.manual_seed(1) _UpperCAmelCase = (randn_tensor(A , generator=A , device=A),) if include_encoder_hidden_states: _UpperCAmelCase = floats_tensor((batch_size, 32, 32)).to(A) if include_skip_sample: _UpperCAmelCase = randn_tensor(((batch_size, 3) + sizes) , generator=A , device=A) return dummy_input def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCAmelCase = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 1_28, } if self.block_type == "up": _UpperCAmelCase = 32 if self.block_type == "mid": init_dict.pop('out_channels') _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self : List[str] , A : Optional[Any]) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.block_class(**A) unet_block.to(A) unet_block.eval() with torch.no_grad(): _UpperCAmelCase = unet_block(**A) if isinstance(A , A): _UpperCAmelCase = output[0] self.assertEqual(output.shape , self.output_shape) _UpperCAmelCase = output[0, -1, -3:, -3:] _UpperCAmelCase = torch.tensor(A).to(A) assert torch_all_close(output_slice.flatten() , A , atol=5E-3) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps') def _lowerCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.block_class(**A) model.to(A) model.train() _UpperCAmelCase = model(**A) if isinstance(A , A): _UpperCAmelCase = output[0] _UpperCAmelCase = torch.device(A) _UpperCAmelCase = randn_tensor(output.shape , device=A) _UpperCAmelCase = torch.nn.functional.mse_loss(A , A) loss.backward()
339
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()} ) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def __A ( self : str , UpperCAmelCase : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , UpperCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) A_ = copy.deepcopy(self ) A_ = self.label_schema.copy() A_ = features[self.label_column] A_ = label_schema return task_template @property def __A ( self : List[str] ): return { self.audio_column: "audio", self.label_column: "labels", }
312
0
"""simple docstring""" from bisect import bisect from itertools import accumulate def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: lowerCamelCase_ : Dict =sorted(zip(__UpperCamelCase , __UpperCamelCase ) , key=lambda lowerCamelCase__ : x[0] / x[1] , reverse=__UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ : Any =[i[0] for i in r], [i[1] for i in r] lowerCamelCase_ : Union[str, Any] =list(accumulate(__UpperCamelCase ) ) lowerCamelCase_ : Optional[Any] =bisect(__UpperCamelCase , __UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
144
def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,16 ) for i in range(0 ,len(__UpperCamelCase ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _A( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = IFInpaintingPipeline UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCAmelCase_ ( self ): return self._get_dummy_components() def UpperCAmelCase_ ( self , _A , _A=0 ): if str(_A ).startswith('mps' ): __A : Union[str, Any] = torch.manual_seed(_A ) else: __A : int = torch.Generator(device=_A ).manual_seed(_A ) __A : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __A : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __A : int = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase_ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCAmelCase_ ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase_ ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase_ ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase_ ( self ): self._test_save_load_local() def UpperCAmelCase_ ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
280
import cva import numpy as np class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : float , UpperCAmelCase : int ): if k in (0.04, 0.06): A_ = k A_ = window_size else: raise ValueError("invalid k value" ) def __str__( self : Optional[Any] ): return str(self.k ) def __A ( self : int , UpperCAmelCase : str ): A_ = cva.imread(UpperCAmelCase , 0 ) A_ , A_ = img.shape A_ = [] A_ = img.copy() A_ = cva.cvtColor(UpperCAmelCase , cva.COLOR_GRAY2RGB ) A_ , A_ = np.gradient(UpperCAmelCase ) A_ = dx**2 A_ = dy**2 A_ = dx * dy A_ = 0.04 A_ = self.window_size // 2 for y in range(UpperCAmelCase , h - offset ): for x in range(UpperCAmelCase , w - offset ): A_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = (wxx * wyy) - (wxy**2) A_ = wxx + wyy A_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __a :List[str] = HarrisCorner(0.04, 3) __a , __a :str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
312
0
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _lowerCamelCase ( lowercase : str , lowercase : complex , lowercase : str = "x" , lowercase : float = 10**-10 , lowercase : int = 1 , ) -> Optional[int]: _a = symbols(__UpperCamelCase ) _a = lambdify(__UpperCamelCase , __UpperCamelCase ) _a = lambdify(__UpperCamelCase , diff(__UpperCamelCase , __UpperCamelCase ) ) _a = starting_point while True: if diff_function(__UpperCamelCase ) != 0: _a = prev_guess - multiplicity * func(__UpperCamelCase ) / diff_function( __UpperCamelCase ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _a = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
63
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
312
0
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase__ ( snake_case_ ): '''simple docstring''' A_ : Union[str, Any] = ['image_processor', 'tokenizer'] A_ : Tuple = 'OwlViTImageProcessor' A_ : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __snake_case=None , __snake_case=None , **__snake_case ): _SCREAMING_SNAKE_CASE : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __snake_case , ) _SCREAMING_SNAKE_CASE : Any = kwargs.pop("""feature_extractor""" ) _SCREAMING_SNAKE_CASE : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__snake_case , __snake_case ) def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case="max_length" , __snake_case="np" , **__snake_case ): if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__snake_case , __snake_case ) or (isinstance(__snake_case , __snake_case ) and not isinstance(text[0] , __snake_case )): _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case , **__snake_case )] elif isinstance(__snake_case , __snake_case ) and isinstance(text[0] , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[Any] = [] # Maximum number of queries across batch _SCREAMING_SNAKE_CASE : Any = max([len(__snake_case ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__snake_case ) != max_num_queries: _SCREAMING_SNAKE_CASE : List[str] = t + [""" """] * (max_num_queries - len(__snake_case )) _SCREAMING_SNAKE_CASE : Any = self.tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case , **__snake_case ) encodings.append(__snake_case ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": _SCREAMING_SNAKE_CASE : Optional[int] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) _SCREAMING_SNAKE_CASE : Dict = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _SCREAMING_SNAKE_CASE : str = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) _SCREAMING_SNAKE_CASE : List[str] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _SCREAMING_SNAKE_CASE : int = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) _SCREAMING_SNAKE_CASE : str = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _SCREAMING_SNAKE_CASE : Optional[Any] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) _SCREAMING_SNAKE_CASE : int = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = BatchEncoding() _SCREAMING_SNAKE_CASE : Dict = input_ids _SCREAMING_SNAKE_CASE : List[Any] = attention_mask if query_images is not None: _SCREAMING_SNAKE_CASE : Dict = BatchEncoding() _SCREAMING_SNAKE_CASE : List[str] = self.image_processor( __snake_case , return_tensors=__snake_case , **__snake_case ).pixel_values _SCREAMING_SNAKE_CASE : int = query_pixel_values if images is not None: _SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and images is not None: _SCREAMING_SNAKE_CASE : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _SCREAMING_SNAKE_CASE : Tuple = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def UpperCAmelCase_ ( self , *__snake_case , **__snake_case ): return self.image_processor.post_process(*__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , *__snake_case , **__snake_case ): return self.image_processor.post_process_object_detection(*__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , *__snake_case , **__snake_case ): return self.image_processor.post_process_image_guided_detection(*__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , *__snake_case , **__snake_case ): return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , *__snake_case , **__snake_case ): return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def UpperCAmelCase_ ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __snake_case , ) return self.image_processor_class @property def UpperCAmelCase_ ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __snake_case , ) return self.image_processor
200
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['image_processor', 'tokenizer'] _lowerCamelCase : Tuple = 'OwlViTImageProcessor' _lowerCamelCase : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any ): A_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) A_ = kwargs.pop("feature_extractor" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="max_length" , UpperCAmelCase : Optional[Any]="np" , **UpperCAmelCase : Optional[int] ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCAmelCase , UpperCAmelCase ) or (isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(text[0] , UpperCAmelCase )): A_ = [self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )] elif isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(text[0] , UpperCAmelCase ): A_ = [] # Maximum number of queries across batch A_ = max([len(UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase ) != max_num_queries: A_ = t + [" "] * (max_num_queries - len(UpperCAmelCase )) A_ = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) encodings.append(UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": A_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) A_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) A_ = BatchEncoding() A_ = input_ids A_ = attention_mask if query_images is not None: A_ = BatchEncoding() A_ = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ).pixel_values A_ = query_pixel_values if images is not None: A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def __A ( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ): return self.image_processor.post_process(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : str , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): return self.image_processor.post_process_object_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : int ): return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def __A ( self : Optional[Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
312
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase_ = 25_0004 lowercase_ = 25_0020 @require_sentencepiece @require_tokenizers class snake_case ( snake_case_ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = MBartTokenizer A_ : List[str] = MBartTokenizerFast A_ : Tuple = True A_ : Tuple = True def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __A = MBartTokenizer(_lowerCamelCase, keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = MBartTokenizer(_lowerCamelCase, keep_accents=_lowerCamelCase ) __A = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ), [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]], ) __A = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ], ) __A = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ], ) __A = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ], ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __A = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __A = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase, **_lowerCamelCase ) __A = self.tokenizer_class.from_pretrained(_lowerCamelCase, **_lowerCamelCase ) __A = tempfile.mkdtemp() __A = tokenizer_r.save_pretrained(_lowerCamelCase ) __A = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __A = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowerCamelCase, _lowerCamelCase ) # Checks everything loads correctly in the same way __A = tokenizer_r.from_pretrained(_lowerCamelCase ) __A = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase, _lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=True __A = tempfile.mkdtemp() __A = tokenizer_r.save_pretrained(_lowerCamelCase, legacy_format=_lowerCamelCase ) __A = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCamelCase, _lowerCamelCase ) # Checks everything loads correctly in the same way __A = tokenizer_r.from_pretrained(_lowerCamelCase ) __A = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase, _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=False __A = tempfile.mkdtemp() __A = tokenizer_r.save_pretrained(_lowerCamelCase, legacy_format=_lowerCamelCase ) __A = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __A = tokenizer_r.from_pretrained(_lowerCamelCase ) __A = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase, _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): '''simple docstring''' A_ : List[str] = 'facebook/mbart-large-en-ro' A_ : str = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] A_ : Union[str, Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] A_ : Tuple = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple ): '''simple docstring''' __A = MBartTokenizer.from_pretrained( cls.checkpoint_name, src_lang='''en_XX''', tgt_lang='''ro_RO''' ) __A = 1 return cls def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''], 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''], 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''], 25_00_20 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' self.assertIn(_lowerCamelCase, self.tokenizer.all_special_ids ) __A = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __A = self.tokenizer.decode(_lowerCamelCase, skip_special_tokens=_lowerCamelCase ) __A = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase, _lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0], _lowerCamelCase ) __A = 10 __A = self.tokenizer(_lowerCamelCase, max_length=_lowerCamelCase, truncation=_lowerCamelCase ).input_ids[0] self.assertEqual(ids[-2], 2 ) self.assertEqual(ids[-1], _lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ), _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ), [25_00_26, 25_00_01] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = tempfile.mkdtemp() __A = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCamelCase ) __A = MBartTokenizer.from_pretrained(_lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, _lowerCamelCase ) @require_torch def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=_lowerCamelCase, return_tensors='''pt''' ) __A = shift_tokens_right(batch['''labels'''], self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=_lowerCamelCase, truncation=_lowerCamelCase, max_length=len(self.expected_src_tokens ), return_tensors='''pt''', ) __A = shift_tokens_right(batch['''labels'''], self.tokenizer.pad_token_id ) self.assertIsInstance(_lowerCamelCase, _lowerCamelCase ) self.assertEqual((2, 14), batch.input_ids.shape ) self.assertEqual((2, 14), batch.attention_mask.shape ) __A = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, _lowerCamelCase ) self.assertEqual(2, batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, EN_CODE] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = self.tokenizer(self.src_text, padding=_lowerCamelCase, truncation=_lowerCamelCase, max_length=3, return_tensors='''pt''' ) __A = self.tokenizer( text_target=self.tgt_text, padding=_lowerCamelCase, truncation=_lowerCamelCase, max_length=10, return_tensors='''pt''' ) __A = targets['''input_ids'''] __A = shift_tokens_right(_lowerCamelCase, self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = self.tokenizer._build_translation_inputs( '''A test''', return_tensors='''pt''', src_lang='''en_XX''', tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_lowerCamelCase ), { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, }, )
266
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Dict , UpperCAmelCase : int = 768 , ): super().__init__() A_ = nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) A_ = nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def __A ( self : str , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ): A_ = nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) A_ = nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def __A ( self : Dict , UpperCAmelCase : List[Any] ): A_ = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self : int , UpperCAmelCase : int ): A_ = (embeds * self.std) + self.mean return embeds
312
0
"""simple docstring""" from __future__ import annotations def A ( snake_case :list[list[int]] ) -> Dict: for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__UpperCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
316
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __snake_case ( __UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ,): """simple docstring""" A_ , A_ = coefficient_matrix.shape A_ , A_ = constant_matrix.shape if rowsa != colsa: A_ = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if colsa != 1: A_ = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if rowsa != rowsa: A_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: A_ = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(__UpperCamelCase )} and {rowsa}''' ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) A_ = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) A_ , A_ = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): A_ = [] for row in range(__UpperCamelCase ): A_ = 0 for col in range(__UpperCamelCase ): if col == row: A_ = table[row][col] elif col == cols - 1: A_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ = (temp + val) / denom new_val.append(__UpperCamelCase ) A_ = new_val return [float(__UpperCamelCase ) for i in new_val] def __snake_case ( __UpperCamelCase : NDArray[floataa] ): """simple docstring""" A_ , A_ = table.shape A_ = True for i in range(0 ,__UpperCamelCase ): A_ = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
312
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
322
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __snake_case ( ): """simple docstring""" A_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } A_ = Dataset.from_dict(__UpperCamelCase ) return dataset class _a ( snake_case_ ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = get_dataset() A_ = make_duplicate_clusters(UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __A ( self : List[Any] ): A_ = get_dataset() A_ , A_ = deduplicate_dataset(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 2 ) print(UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , UpperCAmelCase )
312
0
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=snake_case_ ): UpperCAmelCase__ : List[str] = ['keras_nlp'] def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Tuple: requires_backends(self, ['keras_nlp'] )
119
import os from typing import Dict, List, Tuple, TypeVar, Union __a :Any = TypeVar('T') __a :Union[str, Any] = Union[List[T], Tuple[T, ...]] __a :List[str] = Union[T, List[T], Dict[str, T]] __a :Any = Union[str, bytes, os.PathLike]
312
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,): _A , _A : Dict = coefficient_matrix.shape _A , _A : Union[str, Any] = constant_matrix.shape if rowsa != colsa: _A : Optional[int] = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if colsa != 1: _A : Optional[Any] = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if rowsa != rowsa: _A : Dict = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: _A : str = ( """Number of initial values must be equal to number of rows in coefficient """ f'''matrix but received {len(__UpperCamelCase )} and {rowsa}''' ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) _A : Dict = np.concatenate( (coefficient_matrix, constant_matrix),axis=1 ) _A , _A : Union[str, Any] = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): _A : Optional[int] = [] for row in range(__UpperCamelCase ): _A : List[Any] = 0 for col in range(__UpperCamelCase ): if col == row: _A : Optional[int] = table[row][col] elif col == cols - 1: _A : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _A : str = (temp + val) / denom new_val.append(__UpperCamelCase ) _A : int = new_val return [float(__UpperCamelCase ) for i in new_val] def lowerCAmelCase_ ( snake_case_ ): _A , _A : int = table.shape _A : Any = True for i in range(0,__UpperCamelCase ): _A : Optional[Any] = 0 for j in range(0,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
26
__a :Dict = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
312
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') UpperCamelCase = logging.getLogger(__name__) @dataclass class snake_case_ : __A : Optional[int] = field( default=128 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __A : bool = field( default=snake_case_ ,metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __A : bool = field( default=snake_case_ ,metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } ,) __A : Optional[int] = field( default=snake_case_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __A : Optional[int] = field( default=snake_case_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __A : Optional[int] = field( default=snake_case_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } ,) @dataclass class snake_case_ : __A : str = field( default=snake_case_ ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __A : str = field( default=snake_case_ ,metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) __A : Optional[str] = field( default=snake_case_ ,metadata={"help": "Train language if it is different from the evaluation language."} ) __A : Optional[str] = field( default=snake_case_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __A : Optional[str] = field( default=snake_case_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __A : Optional[str] = field( default=snake_case_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) __A : Optional[bool] = field( default=snake_case_ ,metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} ,) __A : bool = field( default=snake_case_ ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) __A : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __A : bool = field( default=snake_case_ ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) __A : bool = field( default=snake_case_ ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def lowercase_ ( ): lowercase__ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , __UpperCamelCase) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ : List[Any] = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase) datasets.utils.logging.set_verbosity(__UpperCamelCase) transformers.utils.logging.set_verbosity(__UpperCamelCase) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''') logger.info(f'''Training/evaluation parameters {training_args}''') # Detecting last checkpoint. lowercase__ : Tuple = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ : str = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch.") # Set seed before initializing model. set_seed(training_args.seed) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowercase__ : Tuple = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase__ : Dict = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ : List[str] = train_dataset.features["label"].names if training_args.do_eval: lowercase__ : Any = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ : Tuple = eval_dataset.features["label"].names if training_args.do_predict: lowercase__ : List[str] = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ : List[Any] = predict_dataset.features["label"].names # Labels lowercase__ : Optional[int] = len(__UpperCamelCase) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCamelCase , idalabel={str(__UpperCamelCase): label for i, label in enumerate(__UpperCamelCase)} , labelaid={label: i for i, label in enumerate(__UpperCamelCase)} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ : int = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowercase__ : Optional[Any] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase__ : Optional[int] = False def preprocess_function(_lowerCamelCase : List[str]): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=__UpperCamelCase , max_length=data_args.max_seq_length , truncation=__UpperCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: lowercase__ : List[Any] = min(len(__UpperCamelCase) , data_args.max_train_samples) lowercase__ : Union[str, Any] = train_dataset.select(range(__UpperCamelCase)) with training_args.main_process_first(desc="train dataset map pre-processing"): lowercase__ : Union[str, Any] = train_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(__UpperCamelCase)) , 3): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''') if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase__ : Any = min(len(__UpperCamelCase) , data_args.max_eval_samples) lowercase__ : Any = eval_dataset.select(range(__UpperCamelCase)) with training_args.main_process_first(desc="validation dataset map pre-processing"): lowercase__ : List[str] = eval_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowercase__ : Optional[int] = min(len(__UpperCamelCase) , data_args.max_predict_samples) lowercase__ : List[str] = predict_dataset.select(range(__UpperCamelCase)) with training_args.main_process_first(desc="prediction dataset map pre-processing"): lowercase__ : List[str] = predict_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function lowercase__ : List[Any] = evaluate.load("xnli") # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase : EvalPrediction): lowercase__ : Optional[Any] = p.predictions[0] if isinstance(p.predictions , __UpperCamelCase) else p.predictions lowercase__ : Optional[int] = np.argmax(__UpperCamelCase , axis=1) return metric.compute(predictions=__UpperCamelCase , references=p.label_ids) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase__ : Optional[Any] = default_data_collator elif training_args.fpaa: lowercase__ : Dict = DataCollatorWithPadding(__UpperCamelCase , pad_to_multiple_of=8) else: lowercase__ : Tuple = None # Initialize our Trainer lowercase__ : str = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCamelCase , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: lowercase__ : List[str] = None if training_args.resume_from_checkpoint is not None: lowercase__ : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ : Optional[int] = last_checkpoint lowercase__ : Union[str, Any] = trainer.train(resume_from_checkpoint=__UpperCamelCase) lowercase__ : int = train_result.metrics lowercase__ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCamelCase) ) lowercase__ : List[Any] = min(__UpperCamelCase , len(__UpperCamelCase)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , __UpperCamelCase) trainer.save_metrics("train" , __UpperCamelCase) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") lowercase__ : Union[str, Any] = trainer.evaluate(eval_dataset=__UpperCamelCase) lowercase__ : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCamelCase) lowercase__ : List[str] = min(__UpperCamelCase , len(__UpperCamelCase)) trainer.log_metrics("eval" , __UpperCamelCase) trainer.save_metrics("eval" , __UpperCamelCase) # Prediction if training_args.do_predict: logger.info("*** Predict ***") lowercase__ , lowercase__ , lowercase__ : str = trainer.predict(__UpperCamelCase , metric_key_prefix="predict") lowercase__ : Union[str, Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__UpperCamelCase) ) lowercase__ : Dict = min(__UpperCamelCase , len(__UpperCamelCase)) trainer.log_metrics("predict" , __UpperCamelCase) trainer.save_metrics("predict" , __UpperCamelCase) lowercase__ : Tuple = np.argmax(__UpperCamelCase , axis=1) lowercase__ : Dict = os.path.join(training_args.output_dir , "predictions.txt") if trainer.is_world_process_zero(): with open(__UpperCamelCase , "w") as writer: writer.write("index\tprediction\n") for index, item in enumerate(__UpperCamelCase): lowercase__ : Union[str, Any] = label_list[item] writer.write(f'''{index}\t{item}\n''') if __name__ == "__main__": main()
87
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(e for e in range(3 ,__UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
312
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> int: '''simple docstring''' _UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) _UpperCAmelCase = downstream_dict['projector.weight'] _UpperCAmelCase = downstream_dict['projector.bias'] _UpperCAmelCase = downstream_dict['model.post_net.linear.weight'] _UpperCAmelCase = downstream_dict['model.post_net.linear.bias'] return model def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> int: '''simple docstring''' _UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) _UpperCAmelCase = downstream_dict['model.linear.weight'] _UpperCAmelCase = downstream_dict['model.linear.bias'] return model def A ( _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = WavaVecaForXVector.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) _UpperCAmelCase = downstream_dict['connector.weight'] _UpperCAmelCase = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCAmelCase = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] _UpperCAmelCase = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] _UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] _UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] _UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] _UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] _UpperCAmelCase = downstream_dict['objective.W'] return model @torch.no_grad() def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = torch.load(__UpperCamelCase , map_location='cpu' ) _UpperCAmelCase = checkpoint['Downstream'] _UpperCAmelCase = WavaVecaConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( __UpperCamelCase , return_attention_mask=__UpperCamelCase , do_normalize=__UpperCamelCase ) _UpperCAmelCase = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): _UpperCAmelCase = convert_classification(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith('ForAudioFrameClassification' ): _UpperCAmelCase = convert_diarization(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith('ForXVector' ): _UpperCAmelCase = convert_xvector(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: _UpperCAmelCase = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") UpperCAmelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
339
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _a : """simple docstring""" @property def __A ( self : Union[str, Any] ): return self.get_dummy_input() @property def __A ( self : int ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=False , ): A_ = 4 A_ = 32 A_ = (32, 32) A_ = torch.manual_seed(0 ) A_ = torch.device(UpperCAmelCase ) A_ = (batch_size, num_channels) + sizes A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ) A_ = {"hidden_states": hidden_states} if include_temb: A_ = 128 A_ = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase , device=UpperCAmelCase ) if include_res_hidden_states_tuple: A_ = torch.manual_seed(1 ) A_ = (randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ),) if include_encoder_hidden_states: A_ = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase ) if include_skip_sample: A_ = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase , device=UpperCAmelCase ) return dummy_input def __A ( self : Optional[int] ): A_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": A_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) A_ = self.dummy_input return init_dict, inputs_dict def __A ( self : List[str] , UpperCAmelCase : Optional[Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) unet_block.to(UpperCAmelCase ) unet_block.eval() with torch.no_grad(): A_ = unet_block(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] self.assertEqual(output.shape , self.output_shape ) A_ = output[0, -1, -3:, -3:] A_ = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def __A ( self : Union[str, Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() A_ = model(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] A_ = torch.device(UpperCAmelCase ) A_ = randn_tensor(output.shape , device=UpperCAmelCase ) A_ = torch.nn.functional.mse_loss(UpperCAmelCase , UpperCAmelCase ) loss.backward()
312
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase__ ( snake_case_, unittest.TestCase ): _UpperCAmelCase :List[str] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : List[str]=0 ): lowerCamelCase_ : int =floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case__ ) ) lowerCamelCase_ : int =np.random.RandomState(snake_case__ ) lowerCamelCase_ : Tuple ={ "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Optional[int] =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : int =self.get_dummy_inputs() lowerCamelCase_ : str =pipe(**snake_case__ ).images lowerCamelCase_ : Tuple =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Optional[Any] =np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : int =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : str =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[Any] =self.get_dummy_inputs() lowerCamelCase_ : Tuple =pipe(**snake_case__ ).images lowerCamelCase_ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Any =np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : int =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : List[Any] =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) # warmup pass to apply optimizations lowerCamelCase_ : Dict =pipe(**self.get_dummy_inputs() ) lowerCamelCase_ : str =self.get_dummy_inputs() lowerCamelCase_ : Union[str, Any] =pipe(**snake_case__ ).images lowerCamelCase_ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Tuple =np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : str =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : int =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Any =self.get_dummy_inputs() lowerCamelCase_ : int =pipe(**snake_case__ ).images lowerCamelCase_ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Tuple =np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : int =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : List[str] =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : str =self.get_dummy_inputs() lowerCamelCase_ : Dict =pipe(**snake_case__ ).images lowerCamelCase_ : Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Union[str, Any] =np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Optional[Any] =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : Optional[Any] =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Dict =self.get_dummy_inputs() lowerCamelCase_ : Union[str, Any] =pipe(**snake_case__ ).images lowerCamelCase_ : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : List[str] =np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): @property def UpperCAmelCase__ ( self : Optional[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Union[str, Any] =ort.SessionOptions() lowerCamelCase_ : Any =False return options def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Optional[int] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCamelCase_ : List[str] =init_image.resize((768, 512) ) # using the PNDM scheduler by default lowerCamelCase_ : Tuple =OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Tuple ="A fantasy landscape, trending on artstation" lowerCamelCase_ : int =np.random.RandomState(0 ) lowerCamelCase_ : List[str] =pipe( prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type="np" , ) lowerCamelCase_ : Optional[int] =output.images lowerCamelCase_ : Optional[Any] =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowerCamelCase_ : int =np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Union[str, Any] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCamelCase_ : str =init_image.resize((768, 512) ) lowerCamelCase_ : List[str] =LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowerCamelCase_ : List[Any] =OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Tuple ="A fantasy landscape, trending on artstation" lowerCamelCase_ : Tuple =np.random.RandomState(0 ) lowerCamelCase_ : Optional[int] =pipe( prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type="np" , ) lowerCamelCase_ : Dict =output.images lowerCamelCase_ : List[Any] =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowerCamelCase_ : str =np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
144
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __a :int = True except ImportError: __a :Optional[Any] = False try: from torch.hub import _get_torch_home __a :Optional[Any] = _get_torch_home() except ImportError: __a :Tuple = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) __a :Optional[Any] = os.path.join(torch_cache_home, 'transformers') __a :int = 'https://cdn.huggingface.co' __a :Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' __a :Optional[Any] = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) __a :str = os.path.join(PATH, 'config.yaml') __a :str = os.path.join(PATH, 'attributes.txt') __a :Optional[Any] = os.path.join(PATH, 'objects.txt') __a :Optional[int] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) __a :Dict = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) __a :List[Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) __a :List[str] = 'pytorch_model.bin' __a :Tuple = 'config.yaml' def __snake_case ( __UpperCamelCase : Optional[Any]=OBJECTS ,__UpperCamelCase : List[str]=ATTRIBUTES ): """simple docstring""" A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = OrderedDict() with open(__UpperCamelCase ,"rb" ) as f: A_ = pkl.load(__UpperCamelCase )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): A_ = ckp.pop(__UpperCamelCase ) if isinstance(__UpperCamelCase ,np.ndarray ): A_ = torch.tensor(__UpperCamelCase ) else: assert isinstance(__UpperCamelCase ,torch.tensor ), type(__UpperCamelCase ) A_ = v return r class _a : """simple docstring""" _lowerCamelCase : Union[str, Any] = {} def __init__( self : str , UpperCAmelCase : dict , UpperCAmelCase : str = "root" , UpperCAmelCase : List[str]=0 ): A_ = name A_ = level A_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() A_ = copy.deepcopy(UpperCAmelCase ) A_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) A_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) A_ = d def __repr__( self : Optional[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Any ): A_ = val A_ = val A_ = key.split("." ) A_ = len(UpperCAmelCase ) - 1 A_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , ".".join(levels[i:] ) , UpperCAmelCase ) if l == last_level: A_ = val else: A_ = pointer[l] def __A ( self : List[str] ): return self._pointer def __A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : int ): with open(f'''{file_name}''' , "w" ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): with open(f'''{file_name}''' , "w" ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def __A ( UpperCAmelCase : Optional[int] ): with open(UpperCAmelCase ) as stream: A_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self : str ): A_ = " " if self._name != "root": A_ = f'''{t * (self._level-1)}{self._name}:\n''' else: A_ = "" A_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n''' A_ = level return r[:-1] @classmethod def __A ( cls : Optional[Any] , UpperCAmelCase : str , **UpperCAmelCase : str ): A_ , A_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def __A ( cls : int , UpperCAmelCase : str , **UpperCAmelCase : int ): A_ = kwargs.pop("cache_dir" , UpperCAmelCase ) A_ = kwargs.pop("force_download" , UpperCAmelCase ) A_ = kwargs.pop("resume_download" , UpperCAmelCase ) A_ = kwargs.pop("proxies" , UpperCAmelCase ) A_ = kwargs.pop("local_files_only" , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): A_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): A_ = pretrained_model_name_or_path else: A_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached A_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError A_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: A_ = "Can't load config for" raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(UpperCAmelCase ), kwargs def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = torch.load("dump.pt" ,map_location=in_tensor.device ) A_ = in_tensor.numpy() A_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ), ( f'''{sum([1 for x in np.isclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = urlparse(__UpperCamelCase ) return parsed.scheme in ("http", "https") def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str=True ): """simple docstring""" A_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX A_ = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : int=0 ,__UpperCamelCase : int=None ,): """simple docstring""" A_ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join("{}/{}".format(__UpperCamelCase ,__UpperCamelCase ) for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent A_ = {"user-agent": ua} if resume_size > 0: A_ = "bytes=%d-" % (resume_size,) A_ = requests.get(__UpperCamelCase ,stream=__UpperCamelCase ,proxies=__UpperCamelCase ,headers=__UpperCamelCase ) if response.status_code == 416: # Range not satisfiable return A_ = response.headers.get("Content-Length" ) A_ = resume_size + int(__UpperCamelCase ) if content_length is not None else None A_ = tqdm( unit="B" ,unit_scale=__UpperCamelCase ,total=__UpperCamelCase ,initial=__UpperCamelCase ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__UpperCamelCase ) ) temp_file.write(__UpperCamelCase ) progress.close() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any=None ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : Any=10 ,__UpperCamelCase : int=False ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : str=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = None if not local_files_only: try: A_ = requests.head(__UpperCamelCase ,allow_redirects=__UpperCamelCase ,proxies=__UpperCamelCase ,timeout=__UpperCamelCase ) if response.status_code == 200: A_ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass A_ = url_to_filename(__UpperCamelCase ,__UpperCamelCase ) # get cache path to put the file A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__UpperCamelCase ): return cache_path else: A_ = [ file for file in fnmatch.filter(os.listdir(__UpperCamelCase ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(__UpperCamelCase ) > 0: return os.path.join(__UpperCamelCase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(__UpperCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. A_ = cache_path + ".lock" with FileLock(__UpperCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__UpperCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: A_ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(__UpperCamelCase ,"a+b" ) as f: yield f A_ = _resumable_file_manager if os.path.exists(__UpperCamelCase ): A_ = os.stat(__UpperCamelCase ).st_size else: A_ = 0 else: A_ = partial(tempfile.NamedTemporaryFile ,dir=__UpperCamelCase ,delete=__UpperCamelCase ) A_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,__UpperCamelCase ,temp_file.name ,) http_get( __UpperCamelCase ,__UpperCamelCase ,proxies=__UpperCamelCase ,resume_size=__UpperCamelCase ,user_agent=__UpperCamelCase ,) os.replace(temp_file.name ,__UpperCamelCase ) A_ = {"url": url, "etag": etag} A_ = cache_path + ".json" with open(__UpperCamelCase ,"w" ) as meta_file: json.dump(__UpperCamelCase ,__UpperCamelCase ) return cache_path def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : str=None ): """simple docstring""" A_ = url.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) A_ = url_hash.hexdigest() if etag: A_ = etag.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : Any=False ,__UpperCamelCase : Optional[int]=None ,__UpperCamelCase : Optional[Any]=False ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Optional[Any]=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if is_remote_url(__UpperCamelCase ): # URL, so get it from the cache (downloading if necessary) A_ = get_from_cache( __UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,user_agent=__UpperCamelCase ,local_files_only=__UpperCamelCase ,) elif os.path.exists(__UpperCamelCase ): # File, and it exists. A_ = url_or_filename elif urlparse(__UpperCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(__UpperCamelCase ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(__UpperCamelCase ) ) if extract_compressed_file: if not is_zipfile(__UpperCamelCase ) and not tarfile.is_tarfile(__UpperCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" A_ , A_ = os.path.split(__UpperCamelCase ) A_ = output_file.replace("." ,"-" ) + "-extracted" A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) if os.path.isdir(__UpperCamelCase ) and os.listdir(__UpperCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions A_ = output_path + ".lock" with FileLock(__UpperCamelCase ): shutil.rmtree(__UpperCamelCase ,ignore_errors=__UpperCamelCase ) os.makedirs(__UpperCamelCase ) if is_zipfile(__UpperCamelCase ): with ZipFile(__UpperCamelCase ,"r" ) as zip_file: zip_file.extractall(__UpperCamelCase ) zip_file.close() elif tarfile.is_tarfile(__UpperCamelCase ): A_ = tarfile.open(__UpperCamelCase ) tar_file.extractall(__UpperCamelCase ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(__UpperCamelCase ) ) return output_path_extracted return output_path def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any="," ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase ) as f: A_ = eval(f.read() ) else: A_ = requests.get(__UpperCamelCase ) try: A_ = requests.json() except Exception: A_ = req.content.decode() assert data is not None, "could not connect" try: A_ = eval(__UpperCamelCase ) except Exception: A_ = data.split("\n" ) req.close() return data def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = requests.get(__UpperCamelCase ) A_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__UpperCamelCase ) with open(__UpperCamelCase ,"rb" ) as stream: A_ = pkl.load(__UpperCamelCase ) A_ = weights.pop("model" ) A_ = {} for k, v in model.items(): A_ = torch.from_numpy(__UpperCamelCase ) if "running_var" in k: A_ = torch.tensor([0] ) A_ = k.replace("running_var" ,"num_batches_tracked" ) A_ = zero return new def __snake_case ( ): """simple docstring""" print(f'''{os.path.abspath(os.path.join(__UpperCamelCase ,os.pardir ) )}/demo.ipynb''' ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int]="RGB" ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): A_ = cva.imread(__UpperCamelCase ) else: A_ = get_image_from_url(__UpperCamelCase ) assert img is not None, f'''could not connect to: {im}''' A_ = cva.cvtColor(__UpperCamelCase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": A_ = img[:, :, ::-1] return img def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[str]=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(__UpperCamelCase ) ,__UpperCamelCase ))
312
0
from math import pi def _SCREAMING_SNAKE_CASE ( a , a ) -> Any: return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
280
from __future__ import annotations def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(__UpperCamelCase ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
312
0
'''simple docstring''' def _lowerCamelCase ( lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Dict , lowercase : List[Any] ) -> Tuple: _a = [False] * len(__UpperCamelCase ) _a = [] queue.append(__UpperCamelCase ) _a = True while queue: _a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__UpperCamelCase ) _a = True _a = u return visited[t] def _lowerCamelCase ( lowercase : int , lowercase : Tuple , lowercase : Dict ) -> Union[str, Any]: _a = [-1] * (len(__UpperCamelCase )) _a = 0 while bfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): _a = float("Inf" ) _a = sink while s != source: # Find the minimum value in select path _a = min(__UpperCamelCase , graph[parent[s]][s] ) _a = parent[s] max_flow += path_flow _a = sink while v != source: _a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _a = parent[v] return max_flow lowerCAmelCase_ : Union[str, Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ : List[Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
63
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __a :int = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : int = 101 ): A_ = length def __len__( self : int ): return self.length def __getitem__( self : Optional[int] , UpperCAmelCase : Optional[int] ): return i class _a : """simple docstring""" def __call__( self : Any , UpperCAmelCase : Optional[Any] ): return {"input_ids": torch.tensor(UpperCAmelCase ), "labels": torch.tensor(UpperCAmelCase )} class _a ( nn.Module ): """simple docstring""" def __init__( self : int ): super().__init__() # Add some (unused) params otherwise DDP will complain. A_ = nn.Linear(120 , 80 ) def __A ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Tuple=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _a ( snake_case_ ): """simple docstring""" @require_torch_neuroncore def __A ( self : List[str] ): A_ = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _a ( snake_case_ ): """simple docstring""" @require_torch_multi_gpu def __A ( self : List[str] ): A_ = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __a :Union[str, Any] = HfArgumentParser((TrainingArguments,)) __a :Tuple = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __a :int = DummyDataset(dataset_length) def __snake_case ( __UpperCamelCase : EvalPrediction ): """simple docstring""" A_ = list(range(len(__UpperCamelCase ) ) ) A_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} __a :str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __a :str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Optional[int] = 2 __a :List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Union[str, Any] = None
312
0
'''simple docstring''' from __future__ import annotations UpperCAmelCase_ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" if location := find_empty_location(__UpperCamelCase ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): _SCREAMING_SNAKE_CASE : int = digit if sudoku(__UpperCamelCase ) is not None: return grid _SCREAMING_SNAKE_CASE : List[str] = 0 return None def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" for row in grid: for cell in row: print(__UpperCamelCase , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') UpperCAmelCase_ : Optional[Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
200
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __a :Any = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = "huggingface/label-files" A_ = "imagenet-1k-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = {v: k for k, v in idalabel.items()} A_ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" A_ = BitConfig( conv_layer=__UpperCamelCase ,num_labels=1000 ,idalabel=__UpperCamelCase ,labelaid=__UpperCamelCase ,) return config def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if "stem.conv" in name: A_ = name.replace("stem.conv" ,"bit.embedder.convolution" ) if "blocks" in name: A_ = name.replace("blocks" ,"layers" ) if "head.fc" in name: A_ = name.replace("head.fc" ,"classifier.1" ) if name.startswith("norm" ): A_ = "bit." + name if "bit" not in name and "classifier" not in name: A_ = "bit.encoder." + name return name def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Tuple=False ): """simple docstring""" A_ = get_config(__UpperCamelCase ) # load original model from timm A_ = create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model A_ = timm_model.state_dict() for key in state_dict.copy().keys(): A_ = state_dict.pop(__UpperCamelCase ) A_ = val.squeeze() if "head" in key else val # load HuggingFace model A_ = BitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # create image processor A_ = create_transform(**resolve_data_config({} ,model=__UpperCamelCase ) ) A_ = transform.transforms A_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A_ = BitImageProcessor( do_resize=__UpperCamelCase ,size={"shortest_edge": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=__UpperCamelCase ,crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} ,do_normalize=__UpperCamelCase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) A_ = prepare_img() A_ = transform(__UpperCamelCase ).unsqueeze(0 ) A_ = processor(__UpperCamelCase ,return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ) # verify logits with torch.no_grad(): A_ = model(__UpperCamelCase ) A_ = outputs.logits print("Logits:" ,logits[0, :3] ) print("Predicted class:" ,model.config.idalabel[logits.argmax(-1 ).item()] ) A_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __a :str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
312
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class snake_case : '''simple docstring''' def __init__( self : int ): '''simple docstring''' __A = {} def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[Any], _lowerCamelCase : str, _lowerCamelCase : Dict=1 ): '''simple docstring''' if self.graph.get(_lowerCamelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __A = [[w, v]] if not self.graph.get(_lowerCamelCase ): __A = [] def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : Union[str, Any], _lowerCamelCase : str ): '''simple docstring''' if self.graph.get(_lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : str=-2, _lowerCamelCase : List[str]=-1 ): '''simple docstring''' if s == d: return [] __A = [] __A = [] if s == -2: __A = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) __A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_lowerCamelCase ) != 0: __A = stack[len(_lowerCamelCase ) - 1] else: __A = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : str=-1 ): '''simple docstring''' if c == -1: __A = floor(random() * 1_00_00 ) + 10 for i in range(_lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __A = floor(random() * c ) + 1 if n != i: self.add_pair(_lowerCamelCase, _lowerCamelCase, 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : List[str]=-2 ): '''simple docstring''' __A = deque() __A = [] if s == -2: __A = list(self.graph )[0] d.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) while d: __A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : Any ): '''simple docstring''' __A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Tuple ): '''simple docstring''' return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : Tuple=-2 ): '''simple docstring''' __A = [] __A = [] if s == -2: __A = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) __A = s __A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_lowerCamelCase ) != 0: __A = stack[len(_lowerCamelCase ) - 1] else: __A = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = [] __A = [] __A = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(_lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(_lowerCamelCase ) != 0: __A = stack[len(_lowerCamelCase ) - 1] else: __A = False indirect_parents.append(_lowerCamelCase ) __A = s __A = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return list(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = [] __A = [] __A = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(_lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(_lowerCamelCase ) != 0: __A = stack[len(_lowerCamelCase ) - 1] else: __A = False indirect_parents.append(_lowerCamelCase ) __A = s __A = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Tuple=-2, _lowerCamelCase : int=-1 ): '''simple docstring''' __A = time() self.dfs(_lowerCamelCase, _lowerCamelCase ) __A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Optional[int]=-2 ): '''simple docstring''' __A = time() self.bfs(_lowerCamelCase ) __A = time() return end - begin class snake_case : '''simple docstring''' def __init__( self : List[Any] ): '''simple docstring''' __A = {} def _SCREAMING_SNAKE_CASE ( self : int, _lowerCamelCase : List[str], _lowerCamelCase : Tuple, _lowerCamelCase : str=1 ): '''simple docstring''' # check if the u exists if self.graph.get(_lowerCamelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __A = [[w, v]] # add the other way if self.graph.get(_lowerCamelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : Optional[int], _lowerCamelCase : Union[str, Any] ): '''simple docstring''' if self.graph.get(_lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_lowerCamelCase ) # the other way round if self.graph.get(_lowerCamelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : int, _lowerCamelCase : Tuple=-2, _lowerCamelCase : Optional[int]=-1 ): '''simple docstring''' if s == d: return [] __A = [] __A = [] if s == -2: __A = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) __A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_lowerCamelCase ) != 0: __A = stack[len(_lowerCamelCase ) - 1] else: __A = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : List[str]=-1 ): '''simple docstring''' if c == -1: __A = floor(random() * 1_00_00 ) + 10 for i in range(_lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __A = floor(random() * c ) + 1 if n != i: self.add_pair(_lowerCamelCase, _lowerCamelCase, 1 ) def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[Any]=-2 ): '''simple docstring''' __A = deque() __A = [] if s == -2: __A = list(self.graph )[0] d.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) while d: __A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[str] ): '''simple docstring''' return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = [] __A = [] __A = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(_lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(_lowerCamelCase ) != 0: __A = stack[len(_lowerCamelCase ) - 1] else: __A = False indirect_parents.append(_lowerCamelCase ) __A = s __A = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return list(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = [] __A = [] __A = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(_lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(_lowerCamelCase ) != 0: __A = stack[len(_lowerCamelCase ) - 1] else: __A = False indirect_parents.append(_lowerCamelCase ) __A = s __A = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[Any]=-2, _lowerCamelCase : Union[str, Any]=-1 ): '''simple docstring''' __A = time() self.dfs(_lowerCamelCase, _lowerCamelCase ) __A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : int=-2 ): '''simple docstring''' __A = time() self.bfs(_lowerCamelCase ) __A = time() return end - begin
266
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __a :Dict = get_logger(__name__) __a :Union[str, Any] = Path(__file__).parent / 'model_card_template.md' __a :Tuple = uuida().hex __a :List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __a :Union[str, Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __a :Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __snake_case ( __UpperCamelCase : Union[Dict, str, None] = None ): """simple docstring""" A_ = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" ,"" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent return ua def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if token is None: A_ = HfFolder.get_token() if organization is None: A_ = whoami(__UpperCamelCase )["name"] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__UpperCamelCase ,"local_rank" ) and args.local_rank not in [-1, 0]: return A_ = args.hub_token if hasattr(__UpperCamelCase ,"hub_token" ) else None A_ = get_full_repo_name(__UpperCamelCase ,token=__UpperCamelCase ) A_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" ,license="apache-2.0" ,library_name="diffusers" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=__UpperCamelCase ,model_name=__UpperCamelCase ,repo_name=__UpperCamelCase ,dataset_name=args.dataset_name if hasattr(__UpperCamelCase ,"dataset_name" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase ,"gradient_accumulation_steps" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta1" ) else None ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta2" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase ,"adam_weight_decay" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase ,"adam_epsilon" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase ,"lr_scheduler" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase ,"lr_warmup_steps" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase ,"ema_inv_gamma" ) else None ,ema_power=args.ema_power if hasattr(__UpperCamelCase ,"ema_power" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase ,"ema_max_decay" ) else None ,mixed_precision=args.mixed_precision ,) A_ = os.path.join(args.output_dir ,"README.md" ) model_card.save(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash A_ = str(Path(__UpperCamelCase ).as_posix() ) A_ = re.search(R"snapshots/([^/]+)/" ,__UpperCamelCase ) if search is None: return None A_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __a :str = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __a :List[Any] = os.path.join(hf_cache_home, 'diffusers') def __snake_case ( __UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: A_ = DIFFUSERS_CACHE if old_cache_dir is None: A_ = old_diffusers_cache A_ = Path(__UpperCamelCase ).expanduser() A_ = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A_ = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase ,__UpperCamelCase ) try: os.symlink(__UpperCamelCase ,__UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __a :Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __a :Optional[int] = 0 else: with open(cache_version_file) as f: try: __a :Dict = int(f.read()) except ValueError: __a :str = 0 if cache_version < 1: __a :Optional[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __a :Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if variant is not None: A_ = weights_name.split("." ) A_ = splits[:-1] + [variant] + splits[-1:] A_ = ".".join(__UpperCamelCase ) return weights_name def __snake_case ( __UpperCamelCase : Optional[Any] ,*, __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int]=None ,): """simple docstring""" A_ = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ): # Load from a PyTorch checkpoint A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ): A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: A_ = hf_hub_download( __UpperCamelCase ,filename=_add_variant(__UpperCamelCase ,__UpperCamelCase ) ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' ,__UpperCamelCase ,) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase ,__UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase ,__UpperCamelCase )}\' so that the correct variant file can be added.''' ,__UpperCamelCase ,) try: # 2. Load model file as usual A_ = hf_hub_download( __UpperCamelCase ,filename=__UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
312
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCamelCase : Dict = None UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase : List[str] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } UpperCamelCase : Dict = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } UpperCamelCase : Optional[int] = '▁' class __lowerCAmelCase ( snake_case_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = vocab_file __UpperCamelCase = False if not self.vocab_file else True def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
316
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class A_ ( snake_case_ ): def __init__( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=1 ) -> Any: __lowerCAmelCase: Any = tokenizer __lowerCAmelCase: Optional[Any] = dataset __lowerCAmelCase: Optional[Any] = len(UpperCAmelCase ) if n_tasks is None else n_tasks __lowerCAmelCase: Any = n_copies def __iter__( self : Optional[int] ) -> Dict: __lowerCAmelCase: Tuple = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) __lowerCAmelCase: List[str] = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class A_ ( snake_case_ ): def __init__( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any ) -> int: __lowerCAmelCase: int = start_length __lowerCAmelCase: str = eof_strings __lowerCAmelCase: int = tokenizer def __call__( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Tuple = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __lowerCAmelCase: Tuple = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def _a ( SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = re.split('(%s)' % '|'.join(__UpperCamelCase ) , __UpperCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any]=20 , **SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase: str = defaultdict(__UpperCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__UpperCamelCase ) ): with torch.no_grad(): __lowerCAmelCase: Optional[Any] = batch['ids'].shape[-1] __lowerCAmelCase: List[str] = accelerator.unwrap_model(__UpperCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=__UpperCamelCase , **__UpperCamelCase ) # each task is generated batch_size times __lowerCAmelCase: List[str] = batch['task_id'].repeat(__UpperCamelCase ) __lowerCAmelCase: Union[str, Any] = accelerator.pad_across_processes( __UpperCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = accelerator.gather((generated_tokens, generated_tasks) ) __lowerCAmelCase: Optional[int] = generated_tokens.cpu().numpy() __lowerCAmelCase: int = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__UpperCamelCase , __UpperCamelCase ): gen_token_dict[task].append(__UpperCamelCase ) __lowerCAmelCase: Union[str, Any] = [[] for _ in range(__UpperCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __lowerCAmelCase: Union[str, Any] = tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) code_gens[task].append(remove_last_block(__UpperCamelCase ) ) return code_gens def _a ( ) -> List[str]: """simple docstring""" __lowerCAmelCase: int = HfArgumentParser(__UpperCamelCase ) __lowerCAmelCase: List[str] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __lowerCAmelCase: List[Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __lowerCAmelCase: int = 'false' if args.num_workers is None: __lowerCAmelCase: str = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __lowerCAmelCase: Tuple = Accelerator() set_seed(args.seed , device_specific=__UpperCamelCase ) # Load model and tokenizer __lowerCAmelCase: Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) __lowerCAmelCase: Any = tokenizer.eos_token __lowerCAmelCase: str = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __lowerCAmelCase: List[str] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , __UpperCamelCase , __UpperCamelCase )] ), } # Load evaluation dataset and metric __lowerCAmelCase: Tuple = load_dataset('openai_humaneval' ) __lowerCAmelCase: str = load_metric('code_eval' ) __lowerCAmelCase: Optional[int] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) __lowerCAmelCase: Optional[int] = args.n_samples // args.batch_size __lowerCAmelCase: Dict = TokenizedDataset(__UpperCamelCase , human_eval['test'] , n_copies=__UpperCamelCase , n_tasks=__UpperCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences __lowerCAmelCase: int = DataLoader(__UpperCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __lowerCAmelCase: Optional[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`' ' flag to enable code evaluation.' ) raise exception __lowerCAmelCase , __lowerCAmelCase: Any = accelerator.prepare(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase: Tuple = complete_code( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , n_tasks=__UpperCamelCase , batch_size=args.batch_size , **__UpperCamelCase , ) if accelerator.is_main_process: __lowerCAmelCase: Any = [] for task in tqdm(range(__UpperCamelCase ) ): __lowerCAmelCase: int = human_eval['test'][task]['test'] __lowerCAmelCase: int = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = code_eval_metric.compute( references=__UpperCamelCase , predictions=__UpperCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
322
import functools from typing import Any def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : list[str] ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or len(__UpperCamelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not all( isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie A_ = {} A_ = "WORD_KEEPER" for word in words: A_ = trie for c in word: if c not in trie_node: A_ = {} A_ = trie_node[c] A_ = True A_ = len(__UpperCamelCase ) # Dynamic programming method @functools.cache def is_breakable(__UpperCamelCase : int ) -> bool: if index == len_string: return True A_ = trie for i in range(__UpperCamelCase ,__UpperCamelCase ): A_ = trie_node.get(string[i] ,__UpperCamelCase ) if trie_node is None: return False if trie_node.get(__UpperCamelCase ,__UpperCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase ( snake_case__ : Any ) -> Any: UpperCamelCase : Union[str, Any] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def UpperCamelCase ( snake_case__ : Optional[Any] ) -> int: UpperCamelCase , UpperCamelCase : Any = emb.weight.shape UpperCamelCase : List[str] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) UpperCamelCase : int = emb.weight.data return lin_layer def UpperCamelCase ( snake_case__ : str ) -> Dict: UpperCamelCase : Union[str, Any] = torch.load(__UpperCamelCase , map_location='cpu' ) UpperCamelCase : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] UpperCamelCase : Dict = mam_aaa['model'] remove_ignore_keys_(__UpperCamelCase ) UpperCamelCase : str = state_dict['encoder.embed_tokens.weight'].shape[0] UpperCamelCase : Optional[Any] = MaMaaaConfig( vocab_size=__UpperCamelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) UpperCamelCase : List[Any] = state_dict['decoder.embed_tokens.weight'] UpperCamelCase : Dict = MaMaaaForConditionalGeneration(__UpperCamelCase ) model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) UpperCamelCase : Optional[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
119
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __a :List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __a :Union[str, Any] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __a :Optional[int] = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } __a :str = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = ElectraTokenizer def __init__( self : Tuple , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=True , UpperCAmelCase : Any="[UNK]" , UpperCAmelCase : Union[str, Any]="[SEP]" , UpperCAmelCase : List[Any]="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : List[Any]="[MASK]" , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Union[str, Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
312
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=24 , _a=2 , _a=6 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=None , _a=1000 , ) -> List[Any]: _A : int = parent _A : Optional[int] = batch_size _A : Dict = seq_length _A : Any = is_training _A : Union[str, Any] = use_input_mask _A : List[Any] = use_token_type_ids _A : List[str] = use_labels _A : Dict = vocab_size _A : Optional[Any] = hidden_size _A : Optional[Any] = num_hidden_layers _A : Any = num_attention_heads _A : List[Any] = intermediate_size _A : List[Any] = hidden_act _A : List[Any] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Union[str, Any] = max_position_embeddings _A : Optional[int] = type_vocab_size _A : List[Any] = type_sequence_label_size _A : List[Any] = initializer_range _A : Any = num_labels _A : Dict = scope _A : Optional[int] = range_bbox def a__ ( self ) -> List[str]: _A : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _A : Dict = bbox[i, j, 3] _A : Optional[Any] = bbox[i, j, 1] _A : Optional[int] = t if bbox[i, j, 2] < bbox[i, j, 0]: _A : List[str] = bbox[i, j, 2] _A : Dict = bbox[i, j, 0] _A : Union[str, Any] = t _A : Optional[int] = None if self.use_input_mask: _A : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _A : Tuple = None if self.use_token_type_ids: _A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Optional[int] = None _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : Union[str, Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a__ ( self ) -> int: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , ) -> Any: _A : List[Any] = LiltModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) _A : Optional[Any] = model(_a , bbox=_a , token_type_ids=_a ) _A : List[str] = model(_a , bbox=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]: _A : Dict = self.num_labels _A : Tuple = LiltForTokenClassification(config=_a ) model.to(_a ) model.eval() _A : Optional[Any] = model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]: _A : Optional[int] = LiltForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _A : Dict = model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self ) -> Union[str, Any]: _A : List[str] = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : List[str] = config_and_inputs _A : Tuple = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowercase ( snake_case_,snake_case_,snake_case_,unittest.TestCase ): _a = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _a = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False def a__ ( self , _a , _a , _a , _a , _a ) -> str: return True def a__ ( self ) -> Union[str, Any]: _A : Tuple = LiltModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , hidden_size=37 ) def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> Optional[Any]: _A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Tuple = type self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> int: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def a__ ( self ) -> str: _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def a__ ( self ) -> List[str]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : str = LiltModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @slow class lowercase ( unittest.TestCase ): def a__ ( self ) -> Optional[Any]: _A : Optional[int] = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(_a ) _A : Union[str, Any] = torch.tensor([[1, 2]] , device=_a ) _A : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_a ) # forward pass with torch.no_grad(): _A : Dict = model(input_ids=_a , bbox=_a ) _A : Tuple = torch.Size([1, 2, 768] ) _A : Optional[Any] = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_a , ) self.assertTrue(outputs.last_hidden_state.shape , _a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _a , atol=1e-3 ) )
26
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __a :Optional[Any] = logging.get_logger(__name__) __a :Dict[Optional[str], Type[Formatter]] = {} __a :Dict[Optional[str], str] = {} __a :Dict[Optional[str], Exception] = {} def __snake_case ( __UpperCamelCase : type ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ,): """simple docstring""" A_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) A_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) A_ = format_type def __snake_case ( __UpperCamelCase : Exception ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ): """simple docstring""" A_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: __a :List[Any] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: __a :List[str] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: __a :Tuple = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __snake_case ( __UpperCamelCase : Optional[str] ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __snake_case ( __UpperCamelCase : Optional[str] ,**__UpperCamelCase : List[Any] ): """simple docstring""" A_ = get_format_type_from_alias(__UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
312
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : str , **_lowerCamelCase : Dict): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(__UpperCamelCase , **__UpperCamelCase) lowercase__ : int = AutoModelForSeqaSeqLM.from_config(__UpperCamelCase) model.save_pretrained(__UpperCamelCase) AutoTokenizer.from_pretrained(__UpperCamelCase).save_pretrained(__UpperCamelCase) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
87
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a :int = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
312
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(__UpperCamelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" _UpperCAmelCase = BitConfig( conv_layer=__UpperCamelCase , num_labels=1_000 , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase , ) return config def A ( _UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' if "stem.conv" in name: _UpperCAmelCase = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _UpperCAmelCase = name.replace('blocks' , 'layers' ) if "head.fc" in name: _UpperCAmelCase = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): _UpperCAmelCase = 'bit.' + name if "bit" not in name and "classifier" not in name: _UpperCAmelCase = 'bit.encoder.' + name return name def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple=False ) -> int: '''simple docstring''' _UpperCAmelCase = get_config(__UpperCamelCase ) # load original model from timm _UpperCAmelCase = create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model _UpperCAmelCase = timm_model.state_dict() for key in state_dict.copy().keys(): _UpperCAmelCase = state_dict.pop(__UpperCamelCase ) _UpperCAmelCase = val.squeeze() if 'head' in key else val # load HuggingFace model _UpperCAmelCase = BitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # create image processor _UpperCAmelCase = create_transform(**resolve_data_config({} , model=__UpperCamelCase ) ) _UpperCAmelCase = transform.transforms _UpperCAmelCase = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } _UpperCAmelCase = BitImageProcessor( do_resize=__UpperCamelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__UpperCamelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=__UpperCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = transform(__UpperCamelCase ).unsqueeze(0 ) _UpperCAmelCase = processor(__UpperCamelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(__UpperCamelCase , __UpperCamelCase ) # verify logits with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) _UpperCAmelCase = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(F"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(F"ybelkada/{model_name}" ) processor.push_to_hub(F"ybelkada/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) UpperCAmelCase__ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
339
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()} ) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def __A ( self : str , UpperCAmelCase : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , UpperCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) A_ = copy.deepcopy(self ) A_ = self.label_schema.copy() A_ = features[self.label_column] A_ = label_schema return task_template @property def __A ( self : List[str] ): return { self.audio_column: "audio", self.label_column: "labels", }
312
0
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowercase__ ( snake_case_, snake_case_, unittest.TestCase ): _UpperCAmelCase :Dict = VQModel _UpperCAmelCase :List[Any] = 'sample' @property def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : str=(32, 32) ): lowerCamelCase_ : List[Any] =4 lowerCamelCase_ : Tuple =3 lowerCamelCase_ : Dict =floats_tensor((batch_size, num_channels) + sizes ).to(snake_case__ ) return {"sample": image} @property def UpperCAmelCase__ ( self : List[str] ): return (3, 32, 32) @property def UpperCAmelCase__ ( self : Optional[Any] ): return (3, 32, 32) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Union[str, Any] ={ "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } lowerCamelCase_ : List[str] =self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): pass def UpperCAmelCase__ ( self : Dict ): pass def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ , lowerCamelCase_ : List[Any] =VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(snake_case__ ) lowerCamelCase_ : Optional[int] =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : List[Any] =VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(snake_case__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ : Tuple =torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowerCamelCase_ : List[Any] =image.to(snake_case__ ) with torch.no_grad(): lowerCamelCase_ : List[Any] =model(snake_case__ ).sample lowerCamelCase_ : Union[str, Any] =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ : str =torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) )
144
def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,16 ) for i in range(0 ,len(__UpperCamelCase ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
UpperCAmelCase : List[str] = 2_56 # Modulus to hash a string UpperCAmelCase : Optional[Any] = 1_00_00_03 def _SCREAMING_SNAKE_CASE ( a , a ) -> Any: __A : Optional[Any] = len(__UpperCamelCase ) __A : List[Any] = len(__UpperCamelCase ) if p_len > t_len: return False __A : List[Any] = 0 __A : Optional[Any] = 0 __A : int = 1 # Calculating the hash of pattern and substring of text for i in range(__UpperCamelCase ): __A : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __A : Optional[int] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __A : str = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __A : List[Any] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _SCREAMING_SNAKE_CASE ( ) -> List[str]: __A : Union[str, Any] = 'abc1abc12' __A : str = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __A : Optional[int] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(__UpperCamelCase , __UpperCamelCase ) and not rabin_karp(__UpperCamelCase , __UpperCamelCase ) # Test 2) __A : Tuple = 'ABABX' __A : Dict = 'ABABZABABYABABX' assert rabin_karp(__UpperCamelCase , __UpperCamelCase ) # Test 3) __A : Any = 'AAAB' __A : int = 'ABAAAAAB' assert rabin_karp(__UpperCamelCase , __UpperCamelCase ) # Test 4) __A : Optional[Any] = 'abcdabcy' __A : Optional[int] = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(__UpperCamelCase , __UpperCamelCase ) # Test 5) __A : List[Any] = 'Lü' __A : Tuple = 'Lüsai' assert rabin_karp(__UpperCamelCase , __UpperCamelCase ) __A : Tuple = 'Lue' assert not rabin_karp(__UpperCamelCase , __UpperCamelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
280
import cva import numpy as np class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : float , UpperCAmelCase : int ): if k in (0.04, 0.06): A_ = k A_ = window_size else: raise ValueError("invalid k value" ) def __str__( self : Optional[Any] ): return str(self.k ) def __A ( self : int , UpperCAmelCase : str ): A_ = cva.imread(UpperCAmelCase , 0 ) A_ , A_ = img.shape A_ = [] A_ = img.copy() A_ = cva.cvtColor(UpperCAmelCase , cva.COLOR_GRAY2RGB ) A_ , A_ = np.gradient(UpperCAmelCase ) A_ = dx**2 A_ = dy**2 A_ = dx * dy A_ = 0.04 A_ = self.window_size // 2 for y in range(UpperCAmelCase , h - offset ): for x in range(UpperCAmelCase , w - offset ): A_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = (wxx * wyy) - (wxy**2) A_ = wxx + wyy A_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __a :List[str] = HarrisCorner(0.04, 3) __a , __a :str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
312
0
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _lowerCamelCase ( lowercase : Tuple ) -> Any: _a = int(__UpperCamelCase ) _a , _a , _a = t // 3600, (t // 60) % 60, t % 60 return F'{h}:{m:02d}:{s:02d}' if h != 0 else F'{m:02d}:{s:02d}' def _lowerCamelCase ( lowercase : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Dict=300 ) -> List[Any]: return F'\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n ' def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Dict: _a = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F' <th>{i}</th>\n' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _a = F'{elt:.6f}' if isinstance(__UpperCamelCase , __UpperCamelCase ) else str(__UpperCamelCase ) html_code += F' <td>{elt}</td>\n' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =5 __a =0.2 def __init__( self : int , __a : int , __a : Optional[str] = None , __a : bool = True , __a : Optional["NotebookTrainingTracker"] = None , __a : int = 3_00 , ): _a = total _a = "" if prefix is None else prefix _a = leave _a = parent _a = width _a = None _a = None _a = None def UpperCamelCase__ ( self : Optional[int] , __a : int , __a : bool = False , __a : str = None ): _a = value if comment is not None: _a = comment if self.last_value is None: _a = _a = time.time() _a = _a = value _a = _a = None _a = self.warmup _a = 1 self.update_bar(__a ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _a = time.time() _a = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _a = self.elapsed_time / (value - self.start_value) else: _a = None if value >= self.total: _a = self.total _a = None if not self.leave: self.close() elif self.average_time_per_item is not None: _a = self.average_time_per_item * (self.total - value) self.update_bar(__a ) _a = value _a = current_time if self.average_time_per_item is None: _a = 1 else: _a = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : Any=None ): _a = " " * (len(str(self.total ) ) - len(str(__a ) )) + str(__a ) if self.elapsed_time is None: _a = f'[{spaced_value}/{self.total} : < :' elif self.predicted_remaining is None: _a = f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )}' else: _a = ( f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <' f' {format_time(self.predicted_remaining )}' ) self.label += f', {1/self.average_time_per_item:.2f} it/s' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f', {self.comment}]' self.display() def UpperCamelCase__ ( self : str ): _a = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _a = disp.display(disp.HTML(self.html_code ) , display_id=__a ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCamelCase__ ( self : Dict ): if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class __SCREAMING_SNAKE_CASE (snake_case_ ): """simple docstring""" def __init__( self : Optional[int] , __a : Optional[int] , __a : int=None ): super().__init__(__a ) _a = None if column_names is None else [column_names] _a = None def UpperCamelCase__ ( self : Any ): _a = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _a = disp.display(disp.HTML(self.html_code ) , display_id=__a ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] ): if self.inner_table is None: _a = [list(values.keys() ), list(values.values() )] else: _a = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__a ) _a = columns self.inner_table.append([values[c] for c in columns] ) def UpperCamelCase__ ( self : str , __a : Optional[Any] , __a : Dict=None , __a : List[Any]=3_00 ): _a = NotebookProgressBar(__a , prefix=__a , parent=self , width=__a ) return self.child_bar def UpperCamelCase__ ( self : List[Any] ): _a = None self.display() class __SCREAMING_SNAKE_CASE (snake_case_ ): """simple docstring""" def __init__( self : Union[str, Any] ): _a = None _a = None _a = False def UpperCamelCase__ ( self : Any , __a : Optional[Any] , __a : int , __a : Union[str, Any] , **__a : Optional[int] ): _a = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" _a = 0 _a = 0 _a = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) _a = NotebookTrainingTracker(state.max_steps , __a ) def UpperCamelCase__ ( self : Optional[Any] , __a : List[Any] , __a : Any , __a : int , **__a : Dict ): _a = int(state.epoch ) if int(state.epoch ) == state.epoch else f'{state.epoch:.2f}' self.training_tracker.update( state.global_step + 1 , comment=f'Epoch {epoch}/{state.num_train_epochs}' , force_update=self._force_next_update , ) _a = False def UpperCamelCase__ ( self : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : Dict , __a : List[str]=None , **__a : Optional[Any] ): if not has_length(__a ): return if self.prediction_bar is None: if self.training_tracker is not None: _a = self.training_tracker.add_child(len(__a ) ) else: _a = NotebookProgressBar(len(__a ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCamelCase__ ( self : Dict , __a : List[Any] , __a : str , __a : Dict , **__a : List[str] ): if self.prediction_bar is not None: self.prediction_bar.close() _a = None def UpperCamelCase__ ( self : List[str] , __a : Union[str, Any] , __a : Optional[int] , __a : str , __a : Optional[int]=None , **__a : Optional[Any] ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _a = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy _a = state.global_step self.training_tracker.write_line(__a ) def UpperCamelCase__ ( self : List[str] , __a : List[Any] , __a : str , __a : Any , __a : Dict=None , **__a : Optional[Any] ): if self.training_tracker is not None: _a = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history ): if "loss" in log: _a = log["loss"] break if self.first_column == "Epoch": _a = int(state.epoch ) else: _a = state.global_step _a = "eval" for k in metrics: if k.endswith("_loss" ): _a = re.sub(r"\_loss$" , "" , __a ) _a = metrics.pop("total_flos" , __a ) _a = metrics.pop("epoch" , __a ) _a = metrics.pop(f'{metric_key_prefix}_runtime' , __a ) _a = metrics.pop(f'{metric_key_prefix}_samples_per_second' , __a ) _a = metrics.pop(f'{metric_key_prefix}_steps_per_second' , __a ) _a = metrics.pop(f'{metric_key_prefix}_jit_compilation_time' , __a ) for k, v in metrics.items(): if k == f'{metric_key_prefix}_loss': _a = v else: _a = k.split("_" ) _a = " ".join([part.capitalize() for part in splits[1:]] ) _a = v self.training_tracker.write_line(__a ) self.training_tracker.remove_child() _a = None # Evaluation takes a long time so we should force the next update. _a = True def UpperCamelCase__ ( self : List[Any] , __a : str , __a : Dict , __a : List[str] , **__a : Any ): self.training_tracker.update( state.global_step , comment=f'Epoch {int(state.epoch )}/{state.num_train_epochs}' , force_update=__a ) _a = None
63
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
312
0
'''simple docstring''' import copy import re class lowercase__ : '''simple docstring''' A_ : Optional[int] = 'hp' A_ : str = {} A_ : List[Any] = None @classmethod def UpperCAmelCase_ ( cls , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Any = prefix _SCREAMING_SNAKE_CASE : int = defaults cls.build_naming_info() @staticmethod def UpperCAmelCase_ ( __snake_case , __snake_case ): if len(__snake_case ) == 0: return "" _SCREAMING_SNAKE_CASE : List[Any] = None if any(char.isdigit() for char in word ): raise Exception(f"""Parameters should not contain numbers: \'{word}\' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__snake_case ) + 1 ): _SCREAMING_SNAKE_CASE : List[Any] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE : Optional[int] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = """""" while integer != 0: _SCREAMING_SNAKE_CASE : List[Any] = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s _SCREAMING_SNAKE_CASE : Any = 0 while True: _SCREAMING_SNAKE_CASE : Optional[Any] = word + """#""" + int_to_alphabetic(__snake_case ) if sword in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE : List[str] = sword break _SCREAMING_SNAKE_CASE : List[str] = short_word _SCREAMING_SNAKE_CASE : Any = word return short_word @staticmethod def UpperCAmelCase_ ( __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = param_name.split("""_""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [TrialShortNamer.shortname_for_word(__snake_case , __snake_case ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _SCREAMING_SNAKE_CASE : Any = ["""""", """_"""] for separator in separators: _SCREAMING_SNAKE_CASE : Dict = separator.join(__snake_case ) if shortname not in info["reverse_short_param"]: _SCREAMING_SNAKE_CASE : Any = shortname _SCREAMING_SNAKE_CASE : Dict = param_name return shortname return param_name @staticmethod def UpperCAmelCase_ ( __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[Any] = TrialShortNamer.shortname_for_key(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Tuple = short_name _SCREAMING_SNAKE_CASE : Optional[int] = param_name @classmethod def UpperCAmelCase_ ( cls ): if cls.NAMING_INFO is not None: return _SCREAMING_SNAKE_CASE : Union[str, Any] = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } _SCREAMING_SNAKE_CASE : Union[str, Any] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = info @classmethod def UpperCAmelCase_ ( cls , __snake_case ): cls.build_naming_info() assert cls.PREFIX is not None _SCREAMING_SNAKE_CASE : Union[str, Any] = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _SCREAMING_SNAKE_CASE : Union[str, Any] = cls.NAMING_INFO["""short_param"""][k] if isinstance(__snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : List[Any] = 1 if v else 0 _SCREAMING_SNAKE_CASE : Dict = """""" if isinstance(__snake_case , (int, float) ) else """-""" _SCREAMING_SNAKE_CASE : Any = f"""{key}{sep}{v}""" name.append(__snake_case ) return "_".join(__snake_case ) @classmethod def UpperCAmelCase_ ( cls , __snake_case ): _SCREAMING_SNAKE_CASE : Any = repr[len(cls.PREFIX ) + 1 :] if repr == "": _SCREAMING_SNAKE_CASE : List[Any] = [] else: _SCREAMING_SNAKE_CASE : str = repr.split("""_""" ) _SCREAMING_SNAKE_CASE : Dict = {} for value in values: if "-" in value: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = value.split("""-""" ) else: _SCREAMING_SNAKE_CASE : List[Any] = re.sub("""[0-9.]""" , """""" , __snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = float(re.sub("""[^0-9.]""" , """""" , __snake_case ) ) _SCREAMING_SNAKE_CASE : int = cls.NAMING_INFO["""reverse_short_param"""][p_k] _SCREAMING_SNAKE_CASE : int = p_v for k in cls.DEFAULTS: if k not in parameters: _SCREAMING_SNAKE_CASE : Optional[Any] = cls.DEFAULTS[k] return parameters
200
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['image_processor', 'tokenizer'] _lowerCamelCase : Tuple = 'OwlViTImageProcessor' _lowerCamelCase : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any ): A_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) A_ = kwargs.pop("feature_extractor" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="max_length" , UpperCAmelCase : Optional[Any]="np" , **UpperCAmelCase : Optional[int] ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCAmelCase , UpperCAmelCase ) or (isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(text[0] , UpperCAmelCase )): A_ = [self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )] elif isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(text[0] , UpperCAmelCase ): A_ = [] # Maximum number of queries across batch A_ = max([len(UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase ) != max_num_queries: A_ = t + [" "] * (max_num_queries - len(UpperCAmelCase )) A_ = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) encodings.append(UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": A_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) A_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) A_ = BatchEncoding() A_ = input_ids A_ = attention_mask if query_images is not None: A_ = BatchEncoding() A_ = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ).pixel_values A_ = query_pixel_values if images is not None: A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def __A ( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ): return self.image_processor.post_process(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : str , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): return self.image_processor.post_process_object_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : int ): return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def __A ( self : Optional[Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
312
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class snake_case : '''simple docstring''' def __init__( self : Dict, _lowerCamelCase : str = "cpu", _lowerCamelCase : str = "openai/clip-vit-large-patch14" ): '''simple docstring''' __A = device __A = CLIPTokenizerFast.from_pretrained(_lowerCamelCase ) __A = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] __A = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] __A = torchvision.transforms.Normalize(self.image_mean, self.image_std ) __A = torchvision.transforms.Resize(2_24 ) __A = torchvision.transforms.CenterCrop(2_24 ) def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : Tuple ): '''simple docstring''' __A = self.resize(_lowerCamelCase ) __A = self.center_crop(_lowerCamelCase ) __A = self.normalize(_lowerCamelCase ) return images def __call__( self : List[str], _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : Dict=None, **_lowerCamelCase : Optional[int] ): '''simple docstring''' __A = self.tokenizer(text=_lowerCamelCase, **_lowerCamelCase ) __A = self.preprocess_img(_lowerCamelCase ) __A = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any], _lowerCamelCase : int=10, _lowerCamelCase : List[str]=0.01, _lowerCamelCase : str=None, _lowerCamelCase : List[str]=None, _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : Tuple=None, _lowerCamelCase : Dict=None, _lowerCamelCase : Any=False, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : Tuple="image", _lowerCamelCase : Dict=True, _lowerCamelCase : Optional[int]=False, _lowerCamelCase : List[Any]=False, _lowerCamelCase : Union[str, Any]=False, ): '''simple docstring''' super().__init__() __A = None __A = device if device else get_device() if vqgan: __A = vqgan else: __A = load_vqgan(self.device, conf_path=_lowerCamelCase, ckpt_path=_lowerCamelCase ) self.vqgan.eval() if clip: __A = clip else: __A = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __A = ProcessorGradientFlow(device=self.device ) __A = iterations __A = lr __A = log __A = make_grid __A = return_val __A = quantize __A = self.vqgan.decoder.z_shape def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[Any]=None, _lowerCamelCase : int=None, _lowerCamelCase : List[Any]=5, _lowerCamelCase : Optional[Any]=True ): '''simple docstring''' __A = [] if output_path is None: __A = '''./animation.gif''' if input_path is None: __A = self.save_path __A = sorted(glob(input_path + '''/*''' ) ) if not len(_lowerCamelCase ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(_lowerCamelCase ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __A = total_duration / len(_lowerCamelCase ) __A = [frame_duration] * len(_lowerCamelCase ) if extend_frames: __A = 1.5 __A = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(_lowerCamelCase ) ) imageio.mimsave(_lowerCamelCase, _lowerCamelCase, duration=_lowerCamelCase ) print(f'gif saved to {output_path}' ) def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : List[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __A = preprocess(Image.open(_lowerCamelCase ), target_image_size=2_56 ).to(self.device ) __A = preprocess_vqgan(_lowerCamelCase ) __A , *__A = self.vqgan.encode(_lowerCamelCase ) return z def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : str ): '''simple docstring''' __A = self.latent.detach().requires_grad_() __A = base_latent + transform_vector if self.quantize: __A , *__A = self.vqgan.quantize(_lowerCamelCase ) else: __A = trans_latent return self.vqgan.decode(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : Tuple, _lowerCamelCase : Tuple, _lowerCamelCase : Optional[int]=None ): '''simple docstring''' __A = self.clip_preprocessor(text=_lowerCamelCase, images=_lowerCamelCase, return_tensors='''pt''', padding=_lowerCamelCase ) __A = self.clip(**_lowerCamelCase ) __A = clip_outputs.logits_per_image if weights is not None: __A = similarity_logits * weights return similarity_logits.sum() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : Dict, _lowerCamelCase : int, _lowerCamelCase : List[str] ): '''simple docstring''' __A = self._get_clip_similarity(pos_prompts['''prompts'''], _lowerCamelCase, weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __A = self._get_clip_similarity(neg_prompts['''prompts'''], _lowerCamelCase, weights=neg_prompts['''weights'''] ) else: __A = torch.tensor([1], device=self.device ) __A = -torch.log(_lowerCamelCase ) + torch.log(_lowerCamelCase ) return loss def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Tuple, _lowerCamelCase : Union[str, Any], _lowerCamelCase : Optional[int] ): '''simple docstring''' __A = torch.randn_like(self.latent, requires_grad=_lowerCamelCase, device=self.device ) __A = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __A = self._add_vector(_lowerCamelCase ) __A = loop_post_process(_lowerCamelCase ) __A = self._get_CLIP_loss(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) print('''CLIP loss''', _lowerCamelCase ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=_lowerCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Optional[int], _lowerCamelCase : Any, _lowerCamelCase : Union[str, Any] ): '''simple docstring''' wandb.init(reinit=_lowerCamelCase, project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __A = Image.open(_lowerCamelCase ) __A = image.resize((2_56, 2_56) ) wandb.log('''Original Image''', wandb.Image(_lowerCamelCase ) ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Any ): '''simple docstring''' if not prompts: return [] __A = [] __A = [] if isinstance(_lowerCamelCase, _lowerCamelCase ): __A = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(_lowerCamelCase, (tuple, list) ): __A = prompt[0] __A = float(prompt[1] ) elif ":" in prompt: __A , __A = prompt.split(''':''' ) __A = float(_lowerCamelCase ) else: __A = prompt __A = 1.0 processed_prompts.append(_lowerCamelCase ) weights.append(_lowerCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(_lowerCamelCase, device=self.device ), } def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : str, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : Union[str, Any]=True, _lowerCamelCase : str=False, _lowerCamelCase : List[str]=True, _lowerCamelCase : Union[str, Any]=True, _lowerCamelCase : str=None, ): '''simple docstring''' if image_path: __A = self._get_latent(_lowerCamelCase ) else: __A = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." __A = self.process_prompts(_lowerCamelCase ) __A = self.process_prompts(_lowerCamelCase ) if save_final and save_path is None: __A = os.path.join('''./outputs/''', '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) else: __A = save_path + '''_''' + get_timestamp() os.makedirs(_lowerCamelCase ) __A = save_path __A = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(_lowerCamelCase ) ) __A = loop_post_process(_lowerCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ): if show_intermediate: show_pil(_lowerCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(_lowerCamelCase )} ) if show_final: show_pil(_lowerCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}_final.png' ) )
266
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Dict , UpperCAmelCase : int = 768 , ): super().__init__() A_ = nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) A_ = nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def __A ( self : str , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ): A_ = nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) A_ = nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def __A ( self : Dict , UpperCAmelCase : List[Any] ): A_ = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self : int , UpperCAmelCase : int ): A_ = (embeds * self.std) + self.mean return embeds
312
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Dict = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCamelCase : Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def A ( snake_case :List[Any] , snake_case :Tuple , snake_case :Union[str, Any] , snake_case :Dict , snake_case :int ) -> str: for attribute in key.split('.' ): __UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: __UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: __UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A ( snake_case :Tuple , snake_case :Union[str, Any] ) -> int: __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __UpperCamelCase = None for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) __UpperCamelCase = True elif name.split('.' )[0] == "proj": __UpperCamelCase = fairseq_model.proj __UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(__UpperCamelCase )[0].split('.' )[-2] __UpperCamelCase = mapped_key.replace('*' , __UpperCamelCase ) if "weight_g" in name: __UpperCamelCase = 'weight_g' elif "weight_v" in name: __UpperCamelCase = 'weight_v' elif "bias" in name: __UpperCamelCase = 'bias' elif "weight" in name: __UpperCamelCase = 'weight' else: __UpperCamelCase = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def A ( snake_case :Any , snake_case :List[Any] , snake_case :Tuple , snake_case :Any , snake_case :Optional[Any] ) -> str: __UpperCamelCase = full_name.split('conv_layers.' )[-1] __UpperCamelCase = name.split('.' ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __UpperCamelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __UpperCamelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __UpperCamelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __UpperCamelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCamelCase ) def A ( snake_case :Any ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = emb.weight.shape __UpperCamelCase = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) __UpperCamelCase = emb.weight.data return lin_layer def A ( snake_case :List[Any] ) -> Union[str, Any]: with open(__UpperCamelCase , 'r' , encoding='utf-8' ) as f: __UpperCamelCase = f.readlines() __UpperCamelCase = [line.split(' ' )[0] for line in lines] __UpperCamelCase = len(__UpperCamelCase ) __UpperCamelCase = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__UpperCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def A ( snake_case :int , snake_case :Dict , snake_case :Optional[int] , snake_case :Optional[int] , snake_case :str , snake_case :List[str] , snake_case :Dict , ) -> str: __UpperCamelCase = WavaVecaConfig.from_pretrained(__UpperCamelCase ) __UpperCamelCase = SpeechaTextaConfig.from_pretrained( __UpperCamelCase , vocab_size=__UpperCamelCase , decoder_layers=__UpperCamelCase , do_stable_layer_norm=__UpperCamelCase ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __UpperCamelCase = model[0].eval() # set weights for wav2vec2 encoder __UpperCamelCase = WavaVecaModel(__UpperCamelCase ) __UpperCamelCase = recursively_load_weights_wavaveca(model.encoder , __UpperCamelCase ) __UpperCamelCase = SpeechaTextaForCausalLM(__UpperCamelCase ) __UpperCamelCase , __UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__UpperCamelCase ) # set output linear layer unexpected_keys.remove('embed_out' ) __UpperCamelCase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) __UpperCamelCase = SpeechEncoderDecoderModel(encoder=__UpperCamelCase , decoder=__UpperCamelCase ) __UpperCamelCase = False # add projection layer __UpperCamelCase = nn.Parameter(projection_layer.weight ) __UpperCamelCase = nn.Parameter(projection_layer.bias ) __UpperCamelCase = create_vocab_dict(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , 'vocab.json' ) , 'w' ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase = SpeechaTextaTokenizer(os.path.join(__UpperCamelCase , 'vocab.json' ) ) tokenizer.save_pretrained(__UpperCamelCase ) __UpperCamelCase = hf_wavavec.config.to_dict() __UpperCamelCase = tokenizer.pad_token_id __UpperCamelCase = tokenizer.bos_token_id __UpperCamelCase = tokenizer.eos_token_id __UpperCamelCase = 'speech_to_text_2' __UpperCamelCase = 'wav2vec2' __UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__UpperCamelCase ) hf_wavavec.save_pretrained(__UpperCamelCase ) feature_extractor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0_2_2_4, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") UpperCamelCase : str = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
316
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __snake_case ( __UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ,): """simple docstring""" A_ , A_ = coefficient_matrix.shape A_ , A_ = constant_matrix.shape if rowsa != colsa: A_ = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if colsa != 1: A_ = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if rowsa != rowsa: A_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: A_ = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(__UpperCamelCase )} and {rowsa}''' ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) A_ = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) A_ , A_ = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): A_ = [] for row in range(__UpperCamelCase ): A_ = 0 for col in range(__UpperCamelCase ): if col == row: A_ = table[row][col] elif col == cols - 1: A_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ = (temp + val) / denom new_val.append(__UpperCamelCase ) A_ = new_val return [float(__UpperCamelCase ) for i in new_val] def __snake_case ( __UpperCamelCase : NDArray[floataa] ): """simple docstring""" A_ , A_ = table.shape A_ = True for i in range(0 ,__UpperCamelCase ): A_ = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
312
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def _a ( SCREAMING_SNAKE_CASE : bool = True , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) __lowerCAmelCase: Union[str, Any] = False if main_process_only: __lowerCAmelCase: Union[str, Any] = PartialState().local_process_index == 0 return _tqdm(*__UpperCamelCase , **__UpperCamelCase , disable=__UpperCamelCase )
322
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __snake_case ( ): """simple docstring""" A_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } A_ = Dataset.from_dict(__UpperCamelCase ) return dataset class _a ( snake_case_ ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = get_dataset() A_ = make_duplicate_clusters(UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __A ( self : List[Any] ): A_ = get_dataset() A_ , A_ = deduplicate_dataset(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 2 ) print(UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , UpperCAmelCase )
312
0
from __future__ import annotations import math def UpperCamelCase ( snake_case__ : int , snake_case__ : int , snake_case__ : bool , snake_case__ : list[int] , snake_case__ : float ) -> Union[str, Any]: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , ) ) def UpperCamelCase ( ) -> Any: UpperCamelCase : Tuple = [90, 23, 6, 33, 21, 65, 123, 34423] UpperCamelCase : Union[str, Any] = math.log(len(__UpperCamelCase ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
119
import os from typing import Dict, List, Tuple, TypeVar, Union __a :Any = TypeVar('T') __a :Union[str, Any] = Union[List[T], Tuple[T, ...]] __a :List[str] = Union[T, List[T], Dict[str, T]] __a :Any = Union[str, bytes, os.PathLike]
312
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _snake_case = datasets.logging.get_logger(__name__) _snake_case = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' _snake_case = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' _snake_case = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' _snake_case = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a__ ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def a__ ( self , _a ) -> Any: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) _A : str = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: _A : str = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _A : Tuple = self.config_name.upper() else: raise KeyError( F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer _A : int = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) _A : Union[str, Any] = score.BleurtScorer(os.path.join(_a , _a ) ) def a__ ( self , _a , _a ) -> List[str]: _A : List[str] = self.scorer.score(references=_a , candidates=_a ) return {"scores": scores}
26
__a :Dict = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
312
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset")}), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42)}), SplitDict({"train": SplitInfo()}), ] , ) def lowercase_ ( _lowerCamelCase : SplitDict): lowercase__ : str = split_dict._to_yaml_list() assert len(__UpperCamelCase) == len(__UpperCamelCase) lowercase__ : int = SplitDict._from_yaml_list(__UpperCamelCase) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowercase__ : Union[str, Any] = None # the split name of split_dict takes over the name of the split info object lowercase__ : str = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=__UpperCamelCase), SplitInfo(dataset_name="my_dataset")]) def lowercase_ ( _lowerCamelCase : Optional[int]): lowercase__ : List[Any] = asdict(SplitDict({"train": split_info})) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
87
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(e for e in range(3 ,__UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
312
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCAmelCase__ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' inspect_dataset(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = path + '.py' assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : int ) -> Dict: '''simple docstring''' inspect_metric(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = path + '.py' assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' _UpperCAmelCase = get_dataset_config_info(__UpperCamelCase , config_name=__UpperCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' with pytest.raises(__UpperCamelCase ): get_dataset_config_info(__UpperCamelCase , config_name=__UpperCamelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = get_dataset_config_names(__UpperCamelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = get_dataset_infos(__UpperCamelCase ) assert list(infos.keys() ) == expected_configs _UpperCAmelCase = expected_configs[0] assert expected_config in infos _UpperCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = get_dataset_infos(__UpperCamelCase ) assert expected_config in infos _UpperCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' with pytest.raises(__UpperCamelCase ): get_dataset_split_names(__UpperCamelCase , config_name=__UpperCamelCase )
339
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _a : """simple docstring""" @property def __A ( self : Union[str, Any] ): return self.get_dummy_input() @property def __A ( self : int ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=False , ): A_ = 4 A_ = 32 A_ = (32, 32) A_ = torch.manual_seed(0 ) A_ = torch.device(UpperCAmelCase ) A_ = (batch_size, num_channels) + sizes A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ) A_ = {"hidden_states": hidden_states} if include_temb: A_ = 128 A_ = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase , device=UpperCAmelCase ) if include_res_hidden_states_tuple: A_ = torch.manual_seed(1 ) A_ = (randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ),) if include_encoder_hidden_states: A_ = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase ) if include_skip_sample: A_ = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase , device=UpperCAmelCase ) return dummy_input def __A ( self : Optional[int] ): A_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": A_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) A_ = self.dummy_input return init_dict, inputs_dict def __A ( self : List[str] , UpperCAmelCase : Optional[Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) unet_block.to(UpperCAmelCase ) unet_block.eval() with torch.no_grad(): A_ = unet_block(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] self.assertEqual(output.shape , self.output_shape ) A_ = output[0, -1, -3:, -3:] A_ = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def __A ( self : Union[str, Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() A_ = model(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] A_ = torch.device(UpperCAmelCase ) A_ = randn_tensor(output.shape , device=UpperCAmelCase ) A_ = torch.nn.functional.mse_loss(UpperCAmelCase , UpperCAmelCase ) loss.backward()
312
0
"""simple docstring""" from __future__ import annotations import numpy as np def _snake_case ( lowerCamelCase__ : list[float] ) -> Dict: return np.maximum(0 , __UpperCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
144
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __a :int = True except ImportError: __a :Optional[Any] = False try: from torch.hub import _get_torch_home __a :Optional[Any] = _get_torch_home() except ImportError: __a :Tuple = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) __a :Optional[Any] = os.path.join(torch_cache_home, 'transformers') __a :int = 'https://cdn.huggingface.co' __a :Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' __a :Optional[Any] = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) __a :str = os.path.join(PATH, 'config.yaml') __a :str = os.path.join(PATH, 'attributes.txt') __a :Optional[Any] = os.path.join(PATH, 'objects.txt') __a :Optional[int] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) __a :Dict = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) __a :List[Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) __a :List[str] = 'pytorch_model.bin' __a :Tuple = 'config.yaml' def __snake_case ( __UpperCamelCase : Optional[Any]=OBJECTS ,__UpperCamelCase : List[str]=ATTRIBUTES ): """simple docstring""" A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = OrderedDict() with open(__UpperCamelCase ,"rb" ) as f: A_ = pkl.load(__UpperCamelCase )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): A_ = ckp.pop(__UpperCamelCase ) if isinstance(__UpperCamelCase ,np.ndarray ): A_ = torch.tensor(__UpperCamelCase ) else: assert isinstance(__UpperCamelCase ,torch.tensor ), type(__UpperCamelCase ) A_ = v return r class _a : """simple docstring""" _lowerCamelCase : Union[str, Any] = {} def __init__( self : str , UpperCAmelCase : dict , UpperCAmelCase : str = "root" , UpperCAmelCase : List[str]=0 ): A_ = name A_ = level A_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() A_ = copy.deepcopy(UpperCAmelCase ) A_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) A_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) A_ = d def __repr__( self : Optional[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Any ): A_ = val A_ = val A_ = key.split("." ) A_ = len(UpperCAmelCase ) - 1 A_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , ".".join(levels[i:] ) , UpperCAmelCase ) if l == last_level: A_ = val else: A_ = pointer[l] def __A ( self : List[str] ): return self._pointer def __A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : int ): with open(f'''{file_name}''' , "w" ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): with open(f'''{file_name}''' , "w" ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def __A ( UpperCAmelCase : Optional[int] ): with open(UpperCAmelCase ) as stream: A_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self : str ): A_ = " " if self._name != "root": A_ = f'''{t * (self._level-1)}{self._name}:\n''' else: A_ = "" A_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n''' A_ = level return r[:-1] @classmethod def __A ( cls : Optional[Any] , UpperCAmelCase : str , **UpperCAmelCase : str ): A_ , A_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def __A ( cls : int , UpperCAmelCase : str , **UpperCAmelCase : int ): A_ = kwargs.pop("cache_dir" , UpperCAmelCase ) A_ = kwargs.pop("force_download" , UpperCAmelCase ) A_ = kwargs.pop("resume_download" , UpperCAmelCase ) A_ = kwargs.pop("proxies" , UpperCAmelCase ) A_ = kwargs.pop("local_files_only" , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): A_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): A_ = pretrained_model_name_or_path else: A_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached A_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError A_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: A_ = "Can't load config for" raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(UpperCAmelCase ), kwargs def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = torch.load("dump.pt" ,map_location=in_tensor.device ) A_ = in_tensor.numpy() A_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ), ( f'''{sum([1 for x in np.isclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = urlparse(__UpperCamelCase ) return parsed.scheme in ("http", "https") def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str=True ): """simple docstring""" A_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX A_ = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : int=0 ,__UpperCamelCase : int=None ,): """simple docstring""" A_ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join("{}/{}".format(__UpperCamelCase ,__UpperCamelCase ) for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent A_ = {"user-agent": ua} if resume_size > 0: A_ = "bytes=%d-" % (resume_size,) A_ = requests.get(__UpperCamelCase ,stream=__UpperCamelCase ,proxies=__UpperCamelCase ,headers=__UpperCamelCase ) if response.status_code == 416: # Range not satisfiable return A_ = response.headers.get("Content-Length" ) A_ = resume_size + int(__UpperCamelCase ) if content_length is not None else None A_ = tqdm( unit="B" ,unit_scale=__UpperCamelCase ,total=__UpperCamelCase ,initial=__UpperCamelCase ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__UpperCamelCase ) ) temp_file.write(__UpperCamelCase ) progress.close() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any=None ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : Any=10 ,__UpperCamelCase : int=False ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : str=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = None if not local_files_only: try: A_ = requests.head(__UpperCamelCase ,allow_redirects=__UpperCamelCase ,proxies=__UpperCamelCase ,timeout=__UpperCamelCase ) if response.status_code == 200: A_ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass A_ = url_to_filename(__UpperCamelCase ,__UpperCamelCase ) # get cache path to put the file A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__UpperCamelCase ): return cache_path else: A_ = [ file for file in fnmatch.filter(os.listdir(__UpperCamelCase ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(__UpperCamelCase ) > 0: return os.path.join(__UpperCamelCase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(__UpperCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. A_ = cache_path + ".lock" with FileLock(__UpperCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__UpperCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: A_ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(__UpperCamelCase ,"a+b" ) as f: yield f A_ = _resumable_file_manager if os.path.exists(__UpperCamelCase ): A_ = os.stat(__UpperCamelCase ).st_size else: A_ = 0 else: A_ = partial(tempfile.NamedTemporaryFile ,dir=__UpperCamelCase ,delete=__UpperCamelCase ) A_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,__UpperCamelCase ,temp_file.name ,) http_get( __UpperCamelCase ,__UpperCamelCase ,proxies=__UpperCamelCase ,resume_size=__UpperCamelCase ,user_agent=__UpperCamelCase ,) os.replace(temp_file.name ,__UpperCamelCase ) A_ = {"url": url, "etag": etag} A_ = cache_path + ".json" with open(__UpperCamelCase ,"w" ) as meta_file: json.dump(__UpperCamelCase ,__UpperCamelCase ) return cache_path def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : str=None ): """simple docstring""" A_ = url.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) A_ = url_hash.hexdigest() if etag: A_ = etag.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : Any=False ,__UpperCamelCase : Optional[int]=None ,__UpperCamelCase : Optional[Any]=False ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Optional[Any]=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if is_remote_url(__UpperCamelCase ): # URL, so get it from the cache (downloading if necessary) A_ = get_from_cache( __UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,user_agent=__UpperCamelCase ,local_files_only=__UpperCamelCase ,) elif os.path.exists(__UpperCamelCase ): # File, and it exists. A_ = url_or_filename elif urlparse(__UpperCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(__UpperCamelCase ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(__UpperCamelCase ) ) if extract_compressed_file: if not is_zipfile(__UpperCamelCase ) and not tarfile.is_tarfile(__UpperCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" A_ , A_ = os.path.split(__UpperCamelCase ) A_ = output_file.replace("." ,"-" ) + "-extracted" A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) if os.path.isdir(__UpperCamelCase ) and os.listdir(__UpperCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions A_ = output_path + ".lock" with FileLock(__UpperCamelCase ): shutil.rmtree(__UpperCamelCase ,ignore_errors=__UpperCamelCase ) os.makedirs(__UpperCamelCase ) if is_zipfile(__UpperCamelCase ): with ZipFile(__UpperCamelCase ,"r" ) as zip_file: zip_file.extractall(__UpperCamelCase ) zip_file.close() elif tarfile.is_tarfile(__UpperCamelCase ): A_ = tarfile.open(__UpperCamelCase ) tar_file.extractall(__UpperCamelCase ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(__UpperCamelCase ) ) return output_path_extracted return output_path def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any="," ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase ) as f: A_ = eval(f.read() ) else: A_ = requests.get(__UpperCamelCase ) try: A_ = requests.json() except Exception: A_ = req.content.decode() assert data is not None, "could not connect" try: A_ = eval(__UpperCamelCase ) except Exception: A_ = data.split("\n" ) req.close() return data def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = requests.get(__UpperCamelCase ) A_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__UpperCamelCase ) with open(__UpperCamelCase ,"rb" ) as stream: A_ = pkl.load(__UpperCamelCase ) A_ = weights.pop("model" ) A_ = {} for k, v in model.items(): A_ = torch.from_numpy(__UpperCamelCase ) if "running_var" in k: A_ = torch.tensor([0] ) A_ = k.replace("running_var" ,"num_batches_tracked" ) A_ = zero return new def __snake_case ( ): """simple docstring""" print(f'''{os.path.abspath(os.path.join(__UpperCamelCase ,os.pardir ) )}/demo.ipynb''' ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int]="RGB" ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): A_ = cva.imread(__UpperCamelCase ) else: A_ = get_image_from_url(__UpperCamelCase ) assert img is not None, f'''could not connect to: {im}''' A_ = cva.cvtColor(__UpperCamelCase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": A_ = img[:, :, ::-1] return img def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[str]=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(__UpperCamelCase ) ,__UpperCamelCase ))
312
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _A( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , _A = 768 , ): super().__init__() __A : str = nn.Parameter(torch.zeros(1 , _A ) ) __A : List[Any] = nn.Parameter(torch.ones(1 , _A ) ) def UpperCAmelCase_ ( self , _A = None , _A = None , ): __A : Dict = nn.Parameter(self.mean.to(_A ).to(_A ) ) __A : List[Any] = nn.Parameter(self.std.to(_A ).to(_A ) ) return self def UpperCAmelCase_ ( self , _A ): __A : int = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCAmelCase_ ( self , _A ): __A : Optional[int] = (embeds * self.std) + self.mean return embeds
280
from __future__ import annotations def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(__UpperCamelCase ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
312
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowerCAmelCase_ : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } lowerCAmelCase_ : Optional[int] = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } lowerCAmelCase_ : str = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __SCREAMING_SNAKE_CASE (snake_case_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_INIT_CONFIGURATION __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =ElectraTokenizer def __init__( self : Tuple , __a : Dict=None , __a : Optional[int]=None , __a : Any=True , __a : Any="[UNK]" , __a : Union[str, Any]="[SEP]" , __a : List[Any]="[PAD]" , __a : Union[str, Any]="[CLS]" , __a : List[Any]="[MASK]" , __a : List[str]=True , __a : Any=None , **__a : Union[str, Any] , ): super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) _a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __a ) != do_lower_case or normalizer_state.get("strip_accents" , __a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __a ) != tokenize_chinese_chars ): _a = getattr(__a , normalizer_state.pop("type" ) ) _a = do_lower_case _a = strip_accents _a = tokenize_chinese_chars _a = normalizer_class(**__a ) _a = do_lower_case def UpperCamelCase__ ( self : int , __a : List[Any] , __a : Union[str, Any]=None ): _a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self : Union[str, Any] , __a : List[int] , __a : Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self : Tuple , __a : str , __a : Optional[str] = None ): _a = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
63
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __a :int = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : int = 101 ): A_ = length def __len__( self : int ): return self.length def __getitem__( self : Optional[int] , UpperCAmelCase : Optional[int] ): return i class _a : """simple docstring""" def __call__( self : Any , UpperCAmelCase : Optional[Any] ): return {"input_ids": torch.tensor(UpperCAmelCase ), "labels": torch.tensor(UpperCAmelCase )} class _a ( nn.Module ): """simple docstring""" def __init__( self : int ): super().__init__() # Add some (unused) params otherwise DDP will complain. A_ = nn.Linear(120 , 80 ) def __A ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Tuple=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _a ( snake_case_ ): """simple docstring""" @require_torch_neuroncore def __A ( self : List[str] ): A_ = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _a ( snake_case_ ): """simple docstring""" @require_torch_multi_gpu def __A ( self : List[str] ): A_ = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __a :Union[str, Any] = HfArgumentParser((TrainingArguments,)) __a :Tuple = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __a :int = DummyDataset(dataset_length) def __snake_case ( __UpperCamelCase : EvalPrediction ): """simple docstring""" A_ = list(range(len(__UpperCamelCase ) ) ) A_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} __a :str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __a :str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Optional[int] = 2 __a :List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Union[str, Any] = None
312
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = set() # edges = list of graph's edges _SCREAMING_SNAKE_CASE : str = get_edges(__UpperCamelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = edges.pop() chosen_vertices.add(__UpperCamelCase ) chosen_vertices.add(__UpperCamelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__UpperCamelCase ) return chosen_vertices def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
200
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __a :Any = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = "huggingface/label-files" A_ = "imagenet-1k-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = {v: k for k, v in idalabel.items()} A_ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" A_ = BitConfig( conv_layer=__UpperCamelCase ,num_labels=1000 ,idalabel=__UpperCamelCase ,labelaid=__UpperCamelCase ,) return config def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if "stem.conv" in name: A_ = name.replace("stem.conv" ,"bit.embedder.convolution" ) if "blocks" in name: A_ = name.replace("blocks" ,"layers" ) if "head.fc" in name: A_ = name.replace("head.fc" ,"classifier.1" ) if name.startswith("norm" ): A_ = "bit." + name if "bit" not in name and "classifier" not in name: A_ = "bit.encoder." + name return name def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Tuple=False ): """simple docstring""" A_ = get_config(__UpperCamelCase ) # load original model from timm A_ = create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model A_ = timm_model.state_dict() for key in state_dict.copy().keys(): A_ = state_dict.pop(__UpperCamelCase ) A_ = val.squeeze() if "head" in key else val # load HuggingFace model A_ = BitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # create image processor A_ = create_transform(**resolve_data_config({} ,model=__UpperCamelCase ) ) A_ = transform.transforms A_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A_ = BitImageProcessor( do_resize=__UpperCamelCase ,size={"shortest_edge": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=__UpperCamelCase ,crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} ,do_normalize=__UpperCamelCase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) A_ = prepare_img() A_ = transform(__UpperCamelCase ).unsqueeze(0 ) A_ = processor(__UpperCamelCase ,return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ) # verify logits with torch.no_grad(): A_ = model(__UpperCamelCase ) A_ = outputs.logits print("Logits:" ,logits[0, :3] ) print("Predicted class:" ,model.config.idalabel[logits.argmax(-1 ).item()] ) A_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __a :str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
312
0
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowercase_ = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8000, 'sample_size': 6_5536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8000, 'sample_size': 6_5536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8000, 'sample_size': 13_1072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6000, 'sample_size': 6_5536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6000, 'sample_size': 6_5536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6000, 'sample_size': 6_5536, }, } def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return torch.atana(__UpperCamelCase , __UpperCamelCase ) / math.pi * 2 def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = torch.sin(t * math.pi / 2 ) ** 2 __A = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__UpperCamelCase , __UpperCamelCase ) class snake_case ( snake_case_ ): '''simple docstring''' pass class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : str, _lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__() __A = DiffusionAttnUnetaD(_lowerCamelCase, n_attn_layers=4 ) __A = deepcopy(self.diffusion ) __A = torch.quasirandom.SobolEngine(1, scramble=_lowerCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = MODELS_MAP[model_name]['''url'''] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' lowercase_ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } lowercase_ = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } lowercase_ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } lowercase_ = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } lowercase_ = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } lowercase_ = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(__UpperCamelCase ) and not isinstance(__UpperCamelCase , __UpperCamelCase ): return name.replace(__UpperCamelCase , __UpperCamelCase ) elif name.startswith(__UpperCamelCase ): return [name.replace(__UpperCamelCase , __UpperCamelCase ) for v in value] raise ValueError(f'Attn error with {name}' ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=1_3 ): """simple docstring""" __A = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) __A = 0 if string.startswith('''net.3.''' ): depth += 1 __A = string[6:] elif string.startswith('''net.''' ): __A = string[4:] while string.startswith('''main.7.''' ): depth += 1 __A = string[7:] if string.startswith('''main.''' ): __A = string[5:] # mid block if string[:2].isdigit(): __A = string[:2] __A = string[2:] else: __A = string[0] __A = string[1:] if depth == max_depth: __A = MID_NUM_TO_LAYER[layer_num] __A = '''mid_block''' elif depth > 0 and int(__UpperCamelCase ) < 7: __A = DOWN_NUM_TO_LAYER[layer_num] __A = f'down_blocks.{depth}' elif depth > 0 and int(__UpperCamelCase ) > 7: __A = UP_NUM_TO_LAYER[layer_num] __A = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: __A = DEPTH_0_TO_LAYER[layer_num] __A = f'up_blocks.{max_depth - 1}' if int(__UpperCamelCase ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) __A = string_left[1:] if "resnets" in new_layer: __A = convert_resconv_naming(__UpperCamelCase ) elif "attentions" in new_layer: __A = convert_attn_naming(__UpperCamelCase ) __A = new_string_left if not isinstance(__UpperCamelCase , __UpperCamelCase ): __A = prefix + '''.''' + new_layer + '''.''' + string_left else: __A = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue __A = rename(__UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(__UpperCamelCase , __UpperCamelCase ): __A = transform_conv_attns(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: __A = v return new_state_dict def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if len(__UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight __A = v[:, :, 0] else: # bias __A = v else: # qkv matrices __A = v.shape[0] __A = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __A = v[i * single_shape : (i + 1) * single_shape, :, 0] else: __A = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __A = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' __A = download(__UpperCamelCase ) __A = MODELS_MAP[model_name]['''sample_rate'''] __A = MODELS_MAP[model_name]['''sample_size'''] __A = Object() __A = sample_size __A = sample_rate __A = 0 __A = UNetaDModel(sample_size=__UpperCamelCase , sample_rate=__UpperCamelCase ) __A = diffusers_model.state_dict() __A = DiffusionUncond(__UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__UpperCamelCase )['''state_dict'''] ) __A = orig_model.diffusion_ema.eval() __A = orig_model.state_dict() __A = rename_orig_weights(__UpperCamelCase ) __A = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __A = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__UpperCamelCase ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith('''kernel''' ) for k in list(__UpperCamelCase ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": __A = value.squeeze() __A = value diffusers_model.load_state_dict(__UpperCamelCase ) __A = 1_0_0 __A = 3_3 __A = IPNDMScheduler(num_train_timesteps=__UpperCamelCase ) __A = torch.manual_seed(__UpperCamelCase ) __A = torch.randn([1, 2, config.sample_size] , generator=__UpperCamelCase ).to(__UpperCamelCase ) __A = torch.linspace(1 , 0 , steps + 1 , device=__UpperCamelCase )[:-1] __A = get_crash_schedule(__UpperCamelCase ) __A = DanceDiffusionPipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) __A = torch.manual_seed(3_3 ) __A = pipe(num_inference_steps=__UpperCamelCase , generator=__UpperCamelCase ).audios __A = sampling.iplms_sample(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , {} ) __A = generated.clamp(-1 , 1 ) __A = (generated - audio).abs().sum() __A = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , __UpperCamelCase ) print('''Diff max''' , __UpperCamelCase ) assert diff_max < 1e-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') lowercase_ = parser.parse_args() main(args)
266
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __a :Dict = get_logger(__name__) __a :Union[str, Any] = Path(__file__).parent / 'model_card_template.md' __a :Tuple = uuida().hex __a :List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __a :Union[str, Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __a :Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __snake_case ( __UpperCamelCase : Union[Dict, str, None] = None ): """simple docstring""" A_ = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" ,"" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent return ua def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if token is None: A_ = HfFolder.get_token() if organization is None: A_ = whoami(__UpperCamelCase )["name"] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__UpperCamelCase ,"local_rank" ) and args.local_rank not in [-1, 0]: return A_ = args.hub_token if hasattr(__UpperCamelCase ,"hub_token" ) else None A_ = get_full_repo_name(__UpperCamelCase ,token=__UpperCamelCase ) A_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" ,license="apache-2.0" ,library_name="diffusers" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=__UpperCamelCase ,model_name=__UpperCamelCase ,repo_name=__UpperCamelCase ,dataset_name=args.dataset_name if hasattr(__UpperCamelCase ,"dataset_name" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase ,"gradient_accumulation_steps" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta1" ) else None ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta2" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase ,"adam_weight_decay" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase ,"adam_epsilon" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase ,"lr_scheduler" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase ,"lr_warmup_steps" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase ,"ema_inv_gamma" ) else None ,ema_power=args.ema_power if hasattr(__UpperCamelCase ,"ema_power" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase ,"ema_max_decay" ) else None ,mixed_precision=args.mixed_precision ,) A_ = os.path.join(args.output_dir ,"README.md" ) model_card.save(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash A_ = str(Path(__UpperCamelCase ).as_posix() ) A_ = re.search(R"snapshots/([^/]+)/" ,__UpperCamelCase ) if search is None: return None A_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __a :str = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __a :List[Any] = os.path.join(hf_cache_home, 'diffusers') def __snake_case ( __UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: A_ = DIFFUSERS_CACHE if old_cache_dir is None: A_ = old_diffusers_cache A_ = Path(__UpperCamelCase ).expanduser() A_ = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A_ = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase ,__UpperCamelCase ) try: os.symlink(__UpperCamelCase ,__UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __a :Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __a :Optional[int] = 0 else: with open(cache_version_file) as f: try: __a :Dict = int(f.read()) except ValueError: __a :str = 0 if cache_version < 1: __a :Optional[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __a :Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if variant is not None: A_ = weights_name.split("." ) A_ = splits[:-1] + [variant] + splits[-1:] A_ = ".".join(__UpperCamelCase ) return weights_name def __snake_case ( __UpperCamelCase : Optional[Any] ,*, __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int]=None ,): """simple docstring""" A_ = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ): # Load from a PyTorch checkpoint A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ): A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: A_ = hf_hub_download( __UpperCamelCase ,filename=_add_variant(__UpperCamelCase ,__UpperCamelCase ) ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' ,__UpperCamelCase ,) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase ,__UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase ,__UpperCamelCase )}\' so that the correct variant file can be added.''' ,__UpperCamelCase ,) try: # 2. Load model file as usual A_ = hf_hub_download( __UpperCamelCase ,filename=__UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
312
0
"""simple docstring""" def A ( snake_case :int ) -> Tuple: if isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" __UpperCamelCase = False if num < 0: __UpperCamelCase = True __UpperCamelCase = -num __UpperCamelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__UpperCamelCase ) for e in binary ) return "0b" + "".join(str(__UpperCamelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
316
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : str , UpperCAmelCase : Path , UpperCAmelCase : Union[str, None] = None , UpperCAmelCase : Union[List[str], None] = None , UpperCAmelCase : Union[str, List[str], None] = None , UpperCAmelCase : bool = True , ) -> int: __lowerCAmelCase: str = [file for file in os.listdir(UpperCAmelCase ) if os.path.isfile(os.path.join(UpperCAmelCase , UpperCAmelCase ) )] if identifier is not None: __lowerCAmelCase: int = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCAmelCase , UpperCAmelCase ): for n_ in n_identifier: __lowerCAmelCase: Any = [file for file in files if n_ not in file] else: __lowerCAmelCase: Optional[int] = [file for file in files if n_identifier not in file] __lowerCAmelCase: Tuple = ignore_files or [] ignore_files.append('__init__.py' ) __lowerCAmelCase: Optional[Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , UpperCAmelCase ) if only_modules: __lowerCAmelCase: Any = file.split('.' )[0] try: __lowerCAmelCase: int = getattr(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: str = doctest.DocTestSuite(UpperCAmelCase ) __lowerCAmelCase: Dict = unittest.TextTestRunner().run(UpperCAmelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: __lowerCAmelCase: Dict = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCAmelCase ( self : List[str] ) -> Any: __lowerCAmelCase: Optional[Any] = Path('src/transformers' ) __lowerCAmelCase: Dict = 'modeling' __lowerCAmelCase: str = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(UpperCAmelCase , identifier=UpperCAmelCase , ignore_files=UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: __lowerCAmelCase: List[str] = Path('src/transformers' ) __lowerCAmelCase: Any = 'tokenization' self.analyze_directory(UpperCAmelCase , identifier=UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> str: __lowerCAmelCase: Optional[int] = Path('src/transformers' ) __lowerCAmelCase: int = 'configuration' self.analyze_directory(UpperCAmelCase , identifier=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase: int = Path('src/transformers' ) __lowerCAmelCase: str = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(UpperCAmelCase , n_identifier=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] ) -> List[str]: __lowerCAmelCase: str = Path('docs/source' ) __lowerCAmelCase: Dict = ['favicon.ico'] self.analyze_directory(UpperCAmelCase , ignore_files=UpperCAmelCase , only_modules=UpperCAmelCase )
322
import functools from typing import Any def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : list[str] ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or len(__UpperCamelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not all( isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie A_ = {} A_ = "WORD_KEEPER" for word in words: A_ = trie for c in word: if c not in trie_node: A_ = {} A_ = trie_node[c] A_ = True A_ = len(__UpperCamelCase ) # Dynamic programming method @functools.cache def is_breakable(__UpperCamelCase : int ) -> bool: if index == len_string: return True A_ = trie for i in range(__UpperCamelCase ,__UpperCamelCase ): A_ = trie_node.get(string[i] ,__UpperCamelCase ) if trie_node is None: return False if trie_node.get(__UpperCamelCase ,__UpperCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( snake_case_ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = XLNetTokenizer UpperCAmelCase__ : List[str] = XLNetTokenizerFast UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[str] = True def snake_case_ ( self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase : Any = XLNetTokenizer(SCREAMING_SNAKE_CASE_, keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = '<s>' UpperCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '<unk>' ) self.assertEqual(vocab_keys[1], '<s>' ) self.assertEqual(vocab_keys[-1], '<eod>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), 1006 ) def snake_case_ ( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size, 1000 ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = XLNetTokenizer(SCREAMING_SNAKE_CASE_, keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ), [285, 46, 10, 170, 382] ) UpperCamelCase : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ], ) UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) UpperCamelCase : Dict = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ], ) def snake_case_ ( self ) -> Dict: UpperCamelCase : str = XLNetTokenizer(SCREAMING_SNAKE_CASE_, do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_, [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ], ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['▁he', 'll', 'o'] ) def snake_case_ ( self ) -> Dict: UpperCamelCase : int = XLNetTokenizer(SCREAMING_SNAKE_CASE_, do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ], ) @slow def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) UpperCamelCase : List[str] = tokenizer.encode('sequence builders', add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = tokenizer.encode('multi-sequence build', add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def snake_case_ ( self ) -> Optional[Any]: # fmt: off UpperCamelCase : str = {'input_ids': [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_, model_name='xlnet-base-cased', revision='c841166438c31ec7ca9a106dee7bb312b73ae511', )
119
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __a :List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __a :Union[str, Any] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __a :Optional[int] = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } __a :str = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = ElectraTokenizer def __init__( self : Tuple , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=True , UpperCAmelCase : Any="[UNK]" , UpperCAmelCase : Union[str, Any]="[SEP]" , UpperCAmelCase : List[Any]="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : List[Any]="[MASK]" , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Union[str, Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
312
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( snake_case_,snake_case_,snake_case_,unittest.TestCase ): _a = StableDiffusionInstructPixaPixPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} _a = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _a = IMAGE_TO_IMAGE_IMAGE_PARAMS _a = IMAGE_TO_IMAGE_IMAGE_PARAMS def a__ ( self ) -> Optional[int]: torch.manual_seed(0 ) _A : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _A : int = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) _A : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _A : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A : List[Any] = CLIPTextModel(_a ) _A : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ ( self , _a , _a=0 ) -> Any: _A : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) _A : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Dict = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ) if str(_a ).startswith("""mps""" ): _A : str = torch.manual_seed(_a ) else: _A : Any = torch.Generator(device=_a ).manual_seed(_a ) _A : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def a__ ( self ) -> List[Any]: _A : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Any = self.get_dummy_components() _A : Optional[int] = StableDiffusionInstructPixaPixPipeline(**_a ) _A : Union[str, Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _A : List[str] = self.get_dummy_inputs(_a ) _A : Union[str, Any] = sd_pipe(**_a ).images _A : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A : List[str] = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> List[str]: _A : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Dict = self.get_dummy_components() _A : str = StableDiffusionInstructPixaPixPipeline(**_a ) _A : Any = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _A : Dict = self.get_dummy_inputs(_a ) _A : Any = """french fries""" _A : Tuple = sd_pipe(**_a , negative_prompt=_a ) _A : List[Any] = output.images _A : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A : Union[str, Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> Tuple: _A : str = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Union[str, Any] = self.get_dummy_components() _A : str = StableDiffusionInstructPixaPixPipeline(**_a ) _A : Tuple = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _A : Union[str, Any] = self.get_dummy_inputs(_a ) _A : Dict = [inputs["""prompt"""]] * 2 _A : Tuple = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 _A : Tuple = torch.from_numpy(_a ).unsqueeze(0 ).to(_a ) _A : List[str] = image / 2 + 0.5 _A : Union[str, Any] = image.permute(0 , 3 , 1 , 2 ) _A : List[Any] = image.repeat(2 , 1 , 1 , 1 ) _A : List[Any] = sd_pipe(**_a ).images _A : Any = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) _A : int = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> str: _A : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Optional[Any] = self.get_dummy_components() _A : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) _A : int = StableDiffusionInstructPixaPixPipeline(**_a ) _A : List[Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _A : Tuple = self.get_dummy_inputs(_a ) _A : Any = sd_pipe(**_a ).images _A : Optional[int] = image[0, -3:, -3:, -1] _A : List[Any] = [round(_a , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(_a ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) _A : Union[str, Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def a__ ( self ) -> Optional[Any]: _A : int = self.get_dummy_components() _A : Optional[int] = StableDiffusionInstructPixaPixPipeline(**_a ) _A : Optional[int] = VaeImageProcessor(do_resize=_a , do_normalize=_a ) _A : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = pipe(**self.get_dummy_inputs_by_type(_a , input_image_type="""pt""" ) )[0] _A : Optional[Any] = components["""vae"""] _A : List[str] = self.get_dummy_inputs_by_type(_a , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _A : int = vae.encode(inputs[image_param] ).latent_dist.mode() _A : List[str] = pipe(**_a )[0] _A : Optional[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(_a , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self , _a=0 ) -> Union[str, Any]: _A : Union[str, Any] = torch.manual_seed(_a ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) _A : Union[str, Any] = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def a__ ( self ) -> Any: _A : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : str = self.get_inputs() _A : List[str] = pipe(**_a ).images _A : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _A : int = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a ) _A : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : Optional[int] = self.get_inputs() _A : Optional[Any] = pipe(**_a ).images _A : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _A : int = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def a__ ( self ) -> Dict: _A : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a ) _A : Optional[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : Any = self.get_inputs() _A : Tuple = pipe(**_a ).images _A : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _A : Any = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def a__ ( self ) -> str: _A : Optional[Any] = 0 def callback_fn(_a , _a , _a ) -> None: _A : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _A : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _A : int = latents[0, -3:, -3:, -1] _A : Any = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _A : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _A : str = latents[0, -3:, -3:, -1] _A : Optional[Any] = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _A : Any = False _A : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a , torch_dtype=torch.floataa ) _A : str = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : int = self.get_inputs() pipe(**_a , callback=_a , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def a__ ( self ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a , torch_dtype=torch.floataa ) _A : Tuple = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A : int = self.get_inputs() _A : str = pipe(**_a ) _A : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def a__ ( self ) -> Tuple: _A : str = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _A : Dict = inputs["""image"""].resize((504, 504) ) _A : List[Any] = """timbrooks/instruct-pix2pix""" _A : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : int = pipe(**_a ) _A : int = output.images[0] _A : Dict = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) _A : Tuple = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
26
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __a :Optional[Any] = logging.get_logger(__name__) __a :Dict[Optional[str], Type[Formatter]] = {} __a :Dict[Optional[str], str] = {} __a :Dict[Optional[str], Exception] = {} def __snake_case ( __UpperCamelCase : type ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ,): """simple docstring""" A_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) A_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) A_ = format_type def __snake_case ( __UpperCamelCase : Exception ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ): """simple docstring""" A_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: __a :List[Any] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: __a :List[str] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: __a :Tuple = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __snake_case ( __UpperCamelCase : Optional[str] ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __snake_case ( __UpperCamelCase : Optional[str] ,**__UpperCamelCase : List[Any] ): """simple docstring""" A_ = get_format_type_from_alias(__UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
312
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowercase_ ( _lowerCamelCase : Dict): if "img_encoder.pos_embed" in name: lowercase__ : List[Any] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings") if "img_encoder.patch_embed.proj" in name: lowercase__ : str = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection") if "img_encoder.patch_embed.norm" in name: lowercase__ : str = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm") if "img_encoder.layers" in name: lowercase__ : Any = name.replace("img_encoder.layers" , "vision_model.encoder.stages") if "blocks" in name and "res" not in name: lowercase__ : Optional[int] = name.replace("blocks" , "layers") if "attn" in name and "pre_assign" not in name: lowercase__ : str = name.replace("attn" , "self_attn") if "proj" in name and "self_attn" in name and "text" not in name: lowercase__ : Optional[int] = name.replace("proj" , "out_proj") if "pre_assign_attn.attn.proj" in name: lowercase__ : Dict = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj") if "norm1" in name: lowercase__ : Union[str, Any] = name.replace("norm1" , "layer_norm1") if "norm2" in name and "pre_assign" not in name: lowercase__ : Tuple = name.replace("norm2" , "layer_norm2") if "img_encoder.norm" in name: lowercase__ : List[str] = name.replace("img_encoder.norm" , "vision_model.layernorm") # text encoder if "text_encoder.token_embedding" in name: lowercase__ : int = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding") if "text_encoder.positional_embedding" in name: lowercase__ : Optional[int] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight") if "text_encoder.transformer.resblocks." in name: lowercase__ : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers.") if "ln_1" in name: lowercase__ : int = name.replace("ln_1" , "layer_norm1") if "ln_2" in name: lowercase__ : List[str] = name.replace("ln_2" , "layer_norm2") if "c_fc" in name: lowercase__ : Union[str, Any] = name.replace("c_fc" , "fc1") if "c_proj" in name: lowercase__ : Any = name.replace("c_proj" , "fc2") if "text_encoder" in name: lowercase__ : Optional[Any] = name.replace("text_encoder" , "text_model") if "ln_final" in name: lowercase__ : List[Any] = name.replace("ln_final" , "final_layer_norm") # projection layers if "img_projector.linear_hidden." in name: lowercase__ : List[Any] = name.replace("img_projector.linear_hidden." , "visual_projection.") if "img_projector.linear_out." in name: lowercase__ : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3.") if "text_projector.linear_hidden" in name: lowercase__ : Dict = name.replace("text_projector.linear_hidden" , "text_projection") if "text_projector.linear_out" in name: lowercase__ : Optional[Any] = name.replace("text_projector.linear_out" , "text_projection.3") return name def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str]): for key in orig_state_dict.copy().keys(): lowercase__ : Union[str, Any] = orig_state_dict.pop(__UpperCamelCase) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase__ : List[Any] = key.split(".") lowercase__ , lowercase__ : List[str] = int(key_split[2]), int(key_split[4]) lowercase__ : List[str] = config.vision_config.hidden_size if "weight" in key: lowercase__ : Dict = val[:dim, :] lowercase__ : int = val[dim : dim * 2, :] lowercase__ : Dict = val[-dim:, :] else: lowercase__ : Any = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[Any] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase__ : Optional[Any] = key.split(".") lowercase__ : Any = int(key_split[3]) lowercase__ : Tuple = config.text_config.hidden_size if "weight" in key: lowercase__ : Dict = val[:dim, :] lowercase__ : List[Any] = val[ dim : dim * 2, : ] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : List[Any] = val[:dim] lowercase__ : str = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] else: lowercase__ : List[Any] = rename_key(__UpperCamelCase) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase__ : List[Any] = val.squeeze_() else: lowercase__ : Optional[int] = val return orig_state_dict def lowercase_ ( ): lowercase__ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Tuple = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str="groupvit-gcc-yfcc" , _lowerCamelCase : List[str]=False): lowercase__ : Optional[int] = GroupViTConfig() lowercase__ : Optional[int] = GroupViTModel(__UpperCamelCase).eval() lowercase__ : int = torch.load(__UpperCamelCase , map_location="cpu")["model"] lowercase__ : int = convert_state_dict(__UpperCamelCase , __UpperCamelCase) lowercase__ , lowercase__ : Any = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__UpperCamelCase) == 0) # verify result lowercase__ : str = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") lowercase__ : List[str] = prepare_img() lowercase__ : List[str] = processor(text=["a photo of a cat", "a photo of a dog"] , images=__UpperCamelCase , padding=__UpperCamelCase , return_tensors="pt") with torch.no_grad(): lowercase__ : List[Any] = model(**__UpperCamelCase) if model_name == "groupvit-gcc-yfcc": lowercase__ : List[Any] = torch.tensor([[13.3523, 6.3629]]) elif model_name == "groupvit-gcc-redcaps": lowercase__ : List[str] = torch.tensor([[16.1873, 8.6230]]) else: raise ValueError(f'''Model name {model_name} not supported.''') assert torch.allclose(outputs.logits_per_image , __UpperCamelCase , atol=1E-3) processor.save_pretrained(__UpperCamelCase) model.save_pretrained(__UpperCamelCase) print("Successfully saved processor and model to" , __UpperCamelCase) if push_to_hub: print("Pushing to the hub...") processor.push_to_hub(__UpperCamelCase , organization="nielsr") model.push_to_hub(__UpperCamelCase , organization="nielsr") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
87
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a :int = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
312
0
import sys import turtle def A ( _UpperCAmelCase : tuple[float, float] , _UpperCAmelCase : tuple[float, float] ) -> Tuple: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def A ( _UpperCAmelCase : tuple[float, float] , _UpperCAmelCase : tuple[float, float] , _UpperCAmelCase : tuple[float, float] , _UpperCAmelCase : int , ) -> Union[str, Any]: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(__UpperCamelCase , get_mid(__UpperCamelCase , __UpperCamelCase ) , get_mid(__UpperCamelCase , __UpperCamelCase ) , depth - 1 ) triangle(__UpperCamelCase , get_mid(__UpperCamelCase , __UpperCamelCase ) , get_mid(__UpperCamelCase , __UpperCamelCase ) , depth - 1 ) triangle(__UpperCamelCase , get_mid(__UpperCamelCase , __UpperCamelCase ) , get_mid(__UpperCamelCase , __UpperCamelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) UpperCAmelCase__ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") UpperCAmelCase__ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
339
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()} ) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def __A ( self : str , UpperCAmelCase : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , UpperCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) A_ = copy.deepcopy(self ) A_ = self.label_schema.copy() A_ = features[self.label_column] A_ = label_schema return task_template @property def __A ( self : List[str] ): return { self.audio_column: "audio", self.label_column: "labels", }
312
0
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : str , lowerCamelCase__ : Any ) -> int: if isinstance(__UpperCamelCase , torch.Tensor ): return image elif isinstance(__UpperCamelCase , PIL.Image.Image ): lowerCamelCase_ : Dict =[image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase_ : str =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] lowerCamelCase_ : int =np.concatenate(__UpperCamelCase , axis=0 ) lowerCamelCase_ : Dict =np.array(__UpperCamelCase ).astype(np.floataa ) / 255.0 lowerCamelCase_ : Tuple =image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase_ : Optional[Any] =2.0 * image - 1.0 lowerCamelCase_ : Dict =torch.from_numpy(__UpperCamelCase ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase_ : Any =torch.cat(__UpperCamelCase , dim=0 ) return image def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any=0.9995 ) -> Union[str, Any]: if not isinstance(__UpperCamelCase , np.ndarray ): lowerCamelCase_ : Union[str, Any] =True lowerCamelCase_ : int =va.device lowerCamelCase_ : str =va.cpu().numpy() lowerCamelCase_ : Tuple =va.cpu().numpy() lowerCamelCase_ : Dict =np.sum(va * va / (np.linalg.norm(__UpperCamelCase ) * np.linalg.norm(__UpperCamelCase )) ) if np.abs(__UpperCamelCase ) > DOT_THRESHOLD: lowerCamelCase_ : Dict =(1 - t) * va + t * va else: lowerCamelCase_ : str =np.arccos(__UpperCamelCase ) lowerCamelCase_ : Any =np.sin(__UpperCamelCase ) lowerCamelCase_ : List[str] =theta_a * t lowerCamelCase_ : Dict =np.sin(__UpperCamelCase ) lowerCamelCase_ : int =np.sin(theta_a - theta_t ) / sin_theta_a lowerCamelCase_ : List[str] =sin_theta_t / sin_theta_a lowerCamelCase_ : Dict =sa * va + sa * va if inputs_are_torch: lowerCamelCase_ : Tuple =torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) return va def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : str ) -> List[Any]: lowerCamelCase_ : str =F.normalize(__UpperCamelCase , dim=-1 ) lowerCamelCase_ : List[Any] =F.normalize(__UpperCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple ) -> Optional[Any]: for param in model.parameters(): lowerCamelCase_ : Dict =value class lowercase__ ( snake_case_ ): def __init__( self : Union[str, Any] , snake_case__ : AutoencoderKL , snake_case__ : CLIPTextModel , snake_case__ : CLIPModel , snake_case__ : CLIPTokenizer , snake_case__ : UNetaDConditionModel , snake_case__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , snake_case__ : CLIPFeatureExtractor , snake_case__ : int=None , snake_case__ : int=None , snake_case__ : int=None , ): super().__init__() self.register_modules( vae=snake_case__ , text_encoder=snake_case__ , clip_model=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , coca_model=snake_case__ , coca_tokenizer=snake_case__ , coca_transform=snake_case__ , ) lowerCamelCase_ : Union[str, Any] =( feature_extractor.size if isinstance(feature_extractor.size , snake_case__ ) else feature_extractor.size["shortest_edge"] ) lowerCamelCase_ : Tuple =transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , snake_case__ ) set_requires_grad(self.clip_model , snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ : int =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): self.enable_attention_slicing(snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): set_requires_grad(self.vae , snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): set_requires_grad(self.vae , snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): set_requires_grad(self.unet , snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): set_requires_grad(self.unet , snake_case__ ) def UpperCAmelCase__ ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Any ): # get the original timestep using init_timestep lowerCamelCase_ : Optional[int] =min(int(num_inference_steps * strength ) , snake_case__ ) lowerCamelCase_ : Optional[int] =max(num_inference_steps - init_timestep , 0 ) lowerCamelCase_ : Optional[Any] =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase__ ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=None ): if not isinstance(snake_case__ , torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(snake_case__ )}""" ) lowerCamelCase_ : List[str] =image.to(device=snake_case__ , dtype=snake_case__ ) if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : Union[str, Any] =[ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] lowerCamelCase_ : List[str] =torch.cat(snake_case__ , dim=0 ) else: lowerCamelCase_ : Optional[int] =self.vae.encode(snake_case__ ).latent_dist.sample(snake_case__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ : List[str] =0.18_215 * init_latents lowerCamelCase_ : List[Any] =init_latents.repeat_interleave(snake_case__ , dim=0 ) lowerCamelCase_ : Tuple =randn_tensor(init_latents.shape , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents lowerCamelCase_ : Dict =self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) lowerCamelCase_ : Dict =init_latents return latents def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : int =self.coca_transform(snake_case__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCamelCase_ : Optional[Any] =self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowerCamelCase_ : int =self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def UpperCAmelCase__ ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : int ): lowerCamelCase_ : Optional[Any] =self.feature_extractor.preprocess(snake_case__ ) lowerCamelCase_ : List[str] =torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() lowerCamelCase_ : Any =self.clip_model.get_image_features(snake_case__ ) lowerCamelCase_ : Union[str, Any] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case__ ) lowerCamelCase_ : List[str] =image_embeddings_clip.repeat_interleave(snake_case__ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : int , ): lowerCamelCase_ : Union[str, Any] =latents.detach().requires_grad_() lowerCamelCase_ : List[Any] =self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCamelCase_ : Union[str, Any] =self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCamelCase_ : int =self.scheduler.alphas_cumprod[timestep] lowerCamelCase_ : int =1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ : Union[str, Any] =(latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCamelCase_ : List[str] =torch.sqrt(snake_case__ ) lowerCamelCase_ : Optional[int] =pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , snake_case__ ): lowerCamelCase_ : Any =self.scheduler.sigmas[index] lowerCamelCase_ : Optional[int] =latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ : List[Any] =1 / 0.18_215 * sample lowerCamelCase_ : Tuple =self.vae.decode(snake_case__ ).sample lowerCamelCase_ : List[Any] =(image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ : Any =transforms.Resize(self.feature_extractor_size )(snake_case__ ) lowerCamelCase_ : Optional[Any] =self.normalize(snake_case__ ).to(latents.dtype ) lowerCamelCase_ : List[Any] =self.clip_model.get_image_features(snake_case__ ) lowerCamelCase_ : Any =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case__ ) lowerCamelCase_ : Union[str, Any] =spherical_dist_loss(snake_case__ , snake_case__ ).mean() * clip_guidance_scale lowerCamelCase_ : Tuple =-torch.autograd.grad(snake_case__ , snake_case__ )[0] if isinstance(self.scheduler , snake_case__ ): lowerCamelCase_ : Optional[Any] =latents.detach() + grads * (sigma**2) lowerCamelCase_ : List[str] =noise_pred_original else: lowerCamelCase_ : Any =noise_pred_original - torch.sqrt(snake_case__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Union[str, Any] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image] , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[int] = 512 , snake_case__ : Optional[int] = 512 , snake_case__ : float = 0.6 , snake_case__ : Optional[int] = 50 , snake_case__ : Optional[float] = 7.5 , snake_case__ : Optional[int] = 1 , snake_case__ : float = 0.0 , snake_case__ : Optional[float] = 100 , snake_case__ : Optional[torch.Generator] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , snake_case__ : float = 0.8 , snake_case__ : float = 0.1 , snake_case__ : float = 0.1 , ): if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(snake_case__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(snake_case__ , torch.Generator ) and batch_size > 1: lowerCamelCase_ : Optional[Any] =[generator] + [None] * (batch_size - 1) lowerCamelCase_ : Union[str, Any] =[ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] lowerCamelCase_ : str =[x[0] for x in coca_is_none if x[1]] lowerCamelCase_ : List[str] =", ".join(snake_case__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(snake_case__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowerCamelCase_ : Union[str, Any] =self.get_image_description(snake_case__ ) if style_prompt is None: if len(snake_case__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowerCamelCase_ : Union[str, Any] =self.get_image_description(snake_case__ ) # get prompt text embeddings for content and style lowerCamelCase_ : Any =self.tokenizer( snake_case__ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="pt" , ) lowerCamelCase_ : Union[str, Any] =self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ : str =self.tokenizer( snake_case__ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="pt" , ) lowerCamelCase_ : List[Any] =self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ : Optional[Any] =slerp(snake_case__ , snake_case__ , snake_case__ ) # duplicate text embeddings for each generation per prompt lowerCamelCase_ : Optional[Any] =text_embeddings.repeat_interleave(snake_case__ , dim=0 ) # set timesteps lowerCamelCase_ : Optional[int] ="offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCamelCase_ : Tuple ={} if accepts_offset: lowerCamelCase_ : List[Any] =1 self.scheduler.set_timesteps(snake_case__ , **snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =self.get_timesteps(snake_case__ , snake_case__ , self.device ) lowerCamelCase_ : Dict =timesteps[:1].repeat(snake_case__ ) # Preprocess image lowerCamelCase_ : Union[str, Any] =preprocess(snake_case__ , snake_case__ , snake_case__ ) lowerCamelCase_ : Dict =self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , text_embeddings.dtype , self.device , snake_case__ ) lowerCamelCase_ : Tuple =preprocess(snake_case__ , snake_case__ , snake_case__ ) lowerCamelCase_ : Dict =self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , text_embeddings.dtype , self.device , snake_case__ ) lowerCamelCase_ : int =slerp(snake_case__ , snake_case__ , snake_case__ ) if clip_guidance_scale > 0: lowerCamelCase_ : Optional[Any] =self.get_clip_image_embeddings(snake_case__ , snake_case__ ) lowerCamelCase_ : Tuple =self.get_clip_image_embeddings(snake_case__ , snake_case__ ) lowerCamelCase_ : List[str] =slerp( snake_case__ , snake_case__ , snake_case__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ : Optional[Any] =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ : List[Any] =content_text_input.input_ids.shape[-1] lowerCamelCase_ : List[Any] =self.tokenizer([""] , padding="max_length" , max_length=snake_case__ , return_tensors="pt" ) lowerCamelCase_ : Tuple =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCamelCase_ : Optional[int] =uncond_embeddings.repeat_interleave(snake_case__ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ : List[str] =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ : str =(batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ : Union[str, Any] =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCamelCase_ : Dict =torch.randn(snake_case__ , generator=snake_case__ , device="cpu" , dtype=snake_case__ ).to( self.device ) else: lowerCamelCase_ : Optional[int] =torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowerCamelCase_ : Optional[int] =latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ : str =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ : Dict ="eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ : Optional[Any] ={} if accepts_eta: lowerCamelCase_ : Any =eta # check if the scheduler accepts generator lowerCamelCase_ : Optional[int] ="generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCamelCase_ : str =generator with self.progress_bar(total=snake_case__ ): for i, t in enumerate(snake_case__ ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ : str =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ : Union[str, Any] =self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCamelCase_ : List[Any] =self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ , lowerCamelCase_ : Any =noise_pred.chunk(2 ) lowerCamelCase_ : Optional[int] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCamelCase_ : List[str] =( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCamelCase_ , lowerCamelCase_ : List[Any] =self.cond_fn( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ : int =self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ : Any =1 / 0.18_215 * latents lowerCamelCase_ : Optional[int] =self.vae.decode(snake_case__ ).sample lowerCamelCase_ : Any =(image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ : int =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ : Optional[int] =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
144
def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,16 ) for i in range(0 ,len(__UpperCamelCase ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCAmelCase : str = { # 1536-bit 5: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, } class _A: """simple docstring""" def __init__( self , _A = 14 ): if group not in primes: raise ValueError('Unsupported Group' ) __A : int = primes[group]['prime'] __A : Optional[int] = primes[group]['generator'] __A : Optional[int] = int(hexlify(urandom(32 ) ) , base=16 ) def UpperCAmelCase_ ( self ): return hex(self.__private_key )[2:] def UpperCAmelCase_ ( self ): __A : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(_A )[2:] def UpperCAmelCase_ ( self , _A ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_A , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCAmelCase_ ( self , _A ): __A : str = int(_A , base=16 ) if not self.is_valid_public_key(_A ): raise ValueError('Invalid public key' ) __A : Optional[Any] = pow(_A , self.__private_key , self.prime ) return shaaaa(str(_A ).encode() ).hexdigest() @staticmethod def UpperCAmelCase_ ( _A , _A ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_A , (prime - 1) // 2 , _A ) == 1 ) @staticmethod def UpperCAmelCase_ ( _A , _A , _A = 14 ): __A : List[str] = int(_A , base=16 ) __A : List[Any] = int(_A , base=16 ) __A : List[Any] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(_A , _A ): raise ValueError('Invalid public key' ) __A : Any = pow(_A , _A , _A ) return shaaaa(str(_A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
280
import cva import numpy as np class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : float , UpperCAmelCase : int ): if k in (0.04, 0.06): A_ = k A_ = window_size else: raise ValueError("invalid k value" ) def __str__( self : Optional[Any] ): return str(self.k ) def __A ( self : int , UpperCAmelCase : str ): A_ = cva.imread(UpperCAmelCase , 0 ) A_ , A_ = img.shape A_ = [] A_ = img.copy() A_ = cva.cvtColor(UpperCAmelCase , cva.COLOR_GRAY2RGB ) A_ , A_ = np.gradient(UpperCAmelCase ) A_ = dx**2 A_ = dy**2 A_ = dx * dy A_ = 0.04 A_ = self.window_size // 2 for y in range(UpperCAmelCase , h - offset ): for x in range(UpperCAmelCase , w - offset ): A_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = (wxx * wyy) - (wxy**2) A_ = wxx + wyy A_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __a :List[str] = HarrisCorner(0.04, 3) __a , __a :str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
312
0
'''simple docstring''' from __future__ import annotations import math def _lowerCamelCase ( lowercase : list , lowercase : list ) -> Any: if len(__UpperCamelCase ) != 2 or len(a[0] ) != 2 or len(__UpperCamelCase ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) _a = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _lowerCamelCase ( lowercase : list , lowercase : list ) -> Dict: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def _lowerCamelCase ( lowercase : list , lowercase : list ) -> Any: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def _lowerCamelCase ( lowercase : list ) -> Optional[Any]: if len(__UpperCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) _a = len(__UpperCamelCase ) _a = matrix_length // 2 _a = [[a[i][j] for j in range(__UpperCamelCase , __UpperCamelCase )] for i in range(__UpperCamelCase )] _a = [ [a[i][j] for j in range(__UpperCamelCase , __UpperCamelCase )] for i in range(__UpperCamelCase , __UpperCamelCase ) ] _a = [[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase )] _a = [[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase , __UpperCamelCase )] return top_left, top_right, bot_left, bot_right def _lowerCamelCase ( lowercase : list ) -> Tuple: return len(__UpperCamelCase ), len(matrix[0] ) def _lowerCamelCase ( lowercase : list ) -> str: print("\n".join(str(__UpperCamelCase ) for line in matrix ) ) def _lowerCamelCase ( lowercase : list , lowercase : list ) -> Union[str, Any]: if matrix_dimensions(__UpperCamelCase ) == (2, 2): return default_matrix_multiplication(__UpperCamelCase , __UpperCamelCase ) _a , _a , _a , _a = split_matrix(__UpperCamelCase ) _a , _a , _a , _a = split_matrix(__UpperCamelCase ) _a = actual_strassen(__UpperCamelCase , matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) ) _a = actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) _a = actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) _a = actual_strassen(__UpperCamelCase , matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) ) _a = actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) _a = actual_strassen(matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) _a = actual_strassen(matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) _a = matrix_addition(matrix_subtraction(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) , __UpperCamelCase ) _a = matrix_addition(__UpperCamelCase , __UpperCamelCase ) _a = matrix_addition(__UpperCamelCase , __UpperCamelCase ) _a = matrix_subtraction(matrix_subtraction(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) , __UpperCamelCase ) # construct the new matrix from our 4 quadrants _a = [] for i in range(len(__UpperCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__UpperCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _lowerCamelCase ( lowercase : list , lowercase : list ) -> Tuple: if matrix_dimensions(__UpperCamelCase )[1] != matrix_dimensions(__UpperCamelCase )[0]: _a = ( "Unable to multiply these matrices, please check the dimensions.\n" F'Matrix A: {matrixa}\n' F'Matrix B: {matrixa}' ) raise Exception(__UpperCamelCase ) _a = matrix_dimensions(__UpperCamelCase ) _a = matrix_dimensions(__UpperCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] _a = max(*__UpperCamelCase , *__UpperCamelCase ) _a = int(math.pow(2 , math.ceil(math.loga(__UpperCamelCase ) ) ) ) _a = matrixa _a = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) _a = actual_strassen(__UpperCamelCase , __UpperCamelCase ) # Removing the additional zeros for i in range(0 , __UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCAmelCase_ : str = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCAmelCase_ : List[str] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
63
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
312
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'google/fnet-base': 512, 'google/fnet-large': 512, } UpperCAmelCase_ : Optional[Any] = '▁' class lowercase__ ( snake_case_ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Any = ['input_ids', 'token_type_ids'] A_ : List[Any] = FNetTokenizer def __init__( self , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=True , __snake_case=True , __snake_case="<unk>" , __snake_case="[SEP]" , __snake_case="<pad>" , __snake_case="[CLS]" , __snake_case="[MASK]" , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : Union[str, Any] = ( AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case , normalized=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token ) super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case _SCREAMING_SNAKE_CASE : int = remove_space _SCREAMING_SNAKE_CASE : List[Any] = keep_accents _SCREAMING_SNAKE_CASE : Optional[Any] = vocab_file _SCREAMING_SNAKE_CASE : Union[str, Any] = False if not self.vocab_file else True def UpperCAmelCase_ ( self , __snake_case , __snake_case = None ): _SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self , __snake_case , __snake_case = None ): _SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self , __snake_case , __snake_case = None ): if not os.path.isdir(__snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : str = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
200
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['image_processor', 'tokenizer'] _lowerCamelCase : Tuple = 'OwlViTImageProcessor' _lowerCamelCase : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any ): A_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) A_ = kwargs.pop("feature_extractor" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="max_length" , UpperCAmelCase : Optional[Any]="np" , **UpperCAmelCase : Optional[int] ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCAmelCase , UpperCAmelCase ) or (isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(text[0] , UpperCAmelCase )): A_ = [self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )] elif isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(text[0] , UpperCAmelCase ): A_ = [] # Maximum number of queries across batch A_ = max([len(UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase ) != max_num_queries: A_ = t + [" "] * (max_num_queries - len(UpperCAmelCase )) A_ = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) encodings.append(UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": A_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) A_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) A_ = BatchEncoding() A_ = input_ids A_ = attention_mask if query_images is not None: A_ = BatchEncoding() A_ = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ).pixel_values A_ = query_pixel_values if images is not None: A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def __A ( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ): return self.image_processor.post_process(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : str , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): return self.image_processor.post_process_object_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : int ): return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def __A ( self : Optional[Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
312
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = inspect.getfile(accelerate.test_utils ) __A = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __A = test_metrics @require_cpu def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' debug_launcher(self.test_metrics.main, num_processes=1 ) @require_cpu def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices.' ) __A = ['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCamelCase, env=os.environ.copy() )
266
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Dict , UpperCAmelCase : int = 768 , ): super().__init__() A_ = nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) A_ = nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def __A ( self : str , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ): A_ = nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) A_ = nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def __A ( self : Dict , UpperCAmelCase : List[Any] ): A_ = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self : int , UpperCAmelCase : int ): A_ = (embeds * self.std) + self.mean return embeds
312
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCamelCase : Dict = logging.get_logger(__name__) class __lowerCAmelCase ( snake_case_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
316
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __snake_case ( __UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ,): """simple docstring""" A_ , A_ = coefficient_matrix.shape A_ , A_ = constant_matrix.shape if rowsa != colsa: A_ = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if colsa != 1: A_ = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if rowsa != rowsa: A_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: A_ = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(__UpperCamelCase )} and {rowsa}''' ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) A_ = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) A_ , A_ = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): A_ = [] for row in range(__UpperCamelCase ): A_ = 0 for col in range(__UpperCamelCase ): if col == row: A_ = table[row][col] elif col == cols - 1: A_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ = (temp + val) / denom new_val.append(__UpperCamelCase ) A_ = new_val return [float(__UpperCamelCase ) for i in new_val] def __snake_case ( __UpperCamelCase : NDArray[floataa] ): """simple docstring""" A_ , A_ = table.shape A_ = True for i in range(0 ,__UpperCamelCase ): A_ = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
312
0
from math import pi, sqrt, tan def _a ( SCREAMING_SNAKE_CASE : float ) -> int: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> Any: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _a ( SCREAMING_SNAKE_CASE : float ) -> str: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def _a ( SCREAMING_SNAKE_CASE : float ) -> Any: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> Optional[int]: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> Union[str, Any]: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __lowerCAmelCase: int = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> str: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> str: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(__UpperCamelCase , 2 ) * torus_radius * tube_radius def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> Tuple: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def _a ( SCREAMING_SNAKE_CASE : float ) -> Optional[int]: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> List[str]: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> Any: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __lowerCAmelCase: str = (sidea + sidea + sidea) / 2 __lowerCAmelCase: str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> str: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> Optional[Any]: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def _a ( SCREAMING_SNAKE_CASE : float ) -> Union[str, Any]: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> Optional[int]: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> Union[str, Any]: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> Tuple: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f"Rectangle: {area_rectangle(1_0, 2_0) = }") print(f"Square: {area_square(1_0) = }") print(f"Triangle: {area_triangle(1_0, 1_0) = }") print(f"Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }") print(f"Parallelogram: {area_parallelogram(1_0, 2_0) = }") print(f"Rhombus: {area_rhombus(1_0, 2_0) = }") print(f"Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }") print(f"Circle: {area_circle(2_0) = }") print(f"Ellipse: {area_ellipse(1_0, 2_0) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(f"Cube: {surface_area_cube(2_0) = }") print(f"Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }") print(f"Sphere: {surface_area_sphere(2_0) = }") print(f"Hemisphere: {surface_area_hemisphere(2_0) = }") print(f"Cone: {surface_area_cone(1_0, 2_0) = }") print(f"Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }") print(f"Cylinder: {surface_area_cylinder(1_0, 2_0) = }") print(f"Torus: {surface_area_torus(2_0, 1_0) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 1_0) = }") print(f"Square: {area_reg_polygon(4, 1_0) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 1_0) = }")
322
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __snake_case ( ): """simple docstring""" A_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } A_ = Dataset.from_dict(__UpperCamelCase ) return dataset class _a ( snake_case_ ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = get_dataset() A_ = make_duplicate_clusters(UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __A ( self : List[Any] ): A_ = get_dataset() A_ , A_ = deduplicate_dataset(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 2 ) print(UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , UpperCAmelCase )
312
0
import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __UpperCAmelCase = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __UpperCAmelCase = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> int: UpperCamelCase : int = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = {'BertModelTest': 'BertModelTester'} UpperCamelCase : Optional[Any] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Any: UpperCamelCase : Union[str, Any] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = get_model_to_test_mapping(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } UpperCamelCase : List[str] = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } UpperCamelCase : Any = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
119
import os from typing import Dict, List, Tuple, TypeVar, Union __a :Any = TypeVar('T') __a :Union[str, Any] = Union[List[T], Tuple[T, ...]] __a :List[str] = Union[T, List[T], Dict[str, T]] __a :Any = Union[str, bytes, os.PathLike]
312
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowercase ( snake_case_,unittest.TestCase ): _a = FlaxAutoencoderKL @property def a__ ( self ) -> Union[str, Any]: _A : Optional[int] = 4 _A : Union[str, Any] = 3 _A : Any = (32, 32) _A : Union[str, Any] = jax.random.PRNGKey(0 ) _A : Dict = jax.random.uniform(_a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def a__ ( self ) -> str: _A : Optional[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } _A : Optional[int] = self.dummy_input return init_dict, inputs_dict
26
__a :Dict = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
312
0
from argparse import ArgumentParser from .env import EnvironmentCommand def lowercase_ ( ): lowercase__ : List[Any] = ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]") lowercase__ : int = parser.add_subparsers(help="diffusers-cli command helpers") # Register commands EnvironmentCommand.register_subcommand(__UpperCamelCase) # Let's go lowercase__ : Optional[int] = parser.parse_args() if not hasattr(__UpperCamelCase , "func"): parser.print_help() exit(1) # Run lowercase__ : Optional[Any] = args.func(__UpperCamelCase) service.run() if __name__ == "__main__": main()
87
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(e for e in range(3 ,__UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
312
0
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( snake_case_ ): def __init__( self : List[Any] , *A : Union[str, Any] , **A : int) -> Dict: """simple docstring""" warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , A , ) super().__init__(*A , **A)
339
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _a : """simple docstring""" @property def __A ( self : Union[str, Any] ): return self.get_dummy_input() @property def __A ( self : int ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=False , ): A_ = 4 A_ = 32 A_ = (32, 32) A_ = torch.manual_seed(0 ) A_ = torch.device(UpperCAmelCase ) A_ = (batch_size, num_channels) + sizes A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ) A_ = {"hidden_states": hidden_states} if include_temb: A_ = 128 A_ = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase , device=UpperCAmelCase ) if include_res_hidden_states_tuple: A_ = torch.manual_seed(1 ) A_ = (randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ),) if include_encoder_hidden_states: A_ = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase ) if include_skip_sample: A_ = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase , device=UpperCAmelCase ) return dummy_input def __A ( self : Optional[int] ): A_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": A_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) A_ = self.dummy_input return init_dict, inputs_dict def __A ( self : List[str] , UpperCAmelCase : Optional[Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) unet_block.to(UpperCAmelCase ) unet_block.eval() with torch.no_grad(): A_ = unet_block(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] self.assertEqual(output.shape , self.output_shape ) A_ = output[0, -1, -3:, -3:] A_ = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def __A ( self : Union[str, Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() A_ = model(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] A_ = torch.device(UpperCAmelCase ) A_ = randn_tensor(output.shape , device=UpperCAmelCase ) A_ = torch.nn.functional.mse_loss(UpperCAmelCase , UpperCAmelCase ) loss.backward()
312
0
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent A__ : int = {'UserAgent': UserAgent().random} def _snake_case ( lowerCamelCase__ : int ) -> str: lowerCamelCase_ : Optional[Any] =script.contents[0] lowerCamelCase_ : List[str] =json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase__ : def __init__( self : str , snake_case__ : int ): lowerCamelCase_ : Tuple =F"""https://www.instagram.com/{username}/""" lowerCamelCase_ : Tuple =self.get_json() def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Optional[Any] =requests.get(self.url , headers=snake_case__ ).text lowerCamelCase_ : Dict =BeautifulSoup(snake_case__ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : int ): return F"""{self.__class__.__name__}(\'{self.username}\')""" def __str__( self : Dict ): return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def UpperCAmelCase__ ( self : Optional[int] ): return self.user_data["username"] @property def UpperCAmelCase__ ( self : Union[str, Any] ): return self.user_data["full_name"] @property def UpperCAmelCase__ ( self : Any ): return self.user_data["biography"] @property def UpperCAmelCase__ ( self : Optional[int] ): return self.user_data["business_email"] @property def UpperCAmelCase__ ( self : Tuple ): return self.user_data["external_url"] @property def UpperCAmelCase__ ( self : str ): return self.user_data["edge_followed_by"]["count"] @property def UpperCAmelCase__ ( self : Optional[Any] ): return self.user_data["edge_follow"]["count"] @property def UpperCAmelCase__ ( self : Dict ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCAmelCase__ ( self : Union[str, Any] ): return self.user_data["profile_pic_url_hd"] @property def UpperCAmelCase__ ( self : List[str] ): return self.user_data["is_verified"] @property def UpperCAmelCase__ ( self : List[Any] ): return self.user_data["is_private"] def _snake_case ( lowerCamelCase__ : str = "github" ) -> Union[str, Any]: import os if os.environ.get("CI" ): return # test failing on GitHub Actions lowerCamelCase_ : int =InstagramUser(__UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() A__ : Optional[int] = InstagramUser('github') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
144
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __a :int = True except ImportError: __a :Optional[Any] = False try: from torch.hub import _get_torch_home __a :Optional[Any] = _get_torch_home() except ImportError: __a :Tuple = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) __a :Optional[Any] = os.path.join(torch_cache_home, 'transformers') __a :int = 'https://cdn.huggingface.co' __a :Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' __a :Optional[Any] = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) __a :str = os.path.join(PATH, 'config.yaml') __a :str = os.path.join(PATH, 'attributes.txt') __a :Optional[Any] = os.path.join(PATH, 'objects.txt') __a :Optional[int] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) __a :Dict = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) __a :List[Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) __a :List[str] = 'pytorch_model.bin' __a :Tuple = 'config.yaml' def __snake_case ( __UpperCamelCase : Optional[Any]=OBJECTS ,__UpperCamelCase : List[str]=ATTRIBUTES ): """simple docstring""" A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = OrderedDict() with open(__UpperCamelCase ,"rb" ) as f: A_ = pkl.load(__UpperCamelCase )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): A_ = ckp.pop(__UpperCamelCase ) if isinstance(__UpperCamelCase ,np.ndarray ): A_ = torch.tensor(__UpperCamelCase ) else: assert isinstance(__UpperCamelCase ,torch.tensor ), type(__UpperCamelCase ) A_ = v return r class _a : """simple docstring""" _lowerCamelCase : Union[str, Any] = {} def __init__( self : str , UpperCAmelCase : dict , UpperCAmelCase : str = "root" , UpperCAmelCase : List[str]=0 ): A_ = name A_ = level A_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() A_ = copy.deepcopy(UpperCAmelCase ) A_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) A_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) A_ = d def __repr__( self : Optional[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Any ): A_ = val A_ = val A_ = key.split("." ) A_ = len(UpperCAmelCase ) - 1 A_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , ".".join(levels[i:] ) , UpperCAmelCase ) if l == last_level: A_ = val else: A_ = pointer[l] def __A ( self : List[str] ): return self._pointer def __A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : int ): with open(f'''{file_name}''' , "w" ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): with open(f'''{file_name}''' , "w" ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def __A ( UpperCAmelCase : Optional[int] ): with open(UpperCAmelCase ) as stream: A_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self : str ): A_ = " " if self._name != "root": A_ = f'''{t * (self._level-1)}{self._name}:\n''' else: A_ = "" A_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n''' A_ = level return r[:-1] @classmethod def __A ( cls : Optional[Any] , UpperCAmelCase : str , **UpperCAmelCase : str ): A_ , A_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def __A ( cls : int , UpperCAmelCase : str , **UpperCAmelCase : int ): A_ = kwargs.pop("cache_dir" , UpperCAmelCase ) A_ = kwargs.pop("force_download" , UpperCAmelCase ) A_ = kwargs.pop("resume_download" , UpperCAmelCase ) A_ = kwargs.pop("proxies" , UpperCAmelCase ) A_ = kwargs.pop("local_files_only" , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): A_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): A_ = pretrained_model_name_or_path else: A_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached A_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError A_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: A_ = "Can't load config for" raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(UpperCAmelCase ), kwargs def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = torch.load("dump.pt" ,map_location=in_tensor.device ) A_ = in_tensor.numpy() A_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ), ( f'''{sum([1 for x in np.isclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = urlparse(__UpperCamelCase ) return parsed.scheme in ("http", "https") def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str=True ): """simple docstring""" A_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX A_ = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : int=0 ,__UpperCamelCase : int=None ,): """simple docstring""" A_ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join("{}/{}".format(__UpperCamelCase ,__UpperCamelCase ) for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent A_ = {"user-agent": ua} if resume_size > 0: A_ = "bytes=%d-" % (resume_size,) A_ = requests.get(__UpperCamelCase ,stream=__UpperCamelCase ,proxies=__UpperCamelCase ,headers=__UpperCamelCase ) if response.status_code == 416: # Range not satisfiable return A_ = response.headers.get("Content-Length" ) A_ = resume_size + int(__UpperCamelCase ) if content_length is not None else None A_ = tqdm( unit="B" ,unit_scale=__UpperCamelCase ,total=__UpperCamelCase ,initial=__UpperCamelCase ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__UpperCamelCase ) ) temp_file.write(__UpperCamelCase ) progress.close() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any=None ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : Any=10 ,__UpperCamelCase : int=False ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : str=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = None if not local_files_only: try: A_ = requests.head(__UpperCamelCase ,allow_redirects=__UpperCamelCase ,proxies=__UpperCamelCase ,timeout=__UpperCamelCase ) if response.status_code == 200: A_ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass A_ = url_to_filename(__UpperCamelCase ,__UpperCamelCase ) # get cache path to put the file A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__UpperCamelCase ): return cache_path else: A_ = [ file for file in fnmatch.filter(os.listdir(__UpperCamelCase ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(__UpperCamelCase ) > 0: return os.path.join(__UpperCamelCase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(__UpperCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. A_ = cache_path + ".lock" with FileLock(__UpperCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__UpperCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: A_ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(__UpperCamelCase ,"a+b" ) as f: yield f A_ = _resumable_file_manager if os.path.exists(__UpperCamelCase ): A_ = os.stat(__UpperCamelCase ).st_size else: A_ = 0 else: A_ = partial(tempfile.NamedTemporaryFile ,dir=__UpperCamelCase ,delete=__UpperCamelCase ) A_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,__UpperCamelCase ,temp_file.name ,) http_get( __UpperCamelCase ,__UpperCamelCase ,proxies=__UpperCamelCase ,resume_size=__UpperCamelCase ,user_agent=__UpperCamelCase ,) os.replace(temp_file.name ,__UpperCamelCase ) A_ = {"url": url, "etag": etag} A_ = cache_path + ".json" with open(__UpperCamelCase ,"w" ) as meta_file: json.dump(__UpperCamelCase ,__UpperCamelCase ) return cache_path def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : str=None ): """simple docstring""" A_ = url.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) A_ = url_hash.hexdigest() if etag: A_ = etag.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : Any=False ,__UpperCamelCase : Optional[int]=None ,__UpperCamelCase : Optional[Any]=False ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Optional[Any]=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if is_remote_url(__UpperCamelCase ): # URL, so get it from the cache (downloading if necessary) A_ = get_from_cache( __UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,user_agent=__UpperCamelCase ,local_files_only=__UpperCamelCase ,) elif os.path.exists(__UpperCamelCase ): # File, and it exists. A_ = url_or_filename elif urlparse(__UpperCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(__UpperCamelCase ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(__UpperCamelCase ) ) if extract_compressed_file: if not is_zipfile(__UpperCamelCase ) and not tarfile.is_tarfile(__UpperCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" A_ , A_ = os.path.split(__UpperCamelCase ) A_ = output_file.replace("." ,"-" ) + "-extracted" A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) if os.path.isdir(__UpperCamelCase ) and os.listdir(__UpperCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions A_ = output_path + ".lock" with FileLock(__UpperCamelCase ): shutil.rmtree(__UpperCamelCase ,ignore_errors=__UpperCamelCase ) os.makedirs(__UpperCamelCase ) if is_zipfile(__UpperCamelCase ): with ZipFile(__UpperCamelCase ,"r" ) as zip_file: zip_file.extractall(__UpperCamelCase ) zip_file.close() elif tarfile.is_tarfile(__UpperCamelCase ): A_ = tarfile.open(__UpperCamelCase ) tar_file.extractall(__UpperCamelCase ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(__UpperCamelCase ) ) return output_path_extracted return output_path def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any="," ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase ) as f: A_ = eval(f.read() ) else: A_ = requests.get(__UpperCamelCase ) try: A_ = requests.json() except Exception: A_ = req.content.decode() assert data is not None, "could not connect" try: A_ = eval(__UpperCamelCase ) except Exception: A_ = data.split("\n" ) req.close() return data def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = requests.get(__UpperCamelCase ) A_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__UpperCamelCase ) with open(__UpperCamelCase ,"rb" ) as stream: A_ = pkl.load(__UpperCamelCase ) A_ = weights.pop("model" ) A_ = {} for k, v in model.items(): A_ = torch.from_numpy(__UpperCamelCase ) if "running_var" in k: A_ = torch.tensor([0] ) A_ = k.replace("running_var" ,"num_batches_tracked" ) A_ = zero return new def __snake_case ( ): """simple docstring""" print(f'''{os.path.abspath(os.path.join(__UpperCamelCase ,os.pardir ) )}/demo.ipynb''' ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int]="RGB" ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): A_ = cva.imread(__UpperCamelCase ) else: A_ = get_image_from_url(__UpperCamelCase ) assert img is not None, f'''could not connect to: {im}''' A_ = cva.cvtColor(__UpperCamelCase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": A_ = img[:, :, ::-1] return img def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[str]=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(__UpperCamelCase ) ,__UpperCamelCase ))
312
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _A: """simple docstring""" def __init__( self , _A , ): __A : List[str] = parent __A : Dict = 13 __A : Optional[int] = 7 __A : str = True __A : Any = True __A : Dict = True __A : str = True __A : str = True __A : Optional[int] = False __A : Any = False __A : Any = False __A : Union[str, Any] = 2 __A : Tuple = 99 __A : Optional[int] = 0 __A : Tuple = 32 __A : Dict = 2 __A : Union[str, Any] = 4 __A : List[str] = 0.1 __A : Dict = 0.1 __A : List[Any] = 512 __A : str = 16 __A : int = 2 __A : Optional[int] = 0.0_2 __A : List[str] = 3 __A : str = 4 __A : Optional[Any] = 'last' __A : Union[str, Any] = True __A : Dict = None __A : Union[str, Any] = 0 def UpperCAmelCase_ ( self ): __A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : str = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __A : Optional[Any] = None if self.use_input_lengths: __A : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __A : List[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __A : Optional[Any] = None __A : Union[str, Any] = None __A : Tuple = None if self.use_labels: __A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : List[str] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __A : str = ids_tensor([self.batch_size] , self.num_choices ) __A : Optional[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : str = TFFlaubertModel(config=_A ) __A : int = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __A : Optional[Any] = model(_A ) __A : Tuple = [input_ids, input_mask] __A : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : int = TFFlaubertWithLMHeadModel(_A ) __A : Union[str, Any] = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __A : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : List[str] = TFFlaubertForQuestionAnsweringSimple(_A ) __A : Optional[int] = {'input_ids': input_ids, 'lengths': input_lengths} __A : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : Union[str, Any] = TFFlaubertForSequenceClassification(_A ) __A : Optional[Any] = {'input_ids': input_ids, 'lengths': input_lengths} __A : Tuple = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : Union[str, Any] = self.num_labels __A : Union[str, Any] = TFFlaubertForTokenClassification(config=_A ) __A : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : Any = self.num_choices __A : Optional[Any] = TFFlaubertForMultipleChoice(config=_A ) __A : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __A : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __A : List[Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __A : List[str] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : Union[str, Any] = config_and_inputs __A : Optional[Any] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class _A( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : int = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase : int = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase : int = ( { 'feature-extraction': TFFlaubertModel, 'fill-mask': TFFlaubertWithLMHeadModel, 'question-answering': TFFlaubertForQuestionAnsweringSimple, 'text-classification': TFFlaubertForSequenceClassification, 'token-classification': TFFlaubertForTokenClassification, 'zero-shot': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase : List[Any] = False UpperCamelCase : Dict = False def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase_ ( self ): __A : Tuple = TFFlaubertModelTester(self ) __A : str = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCAmelCase_ ( self ): __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCAmelCase_ ( self ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCAmelCase_ ( self ): __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCAmelCase_ ( self ): __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*_A ) def UpperCAmelCase_ ( self ): __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*_A ) @slow def UpperCAmelCase_ ( self ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : Optional[Any] = TFFlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_tf @require_sentencepiece @require_tokenizers class _A( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ): __A : Optional[Any] = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __A : List[Any] = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __A : Tuple = model(_A )[0] __A : List[Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , _A ) # compare the actual values for a slice. __A : int = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
280
from __future__ import annotations def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(__UpperCamelCase ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
312
0
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase__ ( self : List[Any] ): _a , _a = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=__a , dtype=jnp.bfloataa ) _a , _a = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=__a , from_pt=__a , dtype=jnp.bfloataa ) _a = controlnet_params _a = "bird" _a = jax.device_count() _a = pipe.prepare_text_inputs([prompts] * num_samples ) _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) _a = pipe.prepare_image_inputs([canny_image] * num_samples ) _a = jax.random.PRNGKey(0 ) _a = jax.random.split(__a , jax.device_count() ) _a = replicate(__a ) _a = shard(__a ) _a = shard(__a ) _a = pipe( prompt_ids=__a , image=__a , params=__a , prng_seed=__a , num_inference_steps=50 , jit=__a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) _a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _a = images[0, 2_53:2_56, 2_53:2_56, -1] _a = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self : List[str] ): _a , _a = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=__a , dtype=jnp.bfloataa ) _a , _a = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=__a , from_pt=__a , dtype=jnp.bfloataa ) _a = controlnet_params _a = "Chef in the kitchen" _a = jax.device_count() _a = pipe.prepare_text_inputs([prompts] * num_samples ) _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) _a = pipe.prepare_image_inputs([pose_image] * num_samples ) _a = jax.random.PRNGKey(0 ) _a = jax.random.split(__a , jax.device_count() ) _a = replicate(__a ) _a = shard(__a ) _a = shard(__a ) _a = pipe( prompt_ids=__a , image=__a , params=__a , prng_seed=__a , num_inference_steps=50 , jit=__a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) _a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _a = images[0, 2_53:2_56, 2_53:2_56, -1] _a = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
63
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __a :int = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : int = 101 ): A_ = length def __len__( self : int ): return self.length def __getitem__( self : Optional[int] , UpperCAmelCase : Optional[int] ): return i class _a : """simple docstring""" def __call__( self : Any , UpperCAmelCase : Optional[Any] ): return {"input_ids": torch.tensor(UpperCAmelCase ), "labels": torch.tensor(UpperCAmelCase )} class _a ( nn.Module ): """simple docstring""" def __init__( self : int ): super().__init__() # Add some (unused) params otherwise DDP will complain. A_ = nn.Linear(120 , 80 ) def __A ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Tuple=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _a ( snake_case_ ): """simple docstring""" @require_torch_neuroncore def __A ( self : List[str] ): A_ = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _a ( snake_case_ ): """simple docstring""" @require_torch_multi_gpu def __A ( self : List[str] ): A_ = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __a :Union[str, Any] = HfArgumentParser((TrainingArguments,)) __a :Tuple = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __a :int = DummyDataset(dataset_length) def __snake_case ( __UpperCamelCase : EvalPrediction ): """simple docstring""" A_ = list(range(len(__UpperCamelCase ) ) ) A_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} __a :str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __a :str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Optional[int] = 2 __a :List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Union[str, Any] = None
312
0