code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE__ (lowercase__ ): def snake_case_ ( self): lowercase__ : str = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(a , 'hidden_sizes')) self.parent.assertTrue(hasattr(a , 'neck_hidden_sizes')) self.parent.assertTrue(hasattr(a , 'num_attention_heads')) class SCREAMING_SNAKE_CASE__ : def __init__( self , a , a=13 , a=32 , a=2 , a=3 , a=640 , a=4 , a="silu" , a=3 , a=32 , a=0.1 , a=0.1 , a=0.1 , a=0.02 , a=True , a=True , a=10 , a=None , ): lowercase__ : Optional[int] = parent lowercase__ : Dict = batch_size lowercase__ : Any = image_size lowercase__ : Union[str, Any] = patch_size lowercase__ : Union[str, Any] = num_channels lowercase__ : Any = last_hidden_size lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Any = hidden_act lowercase__ : str = conv_kernel_size lowercase__ : str = output_stride lowercase__ : str = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : List[str] = classifier_dropout_prob lowercase__ : List[Any] = use_labels lowercase__ : Optional[int] = is_training lowercase__ : int = num_labels lowercase__ : Dict = initializer_range lowercase__ : int = scope def snake_case_ ( self): lowercase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase__ : List[str] = None lowercase__ : List[str] = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.num_labels) lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def snake_case_ ( self , a , a , a , a): lowercase__ : Optional[int] = MobileViTModel(config=a) model.to(a) model.eval() lowercase__ : Dict = model(a) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ ( self , a , a , a , a): lowercase__ : Dict = self.num_labels lowercase__ : List[Any] = MobileViTForImageClassification(a) model.to(a) model.eval() lowercase__ : List[Any] = model(a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case_ ( self , a , a , a , a): lowercase__ : List[Any] = self.num_labels lowercase__ : Dict = MobileViTForSemanticSegmentation(a) model.to(a) model.eval() lowercase__ : Tuple = model(a) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase__ : Union[str, Any] = model(a , labels=a) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ ( self): lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ (lowercase__ , lowercase__ , unittest.TestCase ): __lowerCamelCase : Any = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Tuple = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False __lowerCamelCase : Optional[Any] = False def snake_case_ ( self): lowercase__ : Union[str, Any] = MobileViTModelTester(self) lowercase__ : List[str] = MobileViTConfigTester(self , config_class=a , has_text_modality=a) def snake_case_ ( self): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds') def snake_case_ ( self): pass @unittest.skip(reason='MobileViT does not support input and output embeddings') def snake_case_ ( self): pass @unittest.skip(reason='MobileViT does not output attentions') def snake_case_ ( self): pass def snake_case_ ( self): lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(a) lowercase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : str = [*signature.parameters.keys()] lowercase__ : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def snake_case_ ( self): pass def snake_case_ ( self): lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) def snake_case_ ( self): def check_hidden_states_output(a , a , a): lowercase__ : Tuple = model_class(a) model.to(a) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a)) lowercase__ : Dict = outputs.hidden_states lowercase__ : Optional[Any] = 5 self.assertEqual(len(a) , a) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase__ : Any = 2 for i in range(len(a)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Any = True check_hidden_states_output(a , a , a) def snake_case_ ( self): lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a) def snake_case_ ( self): lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a) @slow def snake_case_ ( self): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = MobileViTModel.from_pretrained(a) self.assertIsNotNone(a) def snake_case__ ( ): '''simple docstring''' lowercase__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): @cached_property def snake_case_ ( self): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small') if is_vision_available() else None @slow def snake_case_ ( self): lowercase__ : Dict = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small').to(a) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = prepare_img() lowercase__ : List[Any] = image_processor(images=a , return_tensors='pt').to(a) # forward pass with torch.no_grad(): lowercase__ : Dict = model(**a) # verify the logits lowercase__ : str = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , a) lowercase__ : Dict = torch.tensor([-1.9_364, -1.2_327, -0.4_653]).to(a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4)) @slow def snake_case_ ( self): lowercase__ : Any = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') lowercase__ : Optional[Any] = model.to(a) lowercase__ : Optional[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') lowercase__ : Any = prepare_img() lowercase__ : Optional[int] = image_processor(images=a , return_tensors='pt').to(a) # forward pass with torch.no_grad(): lowercase__ : Any = model(**a) lowercase__ : int = outputs.logits # verify the logits lowercase__ : Optional[int] = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , a) lowercase__ : Optional[Any] = torch.tensor( [ [[6.9_713, 6.9_786, 7.2_422], [7.2_893, 7.2_825, 7.4_446], [7.6_580, 7.8_797, 7.9_420]], [[-10.6_869, -10.3_250, -10.3_471], [-10.4_228, -9.9_868, -9.7_132], [-11.0_405, -11.0_221, -10.7_318]], [[-3.3_089, -2.8_539, -2.6_740], [-3.2_706, -2.5_621, -2.5_108], [-3.2_534, -2.6_615, -2.6_651]], ] , device=a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , a , atol=1e-4)) @slow def snake_case_ ( self): lowercase__ : Any = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') lowercase__ : Optional[int] = model.to(a) lowercase__ : Any = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') lowercase__ : str = prepare_img() lowercase__ : Optional[Any] = image_processor(images=a , return_tensors='pt').to(a) # forward pass with torch.no_grad(): lowercase__ : Dict = model(**a) lowercase__ : Optional[Any] = outputs.logits.detach().cpu() lowercase__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a , target_sizes=[(50, 60)]) lowercase__ : Union[str, Any] = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , a) lowercase__ : int = image_processor.post_process_semantic_segmentation(outputs=a) lowercase__ : Optional[Any] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , a)
214
'''simple docstring''' from jiwer import compute_measures import datasets a : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" a : str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" a : Union[str, Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def A_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def A_ ( self , snake_case=None , snake_case=None , snake_case=False ): '''simple docstring''' if concatenate_texts: return compute_measures(snake_case , snake_case )["wer"] else: UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[Any] = 0 for prediction, reference in zip(snake_case , snake_case ): UpperCAmelCase : Tuple = compute_measures(snake_case , snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
311
0
from functools import lru_cache def lowerCAmelCase_ ( _lowercase : Optional[Any]) -> Tuple: """simple docstring""" a__ : Union[str, Any] = 2 a__ : str = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_lowercase) if n > 1: factors.add(_lowercase) return factors @lru_cache def lowerCAmelCase_ ( _lowercase : Any) -> List[Any]: """simple docstring""" return len(unique_prime_factors(_lowercase)) def lowerCAmelCase_ ( _lowercase : Tuple) -> Optional[int]: """simple docstring""" return len(set(_lowercase)) in (0, 1) def lowerCAmelCase_ ( _lowercase : int) -> List[Any]: """simple docstring""" a__ : Dict = 2 while True: # Increment each value of a generated range a__ : Any = [base + i for i in range(_lowercase)] # Run elements through out unique_prime_factors function # Append our target number to the end. a__ : Dict = [upf_len(_lowercase) for x in group] checker.append(_lowercase) # If all numbers in the list are equal, return the group variable. if equality(_lowercase): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( _lowercase : int = 4) -> Dict: """simple docstring""" a__ : int = run(_lowercase) return results[0] if len(_lowercase) else None if __name__ == "__main__": print(solution())
170
'''simple docstring''' from functools import lru_cache def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = 2 UpperCAmelCase : str = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__magic_name__ ) if n > 1: factors.add(__magic_name__ ) return factors @lru_cache def lowercase ( __magic_name__ ): '''simple docstring''' return len(unique_prime_factors(__magic_name__ ) ) def lowercase ( __magic_name__ ): '''simple docstring''' return len(set(__magic_name__ ) ) in (0, 1) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = 2 while True: # Increment each value of a generated range UpperCAmelCase : Any = [base + i for i in range(__magic_name__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCAmelCase : Dict = [upf_len(__magic_name__ ) for x in group] checker.append(__magic_name__ ) # If all numbers in the list are equal, return the group variable. if equality(__magic_name__ ): return group # Increment our base variable by 1 base += 1 def lowercase ( __magic_name__ = 4 ): '''simple docstring''' UpperCAmelCase : int = run(__magic_name__ ) return results[0] if len(__magic_name__ ) else None if __name__ == "__main__": print(solution())
311
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase (lowercase__ ): """simple docstring""" def __init__( self , A , A ) -> str: super().__init__() # make sure scheduler can always be converted to DDIM snake_case : Any = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self , A = 1 , A = None , A = 0.0 , A = 5_0 , A = None , A = "pil" , A = True , ) -> str: if isinstance(self.unet.config.sample_size , A ): snake_case : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: snake_case : List[Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A , A ) and len(A ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(A )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) snake_case : Union[str, Any] = randn_tensor(A , generator=A , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case : List[Any] = self.unet(A , A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case : Union[str, Any] = self.scheduler.step( A , A , A , eta=A , use_clipped_model_output=A , generator=A ).prev_sample snake_case : int = (image / 2 + 0.5).clamp(0 , 1 ) snake_case : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Dict = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
124
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
311
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __lowerCAmelCase ( yaml.SafeLoader ): def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' _lowercase =[self.constructed_objects[key_node] for key_node, _ in node.value] _lowercase =[tuple(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else key for key in keys] _lowercase =Counter(lowerCAmelCase ) _lowercase =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=False ) -> str: '''simple docstring''' _lowercase =super().construct_mapping(lowerCAmelCase , deep=lowerCAmelCase ) self._check_no_duplicates_on_constructed_node(lowerCAmelCase ) return mapping def a ( A__ : Union[str, Any] ) -> Any: """simple docstring""" _lowercase =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _lowercase =full_content[1:].index('---' ) + 1 _lowercase ="\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(A__ ) class __lowerCAmelCase ( lowercase__ ): _a = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def A__ ( cls , lowerCAmelCase ) -> int: '''simple docstring''' with open(lowerCAmelCase , encoding='utf-8' ) as readme_file: _lowercase =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowerCAmelCase ) else: return cls() def A__ ( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' if path.exists(): with open(lowerCAmelCase , encoding='utf-8' ) as readme_file: _lowercase =readme_file.read() else: _lowercase =None _lowercase =self._to_readme(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(lowerCAmelCase ) def A__ ( self , lowerCAmelCase = None ) -> str: '''simple docstring''' if readme_content is not None: _lowercase =_split_yaml_from_readme(lowerCAmelCase ) _lowercase ="---\n" + self.to_yaml_string() + "---\n" + content else: _lowercase ="---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def A__ ( cls , lowerCAmelCase ) -> List[str]: '''simple docstring''' _lowercase =yaml.load(lowerCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _lowercase ={ (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCAmelCase , allow_unicode=lowerCAmelCase , encoding='utf-8' , ).decode('utf-8' ) lowercase_ = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser lowercase_ = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') lowercase_ = ap.parse_args() lowercase_ = Path(args.readme_filepath) lowercase_ = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
205
'''simple docstring''' # Lint as: python3 import itertools import os import re a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])") a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])") a : str = re.compile(R"(?<!_)_(?!_)") a : List[Any] = re.compile(R"(_{2,})") a : List[Any] = R"^\w+(\.\w+)*$" a : Dict = R"<>:/\|?*" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) return name.lower() def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ ) UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" ) def lowercase ( __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(__magic_name__ ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , __magic_name__ ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(__magic_name__ )}-{split}" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) if filetype_suffix: prefix += F".{filetype_suffix}" UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) return F"{filepath}*" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) if shard_lengths: UpperCAmelCase : Tuple = len(__magic_name__ ) UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )] if filetype_suffix: UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: UpperCAmelCase : int = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
311
0
"""simple docstring""" import argparse _A = "docs/source/_static/js/custom.js" def lowercase_ ( __UpperCAmelCase ) -> int: with open(__UpperCAmelCase , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase__ : Optional[Any] = f.readlines() lowerCAmelCase__ : Any = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 lowerCAmelCase__ : Any = f"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f""" \"v{version}\": \"v{version}\",\n""" with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__UpperCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") _A = parser.parse_args() update_custom_js(args.version)
242
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) a : Optional[int] = _symbol_database.Default() a : Any = _descriptor_pool.Default().AddSerializedFile( B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) a : Tuple = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: a : str = None a : Optional[Any] = B"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" a : str = 45 a : Any = 15_81 a : List[Any] = 15_17 a : Union[str, Any] = 15_70 a : Optional[Any] = 15_84 a : List[str] = 17_93 a : Optional[Any] = 17_95 a : Tuple = 19_16 a : Optional[Any] = 18_64 a : int = 19_05 a : Optional[Any] = 19_19 a : Union[str, Any] = 24_29 a : List[Any] = 22_08 a : Dict = 24_18 a : Optional[int] = 23_23 a : str = 24_07 # @@protoc_insertion_point(module_scope)
311
0
"""simple docstring""" import math def A__ ( UpperCamelCase , UpperCamelCase ): if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
292
'''simple docstring''' import argparse import copy def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = {} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase : List[Any] = [] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase : Any = [] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' with open(__magic_name__ ) as f: UpperCAmelCase : List[str] = f.read(1 ) UpperCAmelCase : List[Any] = start_node UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Any = start_node UpperCAmelCase : Optional[Any] = 0 while visiting not in first_solution: UpperCAmelCase : Optional[Any] = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: UpperCAmelCase : Tuple = k[1] UpperCAmelCase : Dict = k[0] first_solution.append(__magic_name__ ) UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ ) UpperCAmelCase : str = best_node first_solution.append(__magic_name__ ) UpperCAmelCase : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for n in solution[1:-1]: UpperCAmelCase : Any = solution.index(__magic_name__ ) for kn in solution[1:-1]: UpperCAmelCase : Dict = solution.index(__magic_name__ ) if n == kn: continue UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ ) UpperCAmelCase : Optional[int] = kn UpperCAmelCase : List[str] = n UpperCAmelCase : str = 0 for k in _tmp[:-1]: UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase : List[Any] = distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = 1 UpperCAmelCase : List[str] = first_solution UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = distance_of_first_solution UpperCAmelCase : Union[str, Any] = solution while count <= iters: UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = 0 UpperCAmelCase : List[str] = neighborhood[index_of_best_solution] UpperCAmelCase : Dict = len(__magic_name__ ) - 1 UpperCAmelCase : Dict = False while not found: UpperCAmelCase : List[Any] = 0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: UpperCAmelCase : int = best_solution[i] UpperCAmelCase : Optional[int] = solution[i] break UpperCAmelCase : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase : List[str] = True UpperCAmelCase : List[Any] = best_solution[:-1] UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase : Union[str, Any] = cost UpperCAmelCase : Tuple = solution else: UpperCAmelCase : Optional[Any] = index_of_best_solution + 1 UpperCAmelCase : str = neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) UpperCAmelCase : int = count + 1 return best_solution_ever, best_cost def lowercase ( __magic_name__=None ): '''simple docstring''' UpperCAmelCase : Dict = generate_neighbours(args.File ) UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution( args.File , __magic_name__ ) UpperCAmelCase , UpperCAmelCase : Any = tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
311
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : """simple docstring""" def __init__( self , A , A=3 , A=32 , A=3 , A=10 , A=[10, 20, 30, 40] , A=[1, 1, 2, 1] , A=True , A=True , A="relu" , A=3 , A=None , ) -> Optional[int]: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = image_size lowerCamelCase = num_channels lowerCamelCase = embeddings_size lowerCamelCase = hidden_sizes lowerCamelCase = depths lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = hidden_act lowerCamelCase = num_labels lowerCamelCase = scope lowerCamelCase = len(A ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase = self.get_config() return config, pixel_values, labels def __A ( self ) -> int: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __A ( self , A , A , A ) -> Tuple: '''simple docstring''' lowerCamelCase = TFResNetModel(config=A ) lowerCamelCase = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = TFResNetForImageClassification(A ) lowerCamelCase = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase = config_and_inputs lowerCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __lowercase ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase : Union[str, Any] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase : List[str] = False UpperCamelCase : Union[str, Any] = False UpperCamelCase : int = False UpperCamelCase : Any = False UpperCamelCase : Any = False def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = TFResNetModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=A , has_text_modality=A ) def __A ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def __A ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(A ) lowerCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , A ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __A ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(A , A , A ): lowerCamelCase = model_class(A ) lowerCamelCase = model(**self._prepare_for_class(A , A ) ) lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase = layer_type lowerCamelCase = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase = True check_hidden_states_output(A , A , A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFResNetModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self ) -> Optional[int]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=A , return_tensors="""tf""" ) # forward pass lowerCamelCase = model(**A ) # verify the logits lowerCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) lowerCamelCase = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , A , atol=1e-4 ) )
252
'''simple docstring''' from collections.abc import Generator from math import sin def lowercase ( __magic_name__ ): '''simple docstring''' if len(__magic_name__ ) != 32: raise ValueError("Input must be of length 32" ) UpperCAmelCase : Union[str, Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowercase ( __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase : Dict = format(__magic_name__ , "08x" )[-8:] UpperCAmelCase : List[str] = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : int = b"" for char in message: bit_string += format(__magic_name__ , "08b" ).encode("utf-8" ) UpperCAmelCase : List[Any] = format(len(__magic_name__ ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__magic_name__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowercase ( __magic_name__ ): '''simple docstring''' if len(__magic_name__ ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__magic_name__ ) , 512 ): UpperCAmelCase : Union[str, Any] = bit_string[pos : pos + 512] UpperCAmelCase : Tuple = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowercase ( __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase : Any = format(__magic_name__ , "032b" ) UpperCAmelCase : int = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__magic_name__ , 2 ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' return (a + b) % 2**32 def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = preprocess(__magic_name__ ) UpperCAmelCase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCAmelCase : List[str] = 0X67452301 UpperCAmelCase : Tuple = 0XEFCDAB89 UpperCAmelCase : List[Any] = 0X98BADCFE UpperCAmelCase : List[str] = 0X10325476 UpperCAmelCase : Dict = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__magic_name__ ): UpperCAmelCase : Optional[Any] = aa UpperCAmelCase : List[Any] = ba UpperCAmelCase : Optional[Any] = ca UpperCAmelCase : Any = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCAmelCase : Tuple = d ^ (b & (c ^ d)) UpperCAmelCase : List[str] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCAmelCase : int = c ^ (d & (b ^ c)) UpperCAmelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: UpperCAmelCase : Any = b ^ c ^ d UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16 else: UpperCAmelCase : Dict = c ^ (b | not_aa(__magic_name__ )) UpperCAmelCase : Dict = (7 * i) % 16 UpperCAmelCase : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCAmelCase : List[Any] = d UpperCAmelCase : Any = c UpperCAmelCase : Dict = b UpperCAmelCase : Union[str, Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCAmelCase : List[str] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : List[Any] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : Optional[int] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : List[str] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
311
0
from __future__ import annotations A__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): '''simple docstring''' lowercase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCamelCase_ ) ) ] # the reference grid lowercase__ = 1 lowercase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCamelCase_ ) ) ] # the action grid lowercase__ = init[0] lowercase__ = init[1] lowercase__ = 0 lowercase__ = g + heuristic[x][y] # cost from starting cell to destination cell lowercase__ = [[f, g, x, y]] lowercase__ = False # flag that is set when search is complete lowercase__ = False # flag set if we can't find expand while not found and not resign: if len(lowerCamelCase_ ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowercase__ = cell.pop() lowercase__ = next_cell[2] lowercase__ = next_cell[3] lowercase__ = next_cell[1] if x == goal[0] and y == goal[1]: lowercase__ = True else: for i in range(len(lowerCamelCase_ ) ): # to try out different valid actions lowercase__ = x + DIRECTIONS[i][0] lowercase__ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(lowerCamelCase_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowercase__ = g + cost lowercase__ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowercase__ = 1 lowercase__ = i lowercase__ = [] lowercase__ = goal[0] lowercase__ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowercase__ = x - DIRECTIONS[action[x][y]][0] lowercase__ = y - DIRECTIONS[action[x][y]][1] lowercase__ = xa lowercase__ = ya invpath.append([x, y] ) lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): path.append(invpath[len(lowerCamelCase_ ) - 1 - i] ) return path, action if __name__ == "__main__": A__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] A__ : Tuple = [0, 0] # all coordinates are given in format [y,x] A__ : int = [len(grid) - 1, len(grid[0]) - 1] A__ : Tuple = 1 # the cost map which pushes the path closer to the goal A__ : Optional[Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): A__ : Dict = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map A__ : List[Any] = 99 A__ : Optional[Any] = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
207
'''simple docstring''' a : List[str] = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
311
0
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowercase_ = 0 lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowercase_ = tuple[int, int] class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() __a = self.g_cost + self.h_cost def __UpperCAmelCase ( self ): __a = self.pos_x - self.goal_x __a = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_a ) + abs(_a ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) return [self.start.pos] def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = AStar(_a , _a ) __a = AStar(_a , _a ) __a = False def __UpperCAmelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __a = self.fwd_astar.open_nodes.pop(0 ) __a = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _a , _a ) self.fwd_astar.closed_nodes.append(_a ) self.bwd_astar.closed_nodes.append(_a ) __a = current_bwd_node __a = current_fwd_node __a = { self.fwd_astar: self.fwd_astar.get_successors(_a ), self.bwd_astar: self.bwd_astar.get_successors(_a ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_a ) else: # retrieve the best current path __a = astar.open_nodes.pop( astar.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_a ) else: astar.open_nodes.append(_a ) return [self.fwd_astar.start.pos] def __UpperCAmelCase ( self , _a , _a ): __a = self.fwd_astar.retrace_path(_a ) __a = self.bwd_astar.retrace_path(_a ) bwd_path.pop() bwd_path.reverse() __a = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase_ = time.time() lowercase_ = AStar(init, goal) lowercase_ = a_star.search() lowercase_ = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') lowercase_ = time.time() lowercase_ = BidirectionalAStar(init, goal) lowercase_ = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
45
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase : Tuple = 192 UpperCAmelCase : str = 768 UpperCAmelCase : List[Any] = 12 UpperCAmelCase : List[Any] = 3 UpperCAmelCase : List[Any] = [800, 1333] UpperCAmelCase : List[str] = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Union[str, Any] = 330 UpperCAmelCase : Union[str, Any] = 14 UpperCAmelCase : Any = 6 UpperCAmelCase : int = 1320 elif "yolos_s" in yolos_name: UpperCAmelCase : Union[str, Any] = 384 UpperCAmelCase : Dict = 1536 UpperCAmelCase : str = 12 UpperCAmelCase : List[str] = 6 elif "yolos_b" in yolos_name: UpperCAmelCase : int = [800, 1344] UpperCAmelCase : Optional[int] = 91 UpperCAmelCase : int = "huggingface/label-files" UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json" UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def lowercase ( __magic_name__ ): '''simple docstring''' if "backbone" in name: UpperCAmelCase : int = name.replace("backbone" , "vit" ) if "cls_token" in name: UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase : Any = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: UpperCAmelCase : str = key.split("." ) UpperCAmelCase : List[Any] = int(key_split[2] ) UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase : Optional[int] = val[:dim, :] UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase : Any = val[-dim:, :] else: UpperCAmelCase : Tuple = val[:dim] UpperCAmelCase : List[str] = val[dim : dim * 2] UpperCAmelCase : Any = val[-dim:] else: UpperCAmelCase : Union[str, Any] = val return orig_state_dict def lowercase ( ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ ) # load original state_dict UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"] # load 🤗 model UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ ) model.eval() UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512 UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ ) UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase : List[str] = model(**__magic_name__ ) UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None if yolos_name == "yolos_ti": UpperCAmelCase : str = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) UpperCAmelCase : Tuple = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase : Union[str, Any] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) UpperCAmelCase : List[str] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase : List[str] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) UpperCAmelCase : Dict = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Dict = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) UpperCAmelCase : List[Any] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": UpperCAmelCase : str = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: UpperCAmelCase : int = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) UpperCAmelCase : Tuple = model_mapping[yolos_name] image_processor.push_to_hub(__magic_name__ , organization="hustvl" ) model.push_to_hub(__magic_name__ , organization="hustvl" ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
311
0
"""simple docstring""" import argparse import copy def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> Tuple: '''simple docstring''' lowercase = {} with open(lowerCAmelCase__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase = [] _list.append([line.split()[1], line.split()[2]] ) lowercase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowercase = [] _list.append([line.split()[0], line.split()[2]] ) lowercase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' with open(lowerCAmelCase__ ) as f: lowercase = f.read(1 ) lowercase = start_node lowercase = [] lowercase = start_node lowercase = 0 while visiting not in first_solution: lowercase = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase__ ) and k[0] not in first_solution: lowercase = k[1] lowercase = k[0] first_solution.append(lowerCAmelCase__ ) lowercase = distance_of_first_solution + int(lowerCAmelCase__ ) lowercase = best_node first_solution.append(lowerCAmelCase__ ) lowercase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict ) -> Dict: '''simple docstring''' lowercase = [] for n in solution[1:-1]: lowercase = solution.index(lowerCAmelCase__ ) for kn in solution[1:-1]: lowercase = solution.index(lowerCAmelCase__ ) if n == kn: continue lowercase = copy.deepcopy(lowerCAmelCase__ ) lowercase = kn lowercase = n lowercase = 0 for k in _tmp[:-1]: lowercase = _tmp[_tmp.index(lowerCAmelCase__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase = distance + int(i[1] ) _tmp.append(lowerCAmelCase__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowercase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] ) -> List[str]: '''simple docstring''' lowercase = 1 lowercase = first_solution lowercase = [] lowercase = distance_of_first_solution lowercase = solution while count <= iters: lowercase = find_neighborhood(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = 0 lowercase = neighborhood[index_of_best_solution] lowercase = len(lowerCAmelCase__ ) - 1 lowercase = False while not found: lowercase = 0 while i < len(lowerCAmelCase__ ): if best_solution[i] != solution[i]: lowercase = best_solution[i] lowercase = solution[i] break lowercase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowercase = True lowercase = best_solution[:-1] lowercase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase = cost lowercase = solution else: lowercase = index_of_best_solution + 1 lowercase = neighborhood[index_of_best_solution] if len(lowerCAmelCase__ ) >= size: tabu_list.pop(0 ) lowercase = count + 1 return best_solution_ever, best_cost def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any]=None ) -> str: '''simple docstring''' lowercase = generate_neighbours(args.File ) lowercase = generate_first_solution( args.File , lowerCAmelCase__ ) lowercase = tabu_search( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
197
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) a : Tuple = logging.getLogger(__name__) def lowercase ( ): '''simple docstring''' UpperCAmelCase : Any = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=__magic_name__ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=__magic_name__ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=__magic_name__ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=__magic_name__ , default="data/dump" , help="The dump file prefix." ) UpperCAmelCase : List[Any] = parser.parse_args() logger.info(F"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Tuple = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Optional[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"Loading text from {args.file_path}" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: UpperCAmelCase : str = fp.readlines() logger.info("Start encoding" ) logger.info(F"{len(__magic_name__ )} examples to process." ) UpperCAmelCase : int = [] UpperCAmelCase : int = 0 UpperCAmelCase : Union[str, Any] = 1_0000 UpperCAmelCase : Union[str, Any] = time.time() for text in data: UpperCAmelCase : Dict = F"{bos} {text.strip()} {sep}" UpperCAmelCase : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) rslt.append(__magic_name__ ) iter += 1 if iter % interval == 0: UpperCAmelCase : Dict = time.time() logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) UpperCAmelCase : Any = time.time() logger.info("Finished binarization" ) logger.info(F"{len(__magic_name__ )} examples processed." ) UpperCAmelCase : str = F"{args.dump_file}.{args.tokenizer_name}.pickle" UpperCAmelCase : List[str] = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase : int = [np.uintaa(__magic_name__ ) for d in rslt] else: UpperCAmelCase : int = [np.intaa(__magic_name__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"Dump to {dp_file}" ) with open(__magic_name__ , "wb" ) as handle: pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
311
0
from __future__ import annotations def __snake_case ( _UpperCAmelCase ): if len(_UpperCAmelCase ) == 0: return [] __a = min(_UpperCAmelCase ), max(_UpperCAmelCase ) __a = int(max_value - min_value ) + 1 __a = [[] for _ in range(_UpperCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(_UpperCAmelCase ) return [v for bucket in buckets for v in sorted(_UpperCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
49
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a : Tuple = ["gpt2"] a : Dict = "gpt2" if is_tf_available(): class UpperCamelCase__ ( tf.Module ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = tokenizer UpperCAmelCase : List[str] = AutoConfig.from_pretrained(snake_case ) UpperCAmelCase : int = TFGPTaLMHeadModel.from_config(snake_case ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case ) UpperCAmelCase : Optional[int] = tokenized["input_ids"].to_tensor() UpperCAmelCase : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase : List[Any] = self.model(input_ids=snake_case , attention_mask=snake_case )["logits"] return outputs @require_tf @require_keras_nlp class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' super().setUp() UpperCAmelCase : Any = [GPTaTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase : Optional[Any] = [TFGPTaTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase : Tuple = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCAmelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def A_ ( self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase : List[Any] = tokenizer([test_inputs] , return_tensors="tf" ) UpperCAmelCase : Any = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase : Dict = python_outputs[key].numpy() UpperCAmelCase : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(snake_case , tf.intaa ) == tf_outputs_values ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Optional[Any] = tf.function(snake_case ) for test_inputs in self.test_sentences: UpperCAmelCase : List[str] = tf.constant(snake_case ) UpperCAmelCase : Dict = compiled_tokenizer(snake_case ) UpperCAmelCase : Union[str, Any] = tf_tokenizer(snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : int = ModelToSave(tokenizer=snake_case ) UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : str = model.serving(snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase : Optional[int] = Path(snake_case ) / "saved.model" tf.saved_model.save(snake_case , snake_case , signatures={"serving_default": model.serving} ) UpperCAmelCase : int = tf.saved_model.load(snake_case ) UpperCAmelCase : str = loaded_model.signatures["serving_default"](snake_case )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case ) # Build model with some sample inputs UpperCAmelCase : Union[str, Any] = tf_tokenizer.get_config() UpperCAmelCase : str = TFGPTaTokenizer.from_config(snake_case ) UpperCAmelCase : Tuple = model_from_config(snake_case ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase : List[str] = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case , max_length=snake_case ) UpperCAmelCase : Union[str, Any] = out["input_ids"].numpy().shape[1] assert out_length == max_length
311
0
from __future__ import annotations from PIL import Image # Define glider example snake_case_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' lowercase__ : Tuple = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ : Union[str, Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowercase__ : Union[str, Any] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowercase__ : Optional[Any] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE_ ) return next_generation def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' lowercase__ : Union[str, Any] = [] for _ in range(SCREAMING_SNAKE_CASE_ ): # Create output image lowercase__ : List[Any] = Image.new('RGB' , (len(cells[0] ), len(SCREAMING_SNAKE_CASE_ )) ) lowercase__ : Dict = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE_ ) ): for y in range(len(cells[0] ) ): lowercase__ : Dict = 255 - cells[y][x] * 255 lowercase__ : Tuple = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = new_generation(SCREAMING_SNAKE_CASE_ ) return images if __name__ == "__main__": snake_case_ = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
214
'''simple docstring''' import argparse from collections import defaultdict import yaml a : str = "docs/source/en/_toctree.yml" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = defaultdict(__magic_name__ ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] UpperCAmelCase : Dict = [] for duplicate_key in duplicates: UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__magic_name__ ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() ) def lowercase ( __magic_name__=False ): '''simple docstring''' with open(__magic_name__ , encoding="utf-8" ) as f: UpperCAmelCase : Any = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"] # Then to the model doc UpperCAmelCase : Any = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase : str = api_doc[model_idx]["sections"] UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section] UpperCAmelCase : Optional[int] = False for idx, modality_doc in modalities_docs: UpperCAmelCase : int = modality_doc["sections"] UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ ) if old_modality_doc != new_modality_doc: UpperCAmelCase : int = True if overwrite: UpperCAmelCase : Dict = new_modality_doc if diff: if overwrite: UpperCAmelCase : Any = model_doc UpperCAmelCase : Any = api_doc with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
311
0
import re from ..utils import cached_file # docstyle-ignore _lowercase : str ="\nHuman: <<task>>\n\nAssistant: " _lowercase : int ="huggingface-tools/default-prompts" _lowercase : List[str] ={"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def lowerCAmelCase_ ( _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Dict="run") -> List[Any]: """simple docstring""" if prompt_or_repo_id is None: a__ : str = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , _lowercase) is not None: return prompt_or_repo_id a__ : List[str] = cached_file( _lowercase , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name}) with open(_lowercase , """r""" , encoding="""utf-8""") as f: return f.read()
170
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase ( __magic_name__ ): '''simple docstring''' for param in module.parameters(): UpperCAmelCase : Any = False def lowercase ( ): '''simple docstring''' UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = plt.imshow(__magic_name__ ) fig.axes.get_xaxis().set_visible(__magic_name__ ) fig.axes.get_yaxis().set_visible(__magic_name__ ) plt.show() def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = datetime.now() UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
311
0
lowerCamelCase : str = tuple[float, float, float] lowerCamelCase : int = tuple[float, float, float] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: snake_case : List[str] = end_pointa[0] - end_pointa[0] snake_case : Optional[int] = end_pointa[1] - end_pointa[1] snake_case : int = end_pointa[2] - end_pointa[2] return (x, y, z) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i snake_case : Dict = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j snake_case : str = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: return tuple(round(lowercase ,lowercase ) for x in vector ) == (0, 0, 0) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = 10 ) -> Optional[Any]: snake_case : Any = create_vector(lowercase ,lowercase ) snake_case : Any = create_vector(lowercase ,lowercase ) return is_zero_vector(get_ad_vectors_cross(lowercase ,lowercase ) ,lowercase )
124
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) a : str = getLogger(__name__) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 8 , __magic_name__ = 1024 , __magic_name__="val" , __magic_name__=None , __magic_name__=False , __magic_name__="summarization" , __magic_name__=None , __magic_name__=1 , __magic_name__ = None , __magic_name__="" , **__magic_name__ , ): '''simple docstring''' UpperCAmelCase : List[Any] = str(__magic_name__ ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=__magic_name__ ) UpperCAmelCase : List[str] = Path(__magic_name__ ) UpperCAmelCase : Dict = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(__magic_name__ ) UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).cuda() if fpaa: UpperCAmelCase : int = model.half() # determine if we need to increase num_beams use_task_specific_params(__magic_name__ , __magic_name__ ) # update config with task specific params UpperCAmelCase : Dict = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase : Optional[Any] = num_return_sequences UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(__magic_name__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase : Any = tokenizer.model_max_length if prefix is None: UpperCAmelCase : Tuple = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase : Dict = SeqaSeqDataset( __magic_name__ , __magic_name__ , __magic_name__ , max_target_length=1024 , type_path=__magic_name__ , n_obs=__magic_name__ , prefix=__magic_name__ , **__magic_name__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase : int = ds.make_sortish_sampler(__magic_name__ , distributed=__magic_name__ , add_extra_examples=__magic_name__ , shuffle=__magic_name__ ) UpperCAmelCase : List[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn ) UpperCAmelCase : Any = [] for batch in tqdm(__magic_name__ ): UpperCAmelCase : List[Any] = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , **__magic_name__ , ) UpperCAmelCase : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) UpperCAmelCase : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase : List[Any] = chunks(__magic_name__ , __magic_name__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__magic_name__ ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(__magic_name__ , __magic_name__ ) return results, sampler.num_replicas def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=__magic_name__ , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=__magic_name__ , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=__magic_name__ , default=__magic_name__ ) parser.add_argument( "--type_path" , type=__magic_name__ , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=__magic_name__ , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=__magic_name__ , default=8 , required=__magic_name__ , help="batch size" ) parser.add_argument( "--local_rank" , type=__magic_name__ , default=-1 , required=__magic_name__ , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=__magic_name__ , default=1 , required=__magic_name__ , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=__magic_name__ , default=600 , required=__magic_name__ , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ ) parser.add_argument("--tgt_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ ) parser.add_argument( "--prefix" , type=__magic_name__ , required=__magic_name__ , default=__magic_name__ , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase : Union[str, Any] = time.time() UpperCAmelCase , UpperCAmelCase : Dict = parser.parse_known_args() UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(__magic_name__ ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase : Union[str, Any] = Path(args.save_dir + "_tmp" ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) # this handles locking. UpperCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase : Optional[Any] = {} if args.src_lang is not None: UpperCAmelCase : List[str] = args.src_lang if args.tgt_lang is not None: UpperCAmelCase : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__magic_name__ ) UpperCAmelCase , UpperCAmelCase : str = eval_data_dir( args.data_dir , __magic_name__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__magic_name__ , **__magic_name__ , ) if args.local_rank <= 0: UpperCAmelCase : List[str] = Path(args.save_dir ) save_dir.mkdir(exist_ok=__magic_name__ ) UpperCAmelCase : str = gather_results_from_each_node(__magic_name__ , __magic_name__ , args.sync_timeout ) UpperCAmelCase : Dict = combine_partial_results(__magic_name__ ) if args.num_return_sequences > 1: UpperCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(__magic_name__ , __magic_name__ ) return UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(__magic_name__ ) as f: UpperCAmelCase : Dict = [x.rstrip() for x in f.readlines()][: len(__magic_name__ )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase : Optional[int] = "translation" in args.task UpperCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase : Tuple = "bleu" if calc_bleu else "rouge" UpperCAmelCase : Dict = score_fn(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = len(__magic_name__ ) UpperCAmelCase : Union[str, Any] = time.time() - start_time UpperCAmelCase : Dict = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase : Optional[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase : Dict = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ ) print(__magic_name__ ) write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(__magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Tuple = [] for partial_result in partial_results: records.extend(__magic_name__ ) UpperCAmelCase : Optional[Any] = sorted(__magic_name__ , key=lambda __magic_name__ : x["id"] ) UpperCAmelCase : List[Any] = [x["pred"] for x in records] return preds def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase : Union[str, Any] = None while (time.time() - start_wait) < timeout: UpperCAmelCase : Dict = list(save_dir.glob("rank_*.json" ) ) if len(__magic_name__ ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase : List[str] = lmap(__magic_name__ , __magic_name__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
311
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) a : Optional[Any] = ["model.decoder.embed_positions.weights"] def lowercase ( __magic_name__ ): '''simple docstring''' if "emb" in name: UpperCAmelCase : str = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: UpperCAmelCase : int = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: UpperCAmelCase : List[Any] = name.replace("linear1" , "fc1" ) if "linear2" in name: UpperCAmelCase : int = name.replace("linear2" , "fc2" ) if "norm1" in name: UpperCAmelCase : Dict = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: UpperCAmelCase : Any = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: UpperCAmelCase : Union[str, Any] = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: UpperCAmelCase : Dict = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: UpperCAmelCase : List[Any] = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = list(state_dict.keys() ) UpperCAmelCase : List[Any] = {} for key in keys: UpperCAmelCase : Any = state_dict.pop(__magic_name__ ) UpperCAmelCase : str = rename_keys(__magic_name__ ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase : Optional[int] = val[:hidden_size, :] UpperCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase : str = val else: UpperCAmelCase : int = val return state_dict, enc_dec_proj_state_dict def lowercase ( __magic_name__ ): '''simple docstring''' if checkpoint == "small": # default config values UpperCAmelCase : List[Any] = 1024 UpperCAmelCase : Tuple = 24 UpperCAmelCase : Union[str, Any] = 16 elif checkpoint == "medium": UpperCAmelCase : List[Any] = 1536 UpperCAmelCase : Optional[Any] = 48 UpperCAmelCase : List[str] = 24 elif checkpoint == "large": UpperCAmelCase : List[Any] = 2048 UpperCAmelCase : str = 48 UpperCAmelCase : Optional[Any] = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) UpperCAmelCase : Tuple = MusicgenDecoderConfig( hidden_size=__magic_name__ , ffn_dim=hidden_size * 4 , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , ) return config @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__="cpu" ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(__magic_name__ , device=__magic_name__ ) UpperCAmelCase : List[str] = decoder_config_from_checkpoint(__magic_name__ ) UpperCAmelCase : Dict = fairseq_model.lm.state_dict() UpperCAmelCase , UpperCAmelCase : List[str] = rename_state_dict( __magic_name__ , hidden_size=decoder_config.hidden_size ) UpperCAmelCase : Any = TaEncoderModel.from_pretrained("t5-base" ) UpperCAmelCase : Any = EncodecModel.from_pretrained("facebook/encodec_32khz" ) UpperCAmelCase : int = MusicgenForCausalLM(__magic_name__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(__magic_name__ , strict=__magic_name__ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__magic_name__ ) if len(__magic_name__ ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(__magic_name__ ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model UpperCAmelCase : List[Any] = MusicgenForConditionalGeneration(text_encoder=__magic_name__ , audio_encoder=__magic_name__ , decoder=__magic_name__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__magic_name__ ) # check we can do a forward pass UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase : Optional[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase : str = model(input_ids=__magic_name__ , decoder_input_ids=__magic_name__ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("t5-base" ) UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) UpperCAmelCase : Dict = MusicgenProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ ) # set the appropriate bos/pad token ids UpperCAmelCase : List[Any] = 2048 UpperCAmelCase : Tuple = 2048 # set other default generation config params UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate ) UpperCAmelCase : str = True UpperCAmelCase : Tuple = 3.0 if pytorch_dump_folder is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(__magic_name__ ) processor.push_to_hub(__magic_name__ ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) a : int = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
311
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _A = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
242
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": a : Union[str, Any] = Accelerator() a : str = (accelerator.state.process_index + 2, 10) a : List[str] = torch.randint(0, 10, shape).to(accelerator.device) a : Optional[int] = "" a : int = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
311
0
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def A__ ( UpperCamelCase ): A = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def A__ ( UpperCamelCase ): A = emb.weight.shape A = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) A = emb.weight.data return lin_layer def A__ ( UpperCamelCase ): A = torch.load(UpperCamelCase , map_location="cpu" ) A = Namespace(**checkpoint["cfg"]["model"] ) A = checkpoint["model"] remove_ignore_keys_(UpperCamelCase ) A = state_dict["decoder.embed_tokens.weight"].shape[0] A = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} A = XGLMConfig( vocab_size=UpperCamelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) A = XGLMForCausalLM(UpperCamelCase ) A = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) print(UpperCamelCase ) A = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _snake_case : Union[str, Any] = parser.parse_args() _snake_case : List[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
292
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def A_ ( *snake_case , **snake_case ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase : Union[str, Any] = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def A_ ( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[Any] = object_detector(examples[0] , threshold=0.0 ) UpperCAmelCase : Dict = len(snake_case ) self.assertGreater(snake_case , 0 ) self.assertEqual( snake_case , [ { "score": ANY(snake_case ), "label": ANY(snake_case ), "box": {"xmin": ANY(snake_case ), "ymin": ANY(snake_case ), "xmax": ANY(snake_case ), "ymax": ANY(snake_case )}, } for i in range(snake_case ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A_ ( self ): '''simple docstring''' pass @require_torch def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase : Optional[Any] = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] , ) UpperCAmelCase : Tuple = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] ] , ) @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" ) UpperCAmelCase : Optional[int] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ] , ) UpperCAmelCase : Union[str, Any] = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A_ ( self ): '''simple docstring''' pass @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = 0.2 UpperCAmelCase : Union[str, Any] = pipeline("zero-shot-object-detection" ) UpperCAmelCase : str = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, ] , ) @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = 2 UpperCAmelCase : Optional[Any] = pipeline("zero-shot-object-detection" ) UpperCAmelCase : List[str] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, ] , )
311
0
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCAmelCase : Dict = datasets.logging.get_logger(__name__) UpperCAmelCase : List[str] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" UpperCAmelCase : List[Any] = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" UpperCAmelCase : Optional[int] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : Any=False , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : int=False , lowerCamelCase__ : Optional[Any]="dummy_doc" ): '''simple docstring''' lowerCamelCase = {doc: key_lines} lowerCamelCase = {doc: sys_lines} lowerCamelCase = {} lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = reader.get_doc_mentions(lowerCamelCase__ , key_doc_lines[doc] , lowerCamelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase = reader.set_annotated_parse_trees(lowerCamelCase__ , key_doc_lines[doc] , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = reader.get_doc_mentions(lowerCamelCase__ , sys_doc_lines[doc] , lowerCamelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase = reader.set_annotated_parse_trees(lowerCamelCase__ , key_doc_lines[doc] , lowerCamelCase__ , lowerCamelCase__ ) if remove_nested: lowerCamelCase = reader.remove_nested_coref_mentions(lowerCamelCase__ , lowerCamelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase = reader.remove_nested_coref_mentions(lowerCamelCase__ , lowerCamelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase = reader.get_mention_assignments(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = reader.get_mention_assignments(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( """Number of resulting singleton clusters in the key """ f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' """files, respectively""" ) return doc_coref_infos def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] ): '''simple docstring''' lowerCamelCase = get_coref_infos(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = {} lowerCamelCase = 0 lowerCamelCase = 0 for name, metric in metrics: lowerCamelCase = evaluator.evaluate_documents(lowerCamelCase__ , lowerCamelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} ) logger.info( name.ljust(10 ) , f'Recall: {recall * 100:.2f}' , f' Precision: {precision * 100:.2f}' , f' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: lowerCamelCase = (conll / 3) * 100 logger.info(f'CoNLL score: {conll:.2f}' ) output_scores.update({"""conll_score""": conll} ) return output_scores def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: lowerCamelCase = line.split()[5] if not parse_col == "-": lowerCamelCase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def __A ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def __A ( self , A , A , A=True , A=False , A=False , A=False ) -> str: '''simple docstring''' lowerCamelCase = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: lowerCamelCase = util.check_gold_parse_annotation(A ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase = evaluate( key_lines=A , sys_lines=A , metrics=A , NP_only=A , remove_nested=A , keep_singletons=A , min_span=A , ) return score
252
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if number > 0: raise ValueError("input must be a negative integer" ) UpperCAmelCase : List[Any] = len(bin(__magic_name__ )[3:] ) UpperCAmelCase : Optional[Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Tuple = ( ( "1" + "0" * (binary_number_length - len(__magic_name__ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
311
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ : Dict = logging.get_logger(__name__) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowercase__ = 192 lowercase__ = 768 lowercase__ = 12 lowercase__ = 3 lowercase__ = [800, 1333] lowercase__ = False elif yolos_name == "yolos_s_dWr": lowercase__ = 330 lowercase__ = 14 lowercase__ = 6 lowercase__ = 1320 elif "yolos_s" in yolos_name: lowercase__ = 384 lowercase__ = 1536 lowercase__ = 12 lowercase__ = 6 elif "yolos_b" in yolos_name: lowercase__ = [800, 1344] lowercase__ = 91 lowercase__ = "huggingface/label-files" lowercase__ = "coco-detection-id2label.json" lowercase__ = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowercase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[: config.hidden_size, :] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[-config.hidden_size :, :] lowercase__ = in_proj_bias[-config.hidden_size :] def a ( lowerCamelCase_ ): '''simple docstring''' if "backbone" in name: lowercase__ = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: lowercase__ = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: lowercase__ = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: lowercase__ = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: lowercase__ = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowercase__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: lowercase__ = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: lowercase__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: lowercase__ = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: lowercase__ = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: lowercase__ = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(lowerCamelCase_ ) if "qkv" in key: lowercase__ = key.split('''.''' ) lowercase__ = int(key_split[2] ) lowercase__ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[ dim : dim * 2, : ] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] else: lowercase__ = val return orig_state_dict def a ( ): '''simple docstring''' lowercase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False ): '''simple docstring''' lowercase__ = get_yolos_config(lowerCamelCase_ ) # load original state_dict lowercase__ = torch.load(lowerCamelCase_ , map_location='''cpu''' )["model"] # load 🤗 model lowercase__ = YolosForObjectDetection(lowerCamelCase_ ) model.eval() lowercase__ = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # Check outputs on an image, prepared by YolosImageProcessor lowercase__ = 800 if yolos_name != "yolos_ti" else 512 lowercase__ = YolosImageProcessor(format='''coco_detection''' , size=lowerCamelCase_ ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase__ = model(**lowerCamelCase_ ) lowercase__ = outputs.logits, outputs.pred_boxes lowercase__ = None, None if yolos_name == "yolos_ti": lowercase__ = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.97_69, -17.7691], [-42.3281, -20.7200, -30.6294]] ) lowercase__ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowercase__ = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) lowercase__ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowercase__ = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) lowercase__ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowercase__ = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) lowercase__ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowercase__ = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) lowercase__ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: lowercase__ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print('''Pushing to the hub...''' ) lowercase__ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase_ , organization='''hustvl''' ) model.push_to_hub(lowerCamelCase_ , organization='''hustvl''' ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A__ : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
207
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a : int = datasets.load_iris() a : Union[str, Any] = np.array(data["data"]) a : Optional[Any] = np.array(data["target"]) a : List[Any] = data["target_names"] a , a , a , a : Dict = train_test_split(X, y) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' return np.linalg.norm(np.array(__magic_name__ ) - np.array(__magic_name__ ) ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=5 ): '''simple docstring''' UpperCAmelCase : int = zip(__magic_name__ , __magic_name__ ) # List of distances of all points from the point to be classified UpperCAmelCase : List[Any] = [] for data_point in data: UpperCAmelCase : List[str] = euclidean_distance(data_point[0] , __magic_name__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(__magic_name__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCAmelCase : List[str] = Counter(__magic_name__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
311
0
"""simple docstring""" import string def lowercase ( lowerCAmelCase__ : List[str] ) -> int: for key in range(len(string.ascii_uppercase ) ): __a = "" for symbol in message: if symbol in string.ascii_uppercase: __a = string.ascii_uppercase.find(lowerCAmelCase__ ) __a = num - key if num < 0: __a = num + len(string.ascii_uppercase ) __a = translated + string.ascii_uppercase[num] else: __a = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def lowercase ( ) -> List[str]: __a = input('''Encrypted message: ''' ) __a = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
311
0
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __lowerCAmelCase : Tuple =get_tests_dir("""fixtures""") class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = mock.Mock() lowercase = 500 lowercase = {} lowercase = HTTPError lowercase = {} # Download this model to make sure it's in the cache. lowercase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__lowerCAmelCase ) as mock_head: lowercase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self ): """simple docstring""" lowercase = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class _A ( unittest.TestCase ): @classmethod def A__ ( cls ): """simple docstring""" lowercase = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def A__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def A__ ( self ): """simple docstring""" lowercase = WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token ) lowercase = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCAmelCase , repo_id="""test-feature-extractor""" , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) lowercase = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) def A__ ( self ): """simple docstring""" lowercase = WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token ) lowercase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCAmelCase , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) lowercase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) def A__ ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() lowercase = CustomFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) lowercase = AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor' , trust_remote_code=__lowerCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
197
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowercase ( __magic_name__ , __magic_name__=10 ): '''simple docstring''' UpperCAmelCase : Tuple = [] for _ in range(__magic_name__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowercase ( __magic_name__ , __magic_name__=10 ): '''simple docstring''' UpperCAmelCase : List[str] = [] for step in range(__magic_name__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__magic_name__ , "schedule.bin" ) torch.save(scheduler.state_dict() , __magic_name__ ) UpperCAmelCase : Any = torch.load(__magic_name__ ) scheduler.load_state_dict(__magic_name__ ) return lrs @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' self.assertEqual(len(snake_case ) , len(snake_case ) ) for a, b in zip(snake_case , snake_case ): self.assertAlmostEqual(snake_case , snake_case , delta=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case ) UpperCAmelCase : Any = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase : Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase : List[str] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): UpperCAmelCase : List[Any] = criterion(snake_case , snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case ) UpperCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase : str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase : str = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case , weight_decay=0.0 , relative_step=snake_case , scale_parameter=snake_case , warmup_init=snake_case , ) for _ in range(1_0_0_0 ): UpperCAmelCase : str = criterion(snake_case , snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = nn.Linear(50 , 50 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ : List[Any] = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ : Optional[int] = 10 def A_ ( self , snake_case , snake_case , snake_case , snake_case=None ): '''simple docstring''' self.assertEqual(len(snake_case ) , len(snake_case ) ) for a, b in zip(snake_case , snake_case ): self.assertAlmostEqual(snake_case , snake_case , delta=snake_case , msg=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = {"num_warmup_steps": 2, "num_training_steps": 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) UpperCAmelCase : int = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): UpperCAmelCase , UpperCAmelCase : Any = data UpperCAmelCase : Tuple = scheduler_func(self.optimizer , **snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) UpperCAmelCase : List[str] = unwrap_schedule(snake_case , self.num_steps ) self.assertListAlmostEqual( snake_case , snake_case , tol=1e-2 , msg=f"failed for {scheduler_func} in normal scheduler" , ) UpperCAmelCase : Optional[Any] = scheduler_func(self.optimizer , **snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(snake_case ) # wrap to test picklability of the schedule UpperCAmelCase : Tuple = unwrap_and_save_reload_schedule(snake_case , self.num_steps ) self.assertListEqual(snake_case , snake_case , msg=f"failed for {scheduler_func} in save and reload" ) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = fn def __call__( self , *snake_case , **snake_case ): '''simple docstring''' return self.fn(*snake_case , **snake_case ) @classmethod def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[int] = list(map(self , scheduler.lr_lambdas ) )
311
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _A : def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=13 , __SCREAMING_SNAKE_CASE : Tuple=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Tuple=99 , __SCREAMING_SNAKE_CASE : List[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=5 , __SCREAMING_SNAKE_CASE : List[str]=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=37 , __SCREAMING_SNAKE_CASE : Tuple="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=50 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Dict=None , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = use_labels __a = scope def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __a = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self : List[str]): '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Any): '''simple docstring''' ( __a ) = self.prepare_config_and_inputs() __a = True __a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' __a = BertGenerationEncoder(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' __a = True __a = BertGenerationEncoder(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' __a = True __a = True __a = BertGenerationDecoder(config=__SCREAMING_SNAKE_CASE).to(__SCREAMING_SNAKE_CASE).eval() # first forward pass __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , ) __a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size) __a = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1) __a = torch.cat([input_mask, next_mask] , dim=-1) __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )["hidden_states"][0] __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )["hidden_states"][0] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1]).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , *__SCREAMING_SNAKE_CASE : Optional[int] , ): '''simple docstring''' __a = BertGenerationDecoder(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.prepare_config_and_inputs() __a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _A ( lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ): UpperCamelCase__ : Optional[Any] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () UpperCamelCase__ : Union[str, Any] = (BertGenerationDecoder,) if is_torch_available() else () UpperCamelCase__ : List[str] = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = BertGenerationEncoderTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() __a = "bert" self.model_tester.create_and_check_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' ( __a ) = self.model_tester.prepare_config_and_inputs_for_decoder() __a = None self.model_tester.create_and_check_model_as_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Any): '''simple docstring''' __a = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''') self.assertIsNotNone(__SCREAMING_SNAKE_CASE) @require_torch class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int): '''simple docstring''' __a = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''') __a = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]]) with torch.no_grad(): __a = model(__SCREAMING_SNAKE_CASE)[0] __a = torch.Size([1, 8, 1_024]) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE) __a = torch.tensor( [[[0.17_75, 0.00_83, -0.03_21], [1.60_02, 0.12_87, 0.39_12], [2.14_73, 0.57_91, 0.60_66]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4)) @require_torch class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''') __a = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]]) with torch.no_grad(): __a = model(__SCREAMING_SNAKE_CASE)[0] __a = torch.Size([1, 8, 50_358]) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE) __a = torch.tensor( [[[-0.57_88, -2.59_94, -3.70_54], [0.04_38, 4.79_97, 1.87_95], [1.58_62, 6.64_09, 4.46_38]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4))
49
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig a : Optional[Any] = logging.get_logger(__name__) a : Tuple = "T5Config" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = jnp.zeros_like(__magic_name__ ) UpperCAmelCase : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCAmelCase : str = shifted_input_ids.at[:, 0].set(__magic_name__ ) UpperCAmelCase : Any = jnp.where(shifted_input_ids == -100 , __magic_name__ , __magic_name__ ) return shifted_input_ids class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "mt5" SCREAMING_SNAKE_CASE__ : Dict = MTaConfig class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "mt5" SCREAMING_SNAKE_CASE__ : str = MTaConfig class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = "mt5" SCREAMING_SNAKE_CASE__ : str = MTaConfig
311
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) snake_case_ = "bert-base-cased" snake_case_ = "fp16" snake_case_ = "bf16" snake_case_ = [FPaa, BFaa] @require_fsdp @require_cuda class SCREAMING_SNAKE_CASE__ (lowercase__ ): def snake_case_ ( self): super().setUp() lowercase__ : Optional[int] = dict( ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , ) def snake_case_ ( self): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(a): lowercase__ : List[Any] = self.dist_env.copy() lowercase__ : Any = f"""{i + 1}""" lowercase__ : List[str] = strategy with mockenv_context(**a): lowercase__ : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1)) def snake_case_ ( self): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(a): lowercase__ : Dict = self.dist_env.copy() lowercase__ : Tuple = prefetch_policy with mockenv_context(**a): lowercase__ : int = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1)) def snake_case_ ( self): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(a): lowercase__ : Optional[int] = self.dist_env.copy() lowercase__ : Union[str, Any] = state_dict_type with mockenv_context(**a): lowercase__ : Optional[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def snake_case_ ( self): lowercase__ : Union[str, Any] = AutoModel.from_pretrained(a) for policy in FSDP_AUTO_WRAP_POLICY: lowercase__ : Union[str, Any] = self.dist_env.copy() lowercase__ : Dict = policy if policy == "TRANSFORMER_BASED_WRAP": lowercase__ : List[Any] = "BertLayer" elif policy == "SIZE_BASED_WRAP": lowercase__ : int = "2000" with mockenv_context(**a): lowercase__ : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(a) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) lowercase__ : List[Any] = self.dist_env.copy() lowercase__ : Union[str, Any] = "TRANSFORMER_BASED_WRAP" lowercase__ : Optional[Any] = "T5Layer" with mockenv_context(**a): lowercase__ : str = FullyShardedDataParallelPlugin() with self.assertRaises(a) as cm: fsdp_plugin.set_auto_wrap_policy(a) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception)) lowercase__ : Optional[int] = self.dist_env.copy() lowercase__ : str = "SIZE_BASED_WRAP" lowercase__ : List[str] = "0" with mockenv_context(**a): lowercase__ : Any = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(a) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def snake_case_ ( self): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowercase__ : Tuple = self.dist_env.copy() lowercase__ : Tuple = mp_dtype with mockenv_context(**a): lowercase__ : Any = Accelerator() if mp_dtype == "fp16": lowercase__ : int = torch.floataa elif mp_dtype == "bf16": lowercase__ : Optional[Any] = torch.bfloataa lowercase__ : Union[str, Any] = MixedPrecision(param_dtype=a , reduce_dtype=a , buffer_dtype=a) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , a) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , a)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(a) def snake_case_ ( self): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowercase__ : Optional[Any] = self.dist_env.copy() lowercase__ : Union[str, Any] = str(a).lower() with mockenv_context(**a): lowercase__ : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=a)) @require_fsdp @require_multi_gpu @slow class SCREAMING_SNAKE_CASE__ (lowercase__ ): def snake_case_ ( self): super().setUp() lowercase__ : Any = 0.82 lowercase__ : Dict = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] lowercase__ : Union[str, Any] = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowercase__ : str = 160 lowercase__ : List[Any] = 160 lowercase__ : Optional[int] = inspect.getfile(accelerate.test_utils) lowercase__ : List[Any] = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'external_deps']) def snake_case_ ( self): lowercase__ : List[str] = os.path.join(self.test_scripts_folder , 'test_performance.py') lowercase__ : Dict = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: lowercase__ : Optional[Any] = cmd.copy() for i, strategy in enumerate(a): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""") break if "fp32" in config: cmd_config.append('--mixed_precision=no') else: cmd_config.append('--mixed_precision=fp16') if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer') elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000') cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(a , env=os.environ.copy()) def snake_case_ ( self): lowercase__ : int = os.path.join(self.test_scripts_folder , 'test_checkpointing.py') lowercase__ : Optional[int] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(a): lowercase__ : Tuple = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""") if strategy != "FULL_SHARD": continue lowercase__ : Union[str, Any] = len(a) for state_dict_type in FSDP_STATE_DICT_TYPE: lowercase__ : Optional[Any] = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""") cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", '--partial_train_epoch=1', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(a , env=os.environ.copy()) lowercase__ : Union[str, Any] = cmd_config[:-1] lowercase__ : Optional[int] = os.path.join(self.tmpdir , 'epoch_0') cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(a , env=os.environ.copy()) def snake_case_ ( self): lowercase__ : Tuple = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py') lowercase__ : Union[str, Any] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowercase__ : Union[str, Any] = cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16']) else: cmd_config.extend(['--mixed_precision=no']) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp']) for i, strategy in enumerate(a): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""") break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer') elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000') cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(a , env=os.environ.copy())
214
'''simple docstring''' from jiwer import compute_measures import datasets a : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" a : str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" a : Union[str, Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def A_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def A_ ( self , snake_case=None , snake_case=None , snake_case=False ): '''simple docstring''' if concatenate_texts: return compute_measures(snake_case , snake_case )["wer"] else: UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[Any] = 0 for prediction, reference in zip(snake_case , snake_case ): UpperCAmelCase : Tuple = compute_measures(snake_case , snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
311
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class snake_case__ (lowercase__ ): """simple docstring""" def __init__( self , *__lowercase , __lowercase=None , __lowercase=None , **__lowercase ) -> Tuple: """simple docstring""" super().__init__(*__lowercase , **__lowercase ) a__ : Union[str, Any] = eval_examples a__ : int = post_process_function def SCREAMING_SNAKE_CASE__( self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase = "eval" ) -> List[str]: """simple docstring""" a__ : str = self.eval_dataset if eval_dataset is None else eval_dataset a__ : Optional[int] = self.get_eval_dataloader(__lowercase ) a__ : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a__ : Optional[Any] = self.compute_metrics a__ : Dict = None a__ : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a__ : List[str] = time.time() try: a__ : List[str] = eval_loop( __lowercase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowercase , metric_key_prefix=__lowercase , ) finally: a__ : str = compute_metrics a__ : Optional[int] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __lowercase , __lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a__ : int = self.post_process_function(__lowercase , __lowercase , output.predictions ) a__ : Optional[int] = self.compute_metrics(__lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a__ : Union[str, Any] = metrics.pop(__lowercase ) metrics.update(output.metrics ) else: a__ : Tuple = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a__ : str = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowercase ) return metrics def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase=None , __lowercase = "test" ) -> Union[str, Any]: """simple docstring""" a__ : Optional[int] = self.get_test_dataloader(__lowercase ) # Temporarily disable metric computation, we will do it in the loop here. a__ : Optional[int] = self.compute_metrics a__ : Union[str, Any] = None a__ : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a__ : Optional[Any] = time.time() try: a__ : Dict = eval_loop( __lowercase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowercase , metric_key_prefix=__lowercase , ) finally: a__ : Tuple = compute_metrics a__ : Dict = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __lowercase , __lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a__ : str = self.post_process_function(__lowercase , __lowercase , output.predictions , """predict""" ) a__ : Dict = self.compute_metrics(__lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a__ : List[Any] = metrics.pop(__lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowercase )
170
'''simple docstring''' from functools import lru_cache def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = 2 UpperCAmelCase : str = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__magic_name__ ) if n > 1: factors.add(__magic_name__ ) return factors @lru_cache def lowercase ( __magic_name__ ): '''simple docstring''' return len(unique_prime_factors(__magic_name__ ) ) def lowercase ( __magic_name__ ): '''simple docstring''' return len(set(__magic_name__ ) ) in (0, 1) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = 2 while True: # Increment each value of a generated range UpperCAmelCase : Any = [base + i for i in range(__magic_name__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCAmelCase : Dict = [upf_len(__magic_name__ ) for x in group] checker.append(__magic_name__ ) # If all numbers in the list are equal, return the group variable. if equality(__magic_name__ ): return group # Increment our base variable by 1 base += 1 def lowercase ( __magic_name__ = 4 ): '''simple docstring''' UpperCAmelCase : int = run(__magic_name__ ) return results[0] if len(__magic_name__ ) else None if __name__ == "__main__": print(solution())
311
0
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> int: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""sentencepiece"""] ) class __lowercase (metaclass=lowercase__ ): """simple docstring""" _snake_case = ["sentencepiece"] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""sentencepiece"""] )
124
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
311
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self ) -> Union[str, Any]: '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self ) -> Tuple: '''simple docstring''' debug_launcher(test_ops.main )
205
'''simple docstring''' # Lint as: python3 import itertools import os import re a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])") a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])") a : str = re.compile(R"(?<!_)_(?!_)") a : List[Any] = re.compile(R"(_{2,})") a : List[Any] = R"^\w+(\.\w+)*$" a : Dict = R"<>:/\|?*" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) return name.lower() def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ ) UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" ) def lowercase ( __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(__magic_name__ ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , __magic_name__ ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(__magic_name__ )}-{split}" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) if filetype_suffix: prefix += F".{filetype_suffix}" UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) return F"{filepath}*" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) if shard_lengths: UpperCAmelCase : Tuple = len(__magic_name__ ) UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )] if filetype_suffix: UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: UpperCAmelCase : int = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
311
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) _A = logging.getLogger(__name__) _A = {"facebook/bart-base": BartForConditionalGeneration} _A = {"facebook/bart-base": BartTokenizer} def lowercase_ ( ) -> Optional[int]: lowerCAmelCase__ : Dict = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=__UpperCAmelCase , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=__UpperCAmelCase , default=__UpperCAmelCase , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=__UpperCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__UpperCAmelCase , ) parser.add_argument( """--config_name""" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=__UpperCAmelCase , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="""Where to store the final ONNX file.""" ) lowerCAmelCase__ : str = parser.parse_args() return args def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase="cpu" ) -> Optional[Any]: lowerCAmelCase__ : str = model_dict[model_name].from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = tokenizer_dict[model_name].from_pretrained(__UpperCAmelCase ) if model_name in ["facebook/bart-base"]: lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Optional[int] = 0 return huggingface_model, tokenizer def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: model.eval() lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Dict = torch.jit.script(BARTBeamSearchGenerator(__UpperCAmelCase ) ) with torch.no_grad(): lowerCAmelCase__ : Any = "My friends are cool but they eat too many carbs." lowerCAmelCase__ : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device ) lowerCAmelCase__ : int = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=__UpperCAmelCase , max_length=__UpperCAmelCase , early_stopping=__UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __UpperCAmelCase , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , __UpperCAmelCase , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=__UpperCAmelCase , ) logger.info("""Model exported to {}""".format(__UpperCAmelCase ) ) lowerCAmelCase__ : Any = remove_dup_initializers(os.path.abspath(__UpperCAmelCase ) ) logger.info("""Deduplicated and optimized model written to {}""".format(__UpperCAmelCase ) ) lowerCAmelCase__ : List[str] = onnxruntime.InferenceSession(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = ort_sess.run( __UpperCAmelCase , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(__UpperCAmelCase ), """max_length""": np.array(__UpperCAmelCase ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def lowercase_ ( ) -> Dict: lowerCAmelCase__ : Optional[Any] = parse_args() lowerCAmelCase__ : Any = 5 lowerCAmelCase__ : Optional[Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowerCAmelCase__ : str = torch.device(args.device ) lowerCAmelCase__ : Tuple = load_model_tokenizer(args.model_name_or_path , __UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(__UpperCAmelCase ) if args.max_length: lowerCAmelCase__ : List[Any] = args.max_length if args.num_beams: lowerCAmelCase__ : Dict = args.num_beams if args.output_file_path: lowerCAmelCase__ : int = args.output_file_path else: lowerCAmelCase__ : int = "BART.onnx" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": main()
242
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) a : Optional[int] = _symbol_database.Default() a : Any = _descriptor_pool.Default().AddSerializedFile( B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) a : Tuple = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: a : str = None a : Optional[Any] = B"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" a : str = 45 a : Any = 15_81 a : List[Any] = 15_17 a : Union[str, Any] = 15_70 a : Optional[Any] = 15_84 a : List[str] = 17_93 a : Optional[Any] = 17_95 a : Tuple = 19_16 a : Optional[Any] = 18_64 a : int = 19_05 a : Optional[Any] = 19_19 a : Union[str, Any] = 24_29 a : List[Any] = 22_08 a : Dict = 24_18 a : Optional[int] = 23_23 a : str = 24_07 # @@protoc_insertion_point(module_scope)
311
0
"""simple docstring""" from __future__ import annotations def A__ ( UpperCamelCase ): A = 2 A = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCamelCase ) if n > 1: factors.append(UpperCamelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
292
'''simple docstring''' import argparse import copy def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = {} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase : List[Any] = [] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase : Any = [] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' with open(__magic_name__ ) as f: UpperCAmelCase : List[str] = f.read(1 ) UpperCAmelCase : List[Any] = start_node UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Any = start_node UpperCAmelCase : Optional[Any] = 0 while visiting not in first_solution: UpperCAmelCase : Optional[Any] = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: UpperCAmelCase : Tuple = k[1] UpperCAmelCase : Dict = k[0] first_solution.append(__magic_name__ ) UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ ) UpperCAmelCase : str = best_node first_solution.append(__magic_name__ ) UpperCAmelCase : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for n in solution[1:-1]: UpperCAmelCase : Any = solution.index(__magic_name__ ) for kn in solution[1:-1]: UpperCAmelCase : Dict = solution.index(__magic_name__ ) if n == kn: continue UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ ) UpperCAmelCase : Optional[int] = kn UpperCAmelCase : List[str] = n UpperCAmelCase : str = 0 for k in _tmp[:-1]: UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase : List[Any] = distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = 1 UpperCAmelCase : List[str] = first_solution UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = distance_of_first_solution UpperCAmelCase : Union[str, Any] = solution while count <= iters: UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = 0 UpperCAmelCase : List[str] = neighborhood[index_of_best_solution] UpperCAmelCase : Dict = len(__magic_name__ ) - 1 UpperCAmelCase : Dict = False while not found: UpperCAmelCase : List[Any] = 0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: UpperCAmelCase : int = best_solution[i] UpperCAmelCase : Optional[int] = solution[i] break UpperCAmelCase : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase : List[str] = True UpperCAmelCase : List[Any] = best_solution[:-1] UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase : Union[str, Any] = cost UpperCAmelCase : Tuple = solution else: UpperCAmelCase : Optional[Any] = index_of_best_solution + 1 UpperCAmelCase : str = neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) UpperCAmelCase : int = count + 1 return best_solution_ever, best_cost def lowercase ( __magic_name__=None ): '''simple docstring''' UpperCAmelCase : Dict = generate_neighbours(args.File ) UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution( args.File , __magic_name__ ) UpperCAmelCase , UpperCAmelCase : Any = tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
311
0
import math def __lowerCamelCase ( lowerCamelCase__ : Dict ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCamelCase ( lowerCamelCase__ : str = 10001 ): '''simple docstring''' try: lowerCamelCase = int(lowerCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) lowerCamelCase = [] lowerCamelCase = 2 while len(lowerCamelCase__ ) < nth: if is_prime(lowerCamelCase__ ): primes.append(lowerCamelCase__ ) num += 1 else: num += 1 return primes[len(lowerCamelCase__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
252
'''simple docstring''' from collections.abc import Generator from math import sin def lowercase ( __magic_name__ ): '''simple docstring''' if len(__magic_name__ ) != 32: raise ValueError("Input must be of length 32" ) UpperCAmelCase : Union[str, Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowercase ( __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase : Dict = format(__magic_name__ , "08x" )[-8:] UpperCAmelCase : List[str] = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : int = b"" for char in message: bit_string += format(__magic_name__ , "08b" ).encode("utf-8" ) UpperCAmelCase : List[Any] = format(len(__magic_name__ ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__magic_name__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowercase ( __magic_name__ ): '''simple docstring''' if len(__magic_name__ ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__magic_name__ ) , 512 ): UpperCAmelCase : Union[str, Any] = bit_string[pos : pos + 512] UpperCAmelCase : Tuple = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowercase ( __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase : Any = format(__magic_name__ , "032b" ) UpperCAmelCase : int = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__magic_name__ , 2 ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' return (a + b) % 2**32 def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = preprocess(__magic_name__ ) UpperCAmelCase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCAmelCase : List[str] = 0X67452301 UpperCAmelCase : Tuple = 0XEFCDAB89 UpperCAmelCase : List[Any] = 0X98BADCFE UpperCAmelCase : List[str] = 0X10325476 UpperCAmelCase : Dict = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__magic_name__ ): UpperCAmelCase : Optional[Any] = aa UpperCAmelCase : List[Any] = ba UpperCAmelCase : Optional[Any] = ca UpperCAmelCase : Any = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCAmelCase : Tuple = d ^ (b & (c ^ d)) UpperCAmelCase : List[str] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCAmelCase : int = c ^ (d & (b ^ c)) UpperCAmelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: UpperCAmelCase : Any = b ^ c ^ d UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16 else: UpperCAmelCase : Dict = c ^ (b | not_aa(__magic_name__ )) UpperCAmelCase : Dict = (7 * i) % 16 UpperCAmelCase : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCAmelCase : List[Any] = d UpperCAmelCase : Any = c UpperCAmelCase : Dict = b UpperCAmelCase : Union[str, Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCAmelCase : List[str] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : List[Any] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : Optional[int] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : List[str] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
311
0
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def a ( ): '''simple docstring''' lowercase__ = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) lowercase__ = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go lowercase__ = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run lowercase__ = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
207
'''simple docstring''' a : List[str] = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
311
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowercase_ = "src/transformers" lowercase_ = "docs/source/en/tasks" def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Dict: with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a = f.readlines() # Find the start prompt. __a = 0 while not lines[start_index].startswith(lowerCAmelCase__ ): start_index += 1 start_index += 1 __a = start_index while not lines[end_index].startswith(lowerCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowercase_ = direct_transformers_import(TRANSFORMERS_PATH) lowercase_ = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowercase_ = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> List[Any]: __a = TASK_GUIDE_TO_MODELS[task_guide] __a = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowerCAmelCase__ , set() ) __a = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any]=False ) -> Union[str, Any]: __a = _find_text_in_file( filename=os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) __a = get_model_list_for_task(lowerCAmelCase__ ) if current_list != new_list: if overwrite: with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ''' to fix this.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowercase_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
45
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase : Tuple = 192 UpperCAmelCase : str = 768 UpperCAmelCase : List[Any] = 12 UpperCAmelCase : List[Any] = 3 UpperCAmelCase : List[Any] = [800, 1333] UpperCAmelCase : List[str] = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Union[str, Any] = 330 UpperCAmelCase : Union[str, Any] = 14 UpperCAmelCase : Any = 6 UpperCAmelCase : int = 1320 elif "yolos_s" in yolos_name: UpperCAmelCase : Union[str, Any] = 384 UpperCAmelCase : Dict = 1536 UpperCAmelCase : str = 12 UpperCAmelCase : List[str] = 6 elif "yolos_b" in yolos_name: UpperCAmelCase : int = [800, 1344] UpperCAmelCase : Optional[int] = 91 UpperCAmelCase : int = "huggingface/label-files" UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json" UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def lowercase ( __magic_name__ ): '''simple docstring''' if "backbone" in name: UpperCAmelCase : int = name.replace("backbone" , "vit" ) if "cls_token" in name: UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase : Any = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: UpperCAmelCase : str = key.split("." ) UpperCAmelCase : List[Any] = int(key_split[2] ) UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase : Optional[int] = val[:dim, :] UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase : Any = val[-dim:, :] else: UpperCAmelCase : Tuple = val[:dim] UpperCAmelCase : List[str] = val[dim : dim * 2] UpperCAmelCase : Any = val[-dim:] else: UpperCAmelCase : Union[str, Any] = val return orig_state_dict def lowercase ( ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ ) # load original state_dict UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"] # load 🤗 model UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ ) model.eval() UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512 UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ ) UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase : List[str] = model(**__magic_name__ ) UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None if yolos_name == "yolos_ti": UpperCAmelCase : str = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) UpperCAmelCase : Tuple = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase : Union[str, Any] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) UpperCAmelCase : List[str] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase : List[str] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) UpperCAmelCase : Dict = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Dict = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) UpperCAmelCase : List[Any] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": UpperCAmelCase : str = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: UpperCAmelCase : int = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) UpperCAmelCase : Tuple = model_mapping[yolos_name] image_processor.push_to_hub(__magic_name__ , organization="hustvl" ) model.push_to_hub(__magic_name__ , organization="hustvl" ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
311
0
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class _A ( lowercase__ ): def A__ ( self ): """simple docstring""" lowercase = tempfile.mkdtemp() lowercase = 8 # DPR tok lowercase = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) lowercase = os.path.join(__lowerCAmelCase , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok lowercase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase = {"unk_token": "<unk>"} lowercase = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) lowercase = os.path.join(__lowerCAmelCase , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(__lowerCAmelCase , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCAmelCase ) ) def A__ ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def A__ ( self ): """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def A__ ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def A__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A__ ( self ): """simple docstring""" lowercase = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def A__ ( self ): """simple docstring""" lowercase = self.get_dummy_dataset() lowercase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: lowercase = dataset lowercase = RagRetriever( __lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.get_dummy_dataset() lowercase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""custom""" , ) if from_disk: lowercase = os.path.join(self.tmpdirname , """dataset""" ) lowercase = os.path.join(self.tmpdirname , """index.faiss""" ) dataset.get_index("""embeddings""" ).save(os.path.join(self.tmpdirname , """index.faiss""" ) ) dataset.drop_index("""embeddings""" ) dataset.save_to_disk(os.path.join(self.tmpdirname , """dataset""" ) ) del dataset lowercase = RagRetriever( __lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowercase = RagRetriever( __lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __lowerCAmelCase ) , ) return retriever def A__ ( self ): """simple docstring""" lowercase = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase = os.path.join(self.tmpdirname , """hf_bert_base.hnswSQ8_correct_phi_128.c_index""" ) dataset.save_faiss_index("""embeddings""" , index_file_name + """.index.dpr""" ) pickle.dump(dataset["""id"""] , open(index_file_name + """.index_meta.dpr""" , """wb""" ) ) lowercase = os.path.join(self.tmpdirname , """psgs_w100.tsv.pkl""" ) lowercase = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(__lowerCAmelCase , open(__lowerCAmelCase , """wb""" ) ) lowercase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""legacy""" , index_path=self.tmpdirname , ) lowercase = RagRetriever( __lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = self.get_dummy_canonical_hf_index_retriever() lowercase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase = retriever.retrieve(__lowerCAmelCase , n_docs=__lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , __lowerCAmelCase ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A__ ( self ): """simple docstring""" lowercase = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: lowercase = self.get_dummy_dataset() retriever.save_pretrained(__lowerCAmelCase ) lowercase = RagRetriever.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) lowercase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase = retriever.retrieve(__lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase ) lowercase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase = retriever.retrieve(__lowerCAmelCase , n_docs=__lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , __lowerCAmelCase ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A__ ( self ): """simple docstring""" lowercase = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCAmelCase ) lowercase = RagRetriever.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) lowercase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase = retriever.retrieve(__lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase ) lowercase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase = retriever.retrieve(__lowerCAmelCase , n_docs=__lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , __lowerCAmelCase ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A__ ( self ): """simple docstring""" lowercase = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCAmelCase ) lowercase = RagRetriever.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) lowercase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase = retriever.retrieve(__lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = self.get_dummy_legacy_index_retriever() lowercase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase = retriever.retrieve(__lowerCAmelCase , n_docs=__lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""text"""] ) , __lowerCAmelCase ) self.assertEqual(doc_dicts[0]["""text"""][0] , """bar""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""text"""][0] , """foo""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A__ ( self ): """simple docstring""" lowercase = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCAmelCase ) lowercase = RagRetriever.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) lowercase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase = retriever.retrieve(__lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def A__ ( self ): """simple docstring""" import torch lowercase = 1 lowercase = self.get_dummy_canonical_hf_index_retriever() lowercase = [[5, 7], [10, 11]] lowercase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase = retriever(__lowerCAmelCase , __lowerCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCAmelCase ) lowercase = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , np.ndarray ) lowercase = retriever( __lowerCAmelCase , __lowerCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCAmelCase , return_tensors="""pt""" , ) lowercase = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def A__ ( self ): """simple docstring""" lowercase = self.get_dpr_ctx_encoder_tokenizer() lowercase = 1 lowercase = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase ) retriever.set_ctx_encoder_tokenizer(__lowerCAmelCase ) lowercase = [[5, 7], [10, 11]] lowercase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase = retriever(__lowerCAmelCase , __lowerCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCAmelCase ) self.assertEqual( len(__lowerCAmelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("""tokenized_doc_ids""", """tokenized_doc_attention_mask""") ) , __lowerCAmelCase ) # check for doc token related keys in dictionary.
197
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) a : Tuple = logging.getLogger(__name__) def lowercase ( ): '''simple docstring''' UpperCAmelCase : Any = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=__magic_name__ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=__magic_name__ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=__magic_name__ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=__magic_name__ , default="data/dump" , help="The dump file prefix." ) UpperCAmelCase : List[Any] = parser.parse_args() logger.info(F"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Tuple = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Optional[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"Loading text from {args.file_path}" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: UpperCAmelCase : str = fp.readlines() logger.info("Start encoding" ) logger.info(F"{len(__magic_name__ )} examples to process." ) UpperCAmelCase : int = [] UpperCAmelCase : int = 0 UpperCAmelCase : Union[str, Any] = 1_0000 UpperCAmelCase : Union[str, Any] = time.time() for text in data: UpperCAmelCase : Dict = F"{bos} {text.strip()} {sep}" UpperCAmelCase : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) rslt.append(__magic_name__ ) iter += 1 if iter % interval == 0: UpperCAmelCase : Dict = time.time() logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) UpperCAmelCase : Any = time.time() logger.info("Finished binarization" ) logger.info(F"{len(__magic_name__ )} examples processed." ) UpperCAmelCase : str = F"{args.dump_file}.{args.tokenizer_name}.pickle" UpperCAmelCase : List[str] = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase : int = [np.uintaa(__magic_name__ ) for d in rslt] else: UpperCAmelCase : int = [np.intaa(__magic_name__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"Dump to {dp_file}" ) with open(__magic_name__ , "wb" ) as handle: pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
311
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __snake_case :List[Any] = logging.get_logger(__name__) __snake_case :Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __snake_case :List[Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } __snake_case :List[str] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } __snake_case :Dict = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class _A ( lowercase__ ): UpperCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : int = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Dict = SqueezeBertTokenizer def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : str="[UNK]" , __SCREAMING_SNAKE_CASE : Any="[SEP]" , __SCREAMING_SNAKE_CASE : Optional[int]="[PAD]" , __SCREAMING_SNAKE_CASE : Union[str, Any]="[CLS]" , __SCREAMING_SNAKE_CASE : Dict="[MASK]" , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : List[Any] , ): '''simple docstring''' super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE) != do_lower_case or normalizer_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __SCREAMING_SNAKE_CASE) != tokenize_chinese_chars ): __a = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''')) __a = do_lower_case __a = strip_accents __a = tokenize_chinese_chars __a = normalizer_class(**__SCREAMING_SNAKE_CASE) __a = do_lower_case def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple=None): '''simple docstring''' __a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int = None): '''simple docstring''' __a = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE) return tuple(__SCREAMING_SNAKE_CASE)
49
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a : Tuple = ["gpt2"] a : Dict = "gpt2" if is_tf_available(): class UpperCamelCase__ ( tf.Module ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = tokenizer UpperCAmelCase : List[str] = AutoConfig.from_pretrained(snake_case ) UpperCAmelCase : int = TFGPTaLMHeadModel.from_config(snake_case ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case ) UpperCAmelCase : Optional[int] = tokenized["input_ids"].to_tensor() UpperCAmelCase : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase : List[Any] = self.model(input_ids=snake_case , attention_mask=snake_case )["logits"] return outputs @require_tf @require_keras_nlp class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' super().setUp() UpperCAmelCase : Any = [GPTaTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase : Optional[Any] = [TFGPTaTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase : Tuple = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCAmelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def A_ ( self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase : List[Any] = tokenizer([test_inputs] , return_tensors="tf" ) UpperCAmelCase : Any = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase : Dict = python_outputs[key].numpy() UpperCAmelCase : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(snake_case , tf.intaa ) == tf_outputs_values ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Optional[Any] = tf.function(snake_case ) for test_inputs in self.test_sentences: UpperCAmelCase : List[str] = tf.constant(snake_case ) UpperCAmelCase : Dict = compiled_tokenizer(snake_case ) UpperCAmelCase : Union[str, Any] = tf_tokenizer(snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : int = ModelToSave(tokenizer=snake_case ) UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : str = model.serving(snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase : Optional[int] = Path(snake_case ) / "saved.model" tf.saved_model.save(snake_case , snake_case , signatures={"serving_default": model.serving} ) UpperCAmelCase : int = tf.saved_model.load(snake_case ) UpperCAmelCase : str = loaded_model.signatures["serving_default"](snake_case )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case ) # Build model with some sample inputs UpperCAmelCase : Union[str, Any] = tf_tokenizer.get_config() UpperCAmelCase : str = TFGPTaTokenizer.from_config(snake_case ) UpperCAmelCase : Tuple = model_from_config(snake_case ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase : List[str] = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case , max_length=snake_case ) UpperCAmelCase : Union[str, Any] = out["input_ids"].numpy().shape[1] assert out_length == max_length
311
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class SCREAMING_SNAKE_CASE__ (lowercase__ ): __lowerCamelCase : List[Any] = "realm" def __init__( self , a=3_0522 , a=768 , a=128 , a=12 , a=12 , a=8 , a=3072 , a="gelu_new" , a=0.1 , a=0.1 , a=512 , a=2 , a=0.02 , a=1e-12 , a=256 , a=10 , a=1e-3 , a=5 , a=320 , a=1335_3718 , a=5000 , a=1 , a=0 , a=2 , **a , ): super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) # Common config lowercase__ : str = vocab_size lowercase__ : Dict = max_position_embeddings lowercase__ : Union[str, Any] = hidden_size lowercase__ : List[Any] = retriever_proj_size lowercase__ : str = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = num_candidates lowercase__ : List[Any] = intermediate_size lowercase__ : Union[str, Any] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Dict = initializer_range lowercase__ : List[Any] = type_vocab_size lowercase__ : Any = layer_norm_eps # Reader config lowercase__ : Any = span_hidden_size lowercase__ : List[Any] = max_span_width lowercase__ : Any = reader_layer_norm_eps lowercase__ : Union[str, Any] = reader_beam_size lowercase__ : List[Any] = reader_seq_len # Retrieval config lowercase__ : Union[str, Any] = num_block_records lowercase__ : Any = searcher_beam_size
214
'''simple docstring''' import argparse from collections import defaultdict import yaml a : str = "docs/source/en/_toctree.yml" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = defaultdict(__magic_name__ ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] UpperCAmelCase : Dict = [] for duplicate_key in duplicates: UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__magic_name__ ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() ) def lowercase ( __magic_name__=False ): '''simple docstring''' with open(__magic_name__ , encoding="utf-8" ) as f: UpperCAmelCase : Any = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"] # Then to the model doc UpperCAmelCase : Any = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase : str = api_doc[model_idx]["sections"] UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section] UpperCAmelCase : Optional[int] = False for idx, modality_doc in modalities_docs: UpperCAmelCase : int = modality_doc["sections"] UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ ) if old_modality_doc != new_modality_doc: UpperCAmelCase : int = True if overwrite: UpperCAmelCase : Dict = new_modality_doc if diff: if overwrite: UpperCAmelCase : Any = model_doc UpperCAmelCase : Any = api_doc with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
311
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : str = inspect.getfile(accelerate.test_utils ) a__ : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) a__ : Dict = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Dict = F'''\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '''.split() a__ : str = [sys.executable] + distributed_args execute_subprocess_async(__lowercase , env=os.environ.copy() )
170
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase ( __magic_name__ ): '''simple docstring''' for param in module.parameters(): UpperCAmelCase : Any = False def lowercase ( ): '''simple docstring''' UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = plt.imshow(__magic_name__ ) fig.axes.get_xaxis().set_visible(__magic_name__ ) fig.axes.get_yaxis().set_visible(__magic_name__ ) plt.show() def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = datetime.now() UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
311
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : str = len(lowercase ) # We need to create solution object to save path. snake_case : Tuple = [[0 for _ in range(lowercase )] for _ in range(lowercase )] snake_case : List[str] = run_maze(lowercase ,0 ,0 ,lowercase ) if solved: print("""\n""".join(str(lowercase ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Optional[int]: snake_case : str = len(lowercase ) # Final check point. if i == j == (size - 1): snake_case : int = 1 return True snake_case : str = (not i < 0) and (not j < 0) # Check lower bounds snake_case : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case : Tuple = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case : int = 1 # check for directions if ( run_maze(lowercase ,i + 1 ,lowercase ,lowercase ) or run_maze(lowercase ,lowercase ,j + 1 ,lowercase ) or run_maze(lowercase ,i - 1 ,lowercase ,lowercase ) or run_maze(lowercase ,lowercase ,j - 1 ,lowercase ) ): return True snake_case : int = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
124
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) a : str = getLogger(__name__) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 8 , __magic_name__ = 1024 , __magic_name__="val" , __magic_name__=None , __magic_name__=False , __magic_name__="summarization" , __magic_name__=None , __magic_name__=1 , __magic_name__ = None , __magic_name__="" , **__magic_name__ , ): '''simple docstring''' UpperCAmelCase : List[Any] = str(__magic_name__ ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=__magic_name__ ) UpperCAmelCase : List[str] = Path(__magic_name__ ) UpperCAmelCase : Dict = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(__magic_name__ ) UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).cuda() if fpaa: UpperCAmelCase : int = model.half() # determine if we need to increase num_beams use_task_specific_params(__magic_name__ , __magic_name__ ) # update config with task specific params UpperCAmelCase : Dict = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase : Optional[Any] = num_return_sequences UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(__magic_name__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase : Any = tokenizer.model_max_length if prefix is None: UpperCAmelCase : Tuple = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase : Dict = SeqaSeqDataset( __magic_name__ , __magic_name__ , __magic_name__ , max_target_length=1024 , type_path=__magic_name__ , n_obs=__magic_name__ , prefix=__magic_name__ , **__magic_name__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase : int = ds.make_sortish_sampler(__magic_name__ , distributed=__magic_name__ , add_extra_examples=__magic_name__ , shuffle=__magic_name__ ) UpperCAmelCase : List[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn ) UpperCAmelCase : Any = [] for batch in tqdm(__magic_name__ ): UpperCAmelCase : List[Any] = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , **__magic_name__ , ) UpperCAmelCase : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) UpperCAmelCase : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase : List[Any] = chunks(__magic_name__ , __magic_name__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__magic_name__ ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(__magic_name__ , __magic_name__ ) return results, sampler.num_replicas def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=__magic_name__ , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=__magic_name__ , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=__magic_name__ , default=__magic_name__ ) parser.add_argument( "--type_path" , type=__magic_name__ , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=__magic_name__ , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=__magic_name__ , default=8 , required=__magic_name__ , help="batch size" ) parser.add_argument( "--local_rank" , type=__magic_name__ , default=-1 , required=__magic_name__ , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=__magic_name__ , default=1 , required=__magic_name__ , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=__magic_name__ , default=600 , required=__magic_name__ , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ ) parser.add_argument("--tgt_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ ) parser.add_argument( "--prefix" , type=__magic_name__ , required=__magic_name__ , default=__magic_name__ , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase : Union[str, Any] = time.time() UpperCAmelCase , UpperCAmelCase : Dict = parser.parse_known_args() UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(__magic_name__ ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase : Union[str, Any] = Path(args.save_dir + "_tmp" ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) # this handles locking. UpperCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase : Optional[Any] = {} if args.src_lang is not None: UpperCAmelCase : List[str] = args.src_lang if args.tgt_lang is not None: UpperCAmelCase : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__magic_name__ ) UpperCAmelCase , UpperCAmelCase : str = eval_data_dir( args.data_dir , __magic_name__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__magic_name__ , **__magic_name__ , ) if args.local_rank <= 0: UpperCAmelCase : List[str] = Path(args.save_dir ) save_dir.mkdir(exist_ok=__magic_name__ ) UpperCAmelCase : str = gather_results_from_each_node(__magic_name__ , __magic_name__ , args.sync_timeout ) UpperCAmelCase : Dict = combine_partial_results(__magic_name__ ) if args.num_return_sequences > 1: UpperCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(__magic_name__ , __magic_name__ ) return UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(__magic_name__ ) as f: UpperCAmelCase : Dict = [x.rstrip() for x in f.readlines()][: len(__magic_name__ )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase : Optional[int] = "translation" in args.task UpperCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase : Tuple = "bleu" if calc_bleu else "rouge" UpperCAmelCase : Dict = score_fn(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = len(__magic_name__ ) UpperCAmelCase : Union[str, Any] = time.time() - start_time UpperCAmelCase : Dict = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase : Optional[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase : Dict = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ ) print(__magic_name__ ) write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(__magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Tuple = [] for partial_result in partial_results: records.extend(__magic_name__ ) UpperCAmelCase : Optional[Any] = sorted(__magic_name__ , key=lambda __magic_name__ : x["id"] ) UpperCAmelCase : List[Any] = [x["pred"] for x in records] return preds def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase : Union[str, Any] = None while (time.time() - start_wait) < timeout: UpperCAmelCase : Dict = list(save_dir.glob("rank_*.json" ) ) if len(__magic_name__ ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase : List[str] = lmap(__magic_name__ , __magic_name__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
311
0
from torch import nn def a ( A__ : Tuple ) -> List[Any]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
205
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) a : Optional[Any] = ["model.decoder.embed_positions.weights"] def lowercase ( __magic_name__ ): '''simple docstring''' if "emb" in name: UpperCAmelCase : str = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: UpperCAmelCase : int = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: UpperCAmelCase : List[Any] = name.replace("linear1" , "fc1" ) if "linear2" in name: UpperCAmelCase : int = name.replace("linear2" , "fc2" ) if "norm1" in name: UpperCAmelCase : Dict = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: UpperCAmelCase : Any = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: UpperCAmelCase : Union[str, Any] = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: UpperCAmelCase : Dict = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: UpperCAmelCase : List[Any] = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = list(state_dict.keys() ) UpperCAmelCase : List[Any] = {} for key in keys: UpperCAmelCase : Any = state_dict.pop(__magic_name__ ) UpperCAmelCase : str = rename_keys(__magic_name__ ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase : Optional[int] = val[:hidden_size, :] UpperCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase : str = val else: UpperCAmelCase : int = val return state_dict, enc_dec_proj_state_dict def lowercase ( __magic_name__ ): '''simple docstring''' if checkpoint == "small": # default config values UpperCAmelCase : List[Any] = 1024 UpperCAmelCase : Tuple = 24 UpperCAmelCase : Union[str, Any] = 16 elif checkpoint == "medium": UpperCAmelCase : List[Any] = 1536 UpperCAmelCase : Optional[Any] = 48 UpperCAmelCase : List[str] = 24 elif checkpoint == "large": UpperCAmelCase : List[Any] = 2048 UpperCAmelCase : str = 48 UpperCAmelCase : Optional[Any] = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) UpperCAmelCase : Tuple = MusicgenDecoderConfig( hidden_size=__magic_name__ , ffn_dim=hidden_size * 4 , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , ) return config @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__="cpu" ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(__magic_name__ , device=__magic_name__ ) UpperCAmelCase : List[str] = decoder_config_from_checkpoint(__magic_name__ ) UpperCAmelCase : Dict = fairseq_model.lm.state_dict() UpperCAmelCase , UpperCAmelCase : List[str] = rename_state_dict( __magic_name__ , hidden_size=decoder_config.hidden_size ) UpperCAmelCase : Any = TaEncoderModel.from_pretrained("t5-base" ) UpperCAmelCase : Any = EncodecModel.from_pretrained("facebook/encodec_32khz" ) UpperCAmelCase : int = MusicgenForCausalLM(__magic_name__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(__magic_name__ , strict=__magic_name__ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__magic_name__ ) if len(__magic_name__ ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(__magic_name__ ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model UpperCAmelCase : List[Any] = MusicgenForConditionalGeneration(text_encoder=__magic_name__ , audio_encoder=__magic_name__ , decoder=__magic_name__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__magic_name__ ) # check we can do a forward pass UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase : Optional[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase : str = model(input_ids=__magic_name__ , decoder_input_ids=__magic_name__ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("t5-base" ) UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) UpperCAmelCase : Dict = MusicgenProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ ) # set the appropriate bos/pad token ids UpperCAmelCase : List[Any] = 2048 UpperCAmelCase : Tuple = 2048 # set other default generation config params UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate ) UpperCAmelCase : str = True UpperCAmelCase : Tuple = 3.0 if pytorch_dump_folder is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(__magic_name__ ) processor.push_to_hub(__magic_name__ ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) a : int = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
311
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase_ ( __UpperCAmelCase ) -> Optional[int]: for param in module.parameters(): lowerCAmelCase__ : Any = False def lowercase_ ( ) -> Union[str, Any]: lowerCAmelCase__ : int = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ : int = "mps" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def lowercase_ ( __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : str = plt.imshow(__UpperCAmelCase ) fig.axes.get_xaxis().set_visible(__UpperCAmelCase ) fig.axes.get_yaxis().set_visible(__UpperCAmelCase ) plt.show() def lowercase_ ( ) -> Tuple: lowerCAmelCase__ : str = datetime.now() lowerCAmelCase__ : Tuple = current_time.strftime("""%H:%M:%S""" ) return timestamp
242
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": a : Union[str, Any] = Accelerator() a : str = (accelerator.state.process_index + 2, 10) a : List[str] = torch.randint(0, 10, shape).to(accelerator.device) a : Optional[int] = "" a : int = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
311
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: _snake_case : Dict = None _snake_case : int = logging.get_logger(__name__) _snake_case : Tuple = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _snake_case : Union[str, Any] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } _snake_case : Optional[Any] = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } _snake_case : str = "▁" class _UpperCAmelCase ( lowercase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = BigBirdTokenizer UpperCamelCase = ["input_ids", "attention_mask"] UpperCamelCase = [] def __init__( self :str , __UpperCamelCase :str=None , __UpperCamelCase :str=None , __UpperCamelCase :Tuple="<unk>" , __UpperCamelCase :Dict="<s>" , __UpperCamelCase :Any="</s>" , __UpperCamelCase :Any="<pad>" , __UpperCamelCase :Dict="[SEP]" , __UpperCamelCase :Optional[Any]="[MASK]" , __UpperCamelCase :Optional[int]="[CLS]" , **__UpperCamelCase :Optional[int] , ): A = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token A = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token A = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else unk_token A = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token A = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token A = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , **__UpperCamelCase , ) A = vocab_file A = False if not self.vocab_file else True def lowerCamelCase ( self :List[str] , __UpperCamelCase :Tuple , __UpperCamelCase :Optional[Any] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self :int , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Union[str, Any] = None , __UpperCamelCase :Any = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] def lowerCamelCase ( self :int , __UpperCamelCase :Tuple , __UpperCamelCase :Tuple = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self :List[str] , __UpperCamelCase :Any , __UpperCamelCase :int = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
292
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def A_ ( *snake_case , **snake_case ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase : Union[str, Any] = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def A_ ( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[Any] = object_detector(examples[0] , threshold=0.0 ) UpperCAmelCase : Dict = len(snake_case ) self.assertGreater(snake_case , 0 ) self.assertEqual( snake_case , [ { "score": ANY(snake_case ), "label": ANY(snake_case ), "box": {"xmin": ANY(snake_case ), "ymin": ANY(snake_case ), "xmax": ANY(snake_case ), "ymax": ANY(snake_case )}, } for i in range(snake_case ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A_ ( self ): '''simple docstring''' pass @require_torch def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase : Optional[Any] = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] , ) UpperCAmelCase : Tuple = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] ] , ) @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" ) UpperCAmelCase : Optional[int] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ] , ) UpperCAmelCase : Union[str, Any] = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A_ ( self ): '''simple docstring''' pass @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = 0.2 UpperCAmelCase : Union[str, Any] = pipeline("zero-shot-object-detection" ) UpperCAmelCase : str = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, ] , ) @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = 2 UpperCAmelCase : Optional[Any] = pipeline("zero-shot-object-detection" ) UpperCAmelCase : List[str] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, ] , )
311
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self , A ) -> str: '''simple docstring''' lowerCamelCase = 3 lowerCamelCase = 2_50 lowerCamelCase = ids_tensor((batch_size, length) , A ) lowerCamelCase = torch.ones((batch_size, length) , device=A , dtype=torch.float ) / length return input_ids, scores def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self._get_tensors(5 ) lowerCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(A , A ) ) lowerCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(A , A ) ) lowerCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(A , A ) ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = MaxLengthCriteria(max_length=10 ) lowerCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(A , A ) ) lowerCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(A , A ) ) lowerCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(A , A ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(A , A ) ) lowerCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(A , A ) ) lowerCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(A , A ) ) lowerCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self._get_tensors(5 ) lowerCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(A , A ) ) lowerCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(A , A ) ) def __A ( self ) -> Tuple: '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowerCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(A ) , 1 )
252
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if number > 0: raise ValueError("input must be a negative integer" ) UpperCAmelCase : List[Any] = len(bin(__magic_name__ )[3:] ) UpperCAmelCase : Optional[Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Tuple = ( ( "1" + "0" * (binary_number_length - len(__magic_name__ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
311
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ : Optional[Any] = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys A__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
207
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a : int = datasets.load_iris() a : Union[str, Any] = np.array(data["data"]) a : Optional[Any] = np.array(data["target"]) a : List[Any] = data["target_names"] a , a , a , a : Dict = train_test_split(X, y) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' return np.linalg.norm(np.array(__magic_name__ ) - np.array(__magic_name__ ) ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=5 ): '''simple docstring''' UpperCAmelCase : int = zip(__magic_name__ , __magic_name__ ) # List of distances of all points from the point to be classified UpperCAmelCase : List[Any] = [] for data_point in data: UpperCAmelCase : List[str] = euclidean_distance(data_point[0] , __magic_name__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(__magic_name__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCAmelCase : List[str] = Counter(__magic_name__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
311
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Dict = 1000 ) -> List[Any]: __a = 2**power __a = 0 while n: __a = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
45
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
311
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } lowercase = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(__lowerCAmelCase ) , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , x.transpose() ) ) lowercase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) lowercase = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) lowercase = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) lowercase = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , np.asarray(transpose(__lowerCAmelCase ) ) ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) ) ) ) def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.reshape(__lowerCAmelCase , (4, 3) ) ) ) lowercase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , np.reshape(__lowerCAmelCase , (12, 5) ) ) ) @require_torch def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) lowercase = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , reshape(__lowerCAmelCase , (12, 5) ).numpy() ) ) @require_tf def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) lowercase = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , reshape(__lowerCAmelCase , (12, 5) ).numpy() ) ) @require_flax def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) lowercase = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.asarray(reshape(__lowerCAmelCase , (4, 3) ) ) ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , np.asarray(reshape(__lowerCAmelCase , (12, 5) ) ) ) ) def A__ ( self ): """simple docstring""" lowercase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.squeeze(__lowerCAmelCase ) ) ) lowercase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.squeeze(__lowerCAmelCase , axis=2 ) ) ) @require_torch def A__ ( self ): """simple docstring""" lowercase = np.random.randn(1 , 3 , 4 ) lowercase = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) ) lowercase = np.random.randn(1 , 4 , 1 , 5 ) lowercase = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) ) @require_tf def A__ ( self ): """simple docstring""" lowercase = np.random.randn(1 , 3 , 4 ) lowercase = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) ) lowercase = np.random.randn(1 , 4 , 1 , 5 ) lowercase = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) ) @require_flax def A__ ( self ): """simple docstring""" lowercase = np.random.randn(1 , 3 , 4 ) lowercase = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.asarray(squeeze(__lowerCAmelCase ) ) ) ) lowercase = np.random.randn(1 , 4 , 1 , 5 ) lowercase = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.asarray(squeeze(__lowerCAmelCase , axis=2 ) ) ) ) def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.expand_dims(__lowerCAmelCase , axis=1 ) ) ) @require_torch def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) lowercase = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) ) @require_tf def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) lowercase = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) ) @require_flax def A__ ( self ): """simple docstring""" lowercase = np.random.randn(3 , 4 ) lowercase = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.asarray(expand_dims(__lowerCAmelCase , axis=1 ) ) ) )
197
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowercase ( __magic_name__ , __magic_name__=10 ): '''simple docstring''' UpperCAmelCase : Tuple = [] for _ in range(__magic_name__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowercase ( __magic_name__ , __magic_name__=10 ): '''simple docstring''' UpperCAmelCase : List[str] = [] for step in range(__magic_name__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__magic_name__ , "schedule.bin" ) torch.save(scheduler.state_dict() , __magic_name__ ) UpperCAmelCase : Any = torch.load(__magic_name__ ) scheduler.load_state_dict(__magic_name__ ) return lrs @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' self.assertEqual(len(snake_case ) , len(snake_case ) ) for a, b in zip(snake_case , snake_case ): self.assertAlmostEqual(snake_case , snake_case , delta=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case ) UpperCAmelCase : Any = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase : Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase : List[str] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): UpperCAmelCase : List[Any] = criterion(snake_case , snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case ) UpperCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase : str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase : str = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case , weight_decay=0.0 , relative_step=snake_case , scale_parameter=snake_case , warmup_init=snake_case , ) for _ in range(1_0_0_0 ): UpperCAmelCase : str = criterion(snake_case , snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = nn.Linear(50 , 50 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ : List[Any] = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ : Optional[int] = 10 def A_ ( self , snake_case , snake_case , snake_case , snake_case=None ): '''simple docstring''' self.assertEqual(len(snake_case ) , len(snake_case ) ) for a, b in zip(snake_case , snake_case ): self.assertAlmostEqual(snake_case , snake_case , delta=snake_case , msg=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = {"num_warmup_steps": 2, "num_training_steps": 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) UpperCAmelCase : int = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): UpperCAmelCase , UpperCAmelCase : Any = data UpperCAmelCase : Tuple = scheduler_func(self.optimizer , **snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) UpperCAmelCase : List[str] = unwrap_schedule(snake_case , self.num_steps ) self.assertListAlmostEqual( snake_case , snake_case , tol=1e-2 , msg=f"failed for {scheduler_func} in normal scheduler" , ) UpperCAmelCase : Optional[Any] = scheduler_func(self.optimizer , **snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(snake_case ) # wrap to test picklability of the schedule UpperCAmelCase : Tuple = unwrap_and_save_reload_schedule(snake_case , self.num_steps ) self.assertListEqual(snake_case , snake_case , msg=f"failed for {scheduler_func} in save and reload" ) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = fn def __call__( self , *snake_case , **snake_case ): '''simple docstring''' return self.fn(*snake_case , **snake_case ) @classmethod def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[int] = list(map(self , scheduler.lr_lambdas ) )
311
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _A : def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=30 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=4 , __SCREAMING_SNAKE_CASE : Dict=37 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=10 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=None , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __a = (image_size // patch_size) ** 2 __a = num_patches + 1 def _lowerCamelCase ( self : str): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = TFViTModel(config=__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # Test with an image with different size than the one specified in config. __a = self.image_size // 2 __a = pixel_values[:, :, :image_size, :image_size] __a = model(__SCREAMING_SNAKE_CASE , interpolate_pos_encoding=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE) __a = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size)) def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = self.type_sequence_label_size __a = TFViTForImageClassification(__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # Test with an image with different size than the one specified in config. __a = self.image_size // 2 __a = pixel_values[:, :, :image_size, :image_size] __a = model(__SCREAMING_SNAKE_CASE , interpolate_pos_encoding=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __a = 1 __a = TFViTForImageClassification(__SCREAMING_SNAKE_CASE) __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.prepare_config_and_inputs() __a = config_and_inputs __a = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _A ( lowercase__ ,lowercase__ ,unittest.TestCase ): UpperCamelCase__ : int = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCamelCase__ : Any = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ : Optional[int] = False UpperCamelCase__ : str = False UpperCamelCase__ : Dict = False def _lowerCamelCase ( self : int): '''simple docstring''' __a = TFViTModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37) def _lowerCamelCase ( self : Dict): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def _lowerCamelCase ( self : Any): '''simple docstring''' pass @unittest.skip(reason='''ViT does not use inputs_embeds''') def _lowerCamelCase ( self : List[str]): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , tf.keras.layers.Layer)) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__SCREAMING_SNAKE_CASE) __a = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFViTModel.from_pretrained('''google/vit-base-patch16-224''') self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def __snake_case ( ): __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _A ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Tuple): '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''') if is_vision_available() else None @slow def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''') __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''') # forward pass __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits __a = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE) __a = tf.constant([-0.27_44, 0.82_15, -0.08_36]) tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4)
49
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig a : Optional[Any] = logging.get_logger(__name__) a : Tuple = "T5Config" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = jnp.zeros_like(__magic_name__ ) UpperCAmelCase : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCAmelCase : str = shifted_input_ids.at[:, 0].set(__magic_name__ ) UpperCAmelCase : Any = jnp.where(shifted_input_ids == -100 , __magic_name__ , __magic_name__ ) return shifted_input_ids class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "mt5" SCREAMING_SNAKE_CASE__ : Dict = MTaConfig class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "mt5" SCREAMING_SNAKE_CASE__ : str = MTaConfig class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = "mt5" SCREAMING_SNAKE_CASE__ : str = MTaConfig
311
0
def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def snake_case__ ( ): '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
214
'''simple docstring''' from jiwer import compute_measures import datasets a : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" a : str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" a : Union[str, Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def A_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def A_ ( self , snake_case=None , snake_case=None , snake_case=False ): '''simple docstring''' if concatenate_texts: return compute_measures(snake_case , snake_case )["wer"] else: UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[Any] = 0 for prediction, reference in zip(snake_case , snake_case ): UpperCAmelCase : Tuple = compute_measures(snake_case , snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
311
0
import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class snake_case__ (lowercase__ ): """simple docstring""" __lowerCAmelCase :Union[str, Any] = "facebook/bart-large-mnli" __lowerCAmelCase :List[str] = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __lowerCAmelCase :List[str] = "text_classifier" __lowerCAmelCase :Tuple = AutoTokenizer __lowerCAmelCase :Tuple = AutoModelForSequenceClassification __lowerCAmelCase :str = ["text", ["text"]] __lowerCAmelCase :Union[str, Any] = ["text"] def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" super().setup() a__ : Optional[int] = self.model.config a__ : Dict = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): a__ : Optional[int] = int(__lowercase ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Tuple: """simple docstring""" a__ : Union[str, Any] = labels return self.pre_processor( [text] * len(__lowercase ) , [F'''This example is {label}''' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[Any]: """simple docstring""" a__ : int = outputs.logits a__ : Tuple = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
170
'''simple docstring''' from functools import lru_cache def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = 2 UpperCAmelCase : str = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__magic_name__ ) if n > 1: factors.add(__magic_name__ ) return factors @lru_cache def lowercase ( __magic_name__ ): '''simple docstring''' return len(unique_prime_factors(__magic_name__ ) ) def lowercase ( __magic_name__ ): '''simple docstring''' return len(set(__magic_name__ ) ) in (0, 1) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = 2 while True: # Increment each value of a generated range UpperCAmelCase : Any = [base + i for i in range(__magic_name__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCAmelCase : Dict = [upf_len(__magic_name__ ) for x in group] checker.append(__magic_name__ ) # If all numbers in the list are equal, return the group variable. if equality(__magic_name__ ): return group # Increment our base variable by 1 base += 1 def lowercase ( __magic_name__ = 4 ): '''simple docstring''' UpperCAmelCase : int = run(__magic_name__ ) return results[0] if len(__magic_name__ ) else None if __name__ == "__main__": print(solution())
311
0
from __future__ import annotations from collections import deque class __lowercase : """simple docstring""" def __init__( self , A ) -> Any: snake_case : list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(A ) self.set_fail_transitions() def UpperCAmelCase ( self , A , A ) -> int: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCAmelCase ( self , A ) -> Optional[int]: snake_case : str = 0 for character in keyword: snake_case : List[Any] = self.find_next_state(A , A ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) snake_case : int = len(self.adlist ) - 1 else: snake_case : Optional[Any] = next_state self.adlist[current_state]["output"].append(A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : deque = deque() for node in self.adlist[0]["next_states"]: q.append(A ) snake_case : List[str] = 0 while q: snake_case : List[Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(A ) snake_case : Optional[int] = self.adlist[r]["fail_state"] while ( self.find_next_state(A , self.adlist[child]["""value"""] ) is None and state != 0 ): snake_case : Tuple = self.adlist[state]["fail_state"] snake_case : Union[str, Any] = self.find_next_state( A , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: snake_case : Dict = 0 snake_case : Dict = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def UpperCAmelCase ( self , A ) -> List[str]: snake_case : dict = {} # returns a dict with keywords and list of its occurrences snake_case : List[Any] = 0 for i in range(len(A ) ): while ( self.find_next_state(A , string[i] ) is None and current_state != 0 ): snake_case : Optional[Any] = self.adlist[current_state]["fail_state"] snake_case : Optional[Any] = self.find_next_state(A , string[i] ) if next_state is None: snake_case : List[Any] = 0 else: snake_case : Optional[Any] = next_state for key in self.adlist[current_state]["output"]: if key not in result: snake_case : List[Any] = [] result[key].append(i - len(A ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
124
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
311
0
from __future__ import annotations def a ( A__ : List[Any] , A__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _lowercase =set(A__ ), [start] while stack: _lowercase =stack.pop() explored.add(A__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(A__ ) return explored lowercase_ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
205
'''simple docstring''' # Lint as: python3 import itertools import os import re a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])") a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])") a : str = re.compile(R"(?<!_)_(?!_)") a : List[Any] = re.compile(R"(_{2,})") a : List[Any] = R"^\w+(\.\w+)*$" a : Dict = R"<>:/\|?*" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) return name.lower() def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ ) UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" ) def lowercase ( __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(__magic_name__ ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , __magic_name__ ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(__magic_name__ )}-{split}" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) if filetype_suffix: prefix += F".{filetype_suffix}" UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) return F"{filepath}*" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) if shard_lengths: UpperCAmelCase : Tuple = len(__magic_name__ ) UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )] if filetype_suffix: UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: UpperCAmelCase : int = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
311
0
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _A = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _A = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _A = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _A = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) _A = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions _A = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(6_4, 6_4) ) _A = tf.keras.preprocessing.image.img_to_array(test_image) _A = np.expand_dims(test_image, axis=0) _A = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _A = "Normal" if result[0][0] == 1: _A = "Abnormality detected"
242
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) a : Optional[int] = _symbol_database.Default() a : Any = _descriptor_pool.Default().AddSerializedFile( B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) a : Tuple = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: a : str = None a : Optional[Any] = B"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" a : str = 45 a : Any = 15_81 a : List[Any] = 15_17 a : Union[str, Any] = 15_70 a : Optional[Any] = 15_84 a : List[str] = 17_93 a : Optional[Any] = 17_95 a : Tuple = 19_16 a : Optional[Any] = 18_64 a : int = 19_05 a : Optional[Any] = 19_19 a : Union[str, Any] = 24_29 a : List[Any] = 22_08 a : Dict = 24_18 a : Optional[int] = 23_23 a : str = 24_07 # @@protoc_insertion_point(module_scope)
311
0
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self :Dict ): A = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() A = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) A = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } A = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_60_00, "return_attention_mask": False, "do_normalize": True, } A = tempfile.mkdtemp() A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + "\n" ) # load decoder from hub A = "hf-internal-testing/ngram-beam-search-decoder" def lowerCamelCase ( self :List[str] , **__UpperCamelCase :Tuple ): A = self.add_kwargs_tokens_map.copy() kwargs.update(__UpperCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowerCamelCase ( self :List[Any] , **__UpperCamelCase :int ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowerCamelCase ( self :List[Any] , **__UpperCamelCase :List[str] ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__UpperCamelCase ) def lowerCamelCase ( self :List[Any] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self :Optional[Any] ): A = self.get_tokenizer() A = self.get_feature_extractor() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __UpperCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __UpperCamelCase ) def lowerCamelCase ( self :Optional[Any] ): A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCamelCase ( self :Dict ): A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(__UpperCamelCase , "include" ): WavaVecaProcessorWithLM( tokenizer=__UpperCamelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCamelCase ( self :Tuple ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = floats_list((3, 10_00) ) A = feature_extractor(__UpperCamelCase , return_tensors="np" ) A = processor(__UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase ( self :Tuple ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = "This is a test string" A = processor(text=__UpperCamelCase ) A = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :int=(2, 10, 16) , __UpperCamelCase :Optional[Any]=77 ): np.random.seed(__UpperCamelCase ) return np.random.rand(*__UpperCamelCase ) def lowerCamelCase ( self :List[str] ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) A = processor.decode(__UpperCamelCase ) A = decoder.decode_beams(__UpperCamelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def lowerCamelCase ( self :Any , __UpperCamelCase :Optional[int] ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: A = processor.batch_decode(__UpperCamelCase ) else: with get_context(__UpperCamelCase ).Pool() as pool: A = processor.batch_decode(__UpperCamelCase , __UpperCamelCase ) A = list(__UpperCamelCase ) with get_context("fork" ).Pool() as p: A = decoder.decode_beams_batch(__UpperCamelCase , __UpperCamelCase ) A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__UpperCamelCase , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(__UpperCamelCase , decoded_processor.logit_score ) self.assertListEqual(__UpperCamelCase , decoded_processor.lm_score ) def lowerCamelCase ( self :Dict ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = self._get_dummy_logits() A = 15 A = -20.0 A = -4.0 A = processor.batch_decode( __UpperCamelCase , beam_width=__UpperCamelCase , beam_prune_logp=__UpperCamelCase , token_min_logp=__UpperCamelCase , ) A = decoded_processor_out.text A = list(__UpperCamelCase ) with get_context("fork" ).Pool() as pool: A = decoder.decode_beams_batch( __UpperCamelCase , __UpperCamelCase , beam_width=__UpperCamelCase , beam_prune_logp=__UpperCamelCase , token_min_logp=__UpperCamelCase , ) A = [d[0][0] for d in decoded_decoder_out] A = [d[0][2] for d in decoded_decoder_out] A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , __UpperCamelCase ) self.assertTrue(np.array_equal(__UpperCamelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __UpperCamelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(__UpperCamelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , __UpperCamelCase , atol=1e-3 ) ) def lowerCamelCase ( self :int ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) A = self._get_dummy_logits() A = 2.0 A = 5.0 A = -20.0 A = True A = processor.batch_decode( __UpperCamelCase , alpha=__UpperCamelCase , beta=__UpperCamelCase , unk_score_offset=__UpperCamelCase , lm_score_boundary=__UpperCamelCase , ) A = decoded_processor_out.text A = list(__UpperCamelCase ) decoder.reset_params( alpha=__UpperCamelCase , beta=__UpperCamelCase , unk_score_offset=__UpperCamelCase , lm_score_boundary=__UpperCamelCase , ) with get_context("fork" ).Pool() as pool: A = decoder.decode_beams_batch( __UpperCamelCase , __UpperCamelCase , ) A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , __UpperCamelCase ) A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __UpperCamelCase ) def lowerCamelCase ( self :List[str] ): A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) A = processor.decoder.model_container[processor.decoder._model_key] A = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() A = os.listdir(__UpperCamelCase ) A = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase ( self :Dict ): A = snapshot_download("hf-internal-testing/processor_with_lm" ) A = WavaVecaProcessorWithLM.from_pretrained(__UpperCamelCase ) A = processor.decoder.model_container[processor.decoder._model_key] A = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() A = os.listdir(__UpperCamelCase ) A = os.listdir(__UpperCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase ( self :Union[str, Any] ): A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) A = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) A = floats_list((3, 10_00) ) A = processor_wavaveca(__UpperCamelCase , return_tensors="np" ) A = processor_auto(__UpperCamelCase , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) A = self._get_dummy_logits() A = processor_wavaveca.batch_decode(__UpperCamelCase ) A = processor_auto.batch_decode(__UpperCamelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCamelCase ( self :Tuple ): A = self.get_feature_extractor() A = self.get_tokenizer() A = self.get_decoder() A = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def lowerCamelCase ( __UpperCamelCase :str , __UpperCamelCase :Optional[int] ): A = [d[key] for d in offsets] return retrieved_list def lowerCamelCase ( self :List[Any] ): A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) A = self._get_dummy_logits()[0] A = processor.decode(__UpperCamelCase , output_word_offsets=__UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def lowerCamelCase ( self :List[Any] ): A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) A = self._get_dummy_logits() A = processor.batch_decode(__UpperCamelCase , output_word_offsets=__UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) ) self.assertListEqual( [" ".join(self.get_from_offsets(__UpperCamelCase , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCamelCase ( self :List[str] ): import torch A = load_dataset("common_voice" , "en" , split="train" , streaming=__UpperCamelCase ) A = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_60_00 ) ) A = iter(__UpperCamelCase ) A = next(__UpperCamelCase ) A = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) A = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train A = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): A = model(__UpperCamelCase ).logits.cpu().numpy() A = processor.decode(logits[0] , output_word_offsets=__UpperCamelCase ) A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate A = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] A = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(__UpperCamelCase , "word" ) ) , __UpperCamelCase ) self.assertEqual(" ".join(self.get_from_offsets(__UpperCamelCase , "word" ) ) , output.text ) # output times A = torch.tensor(self.get_from_offsets(__UpperCamelCase , "start_time" ) ) A = torch.tensor(self.get_from_offsets(__UpperCamelCase , "end_time" ) ) # fmt: off A = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) A = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=0.01 ) )
292
'''simple docstring''' import argparse import copy def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = {} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase : List[Any] = [] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase : Any = [] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' with open(__magic_name__ ) as f: UpperCAmelCase : List[str] = f.read(1 ) UpperCAmelCase : List[Any] = start_node UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Any = start_node UpperCAmelCase : Optional[Any] = 0 while visiting not in first_solution: UpperCAmelCase : Optional[Any] = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: UpperCAmelCase : Tuple = k[1] UpperCAmelCase : Dict = k[0] first_solution.append(__magic_name__ ) UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ ) UpperCAmelCase : str = best_node first_solution.append(__magic_name__ ) UpperCAmelCase : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for n in solution[1:-1]: UpperCAmelCase : Any = solution.index(__magic_name__ ) for kn in solution[1:-1]: UpperCAmelCase : Dict = solution.index(__magic_name__ ) if n == kn: continue UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ ) UpperCAmelCase : Optional[int] = kn UpperCAmelCase : List[str] = n UpperCAmelCase : str = 0 for k in _tmp[:-1]: UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase : List[Any] = distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = 1 UpperCAmelCase : List[str] = first_solution UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = distance_of_first_solution UpperCAmelCase : Union[str, Any] = solution while count <= iters: UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = 0 UpperCAmelCase : List[str] = neighborhood[index_of_best_solution] UpperCAmelCase : Dict = len(__magic_name__ ) - 1 UpperCAmelCase : Dict = False while not found: UpperCAmelCase : List[Any] = 0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: UpperCAmelCase : int = best_solution[i] UpperCAmelCase : Optional[int] = solution[i] break UpperCAmelCase : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase : List[str] = True UpperCAmelCase : List[Any] = best_solution[:-1] UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase : Union[str, Any] = cost UpperCAmelCase : Tuple = solution else: UpperCAmelCase : Optional[Any] = index_of_best_solution + 1 UpperCAmelCase : str = neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) UpperCAmelCase : int = count + 1 return best_solution_ever, best_cost def lowercase ( __magic_name__=None ): '''simple docstring''' UpperCAmelCase : Dict = generate_neighbours(args.File ) UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution( args.File , __magic_name__ ) UpperCAmelCase , UpperCAmelCase : Any = tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
311
0
import argparse from collections import defaultdict import yaml UpperCAmelCase : str = "docs/source/en/_toctree.yml" def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' lowerCamelCase = defaultdict(lowerCamelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 lowerCamelCase = [key for key, value in counts.items() if value > 1] lowerCamelCase = [] for duplicate_key in duplicates: lowerCamelCase = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(lowerCamelCase__ ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : s["title"].lower() ) def __lowerCamelCase ( lowerCamelCase__ : List[str]=False ): '''simple docstring''' with open(lowerCamelCase__ , encoding="""utf-8""" ) as f: lowerCamelCase = yaml.safe_load(f.read() ) # Get to the API doc lowerCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCamelCase = content[api_idx]["sections"] # Then to the model doc lowerCamelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCamelCase = api_doc[model_idx]["sections"] lowerCamelCase = [(idx, section) for idx, section in enumerate(lowerCamelCase__ ) if "sections" in section] lowerCamelCase = False for idx, modality_doc in modalities_docs: lowerCamelCase = modality_doc["sections"] lowerCamelCase = clean_model_doc_toc(lowerCamelCase__ ) if old_modality_doc != new_modality_doc: lowerCamelCase = True if overwrite: lowerCamelCase = new_modality_doc if diff: if overwrite: lowerCamelCase = model_doc lowerCamelCase = api_doc with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCamelCase__ , allow_unicode=lowerCamelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase : Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
252
'''simple docstring''' from collections.abc import Generator from math import sin def lowercase ( __magic_name__ ): '''simple docstring''' if len(__magic_name__ ) != 32: raise ValueError("Input must be of length 32" ) UpperCAmelCase : Union[str, Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowercase ( __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase : Dict = format(__magic_name__ , "08x" )[-8:] UpperCAmelCase : List[str] = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : int = b"" for char in message: bit_string += format(__magic_name__ , "08b" ).encode("utf-8" ) UpperCAmelCase : List[Any] = format(len(__magic_name__ ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__magic_name__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowercase ( __magic_name__ ): '''simple docstring''' if len(__magic_name__ ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__magic_name__ ) , 512 ): UpperCAmelCase : Union[str, Any] = bit_string[pos : pos + 512] UpperCAmelCase : Tuple = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowercase ( __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase : Any = format(__magic_name__ , "032b" ) UpperCAmelCase : int = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__magic_name__ , 2 ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' return (a + b) % 2**32 def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = preprocess(__magic_name__ ) UpperCAmelCase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCAmelCase : List[str] = 0X67452301 UpperCAmelCase : Tuple = 0XEFCDAB89 UpperCAmelCase : List[Any] = 0X98BADCFE UpperCAmelCase : List[str] = 0X10325476 UpperCAmelCase : Dict = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__magic_name__ ): UpperCAmelCase : Optional[Any] = aa UpperCAmelCase : List[Any] = ba UpperCAmelCase : Optional[Any] = ca UpperCAmelCase : Any = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCAmelCase : Tuple = d ^ (b & (c ^ d)) UpperCAmelCase : List[str] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCAmelCase : int = c ^ (d & (b ^ c)) UpperCAmelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: UpperCAmelCase : Any = b ^ c ^ d UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16 else: UpperCAmelCase : Dict = c ^ (b | not_aa(__magic_name__ )) UpperCAmelCase : Dict = (7 * i) % 16 UpperCAmelCase : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCAmelCase : List[Any] = d UpperCAmelCase : Any = c UpperCAmelCase : Dict = b UpperCAmelCase : Union[str, Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCAmelCase : List[str] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : List[Any] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : Optional[int] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : List[str] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
311
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline A__ : Optional[int] = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') A__ : Union[str, Any] = parser.parse_args() A__ : Optional[int] = "cpu" A__ : Dict = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" A__ : Tuple = "path-to-your-trained-model" A__ : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: A__ : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) A__ : Optional[int] = pipe.to(device) # to channels last A__ : Dict = pipe.unet.to(memory_format=torch.channels_last) A__ : str = pipe.vae.to(memory_format=torch.channels_last) A__ : int = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: A__ : Any = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex A__ : Union[str, Any] = torch.randn(2, 4, 64, 64) A__ : Optional[Any] = torch.rand(1) * 9_99 A__ : Optional[int] = torch.randn(2, 77, 7_68) A__ : Tuple = (sample, timestep, encoder_hidden_status) try: A__ : int = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: A__ : Tuple = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) A__ : Optional[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) A__ : Dict = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: A__ : Optional[Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute A__ : str = 6_66 A__ : int = torch.Generator(device).manual_seed(seed) A__ : Optional[Any] = {"generator": generator} if args.steps is not None: A__ : Optional[int] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): A__ : Optional[int] = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
207
'''simple docstring''' a : List[str] = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
311
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase : Tuple = 192 UpperCAmelCase : str = 768 UpperCAmelCase : List[Any] = 12 UpperCAmelCase : List[Any] = 3 UpperCAmelCase : List[Any] = [800, 1333] UpperCAmelCase : List[str] = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Union[str, Any] = 330 UpperCAmelCase : Union[str, Any] = 14 UpperCAmelCase : Any = 6 UpperCAmelCase : int = 1320 elif "yolos_s" in yolos_name: UpperCAmelCase : Union[str, Any] = 384 UpperCAmelCase : Dict = 1536 UpperCAmelCase : str = 12 UpperCAmelCase : List[str] = 6 elif "yolos_b" in yolos_name: UpperCAmelCase : int = [800, 1344] UpperCAmelCase : Optional[int] = 91 UpperCAmelCase : int = "huggingface/label-files" UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json" UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def lowercase ( __magic_name__ ): '''simple docstring''' if "backbone" in name: UpperCAmelCase : int = name.replace("backbone" , "vit" ) if "cls_token" in name: UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase : Any = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: UpperCAmelCase : str = key.split("." ) UpperCAmelCase : List[Any] = int(key_split[2] ) UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase : Optional[int] = val[:dim, :] UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase : Any = val[-dim:, :] else: UpperCAmelCase : Tuple = val[:dim] UpperCAmelCase : List[str] = val[dim : dim * 2] UpperCAmelCase : Any = val[-dim:] else: UpperCAmelCase : Union[str, Any] = val return orig_state_dict def lowercase ( ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ ) # load original state_dict UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"] # load 🤗 model UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ ) model.eval() UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512 UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ ) UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase : List[str] = model(**__magic_name__ ) UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None if yolos_name == "yolos_ti": UpperCAmelCase : str = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) UpperCAmelCase : Tuple = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase : Union[str, Any] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) UpperCAmelCase : List[str] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase : List[str] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) UpperCAmelCase : Dict = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Dict = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) UpperCAmelCase : List[Any] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": UpperCAmelCase : str = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: UpperCAmelCase : int = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) UpperCAmelCase : Tuple = model_mapping[yolos_name] image_processor.push_to_hub(__magic_name__ , organization="hustvl" ) model.push_to_hub(__magic_name__ , organization="hustvl" ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
311
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCAmelCase : Any =datasets.utils.logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] =["names", "prefix"] __lowerCAmelCase : Dict =["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] __lowerCAmelCase : Optional[Any] =["encoding_errors", "on_bad_lines"] __lowerCAmelCase : List[Any] =["date_format"] @dataclass class _A ( datasets.BuilderConfig ): snake_case__ : str = "," snake_case__ : Optional[str] = None snake_case__ : Optional[Union[int, List[int], str]] = "infer" snake_case__ : Optional[List[str]] = None snake_case__ : Optional[List[str]] = None snake_case__ : Optional[Union[int, str, List[int], List[str]]] = None snake_case__ : Optional[Union[List[int], List[str]]] = None snake_case__ : Optional[str] = None snake_case__ : bool = True snake_case__ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case__ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case__ : Optional[list] = None snake_case__ : Optional[list] = None snake_case__ : bool = False snake_case__ : Optional[Union[int, List[int]]] = None snake_case__ : Optional[int] = None snake_case__ : Optional[Union[str, List[str]]] = None snake_case__ : bool = True snake_case__ : bool = True snake_case__ : bool = False snake_case__ : bool = True snake_case__ : Optional[str] = None snake_case__ : str = "." snake_case__ : Optional[str] = None snake_case__ : str = '"' snake_case__ : int = 0 snake_case__ : Optional[str] = None snake_case__ : Optional[str] = None snake_case__ : Optional[str] = None snake_case__ : Optional[str] = None snake_case__ : bool = True snake_case__ : bool = True snake_case__ : int = 0 snake_case__ : bool = True snake_case__ : bool = False snake_case__ : Optional[str] = None snake_case__ : int = 1_0000 snake_case__ : Optional[datasets.Features] = None snake_case__ : Optional[str] = "strict" snake_case__ : Literal["error", "warn", "skip"] = "error" snake_case__ : Optional[str] = None def A__ ( self ): """simple docstring""" if self.delimiter is not None: lowercase = self.delimiter if self.column_names is not None: lowercase = self.column_names @property def A__ ( self ): """simple docstring""" lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __lowerCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _A ( datasets.ArrowBasedBuilder ): snake_case__ : Any = CsvConfig def A__ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCAmelCase , (str, list, tuple) ): lowercase = data_files if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = [files] lowercase = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowercase = [] for split_name, files in data_files.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = [files] lowercase = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def A__ ( self , __lowerCAmelCase ): """simple docstring""" if self.config.features is not None: lowercase = self.config.features.arrow_schema if all(not require_storage_cast(__lowerCAmelCase ) for feature in self.config.features.values() ): # cheaper cast lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__lowerCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowercase = table_cast(__lowerCAmelCase , __lowerCAmelCase ) return pa_table def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__lowerCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase ) ): lowercase = pd.read_csv(__lowerCAmelCase , iterator=__lowerCAmelCase , dtype=__lowerCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__lowerCAmelCase ): lowercase = pa.Table.from_pandas(__lowerCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCAmelCase ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}' ) raise
197
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) a : Tuple = logging.getLogger(__name__) def lowercase ( ): '''simple docstring''' UpperCAmelCase : Any = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=__magic_name__ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=__magic_name__ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=__magic_name__ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=__magic_name__ , default="data/dump" , help="The dump file prefix." ) UpperCAmelCase : List[Any] = parser.parse_args() logger.info(F"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Tuple = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Optional[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"Loading text from {args.file_path}" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: UpperCAmelCase : str = fp.readlines() logger.info("Start encoding" ) logger.info(F"{len(__magic_name__ )} examples to process." ) UpperCAmelCase : int = [] UpperCAmelCase : int = 0 UpperCAmelCase : Union[str, Any] = 1_0000 UpperCAmelCase : Union[str, Any] = time.time() for text in data: UpperCAmelCase : Dict = F"{bos} {text.strip()} {sep}" UpperCAmelCase : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) rslt.append(__magic_name__ ) iter += 1 if iter % interval == 0: UpperCAmelCase : Dict = time.time() logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) UpperCAmelCase : Any = time.time() logger.info("Finished binarization" ) logger.info(F"{len(__magic_name__ )} examples processed." ) UpperCAmelCase : str = F"{args.dump_file}.{args.tokenizer_name}.pickle" UpperCAmelCase : List[str] = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase : int = [np.uintaa(__magic_name__ ) for d in rslt] else: UpperCAmelCase : int = [np.intaa(__magic_name__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"Dump to {dp_file}" ) with open(__magic_name__ , "wb" ) as handle: pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
311
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __snake_case :Optional[int] = logging.get_logger(__name__) __snake_case :Optional[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __snake_case :Any = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __snake_case ( _UpperCAmelCase ): __a = {} with open(_UpperCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_UpperCAmelCase ): __a = line.strip() if line: __a = line.split() __a = line_number __a = words[0] __a = value return result def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for attribute in key.split('''.''' ): __a = getattr(_UpperCAmelCase , _UpperCAmelCase ) __a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCAmelCase ): __a = PARAM_MAPPING[full_name.split('''.''' )[-1]] __a = "param" if weight_type is not None and weight_type != "param": __a = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape elif weight_type is not None and weight_type == "param": __a = hf_pointer for attribute in hf_param_name.split('''.''' ): __a = getattr(_UpperCAmelCase , _UpperCAmelCase ) __a = shape_pointer.shape # let's reduce dimension __a = value[0] else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __a = getattr(_UpperCAmelCase , _UpperCAmelCase ) __a = value else: __a = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCAmelCase ): __a = PARAM_MAPPING[full_name.split('''.''' )[-1]] __a = "param" if weight_type is not None and weight_type != "param": __a = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __a = ".".join([key, hf_param_name] ) else: __a = key __a = value if "lm_head" in full_key else value[0] __snake_case :Dict = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __a = False for key, mapped_key in MAPPING.items(): __a = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __a = True if "*" in mapped_key: __a = name.split(_UpperCAmelCase )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , _UpperCAmelCase ) if "weight_g" in name: __a = "weight_g" elif "weight_v" in name: __a = "weight_v" elif "bias" in name: __a = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __a = "weight" else: __a = None if hf_dict is not None: rename_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return is_used return is_used def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = [] __a = fairseq_model.state_dict() __a = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) __a = True else: __a = load_wavaveca_layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_UpperCAmelCase ) @torch.no_grad() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False ): if config_path is not None: __a = WavaVecaConfig.from_pretrained(_UpperCAmelCase ) else: __a = WavaVecaConfig() if is_seq_class: __a = read_txt_into_dict(_UpperCAmelCase ) __a = idalabel __a = WavaVecaForSequenceClassification(_UpperCAmelCase ) __a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) feature_extractor.save_pretrained(_UpperCAmelCase ) elif is_finetuned: if dict_path: __a = Dictionary.load(_UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a = target_dict.pad_index __a = target_dict.bos_index __a = target_dict.eos_index __a = len(target_dict.symbols ) __a = os.path.join(_UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(_UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_UpperCAmelCase ) ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) __a = target_dict.indices # fairseq has the <pad> and <s> switched __a = 0 __a = 1 with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_UpperCAmelCase , _UpperCAmelCase ) __a = WavaVecaCTCTokenizer( _UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_UpperCAmelCase , ) __a = True if config.feat_extract_norm == "layer" else False __a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) __a = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) __a = WavaVecaForCTC(_UpperCAmelCase ) else: __a = WavaVecaForPreTraining(_UpperCAmelCase ) if is_finetuned or is_seq_class: __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __a = argparse.Namespace(task='''audio_pretraining''' ) __a = fairseq.tasks.setup_task(_UpperCAmelCase ) __a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_UpperCAmelCase ) __a = model[0].eval() recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __snake_case :Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) __snake_case :List[str] = parser.parse_args() __snake_case :int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
49
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a : Tuple = ["gpt2"] a : Dict = "gpt2" if is_tf_available(): class UpperCamelCase__ ( tf.Module ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = tokenizer UpperCAmelCase : List[str] = AutoConfig.from_pretrained(snake_case ) UpperCAmelCase : int = TFGPTaLMHeadModel.from_config(snake_case ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case ) UpperCAmelCase : Optional[int] = tokenized["input_ids"].to_tensor() UpperCAmelCase : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase : List[Any] = self.model(input_ids=snake_case , attention_mask=snake_case )["logits"] return outputs @require_tf @require_keras_nlp class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' super().setUp() UpperCAmelCase : Any = [GPTaTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase : Optional[Any] = [TFGPTaTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase : Tuple = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCAmelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def A_ ( self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase : List[Any] = tokenizer([test_inputs] , return_tensors="tf" ) UpperCAmelCase : Any = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase : Dict = python_outputs[key].numpy() UpperCAmelCase : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(snake_case , tf.intaa ) == tf_outputs_values ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Optional[Any] = tf.function(snake_case ) for test_inputs in self.test_sentences: UpperCAmelCase : List[str] = tf.constant(snake_case ) UpperCAmelCase : Dict = compiled_tokenizer(snake_case ) UpperCAmelCase : Union[str, Any] = tf_tokenizer(snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : int = ModelToSave(tokenizer=snake_case ) UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : str = model.serving(snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase : Optional[int] = Path(snake_case ) / "saved.model" tf.saved_model.save(snake_case , snake_case , signatures={"serving_default": model.serving} ) UpperCAmelCase : int = tf.saved_model.load(snake_case ) UpperCAmelCase : str = loaded_model.signatures["serving_default"](snake_case )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case ) # Build model with some sample inputs UpperCAmelCase : Union[str, Any] = tf_tokenizer.get_config() UpperCAmelCase : str = TFGPTaTokenizer.from_config(snake_case ) UpperCAmelCase : Tuple = model_from_config(snake_case ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase : List[str] = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case , max_length=snake_case ) UpperCAmelCase : Union[str, Any] = out["input_ids"].numpy().shape[1] assert out_length == max_length
311
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def snake_case_ ( *a , **a): pass @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): __lowerCamelCase : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def snake_case_ ( self , a , a , a): lowercase__ : str = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection') lowercase__ : Union[str, Any] = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def snake_case_ ( self , a , a): lowercase__ : List[Any] = object_detector(examples[0] , threshold=0.0) lowercase__ : Dict = len(a) self.assertGreater(a , 0) self.assertEqual( a , [ { 'score': ANY(a), 'label': ANY(a), 'box': {'xmin': ANY(a), 'ymin': ANY(a), 'xmax': ANY(a), 'ymax': ANY(a)}, } for i in range(a) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF') def snake_case_ ( self): pass @require_torch def snake_case_ ( self): lowercase__ : Optional[Any] = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection') lowercase__ : Optional[Any] = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(a , decimals=4) , [ {'score': 0.7_235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6_748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6_419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] , ) lowercase__ : Tuple = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(a , decimals=4) , [ [ {'score': 0.7_235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6_748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6_419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ] , ) @require_torch @slow def snake_case_ ( self): lowercase__ : Tuple = pipeline('zero-shot-object-detection') lowercase__ : Optional[int] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(a , decimals=4) , [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ] , ) lowercase__ : Union[str, Any] = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(a , decimals=4) , [ [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF') def snake_case_ ( self): pass @require_torch @slow def snake_case_ ( self): lowercase__ : Any = 0.2 lowercase__ : Union[str, Any] = pipeline('zero-shot-object-detection') lowercase__ : str = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=a , ) self.assertEqual( nested_simplify(a , decimals=4) , [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, ] , ) @require_torch @slow def snake_case_ ( self): lowercase__ : Dict = 2 lowercase__ : Optional[Any] = pipeline('zero-shot-object-detection') lowercase__ : List[str] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=a , ) self.assertEqual( nested_simplify(a , decimals=4) , [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, ] , )
214
'''simple docstring''' import argparse from collections import defaultdict import yaml a : str = "docs/source/en/_toctree.yml" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = defaultdict(__magic_name__ ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] UpperCAmelCase : Dict = [] for duplicate_key in duplicates: UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__magic_name__ ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() ) def lowercase ( __magic_name__=False ): '''simple docstring''' with open(__magic_name__ , encoding="utf-8" ) as f: UpperCAmelCase : Any = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"] # Then to the model doc UpperCAmelCase : Any = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase : str = api_doc[model_idx]["sections"] UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section] UpperCAmelCase : Optional[int] = False for idx, modality_doc in modalities_docs: UpperCAmelCase : int = modality_doc["sections"] UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ ) if old_modality_doc != new_modality_doc: UpperCAmelCase : int = True if overwrite: UpperCAmelCase : Dict = new_modality_doc if diff: if overwrite: UpperCAmelCase : Any = model_doc UpperCAmelCase : Any = api_doc with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
311
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _lowercase : Dict =get_logger(__name__) _lowercase : Optional[Any] =R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class snake_case__ : """simple docstring""" @add_start_docstrings(__lowercase ) def __call__( self , __lowercase , __lowercase ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class snake_case__ : """simple docstring""" @add_start_docstrings(__lowercase ) def __call__( self , __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class snake_case__ (lowercase__ ): """simple docstring""" @add_start_docstrings(__lowercase ) def __call__( self , __lowercase , __lowercase , __lowercase , **__lowercase ) -> Dict: """simple docstring""" for processor in self: a__ : str = inspect.signature(processor.__call__ ).parameters if len(__lowercase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) a__ : Tuple = processor(__lowercase , __lowercase , __lowercase , **__lowercase ) else: a__ : Optional[Any] = processor(__lowercase , __lowercase , __lowercase ) return scores class snake_case__ (lowercase__ ): """simple docstring""" def __init__( self , __lowercase ) -> Optional[int]: """simple docstring""" if not isinstance(__lowercase , __lowercase ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) a__ : Any = temperature def __call__( self , __lowercase , __lowercase , __lowercase ) -> Tuple: """simple docstring""" a__ : int = scores / self.temperature return scores class snake_case__ (lowercase__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase = -float("""Inf""" ) , __lowercase = 1 ) -> Union[str, Any]: """simple docstring""" if not isinstance(__lowercase , __lowercase ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(__lowercase , __lowercase ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) a__ : Optional[int] = top_p a__ : Optional[int] = filter_value a__ : Tuple = min_tokens_to_keep def __call__( self , __lowercase , __lowercase , __lowercase ) -> str: """simple docstring""" a__ : List[str] = lax.top_k(__lowercase , scores.shape[-1] ) a__ : Union[str, Any] = jnp.full_like(__lowercase , self.filter_value ) a__ : Optional[int] = jax.nn.softmax(__lowercase , axis=-1 ).cumsum(axis=-1 ) a__ : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well a__ : Optional[Any] = jnp.roll(__lowercase , 1 ) score_mask |= score_mask.at[:, 0].set(__lowercase ) # min tokens to keep a__ : Any = score_mask.at[:, : self.min_tokens_to_keep].set(__lowercase ) a__ : Union[str, Any] = jnp.where(__lowercase , __lowercase , __lowercase ) a__ : int = jax.lax.sort_key_val(__lowercase , __lowercase )[-1] return next_scores class snake_case__ (lowercase__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase = -float("""Inf""" ) , __lowercase = 1 ) -> int: """simple docstring""" if not isinstance(__lowercase , __lowercase ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) a__ : List[Any] = max(__lowercase , __lowercase ) a__ : Tuple = filter_value def __call__( self , __lowercase , __lowercase , __lowercase ) -> List[Any]: """simple docstring""" a__ : int = scores.shape a__ : Union[str, Any] = jnp.full(batch_size * vocab_size , self.filter_value ) a__ : List[Any] = min(self.top_k , scores.shape[-1] ) # Safety check a__ : Union[str, Any] = lax.top_k(__lowercase , __lowercase ) a__ : Union[str, Any] = jnp.broadcast_to((jnp.arange(__lowercase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() a__ : Tuple = topk_scores.flatten() a__ : List[Any] = topk_indices.flatten() + shift a__ : List[str] = next_scores_flat.at[topk_indices_flat].set(__lowercase ) a__ : int = next_scores_flat.reshape(__lowercase , __lowercase ) return next_scores class snake_case__ (lowercase__ ): """simple docstring""" def __init__( self , __lowercase ) -> str: """simple docstring""" a__ : Optional[int] = bos_token_id def __call__( self , __lowercase , __lowercase , __lowercase ) -> Tuple: """simple docstring""" a__ : str = jnp.full(scores.shape , -float("""inf""" ) ) a__ : List[Any] = 1 - jnp.bool_(cur_len - 1 ) a__ : Dict = jnp.where(__lowercase , new_scores.at[:, self.bos_token_id].set(0 ) , __lowercase ) return scores class snake_case__ (lowercase__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> List[str]: """simple docstring""" a__ : Optional[int] = max_length a__ : List[str] = eos_token_id def __call__( self , __lowercase , __lowercase , __lowercase ) -> List[Any]: """simple docstring""" a__ : List[Any] = jnp.full(scores.shape , -float("""inf""" ) ) a__ : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1 ) a__ : str = jnp.where(__lowercase , new_scores.at[:, self.eos_token_id].set(0 ) , __lowercase ) return scores class snake_case__ (lowercase__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> Any: """simple docstring""" if not isinstance(__lowercase , __lowercase ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(__lowercase , __lowercase ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) a__ : Optional[Any] = min_length a__ : List[str] = eos_token_id def __call__( self , __lowercase , __lowercase , __lowercase ) -> List[Any]: """simple docstring""" a__ : Dict = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) a__ : Tuple = jnp.where(__lowercase , scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) , __lowercase ) return scores class snake_case__ (lowercase__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> str: """simple docstring""" a__ : Union[str, Any] = list(__lowercase ) a__ : List[str] = begin_index def __call__( self , __lowercase , __lowercase , __lowercase ) -> int: """simple docstring""" a__ : Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index ) a__ : str = jnp.where(__lowercase , scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) , __lowercase ) return scores class snake_case__ (lowercase__ ): """simple docstring""" def __init__( self , __lowercase ) -> Any: """simple docstring""" a__ : List[Any] = list(__lowercase ) def __call__( self , __lowercase , __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" a__ : Union[str, Any] = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) ) return scores class snake_case__ (lowercase__ ): """simple docstring""" def __init__( self , __lowercase ) -> Tuple: """simple docstring""" a__ : str = dict(__lowercase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. a__ : Optional[int] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: a__ : str = force_token_array.at[index].set(__lowercase ) a__ : List[Any] = jnp.intaa(__lowercase ) def __call__( self , __lowercase , __lowercase , __lowercase ) -> Union[str, Any]: """simple docstring""" def _force_token(__lowercase ): a__ : Optional[int] = scores.shape[0] a__ : Optional[int] = self.force_token_array[generation_idx] a__ : Tuple = jnp.ones_like(__lowercase , dtype=scores.dtype ) * -float("""inf""" ) a__ : List[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) a__ : Optional[int] = lax.dynamic_update_slice(__lowercase , __lowercase , (0, current_token) ) return new_scores a__ : Union[str, Any] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__lowercase ) , lambda: scores , ) , ) return scores class snake_case__ (lowercase__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase ) -> Any: """simple docstring""" a__ : Any = generate_config.eos_token_id a__ : int = generate_config.no_timestamps_token_id a__ : List[str] = generate_config.no_timestamps_token_id + 1 a__ : str = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__lowercase , """max_initial_timestamp_index""" ): a__ : str = generate_config.max_initial_timestamp_index else: a__ : List[Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: a__ : Optional[Any] = model_config.vocab_size def __call__( self , __lowercase , __lowercase , __lowercase ) -> str: """simple docstring""" a__ : Tuple = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) ) def handle_pairs(__lowercase , __lowercase ): a__ : List[str] = jnp.where((cur_len - self.begin_index) >= 1 , __lowercase , __lowercase ) a__ : Dict = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __lowercase , ) a__ : Any = jnp.where((cur_len - self.begin_index) < 2 , __lowercase , __lowercase ) a__ : Union[str, Any] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __lowercase , __lowercase , ) return jnp.where( __lowercase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) , scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) , ) , __lowercase , ) a__ : Dict = jax.vmap(__lowercase )(__lowercase , __lowercase ) a__ : Optional[int] = jnp.where(cur_len == self.begin_index , __lowercase , __lowercase ) a__ : Optional[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __lowercase , ) a__ : Optional[int] = self.timestamp_begin + self.max_initial_timestamp_index a__ : Tuple = jnp.where( __lowercase , scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) , __lowercase , ) # if sum of probability over timestamps is above any other token, sample timestamp a__ : List[Any] = jax.nn.log_softmax(__lowercase , axis=-1 ) def handle_cumulative_probs(__lowercase , __lowercase ): a__ : List[str] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) a__ : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) , __lowercase , ) a__ : Union[str, Any] = jax.vmap(__lowercase )(__lowercase , __lowercase ) return scores
170
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase ( __magic_name__ ): '''simple docstring''' for param in module.parameters(): UpperCAmelCase : Any = False def lowercase ( ): '''simple docstring''' UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = plt.imshow(__magic_name__ ) fig.axes.get_xaxis().set_visible(__magic_name__ ) fig.axes.get_yaxis().set_visible(__magic_name__ ) plt.show() def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = datetime.now() UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
311
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCamelCase : str = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def SCREAMING_SNAKE_CASE__ ( lowercase = "mumbai" ) -> Optional[Any]: snake_case : Optional[int] = BeautifulSoup(requests.get(url + location ).content ,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" ,attrs={"""data-tn-component""": """organicJob"""} ): snake_case : Dict = job.find("""a""" ,attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() snake_case : Tuple = job.find("""span""" ,{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
124
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) a : str = getLogger(__name__) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 8 , __magic_name__ = 1024 , __magic_name__="val" , __magic_name__=None , __magic_name__=False , __magic_name__="summarization" , __magic_name__=None , __magic_name__=1 , __magic_name__ = None , __magic_name__="" , **__magic_name__ , ): '''simple docstring''' UpperCAmelCase : List[Any] = str(__magic_name__ ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=__magic_name__ ) UpperCAmelCase : List[str] = Path(__magic_name__ ) UpperCAmelCase : Dict = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(__magic_name__ ) UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).cuda() if fpaa: UpperCAmelCase : int = model.half() # determine if we need to increase num_beams use_task_specific_params(__magic_name__ , __magic_name__ ) # update config with task specific params UpperCAmelCase : Dict = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase : Optional[Any] = num_return_sequences UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(__magic_name__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase : Any = tokenizer.model_max_length if prefix is None: UpperCAmelCase : Tuple = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase : Dict = SeqaSeqDataset( __magic_name__ , __magic_name__ , __magic_name__ , max_target_length=1024 , type_path=__magic_name__ , n_obs=__magic_name__ , prefix=__magic_name__ , **__magic_name__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase : int = ds.make_sortish_sampler(__magic_name__ , distributed=__magic_name__ , add_extra_examples=__magic_name__ , shuffle=__magic_name__ ) UpperCAmelCase : List[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn ) UpperCAmelCase : Any = [] for batch in tqdm(__magic_name__ ): UpperCAmelCase : List[Any] = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , **__magic_name__ , ) UpperCAmelCase : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) UpperCAmelCase : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase : List[Any] = chunks(__magic_name__ , __magic_name__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__magic_name__ ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(__magic_name__ , __magic_name__ ) return results, sampler.num_replicas def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=__magic_name__ , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=__magic_name__ , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=__magic_name__ , default=__magic_name__ ) parser.add_argument( "--type_path" , type=__magic_name__ , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=__magic_name__ , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=__magic_name__ , default=8 , required=__magic_name__ , help="batch size" ) parser.add_argument( "--local_rank" , type=__magic_name__ , default=-1 , required=__magic_name__ , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=__magic_name__ , default=1 , required=__magic_name__ , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=__magic_name__ , default=600 , required=__magic_name__ , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ ) parser.add_argument("--tgt_lang" , type=__magic_name__ , default=__magic_name__ , required=__magic_name__ ) parser.add_argument( "--prefix" , type=__magic_name__ , required=__magic_name__ , default=__magic_name__ , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase : Union[str, Any] = time.time() UpperCAmelCase , UpperCAmelCase : Dict = parser.parse_known_args() UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(__magic_name__ ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase : Union[str, Any] = Path(args.save_dir + "_tmp" ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) # this handles locking. UpperCAmelCase : List[Any] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase : Optional[Any] = {} if args.src_lang is not None: UpperCAmelCase : List[str] = args.src_lang if args.tgt_lang is not None: UpperCAmelCase : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__magic_name__ ) UpperCAmelCase , UpperCAmelCase : str = eval_data_dir( args.data_dir , __magic_name__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__magic_name__ , **__magic_name__ , ) if args.local_rank <= 0: UpperCAmelCase : List[str] = Path(args.save_dir ) save_dir.mkdir(exist_ok=__magic_name__ ) UpperCAmelCase : str = gather_results_from_each_node(__magic_name__ , __magic_name__ , args.sync_timeout ) UpperCAmelCase : Dict = combine_partial_results(__magic_name__ ) if args.num_return_sequences > 1: UpperCAmelCase : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(__magic_name__ , __magic_name__ ) return UpperCAmelCase : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(__magic_name__ ) as f: UpperCAmelCase : Dict = [x.rstrip() for x in f.readlines()][: len(__magic_name__ )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase : Optional[int] = "translation" in args.task UpperCAmelCase : str = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase : Tuple = "bleu" if calc_bleu else "rouge" UpperCAmelCase : Dict = score_fn(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = len(__magic_name__ ) UpperCAmelCase : Union[str, Any] = time.time() - start_time UpperCAmelCase : Dict = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase : Optional[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase : Dict = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ ) print(__magic_name__ ) write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(__magic_name__ , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(__magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Tuple = [] for partial_result in partial_results: records.extend(__magic_name__ ) UpperCAmelCase : Optional[Any] = sorted(__magic_name__ , key=lambda __magic_name__ : x["id"] ) UpperCAmelCase : List[Any] = [x["pred"] for x in records] return preds def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase : Union[str, Any] = None while (time.time() - start_wait) < timeout: UpperCAmelCase : Dict = list(save_dir.glob("rank_*.json" ) ) if len(__magic_name__ ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase : List[str] = lmap(__magic_name__ , __magic_name__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
311
0
def a ( A__ : Dict , A__ : Union[str, Any] ) -> Tuple: """simple docstring""" return x if y == 0 else greatest_common_divisor(A__ , x % y ) def a ( A__ : List[str] , A__ : Dict ) -> Union[str, Any]: """simple docstring""" return (x * y) // greatest_common_divisor(A__ , A__ ) def a ( A__ : int = 20 ) -> Any: """simple docstring""" _lowercase =1 for i in range(1 , n + 1 ): _lowercase =lcm(A__ , A__ ) return g if __name__ == "__main__": print(f"{solution() = }")
205
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) a : Optional[Any] = ["model.decoder.embed_positions.weights"] def lowercase ( __magic_name__ ): '''simple docstring''' if "emb" in name: UpperCAmelCase : str = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: UpperCAmelCase : int = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: UpperCAmelCase : List[Any] = name.replace("linear1" , "fc1" ) if "linear2" in name: UpperCAmelCase : int = name.replace("linear2" , "fc2" ) if "norm1" in name: UpperCAmelCase : Dict = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: UpperCAmelCase : Any = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: UpperCAmelCase : Union[str, Any] = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: UpperCAmelCase : Dict = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: UpperCAmelCase : List[Any] = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = list(state_dict.keys() ) UpperCAmelCase : List[Any] = {} for key in keys: UpperCAmelCase : Any = state_dict.pop(__magic_name__ ) UpperCAmelCase : str = rename_keys(__magic_name__ ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase : Optional[int] = val[:hidden_size, :] UpperCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase : str = val else: UpperCAmelCase : int = val return state_dict, enc_dec_proj_state_dict def lowercase ( __magic_name__ ): '''simple docstring''' if checkpoint == "small": # default config values UpperCAmelCase : List[Any] = 1024 UpperCAmelCase : Tuple = 24 UpperCAmelCase : Union[str, Any] = 16 elif checkpoint == "medium": UpperCAmelCase : List[Any] = 1536 UpperCAmelCase : Optional[Any] = 48 UpperCAmelCase : List[str] = 24 elif checkpoint == "large": UpperCAmelCase : List[Any] = 2048 UpperCAmelCase : str = 48 UpperCAmelCase : Optional[Any] = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) UpperCAmelCase : Tuple = MusicgenDecoderConfig( hidden_size=__magic_name__ , ffn_dim=hidden_size * 4 , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , ) return config @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__="cpu" ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(__magic_name__ , device=__magic_name__ ) UpperCAmelCase : List[str] = decoder_config_from_checkpoint(__magic_name__ ) UpperCAmelCase : Dict = fairseq_model.lm.state_dict() UpperCAmelCase , UpperCAmelCase : List[str] = rename_state_dict( __magic_name__ , hidden_size=decoder_config.hidden_size ) UpperCAmelCase : Any = TaEncoderModel.from_pretrained("t5-base" ) UpperCAmelCase : Any = EncodecModel.from_pretrained("facebook/encodec_32khz" ) UpperCAmelCase : int = MusicgenForCausalLM(__magic_name__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(__magic_name__ , strict=__magic_name__ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__magic_name__ ) if len(__magic_name__ ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(__magic_name__ ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model UpperCAmelCase : List[Any] = MusicgenForConditionalGeneration(text_encoder=__magic_name__ , audio_encoder=__magic_name__ , decoder=__magic_name__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__magic_name__ ) # check we can do a forward pass UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase : Optional[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase : str = model(input_ids=__magic_name__ , decoder_input_ids=__magic_name__ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("t5-base" ) UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) UpperCAmelCase : Dict = MusicgenProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ ) # set the appropriate bos/pad token ids UpperCAmelCase : List[Any] = 2048 UpperCAmelCase : Tuple = 2048 # set other default generation config params UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate ) UpperCAmelCase : str = True UpperCAmelCase : Tuple = 3.0 if pytorch_dump_folder is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(__magic_name__ ) processor.push_to_hub(__magic_name__ ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) a : int = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
311
0
"""simple docstring""" from __future__ import annotations import math def lowercase_ ( __UpperCAmelCase ) -> Any: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _A = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def lowercase_ ( __UpperCAmelCase ) -> int: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) lowerCAmelCase__ : int = [] for num in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ : int = 0 while 2 * i * i <= odd_composites[num]: lowerCAmelCase__ : int = odd_composites[num] - 2 * i * i if is_prime(__UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__UpperCAmelCase ) == n: return list_nums return [] def lowercase_ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
242
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": a : Union[str, Any] = Accelerator() a : str = (accelerator.state.process_index + 2, 10) a : List[str] = torch.randint(0, 10, shape).to(accelerator.device) a : Optional[int] = "" a : int = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
311
0
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def A__ ( UpperCamelCase ): return x + 2 class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self :int ): A = "x = 3" A = {} A = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result == 3 self.assertDictEqual(__UpperCamelCase , {"x": 3} ) A = "x = y" A = {"y": 5} A = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 5, "y": 5} ) def lowerCamelCase ( self :Optional[int] ): A = "y = add_two(x)" A = {"x": 3} A = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: A = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase ( self :Any ): A = "x = 3" A = {} A = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result == 3 self.assertDictEqual(__UpperCamelCase , {"x": 3} ) def lowerCamelCase ( self :Dict ): A = "test_dict = {'x': x, 'y': add_two(x)}" A = {"x": 3} A = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 5} ) self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowerCamelCase ( self :Union[str, Any] ): A = "x = 3\ny = 5" A = {} A = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 5} ) def lowerCamelCase ( self :Union[str, Any] ): A = "text = f'This is x: {x}.'" A = {"x": 3} A = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__UpperCamelCase , {"x": 3, "text": "This is x: 3."} ) def lowerCamelCase ( self :List[str] ): A = "if x <= 3:\n y = 2\nelse:\n y = 5" A = {"x": 3} A = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 2} ) A = {"x": 8} A = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 8, "y": 5} ) def lowerCamelCase ( self :List[Any] ): A = "test_list = [x, add_two(x)]" A = {"x": 3} A = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [3, 5] ) self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_list": [3, 5]} ) def lowerCamelCase ( self :Dict ): A = "y = x" A = {"x": 3} A = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result == 3 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 3} ) def lowerCamelCase ( self :List[Any] ): A = "test_list = [x, add_two(x)]\ntest_list[1]" A = {"x": 3} A = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_list": [3, 5]} ) A = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" A = {"x": 3} A = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowerCamelCase ( self :Optional[int] ): A = "x = 0\nfor i in range(3):\n x = i" A = {} A = evaluate(__UpperCamelCase , {"range": range} , state=__UpperCamelCase ) assert result == 2 self.assertDictEqual(__UpperCamelCase , {"x": 2, "i": 2} )
292
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def A_ ( *snake_case , **snake_case ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase : Union[str, Any] = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def A_ ( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[Any] = object_detector(examples[0] , threshold=0.0 ) UpperCAmelCase : Dict = len(snake_case ) self.assertGreater(snake_case , 0 ) self.assertEqual( snake_case , [ { "score": ANY(snake_case ), "label": ANY(snake_case ), "box": {"xmin": ANY(snake_case ), "ymin": ANY(snake_case ), "xmax": ANY(snake_case ), "ymax": ANY(snake_case )}, } for i in range(snake_case ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A_ ( self ): '''simple docstring''' pass @require_torch def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase : Optional[Any] = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] , ) UpperCAmelCase : Tuple = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] ] , ) @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" ) UpperCAmelCase : Optional[int] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ] , ) UpperCAmelCase : Union[str, Any] = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A_ ( self ): '''simple docstring''' pass @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = 0.2 UpperCAmelCase : Union[str, Any] = pipeline("zero-shot-object-detection" ) UpperCAmelCase : str = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, ] , ) @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = 2 UpperCAmelCase : Optional[Any] = pipeline("zero-shot-object-detection" ) UpperCAmelCase : List[str] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, ] , )
311
0
from __future__ import annotations class __lowercase : """simple docstring""" def __init__( self , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = data lowerCamelCase = None lowerCamelCase = None def __lowerCamelCase ( lowerCamelCase__ : Dict ): # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __lowerCamelCase ( lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __lowerCamelCase ( ): # Main function for testing. '''simple docstring''' lowerCamelCase = Node(1 ) lowerCamelCase = Node(2 ) lowerCamelCase = Node(3 ) lowerCamelCase = Node(4 ) lowerCamelCase = Node(5 ) lowerCamelCase = Node(6 ) lowerCamelCase = Node(7 ) lowerCamelCase = Node(8 ) lowerCamelCase = Node(9 ) print(is_full_binary_tree(lowerCamelCase__ ) ) print(depth_of_tree(lowerCamelCase__ ) ) print("""Tree is: """ ) display(lowerCamelCase__ ) if __name__ == "__main__": main()
252
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if number > 0: raise ValueError("input must be a negative integer" ) UpperCAmelCase : List[Any] = len(bin(__magic_name__ )[3:] ) UpperCAmelCase : Optional[Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Tuple = ( ( "1" + "0" * (binary_number_length - len(__magic_name__ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
311
0
import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def a ( lowerCamelCase_ ): '''simple docstring''' if hor == 128: lowercase__ = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") lowercase__ = (32, 128, 256) lowercase__ = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: lowercase__ = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") lowercase__ = (32, 64, 128, 256) lowercase__ = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") lowercase__ = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) lowercase__ = model.state_dict() lowercase__ = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_5536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } lowercase__ = UNetaDModel(**lowerCamelCase_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) lowercase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowercase__ = state_dict.pop(lowerCamelCase_ ) hf_value_function.load_state_dict(lowerCamelCase_ ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_5536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } lowercase__ = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) lowercase__ = model lowercase__ = UNetaDModel(**lowerCamelCase_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) lowercase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowercase__ = state_dict.pop(lowerCamelCase_ ) hf_value_function.load_state_dict(lowerCamelCase_ ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
207
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a : int = datasets.load_iris() a : Union[str, Any] = np.array(data["data"]) a : Optional[Any] = np.array(data["target"]) a : List[Any] = data["target_names"] a , a , a , a : Dict = train_test_split(X, y) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' return np.linalg.norm(np.array(__magic_name__ ) - np.array(__magic_name__ ) ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=5 ): '''simple docstring''' UpperCAmelCase : int = zip(__magic_name__ , __magic_name__ ) # List of distances of all points from the point to be classified UpperCAmelCase : List[Any] = [] for data_point in data: UpperCAmelCase : List[str] = euclidean_distance(data_point[0] , __magic_name__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(__magic_name__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCAmelCase : List[str] = Counter(__magic_name__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
311
0
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = get_tests_dir("fixtures/dummy-config.json") class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = 0 def __UpperCAmelCase ( self ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def __UpperCAmelCase ( self ): __a = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): __a = AutoConfig.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): __a = AutoConfig.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): __a = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __a = os.path.join(_a , '''fake-roberta''' ) os.makedirs(_a , exist_ok=_a ) with open(os.path.join(_a , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) __a = AutoConfig.from_pretrained(_a ) self.assertEqual(type(_a ) , _a ) def __UpperCAmelCase ( self ): try: AutoConfig.register('''custom''' , _a ) # Wrong model type will raise an error with self.assertRaises(_a ): AutoConfig.register('''model''' , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoConfig.register('''bert''' , _a ) # Now that the config is registered, it can be used as any other config with the auto-API __a = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ) __a = AutoConfig.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __UpperCAmelCase ( self ): with self.assertRaisesRegex( _a , '''bert-base is not a local folder and is not a valid model identifier''' ): __a = AutoConfig.from_pretrained('''bert-base''' ) def __UpperCAmelCase ( self ): with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __a = AutoConfig.from_pretrained(_a , revision='''aaaaaa''' ) def __UpperCAmelCase ( self ): with self.assertRaisesRegex( _a , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): __a = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def __UpperCAmelCase ( self ): with self.assertRaises(_a ): __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_a ) __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_a ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ) __a = AutoConfig.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def __UpperCAmelCase ( self ): class __lowerCAmelCase ( lowercase__ ): '''simple docstring''' __UpperCAmelCase : str = "new-model" try: AutoConfig.register('''new-model''' , _a ) # If remote code is not set, the default is to use local __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_a ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_a ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
45
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
311
0
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _A ( lowercase__ ): snake_case__ : Optional[int] = (DDIMParallelScheduler,) snake_case__ : Optional[Any] = (("eta", 0.0), ("num_inference_steps", 50)) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" lowercase = { "num_train_timesteps": 1000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def A__ ( self , **__lowerCAmelCase ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**__lowerCAmelCase ) lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = 10, 0.0 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: lowercase = model(__lowerCAmelCase , __lowerCAmelCase ) lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample return sample def A__ ( self ): """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(steps_offset=1 ) lowercase = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def A__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase , beta_end=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase , prediction_type=__lowerCAmelCase , sample_max_value=__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase , eta=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4_7_7_1 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2_4_6_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.0_2 ) ) < 1E-5 def A__ ( self ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter lowercase = self.dummy_sample_deter + 0.1 lowercase = self.dummy_sample_deter - 0.1 lowercase = samplea.shape[0] lowercase = torch.stack([samplea, samplea, samplea] , dim=0 ) lowercase = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 , __lowerCAmelCase ) lowercase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowercase = scheduler.batch_step_no_noise(__lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowerCAmelCase ) lowercase = torch.sum(torch.abs(__lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1E-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1E-3 def A__ ( self ): """simple docstring""" lowercase = self.full_loop() lowercase = torch.sum(torch.abs(__lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1E-3 def A__ ( self ): """simple docstring""" lowercase = self.full_loop(prediction_type="""v_prediction""" ) lowercase = torch.sum(torch.abs(__lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1E-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1E-3 def A__ ( self ): """simple docstring""" lowercase = self.full_loop(set_alpha_to_one=__lowerCAmelCase , beta_start=0.0_1 ) lowercase = torch.sum(torch.abs(__lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1E-3 def A__ ( self ): """simple docstring""" lowercase = self.full_loop(set_alpha_to_one=__lowerCAmelCase , beta_start=0.0_1 ) lowercase = torch.sum(torch.abs(__lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1E-3
197
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowercase ( __magic_name__ , __magic_name__=10 ): '''simple docstring''' UpperCAmelCase : Tuple = [] for _ in range(__magic_name__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowercase ( __magic_name__ , __magic_name__=10 ): '''simple docstring''' UpperCAmelCase : List[str] = [] for step in range(__magic_name__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__magic_name__ , "schedule.bin" ) torch.save(scheduler.state_dict() , __magic_name__ ) UpperCAmelCase : Any = torch.load(__magic_name__ ) scheduler.load_state_dict(__magic_name__ ) return lrs @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' self.assertEqual(len(snake_case ) , len(snake_case ) ) for a, b in zip(snake_case , snake_case ): self.assertAlmostEqual(snake_case , snake_case , delta=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case ) UpperCAmelCase : Any = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase : Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase : List[str] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): UpperCAmelCase : List[Any] = criterion(snake_case , snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case ) UpperCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase : str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase : str = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case , weight_decay=0.0 , relative_step=snake_case , scale_parameter=snake_case , warmup_init=snake_case , ) for _ in range(1_0_0_0 ): UpperCAmelCase : str = criterion(snake_case , snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = nn.Linear(50 , 50 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ : List[Any] = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ : Optional[int] = 10 def A_ ( self , snake_case , snake_case , snake_case , snake_case=None ): '''simple docstring''' self.assertEqual(len(snake_case ) , len(snake_case ) ) for a, b in zip(snake_case , snake_case ): self.assertAlmostEqual(snake_case , snake_case , delta=snake_case , msg=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = {"num_warmup_steps": 2, "num_training_steps": 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) UpperCAmelCase : int = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): UpperCAmelCase , UpperCAmelCase : Any = data UpperCAmelCase : Tuple = scheduler_func(self.optimizer , **snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) UpperCAmelCase : List[str] = unwrap_schedule(snake_case , self.num_steps ) self.assertListAlmostEqual( snake_case , snake_case , tol=1e-2 , msg=f"failed for {scheduler_func} in normal scheduler" , ) UpperCAmelCase : Optional[Any] = scheduler_func(self.optimizer , **snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(snake_case ) # wrap to test picklability of the schedule UpperCAmelCase : Tuple = unwrap_and_save_reload_schedule(snake_case , self.num_steps ) self.assertListEqual(snake_case , snake_case , msg=f"failed for {scheduler_func} in save and reload" ) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = fn def __call__( self , *snake_case , **snake_case ): '''simple docstring''' return self.fn(*snake_case , **snake_case ) @classmethod def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[int] = list(map(self , scheduler.lr_lambdas ) )
311
0
from collections.abc import Callable import numpy as np def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = int(np.ceil((x_end - xa) / step_size ) ) __a = np.zeros((n + 1,) ) __a = ya __a = xa for k in range(_UpperCAmelCase ): __a = y[k] + step_size * ode_func(_UpperCAmelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
49
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig a : Optional[Any] = logging.get_logger(__name__) a : Tuple = "T5Config" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = jnp.zeros_like(__magic_name__ ) UpperCAmelCase : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCAmelCase : str = shifted_input_ids.at[:, 0].set(__magic_name__ ) UpperCAmelCase : Any = jnp.where(shifted_input_ids == -100 , __magic_name__ , __magic_name__ ) return shifted_input_ids class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "mt5" SCREAMING_SNAKE_CASE__ : Dict = MTaConfig class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "mt5" SCREAMING_SNAKE_CASE__ : str = MTaConfig class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = "mt5" SCREAMING_SNAKE_CASE__ : str = MTaConfig
311
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ (lowercase__ , unittest.TestCase ): __lowerCamelCase : Union[str, Any] = DebertaVaTokenizer __lowerCamelCase : Optional[int] = DebertaVaTokenizerFast __lowerCamelCase : str = True __lowerCamelCase : List[Any] = True def snake_case_ ( self): super().setUp() # We have a SentencePiece fixture for testing lowercase__ : Dict = DebertaVaTokenizer(a , unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def snake_case_ ( self , a): lowercase__ : List[str] = "this is a test" lowercase__ : str = "this is a test" return input_text, output_text def snake_case_ ( self): lowercase__ : Dict = "<pad>" lowercase__ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a) , a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a) , a) def snake_case_ ( self): lowercase__ : Dict = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<pad>') self.assertEqual(vocab_keys[1] , '<unk>') self.assertEqual(vocab_keys[-1] , '[PAD]') self.assertEqual(len(a) , 3_0001) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000) def snake_case_ ( self): lowercase__ : Union[str, Any] = " \tHeLLo!how \n Are yoU? " lowercase__ : Dict = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on lowercase__ : Dict = DebertaVaTokenizer(a , do_lower_case=a) lowercase__ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) lowercase__ : str = DebertaVaTokenizerFast(a , do_lower_case=a) lowercase__ : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def snake_case_ ( self): pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def snake_case_ ( self): pass def snake_case_ ( self): lowercase__ : List[Any] = "I was born in 92000, and this is falsé." lowercase__ : Dict = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase__ : List[str] = DebertaVaTokenizer(a , split_by_punct=a) lowercase__ : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) lowercase__ : List[str] = DebertaVaTokenizerFast(a , split_by_punct=a) lowercase__ : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) def snake_case_ ( self): lowercase__ : Optional[int] = "I was born in 92000, and this is falsé." lowercase__ : Optional[Any] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase__ : int = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a) lowercase__ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) lowercase__ : Dict = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a) lowercase__ : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) def snake_case_ ( self): lowercase__ : Dict = "I was born in 92000, and this is falsé." lowercase__ : Optional[Any] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on lowercase__ : int = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a) lowercase__ : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) lowercase__ : int = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a) lowercase__ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) def snake_case_ ( self): lowercase__ : Dict = "I was born in 92000, and this is falsé." lowercase__ : Union[str, Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase__ : Optional[Any] = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a) lowercase__ : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) lowercase__ : List[str] = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a) lowercase__ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) def snake_case_ ( self): lowercase__ : Union[str, Any] = " \tHeLLo!how \n Are yoU? " lowercase__ : Any = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on lowercase__ : Tuple = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a) lowercase__ : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) lowercase__ : List[str] = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a) lowercase__ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) def snake_case_ ( self): lowercase__ : str = self.get_tokenizer() lowercase__ : Union[str, Any] = self.get_rust_tokenizer() lowercase__ : Dict = "I was born in 92000, and this is falsé." lowercase__ : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a)) lowercase__ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a)) self.assertListEqual(a , a) lowercase__ : Tuple = tokenizer.encode(a , add_special_tokens=a) lowercase__ : Union[str, Any] = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) lowercase__ : int = self.get_rust_tokenizer() lowercase__ : Tuple = tokenizer.encode(a) lowercase__ : List[Any] = rust_tokenizer.encode(a) self.assertListEqual(a , a) def snake_case_ ( self): lowercase__ : List[Any] = "This is a test" lowercase__ : Tuple = [13, 1, 4398, 25, 21, 1289] lowercase__ : Any = ["▁", "T", "his", "▁is", "▁a", "▁test"] lowercase__ : Union[str, Any] = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] lowercase__ : Dict = DebertaVaTokenizer(a , keep_accents=a) lowercase__ : List[str] = DebertaVaTokenizerFast(a , keep_accents=a) lowercase__ : str = tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) lowercase__ : Optional[Any] = tokenizer.tokenize(a) self.assertListEqual(a , a) lowercase__ : Tuple = tokenizer.convert_ids_to_tokens(a) self.assertListEqual(a , a) lowercase__ : Dict = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) lowercase__ : Optional[int] = rust_tokenizer.tokenize(a) self.assertListEqual(a , a) lowercase__ : Dict = rust_tokenizer.convert_ids_to_tokens(a) self.assertListEqual(a , a) # fmt: off lowercase__ : Tuple = "I was born in 92000, and this is falsé." lowercase__ : List[str] = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ : List[Any] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] lowercase__ : Union[str, Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on lowercase__ : List[str] = tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) lowercase__ : int = tokenizer.tokenize(a) self.assertListEqual(a , a) lowercase__ : List[str] = tokenizer.convert_ids_to_tokens(a) self.assertListEqual(a , a) lowercase__ : Tuple = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) lowercase__ : List[str] = rust_tokenizer.tokenize(a) self.assertListEqual(a , a) lowercase__ : str = rust_tokenizer.convert_ids_to_tokens(a) self.assertListEqual(a , a) def snake_case_ ( self): lowercase__ : Tuple = DebertaVaTokenizer(a) lowercase__ : str = tokenizer.encode('sequence builders') lowercase__ : List[str] = tokenizer.encode('multi-sequence build') lowercase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(a) lowercase__ : Dict = tokenizer.build_inputs_with_special_tokens(a , a) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , a) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , a , ) @slow def snake_case_ ( self): lowercase__ : Optional[Any] = {"input_ids": [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
214
'''simple docstring''' from jiwer import compute_measures import datasets a : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" a : str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" a : Union[str, Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def A_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def A_ ( self , snake_case=None , snake_case=None , snake_case=False ): '''simple docstring''' if concatenate_texts: return compute_measures(snake_case , snake_case )["wer"] else: UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[Any] = 0 for prediction, reference in zip(snake_case , snake_case ): UpperCAmelCase : Tuple = compute_measures(snake_case , snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
311
0
from collections import defaultdict class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : List[str] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 a__ : Tuple = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(__lowercase ) ) ] a__ : Union[str, Any] = defaultdict(__lowercase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 a__ : Tuple = (1 << len(__lowercase )) - 1 def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Optional[Any]: """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement a__ : List[Any] = self.count_ways_until(__lowercase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. a__ : Optional[int] = total_ways_util return self.dp[mask][task_no] def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]: """simple docstring""" for i in range(len(__lowercase ) ): for j in task_performed[i]: self.task[j].append(__lowercase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _lowercase : Dict =5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _lowercase : Any =[[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
170
'''simple docstring''' from functools import lru_cache def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = 2 UpperCAmelCase : str = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__magic_name__ ) if n > 1: factors.add(__magic_name__ ) return factors @lru_cache def lowercase ( __magic_name__ ): '''simple docstring''' return len(unique_prime_factors(__magic_name__ ) ) def lowercase ( __magic_name__ ): '''simple docstring''' return len(set(__magic_name__ ) ) in (0, 1) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = 2 while True: # Increment each value of a generated range UpperCAmelCase : Any = [base + i for i in range(__magic_name__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCAmelCase : Dict = [upf_len(__magic_name__ ) for x in group] checker.append(__magic_name__ ) # If all numbers in the list are equal, return the group variable. if equality(__magic_name__ ): return group # Increment our base variable by 1 base += 1 def lowercase ( __magic_name__ = 4 ): '''simple docstring''' UpperCAmelCase : int = run(__magic_name__ ) return results[0] if len(__magic_name__ ) else None if __name__ == "__main__": print(solution())
311
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" ,[ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(lowercase ,i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 ,4 ), range(4 ,7 ), range(7 ,10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 ,1 ), range(1 ,2 ), range(2 ,3 )]), ] ,) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: snake_case : List[Any] = _distribute_shards(**lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" ,[ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] ,) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : str = _split_gen_kwargs(lowercase ,lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" ,[ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] ,) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: if expected is RuntimeError: with pytest.raises(lowercase ): _number_of_shards_in_gen_kwargs(lowercase ) else: snake_case : str = _number_of_shards_in_gen_kwargs(lowercase ) assert out == expected
124
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
311
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def a ( A__ : List[str] ) -> Dict: """simple docstring""" _lowercase =MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) _lowercase =re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , A__ ) if matches: _lowercase =float(matches[1] ) _lowercase =int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _lowercase =1001 _lowercase ="imagenet-1k-id2label.json" _lowercase ="huggingface/label-files" _lowercase =json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) _lowercase ={int(A__ ) + 1: v for k, v in idalabel.items()} _lowercase ="background" _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def a ( ) -> Dict: """simple docstring""" _lowercase ="http://images.cocodataset.org/val2017/000000039769.jpg" _lowercase =Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def a ( A__ : int , A__ : int , A__ : List[str] , A__ : Union[str, Any]=False ) -> Tuple: """simple docstring""" _lowercase =get_mobilenet_va_config(A__ ) # Load 🤗 model _lowercase =MobileNetVaForImageClassification(A__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(A__ , A__ , A__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _lowercase =MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) _lowercase =image_processor(images=prepare_img() , return_tensors='pt' ) _lowercase =model(**A__ ) _lowercase =outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": _lowercase =torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": _lowercase =torch.tensor([-3.9440, -2.3141, -0.3333] ) else: _lowercase =None if expected_logits is not None: assert torch.allclose(logits[0, :3] , A__ , atol=1e-4 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A__ ) if push_to_hub: print('Pushing to the hub...' ) _lowercase ="google/" + model_name image_processor.push_to_hub(A__ ) model.push_to_hub(A__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowercase_ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
205
'''simple docstring''' # Lint as: python3 import itertools import os import re a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])") a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])") a : str = re.compile(R"(?<!_)_(?!_)") a : List[Any] = re.compile(R"(_{2,})") a : List[Any] = R"^\w+(\.\w+)*$" a : Dict = R"<>:/\|?*" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) return name.lower() def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ ) UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" ) def lowercase ( __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(__magic_name__ ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , __magic_name__ ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(__magic_name__ )}-{split}" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) if filetype_suffix: prefix += F".{filetype_suffix}" UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) return F"{filepath}*" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) if shard_lengths: UpperCAmelCase : Tuple = len(__magic_name__ ) UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )] if filetype_suffix: UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: UpperCAmelCase : int = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
311
0
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowercase_ ( __UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : Dict = np.inf def set_batch_size(__UpperCAmelCase ) -> None: nonlocal batch_size if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = min(__UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Any = min(__UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and feature.dtype == "binary": lowerCAmelCase__ : Optional[int] = min(__UpperCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCAmelCase , __UpperCAmelCase ) return None if batch_size is np.inf else batch_size class _lowerCamelCase ( lowercase__ ): def __init__( self : str , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] = None , UpperCamelCase : str = None , UpperCamelCase : Any = None , UpperCamelCase : Optional[Any] = False , UpperCamelCase : Dict = False , UpperCamelCase : str = None , **UpperCamelCase : Dict , ) -> Dict: """simple docstring""" super().__init__( UpperCamelCase , split=UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase , streaming=UpperCamelCase , num_proc=UpperCamelCase , **UpperCamelCase , ) lowerCAmelCase__ : Optional[Any] = path_or_paths if isinstance(UpperCamelCase , UpperCamelCase ) else {self.split: path_or_paths} lowerCAmelCase__ : str = _PACKAGED_DATASETS_MODULES["parquet"][1] lowerCAmelCase__ : List[Any] = Parquet( cache_dir=UpperCamelCase , data_files=UpperCamelCase , features=UpperCamelCase , hash=UpperCamelCase , **UpperCamelCase , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" if self.streaming: lowerCAmelCase__ : Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCAmelCase__ : int = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Optional[int] = None self.builder.download_and_prepare( download_config=UpperCamelCase , download_mode=UpperCamelCase , verification_mode=UpperCamelCase , base_path=UpperCamelCase , num_proc=self.num_proc , ) lowerCAmelCase__ : Optional[Any] = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase , in_memory=self.keep_in_memory ) return dataset class _lowerCamelCase : def __init__( self : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Optional[int] , ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[Any] = dataset lowerCAmelCase__ : Optional[int] = path_or_buf lowerCAmelCase__ : int = batch_size or get_writer_batch_size(dataset.features ) lowerCAmelCase__ : Dict = parquet_writer_kwargs def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , """wb+""" ) as buffer: lowerCAmelCase__ : List[str] = self._write(file_obj=UpperCamelCase , batch_size=UpperCamelCase , **self.parquet_writer_kwargs ) else: lowerCAmelCase__ : Tuple = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase , **self.parquet_writer_kwargs ) return written def _lowerCAmelCase ( self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , **UpperCamelCase : Tuple ) -> List[str]: """simple docstring""" lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = parquet_writer_kwargs.pop("""path_or_buf""" , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = self.dataset.features.arrow_schema lowerCAmelCase__ : Any = pq.ParquetWriter(UpperCamelCase , schema=UpperCamelCase , **UpperCamelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCamelCase ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): lowerCAmelCase__ : List[Any] = query_table( table=self.dataset._data , key=slice(UpperCamelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCamelCase ) written += batch.nbytes writer.close() return written
242
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) a : Optional[int] = _symbol_database.Default() a : Any = _descriptor_pool.Default().AddSerializedFile( B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) a : Tuple = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: a : str = None a : Optional[Any] = B"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" a : str = 45 a : Any = 15_81 a : List[Any] = 15_17 a : Union[str, Any] = 15_70 a : Optional[Any] = 15_84 a : List[str] = 17_93 a : Optional[Any] = 17_95 a : Tuple = 19_16 a : Optional[Any] = 18_64 a : int = 19_05 a : Optional[Any] = 19_19 a : Union[str, Any] = 24_29 a : List[Any] = 22_08 a : Dict = 24_18 a : Optional[int] = 23_23 a : str = 24_07 # @@protoc_insertion_point(module_scope)
311
0
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _UpperCAmelCase : def __init__( self :Optional[int] , __UpperCamelCase :List[str] , __UpperCamelCase :Union[str, Any]=13 , __UpperCamelCase :Tuple=7 , __UpperCamelCase :int=True , __UpperCamelCase :List[Any]=True , __UpperCamelCase :Optional[int]=True , __UpperCamelCase :Dict=True , __UpperCamelCase :str=99 , __UpperCamelCase :Optional[int]=64 , __UpperCamelCase :Tuple=32 , __UpperCamelCase :List[Any]=5 , __UpperCamelCase :Any=4 , __UpperCamelCase :Optional[Any]=37 , __UpperCamelCase :List[str]="gelu" , __UpperCamelCase :Any=0.1 , __UpperCamelCase :Dict=0.1 , __UpperCamelCase :List[str]=5_12 , __UpperCamelCase :Tuple=16 , __UpperCamelCase :Union[str, Any]=2 , __UpperCamelCase :List[str]=0.02 , __UpperCamelCase :Dict=3 , __UpperCamelCase :Dict=4 , __UpperCamelCase :Tuple=None , ): A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = embedding_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = scope def lowerCamelCase ( self :str ): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self :Optional[int] ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self :int , __UpperCamelCase :Optional[int] , __UpperCamelCase :Optional[int] , __UpperCamelCase :Any , __UpperCamelCase :Any , __UpperCamelCase :Any , __UpperCamelCase :Optional[int] , __UpperCamelCase :Tuple ): A = MegatronBertModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) A = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase ( self :Any , __UpperCamelCase :Dict , __UpperCamelCase :Tuple , __UpperCamelCase :List[Any] , __UpperCamelCase :str , __UpperCamelCase :Optional[int] , __UpperCamelCase :int , __UpperCamelCase :Optional[Any] ): A = MegatronBertForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self :str , __UpperCamelCase :Optional[Any] , __UpperCamelCase :int , __UpperCamelCase :Optional[Any] , __UpperCamelCase :List[str] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Optional[Any] , __UpperCamelCase :List[Any] ): A = MegatronBertForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self :int , __UpperCamelCase :Tuple , __UpperCamelCase :Tuple , __UpperCamelCase :str , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :List[Any] , __UpperCamelCase :str , __UpperCamelCase :str ): A = MegatronBertForNextSentencePrediction(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :Optional[Any] , __UpperCamelCase :str , __UpperCamelCase :int , __UpperCamelCase :int , __UpperCamelCase :int , __UpperCamelCase :List[str] , __UpperCamelCase :Union[str, Any] ): A = MegatronBertForPreTraining(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , next_sentence_label=__UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase ( self :List[str] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Optional[int] , __UpperCamelCase :List[str] , __UpperCamelCase :Dict , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :List[Any] , __UpperCamelCase :Optional[Any] ): A = MegatronBertForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :int , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Optional[Any] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :int , __UpperCamelCase :List[Any] , __UpperCamelCase :Optional[Any] ): A = self.num_labels A = MegatronBertForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self :List[Any] , __UpperCamelCase :Optional[int] , __UpperCamelCase :str , __UpperCamelCase :int , __UpperCamelCase :List[str] , __UpperCamelCase :int , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :List[str] ): A = self.num_labels A = MegatronBertForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self :Dict , __UpperCamelCase :List[str] , __UpperCamelCase :int , __UpperCamelCase :str , __UpperCamelCase :int , __UpperCamelCase :List[Any] , __UpperCamelCase :Optional[int] , __UpperCamelCase :List[str] ): A = self.num_choices A = MegatronBertForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self :List[str] ): A = self.prepare_config_and_inputs() ( A ) = config_and_inputs A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowercase__ , lowercase__ , unittest.TestCase ): UpperCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True # test_resize_embeddings = False UpperCamelCase = False def lowerCamelCase ( self :Union[str, Any] , __UpperCamelCase :int , __UpperCamelCase :Tuple , __UpperCamelCase :int=False ): A = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): A = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase ) A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def lowerCamelCase ( self :Any ): A = MegatronBertModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def lowerCamelCase ( self :int ): self.config_tester.run_common_tests() def lowerCamelCase ( self :List[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__UpperCamelCase ) def lowerCamelCase ( self :str ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__UpperCamelCase ) def lowerCamelCase ( self :List[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__UpperCamelCase ) def lowerCamelCase ( self :List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__UpperCamelCase ) def lowerCamelCase ( self :Any ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__UpperCamelCase ) def lowerCamelCase ( self :List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__UpperCamelCase ) def lowerCamelCase ( self :List[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__UpperCamelCase ) def lowerCamelCase ( self :Any ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__UpperCamelCase ) def A__ ( UpperCamelCase ): return torch.tensor( UpperCamelCase , dtype=torch.long , device=UpperCamelCase , ) _snake_case : Tuple = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): @slow @unittest.skip("Model is not available." ) def lowerCamelCase ( self :Tuple ): A = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: A = os.path.join(os.environ["MYDIR"] , __UpperCamelCase ) A = MegatronBertModel.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) model.half() A = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): A = model(__UpperCamelCase )[0] A = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , __UpperCamelCase ) A = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): A = output[0, ii, jj] A = expected[3 * ii + jj] A = "ii={} jj={} a={} b={}".format(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.assertTrue(math.isclose(__UpperCamelCase , __UpperCamelCase , rel_tol=__UpperCamelCase , abs_tol=__UpperCamelCase ) , msg=__UpperCamelCase )
292
'''simple docstring''' import argparse import copy def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = {} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase : List[Any] = [] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase : Any = [] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' with open(__magic_name__ ) as f: UpperCAmelCase : List[str] = f.read(1 ) UpperCAmelCase : List[Any] = start_node UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Any = start_node UpperCAmelCase : Optional[Any] = 0 while visiting not in first_solution: UpperCAmelCase : Optional[Any] = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: UpperCAmelCase : Tuple = k[1] UpperCAmelCase : Dict = k[0] first_solution.append(__magic_name__ ) UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ ) UpperCAmelCase : str = best_node first_solution.append(__magic_name__ ) UpperCAmelCase : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for n in solution[1:-1]: UpperCAmelCase : Any = solution.index(__magic_name__ ) for kn in solution[1:-1]: UpperCAmelCase : Dict = solution.index(__magic_name__ ) if n == kn: continue UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ ) UpperCAmelCase : Optional[int] = kn UpperCAmelCase : List[str] = n UpperCAmelCase : str = 0 for k in _tmp[:-1]: UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase : List[Any] = distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = 1 UpperCAmelCase : List[str] = first_solution UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = distance_of_first_solution UpperCAmelCase : Union[str, Any] = solution while count <= iters: UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = 0 UpperCAmelCase : List[str] = neighborhood[index_of_best_solution] UpperCAmelCase : Dict = len(__magic_name__ ) - 1 UpperCAmelCase : Dict = False while not found: UpperCAmelCase : List[Any] = 0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: UpperCAmelCase : int = best_solution[i] UpperCAmelCase : Optional[int] = solution[i] break UpperCAmelCase : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase : List[str] = True UpperCAmelCase : List[Any] = best_solution[:-1] UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase : Union[str, Any] = cost UpperCAmelCase : Tuple = solution else: UpperCAmelCase : Optional[Any] = index_of_best_solution + 1 UpperCAmelCase : str = neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) UpperCAmelCase : int = count + 1 return best_solution_ever, best_cost def lowercase ( __magic_name__=None ): '''simple docstring''' UpperCAmelCase : Dict = generate_neighbours(args.File ) UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution( args.File , __magic_name__ ) UpperCAmelCase , UpperCAmelCase : Any = tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
311
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCAmelCase : Tuple = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), "gpt2": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), "roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "t5": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "wav2vec2": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Union[str, Any]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) lowerCamelCase = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowerCamelCase = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) lowerCamelCase = config_class.from_json_file(lowerCamelCase__ ) lowerCamelCase = True lowerCamelCase = True print(f'Building TensorFlow model from configuration: {config}' ) lowerCamelCase = model_class(lowerCamelCase__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowerCamelCase = cached_file( lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowerCamelCase = load_pytorch_checkpoint_in_tfa_model(lowerCamelCase__ , lowerCamelCase__ ) if compare_with_pt_model: lowerCamelCase = tf_model(tf_model.dummy_inputs , training=lowerCamelCase__ ) # build the network lowerCamelCase = torch.load(lowerCamelCase__ , map_location="""cpu""" ) lowerCamelCase = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowerCamelCase__ , config=lowerCamelCase__ , state_dict=lowerCamelCase__ ) with torch.no_grad(): lowerCamelCase = pt_model(**pt_model.dummy_inputs ) lowerCamelCase = pto[0].numpy() lowerCamelCase = tfo[0].numpy() lowerCamelCase = np.amax(np.abs(np_pt - np_tf ) ) print(f'Max absolute difference between models outputs {diff}' ) assert diff <= 2E-2, f'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(f'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(lowerCamelCase__ , save_format="""h5""" ) def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : str=None , lowerCamelCase__ : int=False , lowerCamelCase__ : int=False , lowerCamelCase__ : int=False , lowerCamelCase__ : List[str]=False , ): '''simple docstring''' if args_model_type is None: lowerCamelCase = list(MODEL_CLASSES.keys() ) else: lowerCamelCase = [args_model_type] for j, model_type in enumerate(lowerCamelCase__ , start=1 ): print("""=""" * 100 ) print(f' Converting model type {j}/{len(lowerCamelCase__ )}: {model_type}' ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) lowerCamelCase = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowerCamelCase = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowerCamelCase = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowerCamelCase__ , lowerCamelCase__ ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f' Skipping finetuned checkpoint {model_shortcut_name}' ) continue lowerCamelCase = model_shortcut_name elif only_convert_finetuned_models: print(f' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( f' Converting checkpoint {i}/{len(lowerCamelCase__ )}: {model_shortcut_name} - model_type {model_type}' ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: lowerCamelCase = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) else: lowerCamelCase = config_shortcut_name if model_shortcut_name in aws_model_maps: lowerCamelCase = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) else: lowerCamelCase = model_shortcut_name if os.path.isfile(lowerCamelCase__ ): lowerCamelCase = "converted_model" convert_pt_checkpoint_to_tf( model_type=lowerCamelCase__ , pytorch_checkpoint_path=lowerCamelCase__ , config_file=lowerCamelCase__ , tf_dump_path=os.path.join(lowerCamelCase__ , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=lowerCamelCase__ , ) if remove_cached_files: os.remove(lowerCamelCase__ ) os.remove(lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") UpperCAmelCase : Tuple = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
252
'''simple docstring''' from collections.abc import Generator from math import sin def lowercase ( __magic_name__ ): '''simple docstring''' if len(__magic_name__ ) != 32: raise ValueError("Input must be of length 32" ) UpperCAmelCase : Union[str, Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowercase ( __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase : Dict = format(__magic_name__ , "08x" )[-8:] UpperCAmelCase : List[str] = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : int = b"" for char in message: bit_string += format(__magic_name__ , "08b" ).encode("utf-8" ) UpperCAmelCase : List[Any] = format(len(__magic_name__ ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__magic_name__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowercase ( __magic_name__ ): '''simple docstring''' if len(__magic_name__ ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__magic_name__ ) , 512 ): UpperCAmelCase : Union[str, Any] = bit_string[pos : pos + 512] UpperCAmelCase : Tuple = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowercase ( __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase : Any = format(__magic_name__ , "032b" ) UpperCAmelCase : int = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__magic_name__ , 2 ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' return (a + b) % 2**32 def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = preprocess(__magic_name__ ) UpperCAmelCase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCAmelCase : List[str] = 0X67452301 UpperCAmelCase : Tuple = 0XEFCDAB89 UpperCAmelCase : List[Any] = 0X98BADCFE UpperCAmelCase : List[str] = 0X10325476 UpperCAmelCase : Dict = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__magic_name__ ): UpperCAmelCase : Optional[Any] = aa UpperCAmelCase : List[Any] = ba UpperCAmelCase : Optional[Any] = ca UpperCAmelCase : Any = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCAmelCase : Tuple = d ^ (b & (c ^ d)) UpperCAmelCase : List[str] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCAmelCase : int = c ^ (d & (b ^ c)) UpperCAmelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: UpperCAmelCase : Any = b ^ c ^ d UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16 else: UpperCAmelCase : Dict = c ^ (b | not_aa(__magic_name__ )) UpperCAmelCase : Dict = (7 * i) % 16 UpperCAmelCase : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCAmelCase : List[Any] = d UpperCAmelCase : Any = c UpperCAmelCase : Dict = b UpperCAmelCase : Union[str, Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCAmelCase : List[str] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : List[Any] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : Optional[int] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : List[str] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
311
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( lowercase__ ): """simple docstring""" lowercase__ = (CMStochasticIterativeScheduler,) lowercase__ = 10 def lowercase__ ( self : List[Any], **lowerCamelCase : int ): '''simple docstring''' lowercase__ = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**lowerCamelCase ) return config def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = 10 lowercase__ = self.get_scheduler_config() lowercase__ = self.scheduler_classes[0](**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) lowercase__ = scheduler.timesteps[0] lowercase__ = scheduler.timesteps[1] lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def lowercase__ ( self : Dict ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = 1 scheduler.set_timesteps(lowerCamelCase ) lowercase__ = scheduler.timesteps lowercase__ = torch.manual_seed(0 ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCamelCase ): # 1. scale model input lowercase__ = scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # 2. predict noise residual lowercase__ = model(lowerCamelCase, lowerCamelCase ) # 3. predict previous sample x_t-1 lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, generator=lowerCamelCase ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(lowerCamelCase ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = [106, 0] scheduler.set_timesteps(timesteps=lowerCamelCase ) lowercase__ = scheduler.timesteps lowercase__ = torch.manual_seed(0 ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input lowercase__ = scheduler.scale_model_input(lowerCamelCase, lowerCamelCase ) # 2. predict noise residual lowercase__ = model(lowerCamelCase, lowerCamelCase ) # 3. predict previous sample x_t-1 lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, generator=lowerCamelCase ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(lowerCamelCase ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = [39, 30, 12, 15, 0] with self.assertRaises(lowerCamelCase, msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = [39, 30, 12, 1, 0] lowercase__ = len(lowerCamelCase ) with self.assertRaises(lowerCamelCase, msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase, timesteps=lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase, msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''', ): scheduler.set_timesteps(timesteps=lowerCamelCase )
207
'''simple docstring''' a : List[str] = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
311
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __lowerCAmelCase ( lowercase__ , lowercase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = "convnextv2" def __init__( self , _a=3 , _a=4 , _a=4 , _a=None , _a=None , _a="gelu" , _a=0.02 , _a=1E-12 , _a=0.0 , _a=224 , _a=None , _a=None , **_a , ): super().__init__(**_a ) __a = num_channels __a = patch_size __a = num_stages __a = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a = [3, 3, 9, 3] if depths is None else depths __a = hidden_act __a = initializer_range __a = layer_norm_eps __a = drop_path_rate __a = image_size __a = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] __a = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
45
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase : Tuple = 192 UpperCAmelCase : str = 768 UpperCAmelCase : List[Any] = 12 UpperCAmelCase : List[Any] = 3 UpperCAmelCase : List[Any] = [800, 1333] UpperCAmelCase : List[str] = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Union[str, Any] = 330 UpperCAmelCase : Union[str, Any] = 14 UpperCAmelCase : Any = 6 UpperCAmelCase : int = 1320 elif "yolos_s" in yolos_name: UpperCAmelCase : Union[str, Any] = 384 UpperCAmelCase : Dict = 1536 UpperCAmelCase : str = 12 UpperCAmelCase : List[str] = 6 elif "yolos_b" in yolos_name: UpperCAmelCase : int = [800, 1344] UpperCAmelCase : Optional[int] = 91 UpperCAmelCase : int = "huggingface/label-files" UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json" UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def lowercase ( __magic_name__ ): '''simple docstring''' if "backbone" in name: UpperCAmelCase : int = name.replace("backbone" , "vit" ) if "cls_token" in name: UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase : Any = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: UpperCAmelCase : str = key.split("." ) UpperCAmelCase : List[Any] = int(key_split[2] ) UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase : Optional[int] = val[:dim, :] UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase : Any = val[-dim:, :] else: UpperCAmelCase : Tuple = val[:dim] UpperCAmelCase : List[str] = val[dim : dim * 2] UpperCAmelCase : Any = val[-dim:] else: UpperCAmelCase : Union[str, Any] = val return orig_state_dict def lowercase ( ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ ) # load original state_dict UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"] # load 🤗 model UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ ) model.eval() UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512 UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ ) UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase : List[str] = model(**__magic_name__ ) UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None if yolos_name == "yolos_ti": UpperCAmelCase : str = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) UpperCAmelCase : Tuple = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase : Union[str, Any] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) UpperCAmelCase : List[str] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase : List[str] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) UpperCAmelCase : Dict = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Dict = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) UpperCAmelCase : List[Any] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": UpperCAmelCase : str = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: UpperCAmelCase : int = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) UpperCAmelCase : Tuple = model_mapping[yolos_name] image_processor.push_to_hub(__magic_name__ , organization="hustvl" ) model.push_to_hub(__magic_name__ , organization="hustvl" ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
311
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase = len(lowerCAmelCase__ ) + 1 lowercase = len(lowerCAmelCase__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowercase = [[0 for i in range(lowerCAmelCase__ )] for j in range(lowerCAmelCase__ )] # since string of zero length match pattern of zero length lowercase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowerCAmelCase__ ): lowercase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowerCAmelCase__ ): lowercase = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowerCAmelCase__ ): for j in range(1 , lowerCAmelCase__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowercase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowercase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowercase = dp[i - 1][j] else: lowercase = 0 else: lowercase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase : str ="aab" __lowerCAmelCase : Dict ="c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
197
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) a : Tuple = logging.getLogger(__name__) def lowercase ( ): '''simple docstring''' UpperCAmelCase : Any = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=__magic_name__ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=__magic_name__ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=__magic_name__ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=__magic_name__ , default="data/dump" , help="The dump file prefix." ) UpperCAmelCase : List[Any] = parser.parse_args() logger.info(F"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Tuple = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Optional[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"Loading text from {args.file_path}" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: UpperCAmelCase : str = fp.readlines() logger.info("Start encoding" ) logger.info(F"{len(__magic_name__ )} examples to process." ) UpperCAmelCase : int = [] UpperCAmelCase : int = 0 UpperCAmelCase : Union[str, Any] = 1_0000 UpperCAmelCase : Union[str, Any] = time.time() for text in data: UpperCAmelCase : Dict = F"{bos} {text.strip()} {sep}" UpperCAmelCase : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) rslt.append(__magic_name__ ) iter += 1 if iter % interval == 0: UpperCAmelCase : Dict = time.time() logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) UpperCAmelCase : Any = time.time() logger.info("Finished binarization" ) logger.info(F"{len(__magic_name__ )} examples processed." ) UpperCAmelCase : str = F"{args.dump_file}.{args.tokenizer_name}.pickle" UpperCAmelCase : List[str] = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase : int = [np.uintaa(__magic_name__ ) for d in rslt] else: UpperCAmelCase : int = [np.intaa(__magic_name__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"Dump to {dp_file}" ) with open(__magic_name__ , "wb" ) as handle: pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
311
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _A : def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : str=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=99 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : Any=5 , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : Tuple=37 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=512 , __SCREAMING_SNAKE_CASE : Optional[int]=16 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : int=None , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length]) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __a = ids_tensor([self.batch_size] , self.num_choices) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Dict): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , use_stable_embedding=__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = OpenLlamaModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' __a = True __a = OpenLlamaModel(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' __a = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __a = True __a = True __a = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() # first forward pass __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , ) __a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size) __a = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1) __a = torch.cat([input_mask, next_mask] , dim=-1) __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )["hidden_states"][0] __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )["hidden_states"][0] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1]).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.prepare_config_and_inputs() ( __a ) = config_and_inputs __a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _A ( lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ): UpperCamelCase__ : int = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) UpperCamelCase__ : Union[str, Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () UpperCamelCase__ : str = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : Any = False UpperCamelCase__ : Optional[int] = False def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = OpenLlamaModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37) def _lowerCamelCase ( self : List[str]): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = input_dict["input_ids"] __a = input_ids.ne(1).to(__SCREAMING_SNAKE_CASE) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __a = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = "single_label_classification" __a = input_dict["input_ids"] __a = input_ids.ne(1).to(__SCREAMING_SNAKE_CASE) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __a = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = "multi_label_classification" __a = input_dict["input_ids"] __a = input_ids.ne(1).to(__SCREAMING_SNAKE_CASE) __a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __a = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''') def _lowerCamelCase ( self : str): '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)]) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ids_tensor([1, 10] , config.vocab_size) __a = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights __a = OpenLlamaModel(__SCREAMING_SNAKE_CASE) original_model.to(__SCREAMING_SNAKE_CASE) original_model.eval() __a = original_model(__SCREAMING_SNAKE_CASE).last_hidden_state __a = original_model(__SCREAMING_SNAKE_CASE).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights __a = {"type": scaling_type, "factor": 10.0} __a = OpenLlamaModel(__SCREAMING_SNAKE_CASE) scaled_model.to(__SCREAMING_SNAKE_CASE) scaled_model.eval() __a = scaled_model(__SCREAMING_SNAKE_CASE).last_hidden_state __a = scaled_model(__SCREAMING_SNAKE_CASE).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-5)) else: self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-5))
49
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a : Tuple = ["gpt2"] a : Dict = "gpt2" if is_tf_available(): class UpperCamelCase__ ( tf.Module ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = tokenizer UpperCAmelCase : List[str] = AutoConfig.from_pretrained(snake_case ) UpperCAmelCase : int = TFGPTaLMHeadModel.from_config(snake_case ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case ) UpperCAmelCase : Optional[int] = tokenized["input_ids"].to_tensor() UpperCAmelCase : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase : List[Any] = self.model(input_ids=snake_case , attention_mask=snake_case )["logits"] return outputs @require_tf @require_keras_nlp class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' super().setUp() UpperCAmelCase : Any = [GPTaTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase : Optional[Any] = [TFGPTaTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase : Tuple = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCAmelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def A_ ( self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase : List[Any] = tokenizer([test_inputs] , return_tensors="tf" ) UpperCAmelCase : Any = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase : Dict = python_outputs[key].numpy() UpperCAmelCase : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(snake_case , tf.intaa ) == tf_outputs_values ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Optional[Any] = tf.function(snake_case ) for test_inputs in self.test_sentences: UpperCAmelCase : List[str] = tf.constant(snake_case ) UpperCAmelCase : Dict = compiled_tokenizer(snake_case ) UpperCAmelCase : Union[str, Any] = tf_tokenizer(snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : int = ModelToSave(tokenizer=snake_case ) UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : str = model.serving(snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase : Optional[int] = Path(snake_case ) / "saved.model" tf.saved_model.save(snake_case , snake_case , signatures={"serving_default": model.serving} ) UpperCAmelCase : int = tf.saved_model.load(snake_case ) UpperCAmelCase : str = loaded_model.signatures["serving_default"](snake_case )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case ) # Build model with some sample inputs UpperCAmelCase : Union[str, Any] = tf_tokenizer.get_config() UpperCAmelCase : str = TFGPTaTokenizer.from_config(snake_case ) UpperCAmelCase : Tuple = model_from_config(snake_case ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase : List[str] = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case , max_length=snake_case ) UpperCAmelCase : Union[str, Any] = out["input_ids"].numpy().shape[1] assert out_length == max_length
311
0
from __future__ import annotations def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' lowercase__ : List[str] = str(SCREAMING_SNAKE_CASE_ ) return n == n[::-1] def snake_case__ ( SCREAMING_SNAKE_CASE_ : str = 1_000_000 ): '''simple docstring''' lowercase__ : Tuple = 0 for i in range(1 , SCREAMING_SNAKE_CASE_ ): if is_palindrome(SCREAMING_SNAKE_CASE_ ) and is_palindrome(bin(SCREAMING_SNAKE_CASE_ ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
214
'''simple docstring''' import argparse from collections import defaultdict import yaml a : str = "docs/source/en/_toctree.yml" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = defaultdict(__magic_name__ ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] UpperCAmelCase : Dict = [] for duplicate_key in duplicates: UpperCAmelCase : Union[str, Any] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(__magic_name__ ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(__magic_name__ , key=lambda __magic_name__ : s["title"].lower() ) def lowercase ( __magic_name__=False ): '''simple docstring''' with open(__magic_name__ , encoding="utf-8" ) as f: UpperCAmelCase : Any = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase : Union[str, Any] = content[api_idx]["sections"] # Then to the model doc UpperCAmelCase : Any = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase : str = api_doc[model_idx]["sections"] UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(__magic_name__ ) if "sections" in section] UpperCAmelCase : Optional[int] = False for idx, modality_doc in modalities_docs: UpperCAmelCase : int = modality_doc["sections"] UpperCAmelCase : int = clean_model_doc_toc(__magic_name__ ) if old_modality_doc != new_modality_doc: UpperCAmelCase : int = True if overwrite: UpperCAmelCase : Dict = new_modality_doc if diff: if overwrite: UpperCAmelCase : Any = model_doc UpperCAmelCase : Any = api_doc with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__magic_name__ , allow_unicode=__magic_name__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
311
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _lowercase : int =datasets.load_iris() _lowercase : Union[str, Any] =np.array(data["data"]) _lowercase : Optional[Any] =np.array(data["target"]) _lowercase : List[Any] =data["target_names"] _lowercase : Dict =train_test_split(X, y) def lowerCAmelCase_ ( _lowercase : List[Any] , _lowercase : Dict) -> Optional[int]: """simple docstring""" return np.linalg.norm(np.array(_lowercase) - np.array(_lowercase)) def lowerCAmelCase_ ( _lowercase : str , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : Any , _lowercase : Any=5) -> List[str]: """simple docstring""" a__ : int = zip(_lowercase , _lowercase) # List of distances of all points from the point to be classified a__ : List[Any] = [] for data_point in data: a__ : List[str] = euclidean_distance(data_point[0] , _lowercase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. a__ : Union[str, Any] = [i[1] for i in sorted(_lowercase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified a__ : List[str] = Counter(_lowercase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
170
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase ( __magic_name__ ): '''simple docstring''' for param in module.parameters(): UpperCAmelCase : Any = False def lowercase ( ): '''simple docstring''' UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = plt.imshow(__magic_name__ ) fig.axes.get_xaxis().set_visible(__magic_name__ ) fig.axes.get_yaxis().set_visible(__magic_name__ ) plt.show() def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = datetime.now() UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
311
0
def __snake_case ( __UpperCamelCase : str ): """simple docstring""" assert column_title.isupper() A_ = 0 A_ = len(__UpperCamelCase ) - 1 A_ = 0 while index >= 0: A_ = (ord(column_title[index] ) - 64) * pow(26 ,__UpperCamelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
312
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __a :int = True except ImportError: __a :Optional[Any] = False try: from torch.hub import _get_torch_home __a :Optional[Any] = _get_torch_home() except ImportError: __a :Tuple = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) __a :Optional[Any] = os.path.join(torch_cache_home, 'transformers') __a :int = 'https://cdn.huggingface.co' __a :Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' __a :Optional[Any] = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) __a :str = os.path.join(PATH, 'config.yaml') __a :str = os.path.join(PATH, 'attributes.txt') __a :Optional[Any] = os.path.join(PATH, 'objects.txt') __a :Optional[int] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) __a :Dict = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) __a :List[Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) __a :List[str] = 'pytorch_model.bin' __a :Tuple = 'config.yaml' def __snake_case ( __UpperCamelCase : Optional[Any]=OBJECTS ,__UpperCamelCase : List[str]=ATTRIBUTES ): """simple docstring""" A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) A_ = [] with open(__UpperCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = OrderedDict() with open(__UpperCamelCase ,"rb" ) as f: A_ = pkl.load(__UpperCamelCase )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): A_ = ckp.pop(__UpperCamelCase ) if isinstance(__UpperCamelCase ,np.ndarray ): A_ = torch.tensor(__UpperCamelCase ) else: assert isinstance(__UpperCamelCase ,torch.tensor ), type(__UpperCamelCase ) A_ = v return r class _a : """simple docstring""" _lowerCamelCase : Union[str, Any] = {} def __init__( self : str , UpperCAmelCase : dict , UpperCAmelCase : str = "root" , UpperCAmelCase : List[str]=0 ): A_ = name A_ = level A_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() A_ = copy.deepcopy(UpperCAmelCase ) A_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) A_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) A_ = d def __repr__( self : Optional[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Any ): A_ = val A_ = val A_ = key.split("." ) A_ = len(UpperCAmelCase ) - 1 A_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , ".".join(levels[i:] ) , UpperCAmelCase ) if l == last_level: A_ = val else: A_ = pointer[l] def __A ( self : List[str] ): return self._pointer def __A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : int ): with open(f'''{file_name}''' , "w" ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): with open(f'''{file_name}''' , "w" ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def __A ( UpperCAmelCase : Optional[int] ): with open(UpperCAmelCase ) as stream: A_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self : str ): A_ = " " if self._name != "root": A_ = f'''{t * (self._level-1)}{self._name}:\n''' else: A_ = "" A_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n''' A_ = level return r[:-1] @classmethod def __A ( cls : Optional[Any] , UpperCAmelCase : str , **UpperCAmelCase : str ): A_ , A_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def __A ( cls : int , UpperCAmelCase : str , **UpperCAmelCase : int ): A_ = kwargs.pop("cache_dir" , UpperCAmelCase ) A_ = kwargs.pop("force_download" , UpperCAmelCase ) A_ = kwargs.pop("resume_download" , UpperCAmelCase ) A_ = kwargs.pop("proxies" , UpperCAmelCase ) A_ = kwargs.pop("local_files_only" , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): A_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): A_ = pretrained_model_name_or_path else: A_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached A_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError A_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: A_ = "Can't load config for" raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(UpperCAmelCase ), kwargs def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = torch.load("dump.pt" ,map_location=in_tensor.device ) A_ = in_tensor.numpy() A_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ), ( f'''{sum([1 for x in np.isclose(__UpperCamelCase ,__UpperCamelCase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = urlparse(__UpperCamelCase ) return parsed.scheme in ("http", "https") def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str=True ): """simple docstring""" A_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX A_ = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : int=0 ,__UpperCamelCase : int=None ,): """simple docstring""" A_ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join("{}/{}".format(__UpperCamelCase ,__UpperCamelCase ) for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent A_ = {"user-agent": ua} if resume_size > 0: A_ = "bytes=%d-" % (resume_size,) A_ = requests.get(__UpperCamelCase ,stream=__UpperCamelCase ,proxies=__UpperCamelCase ,headers=__UpperCamelCase ) if response.status_code == 416: # Range not satisfiable return A_ = response.headers.get("Content-Length" ) A_ = resume_size + int(__UpperCamelCase ) if content_length is not None else None A_ = tqdm( unit="B" ,unit_scale=__UpperCamelCase ,total=__UpperCamelCase ,initial=__UpperCamelCase ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__UpperCamelCase ) ) temp_file.write(__UpperCamelCase ) progress.close() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any=None ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : Any=10 ,__UpperCamelCase : int=False ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : str=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = None if not local_files_only: try: A_ = requests.head(__UpperCamelCase ,allow_redirects=__UpperCamelCase ,proxies=__UpperCamelCase ,timeout=__UpperCamelCase ) if response.status_code == 200: A_ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass A_ = url_to_filename(__UpperCamelCase ,__UpperCamelCase ) # get cache path to put the file A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__UpperCamelCase ): return cache_path else: A_ = [ file for file in fnmatch.filter(os.listdir(__UpperCamelCase ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(__UpperCamelCase ) > 0: return os.path.join(__UpperCamelCase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(__UpperCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. A_ = cache_path + ".lock" with FileLock(__UpperCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__UpperCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: A_ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(__UpperCamelCase ,"a+b" ) as f: yield f A_ = _resumable_file_manager if os.path.exists(__UpperCamelCase ): A_ = os.stat(__UpperCamelCase ).st_size else: A_ = 0 else: A_ = partial(tempfile.NamedTemporaryFile ,dir=__UpperCamelCase ,delete=__UpperCamelCase ) A_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,__UpperCamelCase ,temp_file.name ,) http_get( __UpperCamelCase ,__UpperCamelCase ,proxies=__UpperCamelCase ,resume_size=__UpperCamelCase ,user_agent=__UpperCamelCase ,) os.replace(temp_file.name ,__UpperCamelCase ) A_ = {"url": url, "etag": etag} A_ = cache_path + ".json" with open(__UpperCamelCase ,"w" ) as meta_file: json.dump(__UpperCamelCase ,__UpperCamelCase ) return cache_path def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : str=None ): """simple docstring""" A_ = url.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) A_ = url_hash.hexdigest() if etag: A_ = etag.encode("utf-8" ) A_ = shaaaa(__UpperCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : Any=False ,__UpperCamelCase : Optional[int]=None ,__UpperCamelCase : Optional[Any]=False ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Optional[Any]=False ,): """simple docstring""" if cache_dir is None: A_ = TRANSFORMERS_CACHE if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = str(__UpperCamelCase ) if is_remote_url(__UpperCamelCase ): # URL, so get it from the cache (downloading if necessary) A_ = get_from_cache( __UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,user_agent=__UpperCamelCase ,local_files_only=__UpperCamelCase ,) elif os.path.exists(__UpperCamelCase ): # File, and it exists. A_ = url_or_filename elif urlparse(__UpperCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(__UpperCamelCase ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(__UpperCamelCase ) ) if extract_compressed_file: if not is_zipfile(__UpperCamelCase ) and not tarfile.is_tarfile(__UpperCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" A_ , A_ = os.path.split(__UpperCamelCase ) A_ = output_file.replace("." ,"-" ) + "-extracted" A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) if os.path.isdir(__UpperCamelCase ) and os.listdir(__UpperCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions A_ = output_path + ".lock" with FileLock(__UpperCamelCase ): shutil.rmtree(__UpperCamelCase ,ignore_errors=__UpperCamelCase ) os.makedirs(__UpperCamelCase ) if is_zipfile(__UpperCamelCase ): with ZipFile(__UpperCamelCase ,"r" ) as zip_file: zip_file.extractall(__UpperCamelCase ) zip_file.close() elif tarfile.is_tarfile(__UpperCamelCase ): A_ = tarfile.open(__UpperCamelCase ) tar_file.extractall(__UpperCamelCase ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(__UpperCamelCase ) ) return output_path_extracted return output_path def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any="," ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase ) as f: A_ = eval(f.read() ) else: A_ = requests.get(__UpperCamelCase ) try: A_ = requests.json() except Exception: A_ = req.content.decode() assert data is not None, "could not connect" try: A_ = eval(__UpperCamelCase ) except Exception: A_ = data.split("\n" ) req.close() return data def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = requests.get(__UpperCamelCase ) A_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__UpperCamelCase ) with open(__UpperCamelCase ,"rb" ) as stream: A_ = pkl.load(__UpperCamelCase ) A_ = weights.pop("model" ) A_ = {} for k, v in model.items(): A_ = torch.from_numpy(__UpperCamelCase ) if "running_var" in k: A_ = torch.tensor([0] ) A_ = k.replace("running_var" ,"num_batches_tracked" ) A_ = zero return new def __snake_case ( ): """simple docstring""" print(f'''{os.path.abspath(os.path.join(__UpperCamelCase ,os.pardir ) )}/demo.ipynb''' ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int]="RGB" ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): A_ = cva.imread(__UpperCamelCase ) else: A_ = get_image_from_url(__UpperCamelCase ) assert img is not None, f'''could not connect to: {im}''' A_ = cva.cvtColor(__UpperCamelCase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": A_ = img[:, :, ::-1] return img def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[str]=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(__UpperCamelCase ) ,__UpperCamelCase ))
312
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = LxmertConfig.from_json_file(__UpperCamelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) A_ = LxmertForPreTraining(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() ,__UpperCamelCase ) if __name__ == "__main__": __a :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
312
from __future__ import annotations def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(__UpperCamelCase ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
312
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __a :int = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = ['input_features'] def __init__( self : List[Any] , UpperCAmelCase : Optional[Any]=80 , UpperCAmelCase : List[Any]=16000 , UpperCAmelCase : List[str]=160 , UpperCAmelCase : str=30 , UpperCAmelCase : str=400 , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : Union[str, Any]=False , **UpperCAmelCase : List[Any] , ): super().__init__( feature_size=UpperCAmelCase , sampling_rate=UpperCAmelCase , padding_value=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , ) A_ = n_fft A_ = hop_length A_ = chunk_length A_ = chunk_length * sampling_rate A_ = self.n_samples // hop_length A_ = sampling_rate A_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=UpperCAmelCase , norm="slaney" , mel_scale="slaney" , ) def __A ( self : str , UpperCAmelCase : np.array ): A_ = spectrogram( UpperCAmelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) A_ = log_spec[:, :-1] A_ = np.maximum(UpperCAmelCase , log_spec.max() - 8.0 ) A_ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __A ( UpperCAmelCase : List[np.ndarray] , UpperCAmelCase : List[np.ndarray] , UpperCAmelCase : float = 0.0 ): if attention_mask is not None: A_ = np.array(UpperCAmelCase , np.intaa ) A_ = [] for vector, length in zip(UpperCAmelCase , attention_mask.sum(-1 ) ): A_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A_ = padding_value normed_input_values.append(UpperCAmelCase ) else: A_ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[Any] , UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[str] = "max_length" , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , **UpperCAmelCase : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ = isinstance(UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) A_ = is_batched_numpy or ( isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase , np.ndarray ): A_ = np.asarray(UpperCAmelCase , dtype=np.floataa ) elif isinstance(UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ = [np.asarray([raw_speech] ).T] A_ = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding A_ = self.pad( UpperCAmelCase , padding=UpperCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: A_ = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) A_ = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format A_ = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) A_ = [self._np_extract_fbank_features(UpperCAmelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , UpperCAmelCase ): A_ = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for feature in input_features] else: A_ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) A_ = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: A_ = padded_inputs.convert_to_tensors(UpperCAmelCase ) return padded_inputs def __A ( self : Optional[Any] ): A_ = copy.deepcopy(self.__dict__ ) A_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
312
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __a :int = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : int = 101 ): A_ = length def __len__( self : int ): return self.length def __getitem__( self : Optional[int] , UpperCAmelCase : Optional[int] ): return i class _a : """simple docstring""" def __call__( self : Any , UpperCAmelCase : Optional[Any] ): return {"input_ids": torch.tensor(UpperCAmelCase ), "labels": torch.tensor(UpperCAmelCase )} class _a ( nn.Module ): """simple docstring""" def __init__( self : int ): super().__init__() # Add some (unused) params otherwise DDP will complain. A_ = nn.Linear(120 , 80 ) def __A ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Tuple=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _a ( snake_case_ ): """simple docstring""" @require_torch_neuroncore def __A ( self : List[str] ): A_ = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _a ( snake_case_ ): """simple docstring""" @require_torch_multi_gpu def __A ( self : List[str] ): A_ = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __a :Union[str, Any] = HfArgumentParser((TrainingArguments,)) __a :Tuple = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __a :int = DummyDataset(dataset_length) def __snake_case ( __UpperCamelCase : EvalPrediction ): """simple docstring""" A_ = list(range(len(__UpperCamelCase ) ) ) A_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} __a :str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __a :str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Optional[int] = 2 __a :List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Union[str, Any] = None
312
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any]=13 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=99 , UpperCAmelCase : int=24 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : List[Any]=6 , UpperCAmelCase : Any=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : List[str]=512 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=1000 , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = scope A_ = range_bbox def __A ( self : Optional[Any] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ = bbox[i, j, 3] A_ = bbox[i, j, 1] A_ = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ = bbox[i, j, 2] A_ = bbox[i, j, 0] A_ = t A_ = None if self.use_input_mask: A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self : int ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __A ( self : str , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , ): A_ = LiltModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) A_ = model(UpperCAmelCase , bbox=UpperCAmelCase , token_type_ids=UpperCAmelCase ) A_ = model(UpperCAmelCase , bbox=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , ): A_ = self.num_labels A_ = LiltForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , ): A_ = LiltForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : int ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _lowerCamelCase : Optional[Any] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : int = False _lowerCamelCase : Union[str, Any] = False def __A ( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ): return True def __A ( self : Optional[int] ): A_ = LiltModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Union[str, Any] ): self.config_tester.run_common_tests() def __A ( self : Any ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Union[str, Any] ): A_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ = type self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Optional[int] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) def __A ( self : List[str] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) @slow def __A ( self : Optional[Any] ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = LiltModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch @slow class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any ): A_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(UpperCAmelCase ) A_ = torch.tensor([[1, 2]] , device=UpperCAmelCase ) A_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase ) A_ = torch.Size([1, 2, 768] ) A_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase , atol=1E-3 ) )
312
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __a :Any = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = "huggingface/label-files" A_ = "imagenet-1k-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = {v: k for k, v in idalabel.items()} A_ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" A_ = BitConfig( conv_layer=__UpperCamelCase ,num_labels=1000 ,idalabel=__UpperCamelCase ,labelaid=__UpperCamelCase ,) return config def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if "stem.conv" in name: A_ = name.replace("stem.conv" ,"bit.embedder.convolution" ) if "blocks" in name: A_ = name.replace("blocks" ,"layers" ) if "head.fc" in name: A_ = name.replace("head.fc" ,"classifier.1" ) if name.startswith("norm" ): A_ = "bit." + name if "bit" not in name and "classifier" not in name: A_ = "bit.encoder." + name return name def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Tuple=False ): """simple docstring""" A_ = get_config(__UpperCamelCase ) # load original model from timm A_ = create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model A_ = timm_model.state_dict() for key in state_dict.copy().keys(): A_ = state_dict.pop(__UpperCamelCase ) A_ = val.squeeze() if "head" in key else val # load HuggingFace model A_ = BitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # create image processor A_ = create_transform(**resolve_data_config({} ,model=__UpperCamelCase ) ) A_ = transform.transforms A_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A_ = BitImageProcessor( do_resize=__UpperCamelCase ,size={"shortest_edge": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=__UpperCamelCase ,crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} ,do_normalize=__UpperCamelCase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) A_ = prepare_img() A_ = transform(__UpperCamelCase ).unsqueeze(0 ) A_ = processor(__UpperCamelCase ,return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ) # verify logits with torch.no_grad(): A_ = model(__UpperCamelCase ) A_ = outputs.logits print("Logits:" ,logits[0, :3] ) print("Predicted class:" ,model.config.idalabel[logits.argmax(-1 ).item()] ) A_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __a :str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
312
1
def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
312
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __a :Dict = get_logger(__name__) __a :Union[str, Any] = Path(__file__).parent / 'model_card_template.md' __a :Tuple = uuida().hex __a :List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __a :Union[str, Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __a :Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __snake_case ( __UpperCamelCase : Union[Dict, str, None] = None ): """simple docstring""" A_ = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" ,"" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent return ua def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if token is None: A_ = HfFolder.get_token() if organization is None: A_ = whoami(__UpperCamelCase )["name"] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__UpperCamelCase ,"local_rank" ) and args.local_rank not in [-1, 0]: return A_ = args.hub_token if hasattr(__UpperCamelCase ,"hub_token" ) else None A_ = get_full_repo_name(__UpperCamelCase ,token=__UpperCamelCase ) A_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" ,license="apache-2.0" ,library_name="diffusers" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=__UpperCamelCase ,model_name=__UpperCamelCase ,repo_name=__UpperCamelCase ,dataset_name=args.dataset_name if hasattr(__UpperCamelCase ,"dataset_name" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase ,"gradient_accumulation_steps" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta1" ) else None ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta2" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase ,"adam_weight_decay" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase ,"adam_epsilon" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase ,"lr_scheduler" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase ,"lr_warmup_steps" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase ,"ema_inv_gamma" ) else None ,ema_power=args.ema_power if hasattr(__UpperCamelCase ,"ema_power" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase ,"ema_max_decay" ) else None ,mixed_precision=args.mixed_precision ,) A_ = os.path.join(args.output_dir ,"README.md" ) model_card.save(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash A_ = str(Path(__UpperCamelCase ).as_posix() ) A_ = re.search(R"snapshots/([^/]+)/" ,__UpperCamelCase ) if search is None: return None A_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __a :str = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __a :List[Any] = os.path.join(hf_cache_home, 'diffusers') def __snake_case ( __UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: A_ = DIFFUSERS_CACHE if old_cache_dir is None: A_ = old_diffusers_cache A_ = Path(__UpperCamelCase ).expanduser() A_ = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A_ = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase ,__UpperCamelCase ) try: os.symlink(__UpperCamelCase ,__UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __a :Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __a :Optional[int] = 0 else: with open(cache_version_file) as f: try: __a :Dict = int(f.read()) except ValueError: __a :str = 0 if cache_version < 1: __a :Optional[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __a :Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if variant is not None: A_ = weights_name.split("." ) A_ = splits[:-1] + [variant] + splits[-1:] A_ = ".".join(__UpperCamelCase ) return weights_name def __snake_case ( __UpperCamelCase : Optional[Any] ,*, __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int]=None ,): """simple docstring""" A_ = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ): # Load from a PyTorch checkpoint A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ): A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: A_ = hf_hub_download( __UpperCamelCase ,filename=_add_variant(__UpperCamelCase ,__UpperCamelCase ) ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' ,__UpperCamelCase ,) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase ,__UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase ,__UpperCamelCase )}\' so that the correct variant file can be added.''' ,__UpperCamelCase ,) try: # 2. Load model file as usual A_ = hf_hub_download( __UpperCamelCase ,filename=__UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
312
1
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" ,[ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] ,) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : str ): """simple docstring""" A_ = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" ,"w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" ,"w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" ,"w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) A_ = DatasetInfosDict.from_directory(__UpperCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info" ,[ DatasetInfo(), DatasetInfo( description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=42 ,), ] ,) def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : DatasetInfo ): """simple docstring""" A_ = str(__UpperCamelCase ) dataset_info.write_to_directory(__UpperCamelCase ) A_ = DatasetInfo.from_directory(__UpperCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__UpperCamelCase ,"dataset_info.json" ) ) def __snake_case ( ): """simple docstring""" A_ = DatasetInfo( description="foo" ,citation="bar" ,homepage="https://foo.bar" ,license="CC0" ,features=Features({"a": Value("int32" )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train", "num_examples": 42}] ,download_checksums={} ,download_size=1337 ,post_processing_size=442 ,dataset_size=1234 ,size_in_bytes=1337 + 442 + 1234 ,) A_ = dataset_info._to_yaml_dict() assert sorted(__UpperCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) A_ = yaml.safe_dump(__UpperCamelCase ) A_ = yaml.safe_load(__UpperCamelCase ) assert dataset_info_yaml_dict == reloaded def __snake_case ( ): """simple docstring""" A_ = DatasetInfo() A_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" ,[ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=42 ,) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1337 ), } ), ] ,) def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : DatasetInfosDict ): """simple docstring""" A_ = str(__UpperCamelCase ) dataset_infos_dict.write_to_directory(__UpperCamelCase ) A_ = DatasetInfosDict.from_directory(__UpperCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): A_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml A_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__UpperCamelCase ,"README.md" ) )
312
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __a :Any = logging.getLogger() def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = {} A_ = os.path.join(__UpperCamelCase ,"all_results.json" ) if os.path.exists(__UpperCamelCase ): with open(__UpperCamelCase ,"r" ) as f: A_ = json.load(__UpperCamelCase ) else: raise ValueError(f'''can\'t find {path}''' ) return results __a :Optional[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class _a ( snake_case_ ): """simple docstring""" def __A ( self : Dict ): import xla_spawn A_ = self.get_auto_remove_tmp_dir() A_ = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(UpperCAmelCase , "argv" , UpperCAmelCase ): A_ = time() xla_spawn.main() A_ = time() A_ = get_results(UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def __A ( self : Optional[int] ): import xla_spawn A_ = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(UpperCAmelCase , "argv" , UpperCAmelCase ): xla_spawn.main()
312
import functools from typing import Any def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : list[str] ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or len(__UpperCamelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not all( isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie A_ = {} A_ = "WORD_KEEPER" for word in words: A_ = trie for c in word: if c not in trie_node: A_ = {} A_ = trie_node[c] A_ = True A_ = len(__UpperCamelCase ) # Dynamic programming method @functools.cache def is_breakable(__UpperCamelCase : int ) -> bool: if index == len_string: return True A_ = trie for i in range(__UpperCamelCase ,__UpperCamelCase ): A_ = trie_node.get(string[i] ,__UpperCamelCase ) if trie_node is None: return False if trie_node.get(__UpperCamelCase ,__UpperCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
312
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a :Optional[int] = logging.get_logger(__name__) __a :Union[str, Any] = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[Any] = 'vit' def __init__( self : List[str] , UpperCAmelCase : str=768 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Union[str, Any]=3072 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Any=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : List[str]=1E-12 , UpperCAmelCase : Union[str, Any]=224 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : Any=3 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Tuple=16 , **UpperCAmelCase : List[str] , ): super().__init__(**UpperCAmelCase ) A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = layer_norm_eps A_ = image_size A_ = patch_size A_ = num_channels A_ = qkv_bias A_ = encoder_stride class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : int = version.parse('1.11' ) @property def __A ( self : Tuple ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __A ( self : Optional[Any] ): return 1E-4
312
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __a :List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __a :Union[str, Any] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __a :Optional[int] = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } __a :str = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = ElectraTokenizer def __init__( self : Tuple , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=True , UpperCAmelCase : Any="[UNK]" , UpperCAmelCase : Union[str, Any]="[SEP]" , UpperCAmelCase : List[Any]="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : List[Any]="[MASK]" , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Union[str, Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
312
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __a :Dict = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : List[Any] ): warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
312
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __a :Optional[Any] = logging.get_logger(__name__) __a :Dict[Optional[str], Type[Formatter]] = {} __a :Dict[Optional[str], str] = {} __a :Dict[Optional[str], Exception] = {} def __snake_case ( __UpperCamelCase : type ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ,): """simple docstring""" A_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) A_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) A_ = format_type def __snake_case ( __UpperCamelCase : Exception ,__UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[List[str]] = None ): """simple docstring""" A_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: __a :List[Any] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: __a :List[str] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: __a :Tuple = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __snake_case ( __UpperCamelCase : Optional[str] ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __snake_case ( __UpperCamelCase : Optional[str] ,**__UpperCamelCase : List[Any] ): """simple docstring""" A_ = get_format_type_from_alias(__UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
312
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __a :Tuple = logging.get_logger(__name__) __a :Tuple = {'tokenizer_file': 'tokenizer.json'} __a :Dict = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES _lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : List[str] = ['input_ids', 'attention_mask'] _lowerCamelCase : Any = None def __init__( self : Union[str, Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : Optional[int]="<pad>" , UpperCAmelCase : Any=False , UpperCAmelCase : Optional[Any]=False , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , pad_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: A_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) A_ = add_prefix_space A_ = pre_tok_class(**UpperCAmelCase ) A_ = add_prefix_space def __A ( self : List[str] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ): A_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' " pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): A_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' " pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def __A ( self : int , UpperCAmelCase : "Conversation" ): A_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: A_ = input_ids[-self.model_max_length :] return input_ids
312
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a :int = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
312
1
import sys import turtle def __snake_case ( __UpperCamelCase : tuple[float, float] ,__UpperCamelCase : tuple[float, float] ): """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __snake_case ( __UpperCamelCase : tuple[float, float] ,__UpperCamelCase : tuple[float, float] ,__UpperCamelCase : tuple[float, float] ,__UpperCamelCase : int ,): """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) if depth == 0: return triangle(__UpperCamelCase ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,depth - 1 ) triangle(__UpperCamelCase ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,depth - 1 ) triangle(__UpperCamelCase ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,get_mid(__UpperCamelCase ,__UpperCamelCase ) ,depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) __a :Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') __a :str = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
312
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()} ) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def __A ( self : str , UpperCAmelCase : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , UpperCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) A_ = copy.deepcopy(self ) A_ = self.label_schema.copy() A_ = features[self.label_column] A_ = label_schema return task_template @property def __A ( self : List[str] ): return { self.audio_column: "audio", self.label_column: "labels", }
312
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : int = CustomTokenizer pass
312
def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,16 ) for i in range(0 ,len(__UpperCamelCase ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
312
1
from __future__ import annotations import math def __snake_case ( __UpperCamelCase : list ,__UpperCamelCase : list ): """simple docstring""" if len(__UpperCamelCase ) != 2 or len(a[0] ) != 2 or len(__UpperCamelCase ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) A_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __snake_case ( __UpperCamelCase : list ,__UpperCamelCase : list ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def __snake_case ( __UpperCamelCase : list ,__UpperCamelCase : list ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def __snake_case ( __UpperCamelCase : list ): """simple docstring""" if len(__UpperCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) A_ = len(__UpperCamelCase ) A_ = matrix_length // 2 A_ = [[a[i][j] for j in range(__UpperCamelCase ,__UpperCamelCase )] for i in range(__UpperCamelCase )] A_ = [ [a[i][j] for j in range(__UpperCamelCase ,__UpperCamelCase )] for i in range(__UpperCamelCase ,__UpperCamelCase ) ] A_ = [[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase )] A_ = [[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase ,__UpperCamelCase )] return top_left, top_right, bot_left, bot_right def __snake_case ( __UpperCamelCase : list ): """simple docstring""" return len(__UpperCamelCase ), len(matrix[0] ) def __snake_case ( __UpperCamelCase : list ): """simple docstring""" print("\n".join(str(__UpperCamelCase ) for line in matrix ) ) def __snake_case ( __UpperCamelCase : list ,__UpperCamelCase : list ): """simple docstring""" if matrix_dimensions(__UpperCamelCase ) == (2, 2): return default_matrix_multiplication(__UpperCamelCase ,__UpperCamelCase ) A_ , A_ , A_ , A_ = split_matrix(__UpperCamelCase ) A_ , A_ , A_ , A_ = split_matrix(__UpperCamelCase ) A_ = actual_strassen(__UpperCamelCase ,matrix_subtraction(__UpperCamelCase ,__UpperCamelCase ) ) A_ = actual_strassen(matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) A_ = actual_strassen(matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) A_ = actual_strassen(__UpperCamelCase ,matrix_subtraction(__UpperCamelCase ,__UpperCamelCase ) ) A_ = actual_strassen(matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ,matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ) A_ = actual_strassen(matrix_subtraction(__UpperCamelCase ,__UpperCamelCase ) ,matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ) A_ = actual_strassen(matrix_subtraction(__UpperCamelCase ,__UpperCamelCase ) ,matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ) A_ = matrix_addition(matrix_subtraction(matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) ,__UpperCamelCase ) A_ = matrix_addition(__UpperCamelCase ,__UpperCamelCase ) A_ = matrix_addition(__UpperCamelCase ,__UpperCamelCase ) A_ = matrix_subtraction(matrix_subtraction(matrix_addition(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) ,__UpperCamelCase ) # construct the new matrix from our 4 quadrants A_ = [] for i in range(len(__UpperCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__UpperCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def __snake_case ( __UpperCamelCase : list ,__UpperCamelCase : list ): """simple docstring""" if matrix_dimensions(__UpperCamelCase )[1] != matrix_dimensions(__UpperCamelCase )[0]: A_ = ( "Unable to multiply these matrices, please check the dimensions.\n" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__UpperCamelCase ) A_ = matrix_dimensions(__UpperCamelCase ) A_ = matrix_dimensions(__UpperCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] A_ = max(*__UpperCamelCase ,*__UpperCamelCase ) A_ = int(math.pow(2 ,math.ceil(math.loga(__UpperCamelCase ) ) ) ) A_ = matrixa A_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,__UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,__UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,__UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) A_ = actual_strassen(__UpperCamelCase ,__UpperCamelCase ) # Removing the additional zeros for i in range(0 ,__UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,__UpperCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": __a :str = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] __a :List[str] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
312
import cva import numpy as np class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : float , UpperCAmelCase : int ): if k in (0.04, 0.06): A_ = k A_ = window_size else: raise ValueError("invalid k value" ) def __str__( self : Optional[Any] ): return str(self.k ) def __A ( self : int , UpperCAmelCase : str ): A_ = cva.imread(UpperCAmelCase , 0 ) A_ , A_ = img.shape A_ = [] A_ = img.copy() A_ = cva.cvtColor(UpperCAmelCase , cva.COLOR_GRAY2RGB ) A_ , A_ = np.gradient(UpperCAmelCase ) A_ = dx**2 A_ = dy**2 A_ = dx * dy A_ = 0.04 A_ = self.window_size // 2 for y in range(UpperCAmelCase , h - offset ): for x in range(UpperCAmelCase , w - offset ): A_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = (wxx * wyy) - (wxy**2) A_ = wxx + wyy A_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __a :List[str] = HarrisCorner(0.04, 3) __a , __a :str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
312
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __a :Optional[int] = pytest.mark.integration @pytest.mark.parametrize("path" ,["paws", "csv"] ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" inspect_dataset(__UpperCamelCase ,__UpperCamelCase ) A_ = path + ".py" assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" ,["accuracy"] ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : int ): """simple docstring""" inspect_metric(__UpperCamelCase ,__UpperCamelCase ) A_ = path + ".py" assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.parametrize( "path, config_name, expected_splits" ,[ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] ,) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : Tuple ,__UpperCamelCase : Dict ): """simple docstring""" A_ = get_dataset_config_info(__UpperCamelCase ,config_name=__UpperCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" ,[ ("paws", None, ValueError), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : int ,__UpperCamelCase : Any ): """simple docstring""" with pytest.raises(__UpperCamelCase ): get_dataset_config_info(__UpperCamelCase ,config_name=__UpperCamelCase ) @pytest.mark.parametrize( "path, expected" ,[ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] ,) def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int] ): """simple docstring""" A_ = get_dataset_config_names(__UpperCamelCase ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" ,[ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] ,) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = get_dataset_infos(__UpperCamelCase ) assert list(infos.keys() ) == expected_configs A_ = expected_configs[0] assert expected_config in infos A_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" ,[ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = get_dataset_infos(__UpperCamelCase ) assert expected_config in infos A_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" ,[ ("paws", None, ValueError), ] ,) def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : List[Any] ,__UpperCamelCase : int ): """simple docstring""" with pytest.raises(__UpperCamelCase ): get_dataset_split_names(__UpperCamelCase ,config_name=__UpperCamelCase )
312
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
312
1
def __snake_case ( __UpperCamelCase : int = 100 ): """simple docstring""" A_ = n * (n + 1) * (2 * n + 1) / 6 A_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"{solution() = }")
312
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['image_processor', 'tokenizer'] _lowerCamelCase : Tuple = 'OwlViTImageProcessor' _lowerCamelCase : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any ): A_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) A_ = kwargs.pop("feature_extractor" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="max_length" , UpperCAmelCase : Optional[Any]="np" , **UpperCAmelCase : Optional[int] ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCAmelCase , UpperCAmelCase ) or (isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(text[0] , UpperCAmelCase )): A_ = [self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )] elif isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(text[0] , UpperCAmelCase ): A_ = [] # Maximum number of queries across batch A_ = max([len(UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase ) != max_num_queries: A_ = t + [" "] * (max_num_queries - len(UpperCAmelCase )) A_ = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) encodings.append(UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": A_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) A_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) A_ = BatchEncoding() A_ = input_ids A_ = attention_mask if query_images is not None: A_ = BatchEncoding() A_ = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ).pixel_values A_ = query_pixel_values if images is not None: A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def __A ( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ): return self.image_processor.post_process(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : str , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): return self.image_processor.post_process_object_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : int ): return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def __A ( self : Optional[Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
312
1
__a :List[Any] = tuple[float, float, float] __a :Optional[Any] = tuple[float, float, float] def __snake_case ( __UpperCamelCase : Pointad ,__UpperCamelCase : Pointad ): """simple docstring""" A_ = end_pointa[0] - end_pointa[0] A_ = end_pointa[1] - end_pointa[1] A_ = end_pointa[2] - end_pointa[2] return (x, y, z) def __snake_case ( __UpperCamelCase : Vectorad ,__UpperCamelCase : Vectorad ): """simple docstring""" A_ = ab[1] * ac[2] - ab[2] * ac[1] # *i A_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j A_ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __snake_case ( __UpperCamelCase : Vectorad ,__UpperCamelCase : int ): """simple docstring""" return tuple(round(__UpperCamelCase ,__UpperCamelCase ) for x in vector ) == (0, 0, 0) def __snake_case ( __UpperCamelCase : Pointad ,__UpperCamelCase : Pointad ,__UpperCamelCase : Pointad ,__UpperCamelCase : int = 10 ): """simple docstring""" A_ = create_vector(__UpperCamelCase ,__UpperCamelCase ) A_ = create_vector(__UpperCamelCase ,__UpperCamelCase ) return is_zero_vector(get_ad_vectors_cross(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase )
312
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Dict , UpperCAmelCase : int = 768 , ): super().__init__() A_ = nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) A_ = nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def __A ( self : str , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ): A_ = nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) A_ = nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def __A ( self : Dict , UpperCAmelCase : List[Any] ): A_ = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self : int , UpperCAmelCase : int ): A_ = (embeds * self.std) + self.mean return embeds
312
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a :Union[str, Any] = logging.get_logger(__name__) __a :str = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'roberta-prelayernorm' def __init__( self : List[Any] , UpperCAmelCase : List[Any]=50265 , UpperCAmelCase : Dict=768 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=3072 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Optional[int]=512 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : str=1 , UpperCAmelCase : Dict=0 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]="absolute" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : int , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = layer_norm_eps A_ = position_embedding_type A_ = use_cache A_ = classifier_dropout class _a ( snake_case_ ): """simple docstring""" @property def __A ( self : str ): if self.task == "multiple-choice": A_ = {0: "batch", 1: "choice", 2: "sequence"} else: A_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
312
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __snake_case ( __UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ,): """simple docstring""" A_ , A_ = coefficient_matrix.shape A_ , A_ = constant_matrix.shape if rowsa != colsa: A_ = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if colsa != 1: A_ = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if rowsa != rowsa: A_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: A_ = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(__UpperCamelCase )} and {rowsa}''' ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) A_ = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) A_ , A_ = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): A_ = [] for row in range(__UpperCamelCase ): A_ = 0 for col in range(__UpperCamelCase ): if col == row: A_ = table[row][col] elif col == cols - 1: A_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ = (temp + val) / denom new_val.append(__UpperCamelCase ) A_ = new_val return [float(__UpperCamelCase ) for i in new_val] def __snake_case ( __UpperCamelCase : NDArray[floataa] ): """simple docstring""" A_ , A_ = table.shape A_ = True for i in range(0 ,__UpperCamelCase ): A_ = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
312
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __snake_case ( ): """simple docstring""" A_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } A_ = Dataset.from_dict(__UpperCamelCase ) return dataset class _a ( snake_case_ ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = get_dataset() A_ = make_duplicate_clusters(UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __A ( self : List[Any] ): A_ = get_dataset() A_ , A_ = deduplicate_dataset(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 2 ) print(UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , UpperCAmelCase )
312
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __snake_case ( ): """simple docstring""" A_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } A_ = Dataset.from_dict(__UpperCamelCase ) return dataset class _a ( snake_case_ ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = get_dataset() A_ = make_duplicate_clusters(UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __A ( self : List[Any] ): A_ = get_dataset() A_ , A_ = deduplicate_dataset(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 2 ) print(UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , UpperCAmelCase )
312
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __a :Any = None __a :List[str] = logging.get_logger(__name__) __a :Dict = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __a :List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } __a :str = { 'google/fnet-base': 512, 'google/fnet-large': 512, } __a :Optional[Any] = '▁' class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Any = ['input_ids', 'token_type_ids'] _lowerCamelCase : List[Any] = FNetTokenizer def __init__( self : List[Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Dict=True , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : int="[SEP]" , UpperCAmelCase : Optional[Any]="<pad>" , UpperCAmelCase : Optional[Any]="[CLS]" , UpperCAmelCase : Dict="[MASK]" , **UpperCAmelCase : Dict , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A_ = ( AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase , normalized=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token ) super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) A_ = do_lower_case A_ = remove_space A_ = keep_accents A_ = vocab_file A_ = False if not self.vocab_file else True def __A ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self : Dict , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
312
import os from typing import Dict, List, Tuple, TypeVar, Union __a :Any = TypeVar('T') __a :Union[str, Any] = Union[List[T], Tuple[T, ...]] __a :List[str] = Union[T, List[T], Dict[str, T]] __a :Any = Union[str, bytes, os.PathLike]
312
1
import colorsys from PIL import Image # type: ignore def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : int ): """simple docstring""" A_ = x A_ = y for step in range(__UpperCamelCase ): # noqa: B007 A_ = a * a - b * b + x A_ = 2 * a * b + y A_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __snake_case ( __UpperCamelCase : float ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __snake_case ( __UpperCamelCase : float ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(__UpperCamelCase ,1 ,1 ) ) def __snake_case ( __UpperCamelCase : int = 800 ,__UpperCamelCase : int = 600 ,__UpperCamelCase : float = -0.6 ,__UpperCamelCase : float = 0 ,__UpperCamelCase : float = 3.2 ,__UpperCamelCase : int = 50 ,__UpperCamelCase : bool = True ,): """simple docstring""" A_ = Image.new("RGB" ,(image_width, image_height) ) A_ = img.load() # loop through the image-coordinates for image_x in range(__UpperCamelCase ): for image_y in range(__UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates A_ = figure_width / image_width * image_height A_ = figure_center_x + (image_x / image_width - 0.5) * figure_width A_ = figure_center_y + (image_y / image_height - 0.5) * figure_height A_ = get_distance(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: A_ = get_color_coded_rgb(__UpperCamelCase ) else: A_ = get_black_and_white_rgb(__UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __a :Dict = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
312
__a :Dict = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
312
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __a :List[str] = logging.get_logger(__name__) __a :Union[str, Any] = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[Any] = 'deberta-v2' def __init__( self : Tuple , UpperCAmelCase : Optional[Any]=128100 , UpperCAmelCase : List[Any]=1536 , UpperCAmelCase : Tuple=24 , UpperCAmelCase : List[Any]=24 , UpperCAmelCase : Tuple=6144 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : Any=0 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Any=1E-7 , UpperCAmelCase : Any=False , UpperCAmelCase : List[str]=-1 , UpperCAmelCase : int=0 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Optional[int]="gelu" , **UpperCAmelCase : Optional[Any] , ): super().__init__(**UpperCAmelCase ) A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = relative_attention A_ = max_relative_positions A_ = pad_token_id A_ = position_biased_input # Backwards compatibility if type(UpperCAmelCase ) == str: A_ = [x.strip() for x in pos_att_type.lower().split("|" )] A_ = pos_att_type A_ = vocab_size A_ = layer_norm_eps A_ = kwargs.get("pooler_hidden_size" , UpperCAmelCase ) A_ = pooler_dropout A_ = pooler_hidden_act class _a ( snake_case_ ): """simple docstring""" @property def __A ( self : Dict ): if self.task == "multiple-choice": A_ = {0: "batch", 1: "choice", 2: "sequence"} else: A_ = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def __A ( self : List[str] ): return 12 def __A ( self : Union[str, Any] , UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional["TensorType"] = None , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 40 , UpperCAmelCase : int = 40 , UpperCAmelCase : "PreTrainedTokenizerBase" = None , ): A_ = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
312
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" return sum(e for e in range(3 ,__UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
312
1