code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowercase ( __snake_case : int ): return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowercase ( __snake_case : List[str] ): lowercase_ : Any = create_tensor(UpperCamelCase__ ) lowercase_ : Optional[Any] = gather(UpperCamelCase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowercase ( __snake_case : Dict ): lowercase_ : List[Any] = [state.process_index] lowercase_ : Tuple = gather_object(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == state.num_processes, F'''{gathered_obj}, {len(UpperCamelCase__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), F'''{gathered_obj} != {list(range(state.num_processes ) )}''' def lowercase ( __snake_case : Dict ): lowercase_ : List[str] = create_tensor(UpperCamelCase__ ) lowercase_ : List[Any] = broadcast(UpperCamelCase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowercase ( __snake_case : int ): # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: lowercase_ : Dict = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase_ : Optional[int] = torch.arange(state.num_processes ).to(state.device ) lowercase_ : Union[str, Any] = pad_across_processes(UpperCamelCase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowercase ( __snake_case : Any ): # For now runs on only two processes if state.num_processes != 2: return lowercase_ : List[Any] = create_tensor(UpperCamelCase__ ) lowercase_ : List[str] = reduce(UpperCamelCase__ , '''sum''' ) lowercase_ : Any = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ), F'''{reduced_tensor} != {truth_tensor}''' def lowercase ( __snake_case : str ): # For now runs on only two processes if state.num_processes != 2: return lowercase_ : Tuple = create_tensor(UpperCamelCase__ ) lowercase_ : Optional[int] = reduce(UpperCamelCase__ , '''mean''' ) lowercase_ : int = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ), F'''{reduced_tensor} != {truth_tensor}''' def lowercase ( __snake_case : str ): # For xla_spawn (TPUs) main() def lowercase ( ): lowercase_ : Dict = PartialState() state.print(F'''State: {state}''' ) state.print('''testing gather''' ) test_gather(UpperCamelCase__ ) state.print('''testing gather_object''' ) test_gather_object(UpperCamelCase__ ) state.print('''testing broadcast''' ) test_broadcast(UpperCamelCase__ ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(UpperCamelCase__ ) state.print('''testing reduce_sum''' ) test_reduce_sum(UpperCamelCase__ ) state.print('''testing reduce_mean''' ) test_reduce_mean(UpperCamelCase__ ) if __name__ == "__main__": main()
33
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=2 , _lowerCamelCase=24 , _lowerCamelCase=16 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=None , _lowerCamelCase=2 , _lowerCamelCase=2 , ): UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : Optional[int] = max_length UpperCAmelCase__ : int = num_mel_bins UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : Any = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : List[Any] = scope UpperCAmelCase__ : str = frequency_stride UpperCAmelCase__ : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase__ : str = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase__ : Optional[Any] = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase__ : Dict = frequency_out_dimension * time_out_dimension UpperCAmelCase__ : Dict = num_patches + 2 def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : Dict = self.get_config() return config, input_values, labels def snake_case__ ( self): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Dict = ASTModel(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self): UpperCAmelCase__ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase__ : Any = {"""input_values""": input_values} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , unittest.TestCase ): lowerCAmelCase :int = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase :List[str] = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) lowerCAmelCase :List[Any] = False lowerCAmelCase :Any = False lowerCAmelCase :Optional[int] = False lowerCAmelCase :int = False def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = ASTModelTester(self) UpperCAmelCase__ : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37) def snake_case__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""") def snake_case__ ( self): pass def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCAmelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear)) def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(_lowerCamelCase) UpperCAmelCase__ : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["""input_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase) @slow def snake_case__ ( self): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = ASTModel.from_pretrained(_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) def _UpperCamelCase ( ): UpperCAmelCase__ : Dict = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) UpperCAmelCase__ , UpperCAmelCase__ : int = torchaudio.load(UpperCamelCase__ ) return audio, sampling_rate @require_torch @require_torchaudio class _snake_case ( unittest.TestCase ): @cached_property def snake_case__ ( self): return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""") if is_torchaudio_available() else None ) @slow def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = self.default_feature_extractor UpperCAmelCase__ : List[str] = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""").to(_lowerCamelCase) UpperCAmelCase__ : str = self.default_feature_extractor UpperCAmelCase__ , UpperCAmelCase__ : Dict = prepare_audio() UpperCAmelCase__ : Dict = audio.squeeze().numpy() UpperCAmelCase__ : Union[str, Any] = feature_extractor(_lowerCamelCase , sampling_rate=_lowerCamelCase , return_tensors="""pt""").to(_lowerCamelCase) # forward pass with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**_lowerCamelCase) # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 527)) self.assertEqual(outputs.logits.shape , _lowerCamelCase) UpperCAmelCase__ : Tuple = torch.tensor([-0.8760, -7.0042, -8.6602]).to(_lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4))
163
0
"""simple docstring""" import math def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : Dict = int(math.sqrt(__lowerCAmelCase ) ) # Size of every segment UpperCAmelCase_ : Tuple = [True] * (end + 1) UpperCAmelCase_ : Any = [] while start <= end: if temp[start] is True: in_prime.append(__lowerCAmelCase ) for i in range(start * start, end + 1, __lowerCAmelCase ): UpperCAmelCase_ : Any = False start += 1 prime += in_prime UpperCAmelCase_ : Union[str, Any] = end + 1 UpperCAmelCase_ : Optional[int] = min(2 * end, __lowerCAmelCase ) while low <= n: UpperCAmelCase_ : str = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ : Optional[int] = math.floor(low / each ) * each if t < low: t += each for j in range(__lowerCAmelCase, high + 1, __lowerCAmelCase ): UpperCAmelCase_ : Optional[Any] = False for j in range(len(__lowerCAmelCase ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ : Dict = high + 1 UpperCAmelCase_ : List[str] = min(high + end, __lowerCAmelCase ) return prime print(sieve(10**6))
361
"""simple docstring""" def __a ( __lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase_ : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__lowerCamelCase ) else: UpperCAmelCase_ : List[str] = sylvester(number - 1 ) UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
23
0
from __future__ import annotations def _UpperCAmelCase ( a__ , a__): '''simple docstring''' a_ , a_ : str = position a_ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Union[str, Any] = [] for position in positions: a_ , a_ : List[str] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(a__) return permissible_positions def _UpperCAmelCase ( a__): '''simple docstring''' return not any(elem == 0 for row in board for elem in row) def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' if is_complete(a__): return True for position in get_valid_pos(a__ , len(a__)): a_ , a_ : Optional[int] = position if board[y][x] == 0: a_ : str = curr + 1 if open_knight_tour_helper(a__ , a__ , curr + 1): return True a_ : List[str] = 0 return False def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Dict = [[0 for i in range(a__)] for j in range(a__)] for i in range(a__): for j in range(a__): a_ : List[Any] = 1 if open_knight_tour_helper(a__ , (i, j) , 1): return board a_ : List[str] = 0 a_ : Optional[Any] = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(a__) if __name__ == "__main__": import doctest doctest.testmod()
248
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class A__(a_ ): """simple docstring""" _A : Optional[torch.FloatTensor] = None _A : torch.FloatTensor = None _A : Optional[Tuple[torch.FloatTensor]] = None _A : Optional[Tuple[torch.FloatTensor]] = None class A__(a_ ): """simple docstring""" def __init__( self , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=512 , _lowercase="cls" , _lowercase=False , _lowercase=True , **_lowercase , ) -> Union[str, Any]: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) a_ : str = project_dim a_ : List[Any] = pooler_fn a_ : Union[str, Any] = learn_encoder a_ : List[str] = use_attention_mask class A__(a_ ): """simple docstring""" _A : Any = [r'''pooler''', r'''logit_scale'''] _A : List[str] = [r'''position_ids''', r'''predictions.decoder.bias'''] _A : List[str] = '''roberta''' _A : Union[str, Any] = RobertaSeriesConfig def __init__( self , _lowercase ) -> Optional[Any]: super().__init__(_lowercase ) a_ : Optional[int] = XLMRobertaModel(_lowercase ) a_ : Any = nn.Linear(config.hidden_size , config.project_dim ) a_ : Union[str, Any] = getattr(_lowercase , """has_pre_transformation""" , _lowercase ) if self.has_pre_transformation: a_ : int = nn.Linear(config.hidden_size , config.project_dim ) a_ : Union[str, Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCamelCase__ ( self , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , ) -> Any: a_ : str = return_dict if return_dict is not None else self.config.use_return_dict a_ : Any = self.base_model( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , position_ids=_lowercase , head_mask=_lowercase , inputs_embeds=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , output_attentions=_lowercase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_lowercase , ) if self.has_pre_transformation: a_ : str = outputs["""hidden_states"""][-2] a_ : Tuple = self.pre_LN(_lowercase ) a_ : List[str] = self.transformation_pre(_lowercase ) return TransformationModelOutput( projection_state=_lowercase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: a_ : Union[str, Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_lowercase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
248
1
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowerCamelCase ( __lowercase ): def __init__(self , lowerCamelCase = "▁" , lowerCamelCase = True , lowerCamelCase = "<unk>" , lowerCamelCase = "</s>" , lowerCamelCase = "<pad>" , ): '''simple docstring''' _lowerCAmelCase = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } _lowerCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _lowerCAmelCase = token_dict["""token"""] _lowerCAmelCase = Tokenizer(Unigram() ) _lowerCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) _lowerCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowerCamelCase , add_prefix_space=lowerCamelCase ), pre_tokenizers.Digits(individual_digits=lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) _lowerCAmelCase = decoders.Metaspace(replacement=lowerCamelCase , add_prefix_space=lowerCamelCase ) _lowerCAmelCase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) _lowerCAmelCase = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(lowerCamelCase , lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase = 8_000 , lowerCamelCase = True , ): '''simple docstring''' _lowerCAmelCase = trainers.UnigramTrainer( vocab_size=lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=lowerCamelCase , ) if isinstance(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = [files] self._tokenizer.train(lowerCamelCase , trainer=lowerCamelCase ) self.add_unk_id() def A__ (self , lowerCamelCase , lowerCamelCase = 8_000 , lowerCamelCase = True , ): '''simple docstring''' _lowerCAmelCase = trainers.UnigramTrainer( vocab_size=lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=lowerCamelCase , ) self._tokenizer.train_from_iterator(lowerCamelCase , trainer=lowerCamelCase ) self.add_unk_id() def A__ (self ): '''simple docstring''' _lowerCAmelCase = json.loads(self._tokenizer.to_str() ) _lowerCAmelCase = self.special_tokens["""unk"""]["""id"""] _lowerCAmelCase = Tokenizer.from_str(json.dumps(lowerCamelCase ) )
371
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str ="time_series_transformer" a : Any ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = [1, 2, 3, 4, 5, 6, 7] , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 64 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : str = prediction_length lowerCAmelCase : Optional[int] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : List[str] = loss lowerCAmelCase : List[Any] = input_size lowerCAmelCase : Any = num_time_features lowerCAmelCase : Optional[int] = lags_sequence lowerCAmelCase : int = scaling lowerCAmelCase : Optional[int] = num_dynamic_real_features lowerCAmelCase : int = num_static_real_features lowerCAmelCase : List[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : Optional[Any] = cardinality else: lowerCAmelCase : Dict = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Optional[int] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : int = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Optional[Any] = input_size * len(_SCREAMING_SNAKE_CASE ) + self._number_of_features lowerCAmelCase : Union[str, Any] = d_model lowerCAmelCase : Dict = encoder_attention_heads lowerCAmelCase : Any = decoder_attention_heads lowerCAmelCase : Union[str, Any] = encoder_ffn_dim lowerCAmelCase : Tuple = decoder_ffn_dim lowerCAmelCase : List[Any] = encoder_layers lowerCAmelCase : Optional[Any] = decoder_layers lowerCAmelCase : Optional[int] = dropout lowerCAmelCase : Optional[Any] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : Any = encoder_layerdrop lowerCAmelCase : str = decoder_layerdrop lowerCAmelCase : Optional[Any] = activation_function lowerCAmelCase : Tuple = init_std lowerCAmelCase : Any = use_cache super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
108
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , )->List[str]: '''simple docstring''' A_ : str = parent A_ : int = batch_size A_ : List[str] = image_size A_ : Dict = num_channels A_ : Tuple = embeddings_size A_ : Union[str, Any] = hidden_sizes A_ : Dict = depths A_ : str = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_act A_ : Optional[Any] = num_labels A_ : Tuple = scope A_ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : str = None if self.use_labels: A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _snake_case ( self )->Union[str, Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : Dict = RegNetModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : Any = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : Dict = RegNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : int = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Tuple = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case = False snake_case = False snake_case = False snake_case = False def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Union[str, Any] = RegNetModelTester(self ) A_ : Union[str, Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self )->Tuple: '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _snake_case ( self )->Dict: '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _snake_case ( self )->str: '''simple docstring''' pass def _snake_case ( self )->List[Any]: '''simple docstring''' A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Any = [*signature.parameters.keys()] A_ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Any: '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _snake_case ( self )->List[Any]: '''simple docstring''' def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : str = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): A_ : Tuple = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : int = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : int = layer_type A_ : List[Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )->str: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = RegNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ): A_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self )->List[str]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self )->Tuple: '''simple docstring''' A_ : List[Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.default_image_processor A_ : Any = prepare_img() A_ : Optional[Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits A_ : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
186
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") UpperCAmelCase_ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) UpperCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase_ : lowerCAmelCase_ = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) lowerCAmelCase_ = field(default=_lowerCamelCase , metadata={'''help''': '''A folder containing the training data.'''} ) lowerCAmelCase_ = field(default=_lowerCamelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) lowerCAmelCase_ = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowerCAmelCase_ = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) lowerCAmelCase_ = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase ( self ) -> Any: _snake_case = {} if self.train_dir is not None: _snake_case = self.train_dir if self.validation_dir is not None: _snake_case = self.validation_dir _snake_case = data_files if data_files else None @dataclass class UpperCamelCase_ : lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(_lowerCamelCase )} , ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) lowerCAmelCase_ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase_ = field(default=_lowerCamelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class UpperCamelCase_ : def __init__( self , lowerCAmelCase_=192 , lowerCAmelCase_=32 , lowerCAmelCase_=4 , lowerCAmelCase_=0.6 ) -> Tuple: _snake_case = input_size _snake_case = mask_patch_size _snake_case = model_patch_size _snake_case = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) _snake_case = self.input_size // self.mask_patch_size _snake_case = self.mask_patch_size // self.model_patch_size _snake_case = self.rand_size**2 _snake_case = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> Any: _snake_case = np.random.permutation(self.token_count )[: self.mask_count] _snake_case = np.zeros(self.token_count , dtype=lowerCAmelCase_ ) _snake_case = 1 _snake_case = mask.reshape((self.rand_size, self.rand_size) ) _snake_case = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' _snake_case = torch.stack([example['pixel_values'] for example in examples] ) _snake_case = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _snake_case = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _snake_case = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase__ ) and data_args.train_val_split > 0.0: _snake_case = ds['train'].train_test_split(data_args.train_val_split ) _snake_case = split['train'] _snake_case = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _snake_case = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCamelCase__ ) elif model_args.model_name_or_path: _snake_case = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: _snake_case = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCamelCase__ , 'decoder_type' ): _snake_case = 'simmim' # adapt config _snake_case = model_args.image_size if model_args.image_size is not None else config.image_size _snake_case = model_args.patch_size if model_args.patch_size is not None else config.patch_size _snake_case = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _snake_case = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCamelCase__ ) elif model_args.model_name_or_path: _snake_case = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: _snake_case = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _snake_case = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _snake_case = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _snake_case = AutoModelForMaskedImageModeling.from_config(UpperCamelCase__ ) if training_args.do_train: _snake_case = ds['train'].column_names else: _snake_case = ds['validation'].column_names if data_args.image_column_name is not None: _snake_case = data_args.image_column_name elif "image" in column_names: _snake_case = 'image' elif "img" in column_names: _snake_case = 'img' else: _snake_case = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _snake_case = Compose( [ Lambda(lambda UpperCamelCase__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator _snake_case = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCamelCase__ : Dict ): _snake_case = [transforms(UpperCamelCase__ ) for image in examples[image_column_name]] _snake_case = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _snake_case = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCamelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _snake_case = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCamelCase__ ) # Initialize our trainer _snake_case = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: _snake_case = None if training_args.resume_from_checkpoint is not None: _snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case = last_checkpoint _snake_case = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _snake_case = trainer.evaluate() trainer.log_metrics('eval' , UpperCamelCase__ ) trainer.save_metrics('eval' , UpperCamelCase__ ) # Write model card and (optionally) push to hub _snake_case = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) if __name__ == "__main__": main()
366
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = LEDTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> List[str]: super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('labels' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowerCAmelCase_ , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
295
0
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def __A ( ) -> Optional[Any]: __a : Optional[Any] = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''') __a : Optional[int] = parser.add_subparsers(help='''diffusers-cli command helpers''') # Register commands EnvironmentCommand.register_subcommand(_lowerCamelCase) # Let's go __a : Union[str, Any] = parser.parse_args() if not hasattr(_lowerCamelCase , '''func'''): parser.print_help() exit(1) # Run __a : Dict = args.func(_lowerCamelCase) service.run() if __name__ == "__main__": main()
160
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : Optional[int] = """ylacombe/bark-small""" _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : int = """en_speaker_1""" _lowerCAmelCase : List[Any] = """This is a test string""" _lowerCAmelCase : Any = """speaker_embeddings_path.json""" _lowerCAmelCase : List[Any] = """speaker_embeddings""" def __A ( self , **a__ ): return AutoTokenizer.from_pretrained(self.checkpoint , **a__ ) def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : int = BarkProcessor(tokenizer=a__ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : str = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __A ( self ): _lowerCAmelCase : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __A ( self ): _lowerCAmelCase : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase : Union[str, Any] = 35 _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : Dict = { """semantic_prompt""": np.ones(a__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase : Dict = processor(text=self.input_string , voice_preset=a__ ) _lowerCAmelCase : Tuple = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(a__ , **a__ ) _lowerCAmelCase : List[Any] = processor(text=self.input_string , voice_preset=a__ ) _lowerCAmelCase : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase : str = processor(text=self.input_string , voice_preset=self.voice_preset ) def __A ( self ): _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : List[Any] = BarkProcessor(tokenizer=a__ ) _lowerCAmelCase : Dict = processor(text=self.input_string ) _lowerCAmelCase : Tuple = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=a__ , return_attention_mask=a__ , return_token_type_ids=a__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
44
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''beit''' def __init__( self : Any , lowercase_ : Any=8192 , lowercase_ : Optional[Any]=768 , lowercase_ : Union[str, Any]=12 , lowercase_ : List[str]=12 , lowercase_ : Optional[Any]=3072 , lowercase_ : Optional[int]="gelu" , lowercase_ : int=0.0 , lowercase_ : Any=0.0 , lowercase_ : List[str]=0.02 , lowercase_ : int=1e-1_2 , lowercase_ : List[str]=224 , lowercase_ : Tuple=16 , lowercase_ : Dict=3 , lowercase_ : List[str]=False , lowercase_ : str=False , lowercase_ : List[str]=False , lowercase_ : Any=False , lowercase_ : Tuple=0.1 , lowercase_ : int=0.1 , lowercase_ : List[str]=True , lowercase_ : Optional[int]=[3, 5, 7, 11] , lowercase_ : Union[str, Any]=[1, 2, 3, 6] , lowercase_ : List[Any]=True , lowercase_ : Optional[Any]=0.4 , lowercase_ : Optional[Any]=256 , lowercase_ : int=1 , lowercase_ : Optional[int]=False , lowercase_ : Any=255 , **lowercase_ : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__(**_snake_case) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = use_mask_token _UpperCamelCase = use_absolute_position_embeddings _UpperCamelCase = use_relative_position_bias _UpperCamelCase = use_shared_relative_position_bias _UpperCamelCase = layer_scale_init_value _UpperCamelCase = drop_path_rate _UpperCamelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCamelCase = out_indices _UpperCamelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCamelCase = use_auxiliary_head _UpperCamelCase = auxiliary_loss_weight _UpperCamelCase = auxiliary_channels _UpperCamelCase = auxiliary_num_convs _UpperCamelCase = auxiliary_concat_input _UpperCamelCase = semantic_loss_ignore_index class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self : List[str]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def __UpperCAmelCase ( self : str) -> float: """simple docstring""" return 1e-4
361
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = 30 _UpperCamelCase = self.seq_length + self.mem_len _UpperCamelCase = 15 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = [10, 50, 80] _UpperCamelCase = 32 _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = 8 _UpperCamelCase = 128 _UpperCamelCase = 2 _UpperCamelCase = 2 _UpperCamelCase = None _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 3 _UpperCamelCase = self.vocab_size - 1 _UpperCamelCase = 0.01 def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" random.seed(self.seed) tf.random.set_seed(self.seed) def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase , _UpperCamelCase = model([input_ids_a, mems_a]).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict) -> str: """simple docstring""" _UpperCamelCase = TFTransfoXLForSequenceClassification(lowercase_) _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __A = () if is_tf_available() else () __A = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str]) -> Any: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCamelCase = TFTransfoXLModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , d_embed=37) def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_) def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: _UpperCamelCase = model.get_output_embeddings() assert isinstance(lowercase_ , tf.keras.layers.Layer) _UpperCamelCase = model.get_bias() assert name is None else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" pass @slow def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFTransfoXLModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.") def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" pass @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved.") @slow def __UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103") # fmt: off _UpperCamelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _UpperCamelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _UpperCamelCase = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_)
63
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Optional[Any] = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "git_vision_model" def __init__( self , UpperCamelCase=768 , UpperCamelCase=3072 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=3 , UpperCamelCase=224 , UpperCamelCase=16 , UpperCamelCase="quick_gelu" , UpperCamelCase=1e-5 , UpperCamelCase=0.0 , UpperCamelCase=0.02 , **UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCamelCase ) lowerCamelCase_ = hidden_size lowerCamelCase_ = intermediate_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = num_channels lowerCamelCase_ = patch_size lowerCamelCase_ = image_size lowerCamelCase_ = initializer_range lowerCamelCase_ = attention_dropout lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = hidden_act @classmethod def snake_case ( cls , UpperCamelCase , **UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": lowerCamelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "git" def __init__( self , UpperCamelCase=None , UpperCamelCase=3_0522 , UpperCamelCase=768 , UpperCamelCase=6 , UpperCamelCase=12 , UpperCamelCase=3072 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=1024 , UpperCamelCase=0.02 , UpperCamelCase=1e-12 , UpperCamelCase=0 , UpperCamelCase="absolute" , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=101 , UpperCamelCase=102 , UpperCamelCase=None , **UpperCamelCase , ): """simple docstring""" super().__init__(bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , **UpperCamelCase ) if vision_config is None: lowerCamelCase_ = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) lowerCamelCase_ = GitVisionConfig(**UpperCamelCase ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache lowerCamelCase_ = tie_word_embeddings lowerCamelCase_ = num_image_with_embedding lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id def snake_case ( self ): """simple docstring""" lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.vision_config.to_dict() lowerCamelCase_ = self.__class__.model_type return output
55
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase__: Union[str, Any] = "examples/" UpperCamelCase__: Optional[Any] = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCamelCase__: Optional[int] = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } UpperCamelCase__: List[Any] = "README.md" def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]: with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[int] = f.read() UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern] UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]: for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?''' with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[Any] = f.readlines() # Find the start of the list. UpperCAmelCase : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase : Optional[int] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase : Optional[int] = default_version.base_version elif patch: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Tuple = default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) def snake_case_ ( ) -> Any: UpperCAmelCase : List[Any] = get_version() UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCamelCase__: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
23
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
import unittest import numpy as np def __lowerCamelCase ( __a :np.ndarray , __a :np.ndarray , __a :np.ndarray , __a :np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" A__ = np.shape(__a ) A__ = np.shape(__a ) A__ = np.shape(__a ) if shape_a[0] != shape_b[0]: A__ = ( """Expected the same number of rows for A and B. """ F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(__a ) if shape_b[1] != shape_c[1]: A__ = ( """Expected the same number of columns for B and C. """ F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(__a ) A__ = pseudo_inv if a_inv is None: try: A__ = np.linalg.inv(__a ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Union[str, Any] ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1], [6, 3]] ) A__ = schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = np.block([[a, b], [b.T, c]] ) A__ = np.linalg.det(__lowerCAmelCase ) A__ = np.linalg.det(__lowerCAmelCase ) A__ = np.linalg.det(__lowerCAmelCase ) self.assertAlmostEqual(__lowerCAmelCase , det_a * det_s ) def a_ ( self : str ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : List[str] ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
276
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : str = 16 lowerCAmelCase : Tuple = 32 def A_ ( a , a = 1_6 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ : List[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(a ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ : List[str] = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ : List[Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ : Any = 1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ : str = 8 else: SCREAMING_SNAKE_CASE_ : List[Any] = None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding='longest' , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ : List[Any] = DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : int = DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : int = mocked_dataloaders # noqa: F811 def A_ ( a , a ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE__ ) == "1": SCREAMING_SNAKE_CASE_ : int = 2 # New Code # SCREAMING_SNAKE_CASE_ : Tuple = int(args.gradient_accumulation_steps ) SCREAMING_SNAKE_CASE_ : Optional[Any] = int(args.local_sgd_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE_ : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ : Union[str, Any] = config["""lr"""] SCREAMING_SNAKE_CASE_ : Optional[int] = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE_ : Any = int(config['seed'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = int(config['batch_size'] ) SCREAMING_SNAKE_CASE_ : Any = evaluate.load('glue' , 'mrpc' ) set_seed(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : List[Any] = get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ : Dict = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ : Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ : Optional[int] = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ : Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=1_0_0 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ : List[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() with LocalSGD( accelerator=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , local_sgd_steps=SCREAMING_SNAKE_CASE__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : Tuple = output.loss accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , SCREAMING_SNAKE_CASE__ ) def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=SCREAMING_SNAKE_CASE__ , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE_ : int = parser.parse_args() SCREAMING_SNAKE_CASE_ : str = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
253
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False, False, False @dataclass class UpperCamelCase_ : __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = None # Automatically constructed __magic_name__ = "dict" __magic_name__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) __magic_name__ = field(default='''Audio''' , init=__A , repr=__A ) def __call__( self : str ) -> str: return self.pa_type def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Union[str, bytes, dict] ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"bytes": None, "path": value} elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ : Dict = BytesIO() sf.write(lowerCAmelCase_ , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ : Tuple = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: UpperCAmelCase_ : Tuple = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 32_767 UpperCAmelCase_ : Dict = BytesIO(bytes() ) sf.write(lowerCAmelCase_ , lowerCAmelCase_ , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : dict , lowerCAmelCase_ : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) UpperCAmelCase_ , UpperCAmelCase_ : Any = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err UpperCAmelCase_ : Optional[Any] = xsplitext(lowerCAmelCase_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: UpperCAmelCase_ : Dict = token_per_repo_id or {} UpperCAmelCase_ : int = path.split("::" )[-1] try: UpperCAmelCase_ : str = string_to_dict(lowerCAmelCase_ , config.HUB_DATASETS_URL )["repo_id"] UpperCAmelCase_ : List[str] = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ : Optional[Any] = None with xopen(lowerCAmelCase_ , "rb" , use_auth_token=lowerCAmelCase_ ) as f: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = sf.read(lowerCAmelCase_ ) else: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = sf.read(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = array.T if self.mono: UpperCAmelCase_ : str = librosa.to_mono(lowerCAmelCase_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ : Optional[int] = librosa.resample(lowerCAmelCase_ , orig_sr=lowerCAmelCase_ , target_sr=self.sampling_rate ) UpperCAmelCase_ : str = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCAmelCase_ : Union[str, Any] = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) UpperCAmelCase_ : int = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : Optional[Any] = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) UpperCAmelCase_ : List[Any] = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): UpperCAmelCase_ : Tuple = pa.array([Audio().encode_example(lowerCAmelCase_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCAmelCase_ : Tuple = storage.field("bytes" ) else: UpperCAmelCase_ : Any = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCAmelCase_ : Tuple = storage.field("path" ) else: UpperCAmelCase_ : List[str] = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase_ : Optional[int] ): with xopen(lowerCAmelCase_ , "rb" ) as f: UpperCAmelCase_ : Dict = f.read() return bytes_ UpperCAmelCase_ : Dict = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ : Optional[int] = pa.array( [os.path.basename(lowerCAmelCase_ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) UpperCAmelCase_ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type )
253
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : Collection[float] | None = None ) -> None: if components is None: UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[Any] = list(lowerCAmelCase_ ) def __len__( self : Union[str, Any] ) -> int: return len(self.__components ) def __str__( self : List[str] ) -> str: return "(" + ",".join(map(lowerCAmelCase_ , self.__components ) ) + ")" def __add__( self : Dict , lowerCAmelCase_ : Vector ) -> Vector: UpperCAmelCase_ : Optional[int] = len(self ) if size == len(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[Any] = [self.__components[i] + other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: raise Exception("must have the same size" ) def __sub__( self : List[str] , lowerCAmelCase_ : Vector ) -> Vector: UpperCAmelCase_ : List[str] = len(self ) if size == len(lowerCAmelCase_ ): UpperCAmelCase_ : List[Any] = [self.__components[i] - other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : Any , lowerCAmelCase_ : float ) -> Vector: ... @overload def __mul__( self : Optional[int] , lowerCAmelCase_ : Vector ) -> float: ... def __mul__( self : Dict , lowerCAmelCase_ : float | Vector ) -> float | Vector: if isinstance(lowerCAmelCase_ , (float, int) ): UpperCAmelCase_ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(self ) == len(lowerCAmelCase_ ): UpperCAmelCase_ : Dict = len(self ) UpperCAmelCase_ : Dict = [self.__components[i] * other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return sum(lowerCAmelCase_ ) else: # error case raise Exception("invalid operand!" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Vector: return Vector(self.__components ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int ) -> float: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) UpperCAmelCase_ : List[str] = value def _SCREAMING_SNAKE_CASE ( self : Dict ) -> float: if len(self.__components ) == 0: raise Exception("Vector is empty" ) UpperCAmelCase_ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Vector , lowerCAmelCase_ : bool = False ) -> float: UpperCAmelCase_ : int = self * other UpperCAmelCase_ : Tuple = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def snake_case ( A__ ): assert isinstance(A__ ,A__ ) return Vector([0] * dimension ) def snake_case ( A__ ,A__ ): assert isinstance(A__ ,A__ ) and (isinstance(A__ ,A__ )) UpperCAmelCase_ : Any = [0] * dimension UpperCAmelCase_ : Dict = 1 return Vector(A__ ) def snake_case ( A__ ,A__ ,A__ ): assert ( isinstance(A__ ,A__ ) and isinstance(A__ ,A__ ) and (isinstance(A__ ,(int, float) )) ) return x * scalar + y def snake_case ( A__ ,A__ ,A__ ): random.seed(A__ ) UpperCAmelCase_ : Tuple = [random.randint(A__ ,A__ ) for _ in range(A__ )] return Vector(A__ ) class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : list[list[float]] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ : List[Any] = matrix UpperCAmelCase_ : List[Any] = w UpperCAmelCase_ : List[Any] = h def __str__( self : int ) -> str: UpperCAmelCase_ : Tuple = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Any , lowerCAmelCase_ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase_ : List[Any] = [] for i in range(self.__height ): UpperCAmelCase_ : Optional[Any] = [ self.__matrix[i][j] + other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Optional[int] , lowerCAmelCase_ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase_ : Union[str, Any] = [] for i in range(self.__height ): UpperCAmelCase_ : Union[str, Any] = [ self.__matrix[i][j] - other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Tuple , lowerCAmelCase_ : float ) -> Matrix: ... @overload def __mul__( self : Tuple , lowerCAmelCase_ : Vector ) -> Vector: ... def __mul__( self : Any , lowerCAmelCase_ : float | Vector ) -> Vector | Matrix: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # matrix-vector if len(lowerCAmelCase_ ) == self.__width: UpperCAmelCase_ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): UpperCAmelCase_ : Any = [ self.__matrix[i][j] * other.component(lowerCAmelCase_ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase_ , sum(lowerCAmelCase_ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(lowerCAmelCase_ , (int, float) ): # matrix-scalar UpperCAmelCase_ : int = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase_ , self.__width , self.__height ) return None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.__height def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.__width def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: UpperCAmelCase_ : List[Any] = value else: raise Exception("change_component: indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) UpperCAmelCase_ : Optional[Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : Union[str, Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase_ , self.__width - 1 , self.__height - 1 ).determinant() def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase_ , lowerCAmelCase_ ) else: raise Exception("Indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCAmelCase_ : List[Any] = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase_ ) for y in range(self.__width ) ] return sum(lowerCAmelCase_ ) def snake_case ( A__ ): UpperCAmelCase_ : list[list[float]] = [[0] * n for _ in range(A__ )] return Matrix(A__ ,A__ ,A__ ) def snake_case ( A__ ,A__ ,A__ ,A__ ): random.seed(A__ ) UpperCAmelCase_ : list[list[float]] = [ [random.randint(A__ ,A__ ) for _ in range(A__ )] for _ in range(A__ ) ] return Matrix(A__ ,A__ ,A__ )
253
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } UpperCamelCase__ = { '''facebook/bart-base''': 1_0_2_4, '''facebook/bart-large''': 1_0_2_4, '''facebook/bart-large-mnli''': 1_0_2_4, '''facebook/bart-large-cnn''': 1_0_2_4, '''facebook/bart-large-xsum''': 1_0_2_4, '''yjernite/bart_eli5''': 1_0_2_4, } @lru_cache() def a__ ( ) -> Dict: UpperCAmelCase__ : Any = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase__ : Union[str, Any] = bs[:] UpperCAmelCase__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ : int = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Any = set() UpperCAmelCase__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : List[str] = char return pairs class lowerCamelCase_ ( A_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any]="replace" , _A : Dict="<s>" , _A : Tuple="</s>" , _A : Union[str, Any]="</s>" , _A : Any="<s>" , _A : Any="<unk>" , _A : Any="<pad>" , _A : int="<mask>" , _A : Tuple=False , **_A : str , ): '''simple docstring''' UpperCAmelCase__ : str = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token UpperCAmelCase__ : str = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token UpperCAmelCase__ : Any = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token UpperCAmelCase__ : List[str] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token UpperCAmelCase__ : Any = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token UpperCAmelCase__ : List[Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : int = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( errors=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , **_A , ) with open(_A , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase__ : int = json.load(_A ) UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : Union[str, Any] = errors # how to handle errors in decoding UpperCAmelCase__ : Any = bytes_to_unicode() UpperCAmelCase__ : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(_A , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase__ : List[Any] = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ : Optional[int] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ : int = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def lowercase_ ( self : Dict ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : Dict , _A : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : int = tuple(_A ) UpperCAmelCase__ : List[Any] = get_pairs(_A ) if not pairs: return token while True: UpperCAmelCase__ : Any = min(_A , key=lambda _A : self.bpe_ranks.get(_A , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = bigram UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : str = 0 while i < len(_A ): try: UpperCAmelCase__ : Any = word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : List[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Tuple = tuple(_A ) UpperCAmelCase__ : int = new_word if len(_A ) == 1: break else: UpperCAmelCase__ : str = get_pairs(_A ) UpperCAmelCase__ : Optional[int] = ''' '''.join(_A ) UpperCAmelCase__ : str = word return word def lowercase_ ( self : Optional[Any] , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = [] for token in re.findall(self.pat , _A ): UpperCAmelCase__ : Union[str, Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(''' ''' ) ) return bpe_tokens def lowercase_ ( self : str , _A : Union[str, Any] ): '''simple docstring''' return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : str , _A : str ): '''simple docstring''' return self.decoder.get(_A ) def lowercase_ ( self : Union[str, Any] , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = ''''''.join(_A ) UpperCAmelCase__ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowercase_ ( self : str , _A : Optional[Any] , _A : str = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : Dict = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : Optional[Any] = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '''\n''' ) UpperCAmelCase__ : int = 0 with open(_A , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase__ : Tuple = token_index writer.write(''' '''.join(_A ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowercase_ ( self : Tuple , _A : int , _A : List[Any] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : List[Any] = [self.cls_token_id] UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : List[str] , _A : Tuple , _A : int = None , _A : List[Any] = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def lowercase_ ( self : int , _A : Dict , _A : Tuple = None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.sep_token_id] UpperCAmelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : int , _A : Optional[int] , _A : Any=False , **_A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): UpperCAmelCase__ : Any = ''' ''' + text return (text, kwargs)
181
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class A ( A_ ): def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=9_9 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=3_7 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_mask __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_act __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= scope def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= None if self.use_input_mask: __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _A (self ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DistilBertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DistilBertForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DistilBertForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= DistilBertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= DistilBertForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_choices __lowercase= DistilBertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ((__lowercase), (__lowercase), (__lowercase), (__lowercase), (__lowercase), (__lowercase))= config_and_inputs __lowercase= {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Any =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ : Optional[int] =( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : str =True UpperCamelCase_ : str =True UpperCamelCase_ : Union[str, Any] =True UpperCamelCase_ : Optional[int] =True def _A (self ): __lowercase= DistilBertModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase ) @slow def _A (self ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= DistilBertModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @slow @require_torch_gpu def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __lowercase= True __lowercase= model_class(config=lowerCAmelCase ) __lowercase= self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) __lowercase= torch.jit.trace( lowerCAmelCase , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase , os.path.join(lowerCAmelCase , 'traced_model.pt' ) ) __lowercase= torch.jit.load(os.path.join(lowerCAmelCase , 'traced_model.pt' ) , map_location=lowerCAmelCase ) loaded(inputs_dict['input_ids'].to(lowerCAmelCase ) , inputs_dict['attention_mask'].to(lowerCAmelCase ) ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= DistilBertModel.from_pretrained('distilbert-base-uncased' ) __lowercase= torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowercase= torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] __lowercase= torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase ) __lowercase= torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1E-4 ) )
295
0
import operator as op def _lowerCAmelCase ( A__: List[str] ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = lambda A__ , A__ : int(x / y ) # noqa: E731 integer division operation UpperCAmelCase = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(A__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) else: UpperCAmelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) UpperCAmelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) stack.append( str(opr[x](int(A__ ) , int(A__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": __magic_name__ = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
152
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowercase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): '''simple docstring''' def __init__( self , _snake_case=None , **_snake_case ) -> int: """simple docstring""" super().__init__(features=_snake_case ) UpperCAmelCase = torch_tensor_kwargs import torch # noqa import torch at initialization def snake_case_ ( self , _snake_case ) -> Union[str, Any]: """simple docstring""" import torch if isinstance(_snake_case , _snake_case ) and column: if all( isinstance(_snake_case , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_snake_case ) return column def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" import torch if isinstance(_snake_case , (str, bytes, type(_snake_case )) ): return value elif isinstance(_snake_case , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase = {} if isinstance(_snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCAmelCase = {'''dtype''': torch.intaa} elif isinstance(_snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_snake_case , PIL.Image.Image ): UpperCAmelCase = np.asarray(_snake_case ) return torch.tensor(_snake_case , **{**default_dtype, **self.torch_tensor_kwargs} ) def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(_snake_case , '''__array__''' ) and not isinstance(_snake_case , torch.Tensor ): UpperCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_snake_case , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] ) elif isinstance(_snake_case , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] ) return self._tensorize(_snake_case ) def snake_case_ ( self , _snake_case ) -> List[Any]: """simple docstring""" return map_nested(self._recursive_tensorize , _snake_case , map_list=_snake_case ) def snake_case_ ( self , _snake_case ) -> Mapping: """simple docstring""" UpperCAmelCase = self.numpy_arrow_extractor().extract_row(_snake_case ) UpperCAmelCase = self.python_features_decoder.decode_row(_snake_case ) return self.recursive_tensorize(_snake_case ) def snake_case_ ( self , _snake_case ) -> "torch.Tensor": """simple docstring""" UpperCAmelCase = self.numpy_arrow_extractor().extract_column(_snake_case ) UpperCAmelCase = self.python_features_decoder.decode_column(_snake_case , pa_table.column_names[0] ) UpperCAmelCase = self.recursive_tensorize(_snake_case ) UpperCAmelCase = self._consolidate(_snake_case ) return column def snake_case_ ( self , _snake_case ) -> Mapping: """simple docstring""" UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(_snake_case ) UpperCAmelCase = self.python_features_decoder.decode_batch(_snake_case ) UpperCAmelCase = self.recursive_tensorize(_snake_case ) for column_name in batch: UpperCAmelCase = self._consolidate(batch[column_name] ) return batch
152
1
'''simple docstring''' class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , A : int ): # we need a list not a string, so do something to change the type _UpperCAmelCase : int = arr.split("," ) def _A ( self : List[Any] ): _UpperCAmelCase : Optional[Any] = [int(self.array[0] )] * len(self.array ) _UpperCAmelCase : List[str] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _UpperCAmelCase : Optional[int] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _UpperCAmelCase : List[str] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = input("""please input some numbers:""") __SCREAMING_SNAKE_CASE : Optional[int] = SubArray(whole_array) __SCREAMING_SNAKE_CASE : Any = array.solve_sub_array() print(("""the results is:""", re))
31
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='deta' __a ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[str] , __a : List[str]=None , __a : Dict=9_00 , __a : str=20_48 , __a : Tuple=6 , __a : List[str]=20_48 , __a : str=8 , __a : Union[str, Any]=6 , __a : int=10_24 , __a : List[Any]=8 , __a : Dict=0.0 , __a : Tuple=True , __a : Optional[Any]="relu" , __a : Tuple=2_56 , __a : Optional[Any]=0.1 , __a : int=0.0 , __a : List[Any]=0.0 , __a : Optional[int]=0.02 , __a : str=1.0 , __a : Dict=True , __a : Dict=False , __a : Optional[int]="sine" , __a : Any=5 , __a : List[str]=4 , __a : Optional[int]=4 , __a : List[str]=True , __a : str=3_00 , __a : int=True , __a : int=True , __a : Tuple=1 , __a : Optional[int]=5 , __a : Tuple=2 , __a : Dict=1 , __a : Optional[int]=1 , __a : Any=5 , __a : Optional[int]=2 , __a : Dict=0.1 , __a : str=0.25 , **__a : Tuple , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _a = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(__a , __a ): _a = backbone_config.pop("model_type" ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(__a ) _a = backbone_config _a = num_queries _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = auxiliary_loss _a = position_embedding_type # deformable attributes _a = num_feature_levels _a = encoder_n_points _a = decoder_n_points _a = two_stage _a = two_stage_num_proposals _a = with_box_refine _a = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient _a = focal_alpha super().__init__(is_encoder_decoder=__a , **__a ) @property def UpperCamelCase__ ( self : Optional[Any] ): return self.encoder_attention_heads @property def UpperCamelCase__ ( self : Dict ): return self.d_model def UpperCamelCase__ ( self : List[str] ): _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
63
0
"""simple docstring""" import string def snake_case_ ( A_ : List[Any] ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _lowerCamelCase : int = '' for symbol in message: if symbol in string.ascii_uppercase: _lowerCamelCase : int = string.ascii_uppercase.find(lowerCAmelCase_ ) _lowerCamelCase : str = num - key if num < 0: _lowerCamelCase : Optional[int] = num + len(string.ascii_uppercase ) _lowerCamelCase : Optional[int] = translated + string.ascii_uppercase[num] else: _lowerCamelCase : List[Any] = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : str = input('''Encrypted message: ''' ) _lowerCamelCase : Dict = message.upper() decrypt(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
369
"""simple docstring""" from maths.prime_factors import prime_factors def snake_case_ ( A_ : int ): '''simple docstring''' if not isinstance(A_, A_ ): _lowerCamelCase : str = F'''Input value of [number={number}] must be an integer''' raise TypeError(A_ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(A_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
175
0
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = emb.weight.shape _UpperCAmelCase : int = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) _UpperCAmelCase : Tuple = emb.weight.data return lin_layer def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=None ): _UpperCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): _UpperCAmelCase : Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: _UpperCAmelCase : int = key.replace("moe_layer.experts.0" , F"""ffn.experts.expert_{expert_idx}""" ) else: _UpperCAmelCase : Tuple = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: _UpperCAmelCase : List[Any] = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: _UpperCAmelCase : int = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: _UpperCAmelCase : Tuple = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: _UpperCAmelCase : Tuple = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: _UpperCAmelCase : Optional[int] = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: _UpperCAmelCase : Optional[Any] = key.replace("final_layer_norm" , "ff_layer_norm" ) _UpperCAmelCase : Optional[Any] = state_dict[old_key] return new_dict def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = WEIGHTS_NAME ): _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[Any] = 0 os.makedirs(lowercase__ , exist_ok=lowercase__ ) for expert in range(lowercase__ ): _UpperCAmelCase : Optional[Any] = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(lowercase__ ): _UpperCAmelCase : List[str] = torch.load(lowercase__ )['''model'''] remove_ignore_keys_(lowercase__ ) _UpperCAmelCase : int = rename_fairseq_keys(lowercase__ , lowercase__ ) _UpperCAmelCase : Tuple = os.path.join( lowercase__ , weights_name.replace(".bin" , F"""-{len(lowercase__ )+1:05d}-of-???.bin""" ) ) torch.save(lowercase__ , lowercase__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(lowercase__ )[0]].dtype ) # Add the last block _UpperCAmelCase : List[Any] = os.path.join(lowercase__ , weights_name.replace(".bin" , F"""-{len(lowercase__ )+1:05d}-of-???.bin""" ) ) _UpperCAmelCase : Optional[int] = torch.load(switch_checkpoint_path + "-shared.pt" )['''model'''] remove_ignore_keys_(lowercase__ ) _UpperCAmelCase : Optional[int] = rename_fairseq_keys(lowercase__ , lowercase__ ) _UpperCAmelCase : int = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(lowercase__ ) == 1: _UpperCAmelCase : str = os.path.join(lowercase__ , lowercase__ ) torch.save(lowercase__ , lowercase__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(lowercase__ , lowercase__ ) # Otherwise, let's build the index _UpperCAmelCase : str = {} for idx, shard in enumerate(lowercase__ ): _UpperCAmelCase : Any = weights_name.replace(".bin" , F"""-{idx+1:05d}-of-{len(lowercase__ ):05d}.bin""" ) _UpperCAmelCase : str = os.path.join(lowercase__ , weights_name.replace(".bin" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(lowercase__ , os.path.join(lowercase__ , lowercase__ ) ) for key in shard: _UpperCAmelCase : Optional[int] = shard_file # Add the metadata _UpperCAmelCase : List[Any] = {'''total_size''': total_size} _UpperCAmelCase : Union[str, Any] = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(lowercase__ , lowercase__ ) , "w" , encoding="utf-8" ) as f: _UpperCAmelCase : List[Any] = json.dumps(lowercase__ , indent=2 , sort_keys=lowercase__ ) + '''\n''' f.write(lowercase__ ) return metadata, index if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ ,lowerCamelCase__ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCamelCase__ = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCamelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
234
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = np.full((len(lowercase__ ), sequence_length, 2) , lowercase__ ) else: __lowerCAmelCase : Optional[int] = np.full((len(lowercase__ ), sequence_length) , lowercase__ ) for i, tensor in enumerate(lowercase__ ): if padding_side == "right": if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tensor[:sequence_length] else: __lowerCAmelCase : int = tensor[:sequence_length] else: if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tensor[:sequence_length] else: __lowerCAmelCase : Optional[Any] = tensor[:sequence_length] return out_tensor.tolist() def _lowercase ( lowercase__ ): __lowerCAmelCase : Union[str, Any] = ord(lowercase__ ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True __lowerCAmelCase : int = unicodedata.category(lowercase__ ) if cat.startswith('''P''' ): return True return False @dataclass class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = True _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = -100 _UpperCamelCase = "pt" def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' import torch __lowerCAmelCase : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' __lowerCAmelCase : Union[str, Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowerCAmelCase : List[Any] = self.tokenizer.pad( A_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __lowerCAmelCase : Dict = torch.tensor(batch['''entity_ids'''] ).shape[1] __lowerCAmelCase : Optional[int] = self.tokenizer.padding_side if padding_side == "right": __lowerCAmelCase : Any = [ list(A_ ) + [self.label_pad_token_id] * (sequence_length - len(A_ )) for label in labels ] else: __lowerCAmelCase : Optional[int] = [ [self.label_pad_token_id] * (sequence_length - len(A_ )) + list(A_ ) for label in labels ] __lowerCAmelCase : Tuple = [feature['''ner_tags'''] for feature in features] __lowerCAmelCase : List[Any] = padding_tensor(A_ , -1 , A_ , A_ ) __lowerCAmelCase : Optional[int] = [feature['''original_entity_spans'''] for feature in features] __lowerCAmelCase : Any = padding_tensor(A_ , (-1, -1) , A_ , A_ ) __lowerCAmelCase : Optional[Any] = {k: torch.tensor(A_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
275
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : int =tempfile.mkdtemp() # fmt: off lowerCamelCase_ : Tuple =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on lowerCamelCase_ : str =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCamelCase_ : Union[str, Any] ={ "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } lowerCamelCase_ : Union[str, Any] =os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self : Any , **snake_case__ : Tuple ): return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase__ ( self : str , **snake_case__ : str ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Tuple =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ : List[Any] =[Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Union[str, Any] =self.get_tokenizer() lowerCamelCase_ : List[Any] =self.get_image_processor() lowerCamelCase_ : Any =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : int =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Tuple =VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase_ : List[str] =self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) lowerCamelCase_ : str =VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Optional[int] =self.get_image_processor() lowerCamelCase_ : Optional[Any] =self.get_tokenizer() lowerCamelCase_ : Union[str, Any] =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCamelCase_ : Any =self.prepare_image_inputs() lowerCamelCase_ : Any =image_processor(snake_case__ , return_tensors="np" ) lowerCamelCase_ : Optional[Any] =processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : Union[str, Any] =self.get_image_processor() lowerCamelCase_ : List[Any] =self.get_tokenizer() lowerCamelCase_ : Optional[Any] =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCamelCase_ : List[str] ="lower newer" lowerCamelCase_ : Tuple =processor(text=snake_case__ ) lowerCamelCase_ : List[str] =tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : str =self.get_image_processor() lowerCamelCase_ : str =self.get_tokenizer() lowerCamelCase_ : List[Any] =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCamelCase_ : Any ="lower newer" lowerCamelCase_ : int =self.prepare_image_inputs() lowerCamelCase_ : Any =processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(snake_case__ ): processor() def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Optional[int] =self.get_image_processor() lowerCamelCase_ : Union[str, Any] =self.get_tokenizer() lowerCamelCase_ : List[Any] =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCamelCase_ : List[str] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Tuple =processor.batch_decode(snake_case__ ) lowerCamelCase_ : List[Any] =tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : Any =self.get_image_processor() lowerCamelCase_ : Optional[int] =self.get_tokenizer() lowerCamelCase_ : Optional[Any] =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCamelCase_ : str ="lower newer" lowerCamelCase_ : Dict =self.prepare_image_inputs() lowerCamelCase_ : Optional[int] =processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
209
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowercase__ : _UpperCAmelCase :CommonSchedulerState # setable values _UpperCAmelCase :jnp.ndarray _UpperCAmelCase :jnp.ndarray _UpperCAmelCase :Optional[int] = None @classmethod def UpperCAmelCase__ ( cls : int , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :DDPMSchedulerState class lowercase__ ( snake_case__, snake_case__ ): _UpperCAmelCase :Any = [e.name for e in FlaxKarrasDiffusionSchedulers] _UpperCAmelCase :jnp.dtype @property def UpperCAmelCase__ ( self : Optional[Any] ): return True @register_to_config def __init__( self : Optional[int] , snake_case__ : int = 1000 , snake_case__ : float = 0.0_001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): lowerCamelCase_ : str =dtype def UpperCAmelCase__ ( self : List[str] , snake_case__ : Optional[CommonSchedulerState] = None ): if common is None: lowerCamelCase_ : int =CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCamelCase_ : Optional[Any] =jnp.array(1.0 , dtype=self.dtype ) lowerCamelCase_ : str =jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): return sample def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): lowerCamelCase_ : Any =self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCamelCase_ : List[str] =(jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : DDPMSchedulerState , snake_case__ : Union[str, Any] , snake_case__ : List[Any]=None , snake_case__ : Any=None ): lowerCamelCase_ : List[str] =state.common.alphas_cumprod[t] lowerCamelCase_ : Union[str, Any] =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase_ : Tuple =(1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCamelCase_ : List[Any] =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCamelCase_ : List[str] =jnp.clip(snake_case__ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCamelCase_ : Dict =jnp.log(jnp.clip(snake_case__ , a_min=1E-20 ) ) elif variance_type == "fixed_large": lowerCamelCase_ : Optional[Any] =state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCamelCase_ : Any =jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCamelCase_ : List[str] =variance lowerCamelCase_ : Optional[int] =state.common.betas[t] lowerCamelCase_ : Dict =(predicted_variance + 1) / 2 lowerCamelCase_ : Dict =frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase__ ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): lowerCamelCase_ : Union[str, Any] =timestep if key is None: lowerCamelCase_ : Dict =jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCamelCase_ : List[str] =None # 1. compute alphas, betas lowerCamelCase_ : Union[str, Any] =state.common.alphas_cumprod[t] lowerCamelCase_ : Dict =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCamelCase_ : Any =1 - alpha_prod_t lowerCamelCase_ : List[str] =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase_ : int =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase_ : List[Any] =model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase_ : Tuple =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase_ : List[Any] =jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ : int =(alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCamelCase_ : Optional[Any] =state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ : Any =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCamelCase_ : Union[str, Any] =jax.random.split(snake_case__ , num=1 ) lowerCamelCase_ : List[Any] =jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCamelCase_ : Tuple =jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCamelCase_ : str =pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def UpperCAmelCase__ ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Tuple ): return self.config.num_train_timesteps
209
1
import numpy as np def A_ ( a , a , a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = int(np.ceil((x_end - xa) / h ) ) SCREAMING_SNAKE_CASE_ : str = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ya SCREAMING_SNAKE_CASE_ : Union[str, Any] = xa for k in range(a ): SCREAMING_SNAKE_CASE_ : str = f(a , y[k] ) SCREAMING_SNAKE_CASE_ : str = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) SCREAMING_SNAKE_CASE_ : Optional[int] = f(x + h , y[k] + h * ka ) SCREAMING_SNAKE_CASE_ : List[Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
253
import os def A_ ( a = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a ) , a ) ) as in_file: SCREAMING_SNAKE_CASE_ : Dict = in_file.read() SCREAMING_SNAKE_CASE_ : Dict = [[int(a ) for cell in row.split(',' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE_ : str = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE_ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE_ : Any = [[0 for i in range(a )] for j in range(a )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid[0][0] for i in range(1 , a ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , a ): SCREAMING_SNAKE_CASE_ : Dict = grid[i][0] + dp[i - 1][0] for i in range(1 , a ): for j in range(1 , a ): SCREAMING_SNAKE_CASE_ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
253
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCamelCase : """simple docstring""" def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]=1_3 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Union[str, Any]=9_9 , UpperCAmelCase_ : Dict=3_2 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : List[Any]=3_7 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : int=5_1_2 , UpperCAmelCase_ : List[Any]=1_6 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Union[str, Any]=None , ): """simple docstring""" a : List[str] = parent a : Union[str, Any] = batch_size a : Tuple = seq_length a : str = is_training a : Union[str, Any] = use_input_mask a : List[Any] = use_token_type_ids a : Optional[Any] = use_labels a : str = vocab_size a : Union[str, Any] = hidden_size a : Optional[int] = num_hidden_layers a : str = num_attention_heads a : Optional[Any] = intermediate_size a : Optional[int] = hidden_act a : List[str] = hidden_dropout_prob a : List[str] = attention_probs_dropout_prob a : Tuple = max_position_embeddings a : Dict = type_vocab_size a : List[Any] = type_sequence_label_size a : List[Any] = initializer_range a : List[str] = num_labels a : str = num_choices a : List[Any] = scope def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : Dict = None if self.use_input_mask: a : str = random_attention_mask([self.batch_size, self.seq_length]) a : int = None if self.use_token_type_ids: a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a : Optional[int] = None a : List[Any] = None a : Union[str, Any] = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Any = ids_tensor([self.batch_size] , self.num_choices) a : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" a : Optional[int] = LlamaModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a : Union[str, Any] = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : List[str] = True a : List[str] = LlamaModel(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) a : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ): """simple docstring""" a : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , ): """simple docstring""" a : Optional[int] = True a : Any = True a : Tuple = LlamaForCausalLM(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() # first forward pass a : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) a : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a : str = torch.cat([input_ids, next_tokens] , dim=-1) a : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1) a : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] a : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice a : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() a : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() a : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Any = self.prepare_config_and_inputs() ( a ) : Any = config_and_inputs a : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () A : Any = (LlamaForCausalLM,) if is_torch_available() else () A : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) A : Optional[int] = False A : List[str] = False def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Tuple = LlamaModelTester(self) a : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a : Any = 3 a : Optional[Any] = input_dict["""input_ids"""] a : int = input_ids.ne(1).to(__UpperCAmelCase) a : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) a : Dict = LlamaForSequenceClassification(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs_for_common() a : Optional[int] = 3 a : Optional[Any] = """single_label_classification""" a : int = input_dict["""input_ids"""] a : List[Any] = input_ids.ne(1).to(__UpperCAmelCase) a : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) a : Tuple = LlamaForSequenceClassification(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a : Optional[Any] = 3 a : str = """multi_label_classification""" a : Union[str, Any] = input_dict["""input_ids"""] a : int = input_ids.ne(1).to(__UpperCAmelCase) a : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) a : Dict = LlamaForSequenceClassification(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test') def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)]) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a : List[Any] = ids_tensor([1, 1_0] , config.vocab_size) a : str = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights a : Optional[Any] = LlamaModel(__UpperCAmelCase) original_model.to(__UpperCAmelCase) original_model.eval() a : int = original_model(__UpperCAmelCase).last_hidden_state a : List[str] = original_model(__UpperCAmelCase).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights a : Dict = {"""type""": scaling_type, """factor""": 10.0} a : Optional[Any] = LlamaModel(__UpperCAmelCase) scaled_model.to(__UpperCAmelCase) scaled_model.eval() a : Optional[Any] = scaled_model(__UpperCAmelCase).last_hidden_state a : List[str] = scaled_model(__UpperCAmelCase).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-5)) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-5)) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!') @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Optional[int] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto') a : int = model(torch.tensor([input_ids])) # Expected mean on dim = -1 a : str = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]]) torch.testing.assert_close(out.mean(-1) , __UpperCAmelCase , atol=1e-2 , rtol=1e-2) # slicing logits[0, 0, 0:30] # fmt: off a : List[Any] = torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,]) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , __UpperCAmelCase , atol=1e-5 , rtol=1e-5) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!') @slow def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Any = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a : int = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto') a : str = model(torch.tensor(__UpperCAmelCase)) # Expected mean on dim = -1 a : str = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]]) torch.testing.assert_close(out.mean(-1) , __UpperCAmelCase , atol=1e-2 , rtol=1e-2) # slicing logits[0, 0, 0:30] # fmt: off a : List[str] = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73]) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , __UpperCAmelCase , atol=1e-5 , rtol=1e-5) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!') @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Union[str, Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto') a : Union[str, Any] = model(torch.tensor(__UpperCAmelCase)) # Expected mean on dim = -1 a : Dict = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]]) torch.testing.assert_close(out.mean(-1) , __UpperCAmelCase , atol=1e-2 , rtol=1e-2) # slicing logits[0, 0, 0:30] # fmt: off a : Any = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13]) # fmt: on torch.testing.assert_close(out.mean(-1) , __UpperCAmelCase , atol=1e-2 , rtol=1e-2) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test') @slow def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Any = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto') a : List[Any] = model(torch.tensor(__UpperCAmelCase)) a : Dict = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa) torch.testing.assert_close(out.mean(-1) , __UpperCAmelCase , atol=1e-2 , rtol=1e-2) # fmt: off a : List[str] = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12]) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , __UpperCAmelCase , atol=1e-5 , rtol=1e-5) @unittest.skip('Model is curently gated') @slow def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" a : Dict = """Simply put, the theory of relativity states that """ a : int = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf') a : int = tokenizer.encode(__UpperCAmelCase , return_tensors='pt') a : int = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=__UpperCAmelCase) # greedy generation outputs a : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=6_4 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase) a : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase)
366
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : Union[str, Any] = SwinConfig() a : Optional[int] = swin_name.split('_' ) a : Union[str, Any] = name_split[1] a : Dict = int(name_split[4] ) a : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": a : Optional[Any] = 96 a : Any = (2, 2, 6, 2) a : List[str] = (3, 6, 12, 24) elif model_size == "small": a : int = 96 a : List[str] = (2, 2, 18, 2) a : int = (3, 6, 12, 24) elif model_size == "base": a : Tuple = 128 a : Optional[int] = (2, 2, 18, 2) a : List[Any] = (4, 8, 16, 32) else: a : Dict = 192 a : str = (2, 2, 18, 2) a : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: a : Any = 21_841 else: a : str = 1_000 a : str = 'huggingface/label-files' a : Optional[Any] = 'imagenet-1k-id2label.json' a : Dict = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Tuple = {int(snake_case ): v for k, v in idalabel.items()} a : int = idalabel a : str = {v: k for k, v in idalabel.items()} a : Dict = img_size a : List[Any] = num_classes a : str = embed_dim a : Dict = depths a : Union[str, Any] = num_heads a : int = window_size return config def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if "patch_embed.proj" in name: a : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Optional[int] = 'encoder.' + name if "attn.proj" in name: a : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Any = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a : List[str] = 'layernorm.bias' if "head" in name: a : Union[str, Any] = name.replace('head' , 'classifier' ) else: a : List[Any] = 'swin.' + name return name def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): a : Any = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: a : Optional[Any] = key.split('.' ) a : Dict = int(key_split[1] ) a : Optional[int] = int(key_split[3] ) a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : Optional[Any] = val[:dim, :] a : List[Any] = val[ dim : dim * 2, : ] a : List[Any] = val[-dim:, :] else: a : Dict = val[ :dim ] a : Union[str, Any] = val[ dim : dim * 2 ] a : Union[str, Any] = val[ -dim: ] else: a : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict ) -> List[str]: """simple docstring""" a : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() a : str = get_swin_config(snake_case ) a : Optional[int] = SwinForImageClassification(snake_case ) model.eval() a : Union[str, Any] = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) a : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) a : Union[str, Any] = image_processor(images=snake_case , return_tensors='pt' ) a : int = timm_model(inputs['pixel_values'] ) a : Optional[int] = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
345
0
'''simple docstring''' def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =[3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] SCREAMING_SNAKE_CASE__ : Optional[int] =6 SCREAMING_SNAKE_CASE__ : int =1 SCREAMING_SNAKE_CASE__ : Union[str, Any] =1_9_0_1 SCREAMING_SNAKE_CASE__ : int =0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 SCREAMING_SNAKE_CASE__ : Tuple =day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 SCREAMING_SNAKE_CASE__ : Dict =day - 2_9 else: if day > days_per_month[month - 1]: month += 1 SCREAMING_SNAKE_CASE__ : str =day - days_per_month[month - 2] if month > 1_2: year += 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] =1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
152
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _a( UpperCamelCase__ : int, UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =old_name if "patch_embed" in old_name: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =old_name.split('''.''' ) if layer == "0": SCREAMING_SNAKE_CASE__ : int =old_name.replace('''0''', '''convolution1''' ) elif layer == "1": SCREAMING_SNAKE_CASE__ : Tuple =old_name.replace('''1''', '''batchnorm_before''' ) elif layer == "3": SCREAMING_SNAKE_CASE__ : List[Any] =old_name.replace('''3''', '''convolution2''' ) else: SCREAMING_SNAKE_CASE__ : Dict =old_name.replace('''4''', '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''', UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Tuple =R'''\b\d{2}\b''' if bool(re.search(UpperCamelCase__, UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE__ : int =re.search(R'''\d\.\d\d.''', UpperCamelCase__ ).group() else: SCREAMING_SNAKE_CASE__ : Tuple =re.search(R'''\d\.\d.''', UpperCamelCase__ ).group() if int(match[0] ) < 6: SCREAMING_SNAKE_CASE__ : List[str] =old_name.replace(UpperCamelCase__, '''''' ) SCREAMING_SNAKE_CASE__ : Any =trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) SCREAMING_SNAKE_CASE__ : Any ='''intermediate_stages.''' + trimmed_name else: SCREAMING_SNAKE_CASE__ : Optional[Any] =old_name.replace(UpperCamelCase__, '''''' ) if int(match[2] ) < num_meta4D_last_stage: SCREAMING_SNAKE_CASE__ : str =trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2] ) else: SCREAMING_SNAKE_CASE__ : int =str(int(match[2] ) - num_meta4D_last_stage ) SCREAMING_SNAKE_CASE__ : Any =trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: SCREAMING_SNAKE_CASE__ : Optional[int] =trimmed_name.replace('''norm1''', '''layernorm1''' ) elif "norm2" in old_name: SCREAMING_SNAKE_CASE__ : List[Any] =trimmed_name.replace('''norm2''', '''layernorm2''' ) elif "fc1" in old_name: SCREAMING_SNAKE_CASE__ : Union[str, Any] =trimmed_name.replace('''fc1''', '''linear_in''' ) elif "fc2" in old_name: SCREAMING_SNAKE_CASE__ : str =trimmed_name.replace('''fc2''', '''linear_out''' ) SCREAMING_SNAKE_CASE__ : Any ='''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''', UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : int =old_name.replace('''network''', '''intermediate_stages''' ) if "fc" in new_name: SCREAMING_SNAKE_CASE__ : str =new_name.replace('''fc''', '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): SCREAMING_SNAKE_CASE__ : Tuple =new_name.replace('''norm1''', '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): SCREAMING_SNAKE_CASE__ : List[str] =new_name.replace('''norm2''', '''batchnorm_after''' ) if "proj" in new_name: SCREAMING_SNAKE_CASE__ : Optional[int] =new_name.replace('''proj''', '''projection''' ) if "dist_head" in new_name: SCREAMING_SNAKE_CASE__ : Optional[Any] =new_name.replace('''dist_head''', '''distillation_classifier''' ) elif "head" in new_name: SCREAMING_SNAKE_CASE__ : Tuple =new_name.replace('''head''', '''classifier''' ) elif "patch_embed" in new_name: SCREAMING_SNAKE_CASE__ : Optional[int] ='''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": SCREAMING_SNAKE_CASE__ : Any =new_name.replace('''norm''', '''layernorm''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] ='''efficientformer.''' + new_name else: SCREAMING_SNAKE_CASE__ : str ='''efficientformer.encoder.''' + new_name return new_name def _a( UpperCamelCase__ : int, UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' for key in checkpoint.copy().keys(): SCREAMING_SNAKE_CASE__ : List[str] =checkpoint.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =val return checkpoint def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict ='''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ : List[str] =Image.open(requests.get(UpperCamelCase__, stream=UpperCamelCase__ ).raw ) return image def _a( UpperCamelCase__ : Path, UpperCamelCase__ : Path, UpperCamelCase__ : Path, UpperCamelCase__ : bool ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =torch.load(UpperCamelCase__, map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE__ : Optional[int] =EfficientFormerConfig.from_json_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =EfficientFormerForImageClassificationWithTeacher(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str ='''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) SCREAMING_SNAKE_CASE__ : Tuple =config.depths[-1] - config.num_metaad_blocks + 1 SCREAMING_SNAKE_CASE__ : Tuple =convert_torch_checkpoint(UpperCamelCase__, UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE__ : Any ={ '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image SCREAMING_SNAKE_CASE__ : Any =prepare_img() SCREAMING_SNAKE_CASE__ : List[str] =2_5_6 SCREAMING_SNAKE_CASE__ : Optional[int] =2_2_4 SCREAMING_SNAKE_CASE__ : List[Any] =EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) SCREAMING_SNAKE_CASE__ : str =processor(images=UpperCamelCase__, return_tensors='''pt''' ).pixel_values # original processing pipeline SCREAMING_SNAKE_CASE__ : List[Any] =Compose( [ Resize(UpperCamelCase__, interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(UpperCamelCase__ ), ToTensor(), Normalize(UpperCamelCase__, UpperCamelCase__ ), ] ) SCREAMING_SNAKE_CASE__ : List[str] =image_transforms(UpperCamelCase__ ).unsqueeze(0 ) assert torch.allclose(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =outputs.logits SCREAMING_SNAKE_CASE__ : Dict =(1, 1_0_0_0) if "l1" in model_name: SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :1_0], UpperCamelCase__, atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: SCREAMING_SNAKE_CASE__ : Optional[int] =torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :1_0], UpperCamelCase__, atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(UpperCamelCase__ ) print(f"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message='''Add model''', use_temp_dir=UpperCamelCase__, ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message='''Add image processor''', use_temp_dir=UpperCamelCase__, ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) a_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
152
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCamelCase = logging.get_logger(__name__) class a ( _A ): '''simple docstring''' def __init__( self : str , *__snake_case : str , **__snake_case : Dict ): warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
360
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class a ( _A ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 'data2vec-text' def __init__( self : Optional[Any] , __snake_case : Optional[int]=3_05_22 , __snake_case : List[str]=7_68 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Union[str, Any]=30_72 , __snake_case : List[Any]="gelu" , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Tuple=5_12 , __snake_case : str=2 , __snake_case : str=0.02 , __snake_case : List[Any]=1E-12 , __snake_case : Any=1 , __snake_case : List[Any]=0 , __snake_case : Dict=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Any=None , **__snake_case : List[Any] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class a ( _A ): '''simple docstring''' @property def lowerCamelCase_ ( self : str ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
177
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def _A ( A__ ): """simple docstring""" __lowercase = '''huggingface/label-files''' __lowercase = '''imagenet-1k-id2label.json''' __lowercase = json.load(open(hf_hub_download(A__ , A__ , repo_type='''dataset''' ) , '''r''' ) ) __lowercase = {int(A__ ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __lowercase = BitConfig( conv_layer=A__ , num_labels=1000 , idalabel=A__ , labelaid=A__ , ) return config def _A ( A__ ): """simple docstring""" if "stem.conv" in name: __lowercase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: __lowercase = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: __lowercase = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): __lowercase = '''bit.''' + name if "bit" not in name and "classifier" not in name: __lowercase = '''bit.encoder.''' + name return name def _A ( ): """simple docstring""" __lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def _A ( A__ , A__ , A__=False ): """simple docstring""" __lowercase = get_config(A__ ) # load original model from timm __lowercase = create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model __lowercase = timm_model.state_dict() for key in state_dict.copy().keys(): __lowercase = state_dict.pop(A__ ) __lowercase = val.squeeze() if '''head''' in key else val # load HuggingFace model __lowercase = BitForImageClassification(A__ ) model.eval() model.load_state_dict(A__ ) # create image processor __lowercase = create_transform(**resolve_data_config({} , model=A__ ) ) __lowercase = transform.transforms __lowercase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } __lowercase = BitImageProcessor( do_resize=A__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=A__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __lowercase = prepare_img() __lowercase = transform(A__ ).unsqueeze(0 ) __lowercase = processor(A__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(A__ , A__ ) # verify logits with torch.no_grad(): __lowercase = model(A__ ) __lowercase = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) __lowercase = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(A__ ).mkdir(exist_ok=A__ ) print(F"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(A__ ) processor.save_pretrained(A__ ) if push_to_hub: print(F"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(F"ybelkada/{model_name}" ) processor.push_to_hub(F"ybelkada/{model_name}" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) lowerCAmelCase__ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
104
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def __lowercase ( lowerCamelCase : Any ): UpperCamelCase_ : Union[str, Any] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"{test_file} instead." ) UpperCamelCase_ : str = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) UpperCamelCase_ : Union[str, Any] = components[:-1] + [test_fn.replace('.py' , '' )] UpperCamelCase_ : List[Any] = '.'.join(lowerCamelCase ) return test_module_path def __lowercase ( lowerCamelCase : Optional[Any] ): UpperCamelCase_ : List[Any] = get_module_path(lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = importlib.import_module(lowerCamelCase ) return test_module def __lowercase ( lowerCamelCase : List[str] ): UpperCamelCase_ : int = [] UpperCamelCase_ : Tuple = get_test_module(lowerCamelCase ) for attr in dir(lowerCamelCase ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(lowerCamelCase , lowerCamelCase ) ) # sort with class names return sorted(lowerCamelCase , key=lambda lowerCamelCase : x.__name__ ) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : List[str] = [] UpperCamelCase_ : Union[str, Any] = get_test_module(lowerCamelCase ) for attr in dir(lowerCamelCase ): UpperCamelCase_ : Dict = getattr(lowerCamelCase , lowerCamelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). UpperCamelCase_ : Optional[int] = getattr(lowerCamelCase , 'all_model_classes' , [] ) if len(lowerCamelCase ) > 0: test_classes.append(lowerCamelCase ) # sort with class names return sorted(lowerCamelCase , key=lambda lowerCamelCase : x.__name__ ) def __lowercase ( lowerCamelCase : Dict ): UpperCamelCase_ : int = get_test_classes(lowerCamelCase ) UpperCamelCase_ : List[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowerCamelCase , key=lambda lowerCamelCase : x.__name__ ) def __lowercase ( lowerCamelCase : Tuple ): UpperCamelCase_ : int = test_class() if hasattr(lowerCamelCase , 'setUp' ): test.setUp() UpperCamelCase_ : List[Any] = None if hasattr(lowerCamelCase , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: UpperCamelCase_ : Optional[Any] = test.model_tester.__class__ return model_tester def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : Dict ): UpperCamelCase_ : Optional[Any] = get_test_classes(lowerCamelCase ) UpperCamelCase_ : Tuple = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowerCamelCase ) # sort with class names return sorted(lowerCamelCase , key=lambda lowerCamelCase : x.__name__ ) def __lowercase ( lowerCamelCase : Any , lowerCamelCase : Tuple ): UpperCamelCase_ : List[Any] = get_test_classes_for_model(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : int = [] for test_class in test_classes: UpperCamelCase_ : Tuple = get_model_tester_from_test_class(lowerCamelCase ) if tester_class is not None: tester_classes.append(lowerCamelCase ) # sort with class names return sorted(lowerCamelCase , key=lambda lowerCamelCase : x.__name__ ) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Tuple = get_test_classes(lowerCamelCase ) UpperCamelCase_ : Tuple = {test_class: get_model_tester_from_test_class(lowerCamelCase ) for test_class in test_classes} return test_tester_mapping def __lowercase ( lowerCamelCase : Any ): UpperCamelCase_ : List[str] = get_model_classes(lowerCamelCase ) UpperCamelCase_ : int = { model_class: get_test_classes_for_model(lowerCamelCase , lowerCamelCase ) for model_class in model_classes } return model_test_mapping def __lowercase ( lowerCamelCase : Tuple ): UpperCamelCase_ : Tuple = get_model_classes(lowerCamelCase ) UpperCamelCase_ : Optional[Any] = { model_class: get_tester_classes_for_model(lowerCamelCase , lowerCamelCase ) for model_class in model_classes } return model_to_tester_mapping def __lowercase ( lowerCamelCase : Any ): if isinstance(lowerCamelCase , lowerCamelCase ): return o elif isinstance(lowerCamelCase , lowerCamelCase ): return o.__name__ elif isinstance(lowerCamelCase , (list, tuple) ): return [to_json(lowerCamelCase ) for x in o] elif isinstance(lowerCamelCase , lowerCamelCase ): return {to_json(lowerCamelCase ): to_json(lowerCamelCase ) for k, v in o.items()} else: return o
175
0
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __snake_case ( *SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Union[Dict, Any]] = None , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Tuple=2 ) -> Optional[Any]: '''simple docstring''' from .. import __version__ _UpperCAmelCase : Tuple = take_from _UpperCAmelCase : Optional[int] = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : int = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' f' version {__version__} is >= {version_name}' ) _UpperCAmelCase : Any = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) _UpperCAmelCase : Tuple = f'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) _UpperCAmelCase : str = f'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: _UpperCAmelCase : Tuple = f'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: _UpperCAmelCase : Optional[int] = warning + " " if standard_warn else "" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase : List[Any] = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase : Optional[int] = call_frame.filename _UpperCAmelCase : Dict = call_frame.lineno _UpperCAmelCase : List[Any] = call_frame.function _UpperCAmelCase : Optional[int] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
350
"""simple docstring""" from collections.abc import Callable class UpperCAmelCase_ : def __init__( self : Dict , A : Callable | None = None ): # Stores actual heap items. _UpperCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _UpperCAmelCase : dict = {} # Stores current size of heap. _UpperCAmelCase : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _UpperCAmelCase : Any = key or (lambda A : x) def snake_case_ ( self : List[Any] , A : int ): return int((i - 1) / 2 ) if i > 0 else None def snake_case_ ( self : List[Any] , A : int ): _UpperCAmelCase : Tuple = int(2 * i + 1 ) return left if 0 < left < self.size else None def snake_case_ ( self : List[Any] , A : int ): _UpperCAmelCase : Tuple = int(2 * i + 2 ) return right if 0 < right < self.size else None def snake_case_ ( self : Optional[int] , A : int , A : int ): _UpperCAmelCase , _UpperCAmelCase : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _UpperCAmelCase , _UpperCAmelCase : Any = self.arr[j], self.arr[i] def snake_case_ ( self : List[str] , A : int , A : int ): return self.arr[i][1] < self.arr[j][1] def snake_case_ ( self : Dict , A : int ): _UpperCAmelCase : str = self._left(A ) _UpperCAmelCase : str = self._right(A ) _UpperCAmelCase : List[Any] = i if left is not None and not self._cmp(A , A ): _UpperCAmelCase : Optional[int] = left if right is not None and not self._cmp(A , A ): _UpperCAmelCase : Any = right return valid_parent def snake_case_ ( self : Tuple , A : int ): _UpperCAmelCase : Tuple = self._parent(A ) while parent is not None and not self._cmp(A , A ): self._swap(A , A ) _UpperCAmelCase , _UpperCAmelCase : Dict = parent, self._parent(A ) def snake_case_ ( self : Optional[int] , A : int ): _UpperCAmelCase : Tuple = self._get_valid_parent(A ) while valid_parent != index: self._swap(A , A ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = valid_parent, self._get_valid_parent(A ) def snake_case_ ( self : Dict , A : int , A : int ): if item not in self.pos_map: return _UpperCAmelCase : Any = self.pos_map[item] _UpperCAmelCase : Optional[int] = [item, self.key(A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(A ) self._heapify_down(A ) def snake_case_ ( self : List[str] , A : int ): if item not in self.pos_map: return _UpperCAmelCase : str = self.pos_map[item] del self.pos_map[item] _UpperCAmelCase : Tuple = self.arr[self.size - 1] _UpperCAmelCase : List[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(A ) self._heapify_down(A ) def snake_case_ ( self : Any , A : int , A : int ): _UpperCAmelCase : Any = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(A )] ) else: _UpperCAmelCase : Any = [item, self.key(A )] _UpperCAmelCase : List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def snake_case_ ( self : Tuple ): return self.arr[0] if self.size else None def snake_case_ ( self : Any ): _UpperCAmelCase : Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __snake_case ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
202
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """detr""" lowerCAmelCase_ = ["""past_key_values"""] lowerCAmelCase_ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=3 , __lowerCAmelCase=1_0_0 , __lowerCAmelCase=6 , __lowerCAmelCase=2_0_4_8 , __lowerCAmelCase=8 , __lowerCAmelCase=6 , __lowerCAmelCase=2_0_4_8 , __lowerCAmelCase=8 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase="relu" , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1.0 , __lowerCAmelCase=False , __lowerCAmelCase="sine" , __lowerCAmelCase="resnet50" , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=1 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=1 , __lowerCAmelCase=1 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=0.1 , **__lowerCAmelCase , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowerCamelCase__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = backbone_config.get('''model_type''' ) lowerCamelCase__ = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ = config_class.from_dict(__lowerCAmelCase ) # set timm attributes to None lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None, None, None lowerCamelCase__ = use_timm_backbone lowerCamelCase__ = backbone_config lowerCamelCase__ = num_channels lowerCamelCase__ = num_queries lowerCamelCase__ = d_model lowerCamelCase__ = encoder_ffn_dim lowerCamelCase__ = encoder_layers lowerCamelCase__ = encoder_attention_heads lowerCamelCase__ = decoder_ffn_dim lowerCamelCase__ = decoder_layers lowerCamelCase__ = decoder_attention_heads lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = activation_function lowerCamelCase__ = init_std lowerCamelCase__ = init_xavier_std lowerCamelCase__ = encoder_layerdrop lowerCamelCase__ = decoder_layerdrop lowerCamelCase__ = encoder_layers lowerCamelCase__ = auxiliary_loss lowerCamelCase__ = position_embedding_type lowerCamelCase__ = backbone lowerCamelCase__ = use_pretrained_backbone lowerCamelCase__ = dilation # Hungarian matcher lowerCamelCase__ = class_cost lowerCamelCase__ = bbox_cost lowerCamelCase__ = giou_cost # Loss coefficients lowerCamelCase__ = mask_loss_coefficient lowerCamelCase__ = dice_loss_coefficient lowerCamelCase__ = bbox_loss_coefficient lowerCamelCase__ = giou_loss_coefficient lowerCamelCase__ = eos_coefficient super().__init__(is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.encoder_attention_heads @property def __lowerCamelCase ( self ): '''simple docstring''' return self.d_model @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return cls(backbone_config=__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCamelCase__ = self.backbone_config.to_dict() lowerCamelCase__ = self.__class__.model_type return output class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-5 @property def __lowerCamelCase ( self ): '''simple docstring''' return 1_2
209
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class __A ( nn.Module ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = (16, 32, 96, 256) lowerCAmelCase_ = jnp.floataa def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase__ = self.block_out_channels[i] lowerCamelCase__ = self.block_out_channels[i + 1] lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCAmelCase ) lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCAmelCase ) lowerCamelCase__ = blocks lowerCamelCase__ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.conv_in(__lowerCAmelCase ) lowerCamelCase__ = nn.silu(__lowerCAmelCase ) for block in self.blocks: lowerCamelCase__ = block(__lowerCAmelCase ) lowerCamelCase__ = nn.silu(__lowerCAmelCase ) lowerCamelCase__ = self.conv_out(__lowerCAmelCase ) return embedding @flax_register_to_config class __A ( nn.Module , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 32 lowerCAmelCase_ = 4 lowerCAmelCase_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCAmelCase_ = False lowerCAmelCase_ = (320, 640, 1280, 1280) lowerCAmelCase_ = 2 lowerCAmelCase_ = 8 lowerCAmelCase_ = None lowerCAmelCase_ = 1280 lowerCAmelCase_ = 0.0 lowerCAmelCase_ = False lowerCAmelCase_ = jnp.floataa lowerCAmelCase_ = True lowerCAmelCase_ = 0 lowerCAmelCase_ = "rgb" lowerCAmelCase_ = (16, 32, 96, 256) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase__ = jnp.zeros(__lowerCAmelCase , dtype=jnp.floataa ) lowerCamelCase__ = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase__ = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase__ = jnp.zeros(__lowerCAmelCase , dtype=jnp.floataa ) lowerCamelCase__ , lowerCamelCase__ = jax.random.split(__lowerCAmelCase ) lowerCamelCase__ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )["params"] def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.block_out_channels lowerCamelCase__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase__ = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase__ = FlaxTimestepEmbedding(__lowerCAmelCase , dtype=self.dtype ) lowerCamelCase__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCamelCase__ = self.only_cross_attention if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = block_out_channels[0] lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase__ = output_channel lowerCamelCase__ = block_out_channels[i] lowerCamelCase__ = i == len(__lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase__ = FlaxCrossAttnDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCamelCase__ = FlaxDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCAmelCase ) for _ in range(self.layers_per_block ): lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) if not is_final_block: lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) lowerCamelCase__ = down_blocks lowerCamelCase__ = controlnet_down_blocks # mid lowerCamelCase__ = block_out_channels[-1] lowerCamelCase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=__lowerCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = False , ): '''simple docstring''' lowerCamelCase__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase__ = jnp.flip(__lowerCAmelCase , axis=1 ) # 1. time if not isinstance(__lowerCAmelCase , jnp.ndarray ): lowerCamelCase__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase__ = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase__ = jnp.expand_dims(__lowerCAmelCase , 0 ) lowerCamelCase__ = self.time_proj(__lowerCAmelCase ) lowerCamelCase__ = self.time_embedding(__lowerCAmelCase ) # 2. pre-process lowerCamelCase__ = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1) ) lowerCamelCase__ = self.conv_in(__lowerCAmelCase ) lowerCamelCase__ = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1) ) lowerCamelCase__ = self.controlnet_cond_embedding(__lowerCAmelCase ) sample += controlnet_cond # 3. down lowerCamelCase__ = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = down_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) else: lowerCamelCase__ , lowerCamelCase__ = down_block(__lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase__ = self.mid_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) # 5. contronet blocks lowerCamelCase__ = () for down_block_res_sample, controlnet_block in zip(__lowerCAmelCase , self.controlnet_down_blocks ): lowerCamelCase__ = controlnet_block(__lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase__ = controlnet_down_block_res_samples lowerCamelCase__ = self.controlnet_mid_block(__lowerCAmelCase ) # 6. scaling lowerCamelCase__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__lowerCAmelCase , mid_block_res_sample=__lowerCAmelCase )
209
1
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __lowercase ( _a , _a , _a , _a ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def __lowercase ( _a , _a , _a , _a , _a=True ): model.train() snake_case_ : int = model(_a ) snake_case_ : List[str] = F.mse_loss(_a , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_a ) def __lowercase ( _a , _a=False ): set_seed(42 ) snake_case_ : List[Any] = RegressionModel() snake_case_ : Dict = deepcopy(_a ) snake_case_ : List[str] = RegressionDataset(length=80 ) snake_case_ : Optional[int] = DataLoader(_a , batch_size=16 ) model.to(accelerator.device ) if sched: snake_case_ : Any = AdamW(params=model.parameters() , lr=1E-3 ) snake_case_ : int = AdamW(params=ddp_model.parameters() , lr=1E-3 ) snake_case_ : Tuple = LambdaLR(_a , lr_lambda=lambda _a : epoch**0.65 ) snake_case_ : Dict = LambdaLR(_a , lr_lambda=lambda _a : epoch**0.65 ) # Make a copy of `model` if sched: snake_case_, snake_case_, snake_case_, snake_case_ : Dict = accelerator.prepare(_a , _a , _a , _a ) else: snake_case_, snake_case_ : Optional[int] = accelerator.prepare(_a , _a ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __lowercase ( _a ): # Test when on a single CPU or GPU that the context manager does nothing snake_case_, snake_case_, snake_case_ : Optional[Any] = get_training_setup(_a ) # Use a single batch snake_case_, snake_case_ : Optional[int] = next(iter(_a ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_, snake_case_ : int = accelerator.gather((ddp_input, ddp_target) ) snake_case_, snake_case_ : List[str] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_a , _a , _a , _a ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_a ): step_model(_a , _a , _a , _a ) else: # Sync grads step_model(_a , _a , _a , _a ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_a , _a , _a , _a ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) snake_case_ : Any = ddp_input[torch.randperm(len(_a ) )] def __lowercase ( _a ): # Test on distributed setup that context manager behaves properly snake_case_, snake_case_, snake_case_ : Optional[int] = get_training_setup(_a ) # Use a single batch snake_case_, snake_case_ : Tuple = next(iter(_a ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_, snake_case_ : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) snake_case_, snake_case_ : Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_a , _a , _a , _a ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_a ): step_model(_a , _a , _a , _a ) else: # Sync grads step_model(_a , _a , _a , _a ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) snake_case_ : Dict = ddp_input[torch.randperm(len(_a ) )] def __lowercase ( _a=False , _a=False ): snake_case_ : Optional[Any] = Accelerator( split_batches=_a , dispatch_batches=_a , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_, snake_case_, snake_case_ : Tuple = get_training_setup(_a ) for iteration, batch in enumerate(_a ): snake_case_, snake_case_ : int = batch.values() # Gather the distributed inputs and targs for the base model snake_case_, snake_case_ : Union[str, Any] = accelerator.gather((ddp_input, ddp_target) ) snake_case_, snake_case_ : List[str] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_a , _a , _a , _a , _a ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_a ): step_model(_a , _a , _a , _a ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_a ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) snake_case_ : Optional[Any] = ddp_input[torch.randperm(len(_a ) )] GradientState._reset_state() def __lowercase ( _a=False , _a=False ): snake_case_ : Any = Accelerator( split_batches=_a , dispatch_batches=_a , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ : Any = get_training_setup(_a , _a ) for iteration, batch in enumerate(_a ): snake_case_, snake_case_ : Any = batch.values() # Gather the distributed inputs and targs for the base model snake_case_, snake_case_ : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) snake_case_, snake_case_ : Optional[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_a , _a , _a , _a , _a ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_a )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_a ): step_model(_a , _a , _a , _a ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" snake_case_ : Union[str, Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_a )) if accelerator.num_processes > 1: check_model_parameters(_a , _a , _a , _a ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def __lowercase ( ): snake_case_ : Optional[Any] = Accelerator() snake_case_ : List[Any] = RegressionDataset(length=80 ) snake_case_ : Dict = DataLoader(_a , batch_size=16 ) snake_case_ : Any = RegressionDataset(length=96 ) snake_case_ : Union[str, Any] = DataLoader(_a , batch_size=16 ) snake_case_, snake_case_ : int = accelerator.prepare(_a , _a ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_a ): assert id(accelerator.gradient_state.active_dataloader ) == id(_a ) if iteration < len(_a ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_a ): assert id(accelerator.gradient_state.active_dataloader ) == id(_a ) if batch_num < len(_a ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __lowercase ( ): snake_case_ : str = Accelerator() snake_case_ : List[str] = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(_a ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(_a ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(_a , _a ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(_a , _a ) def __lowercase ( _a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
155
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase__ : str = get_logger(__name__) lowercase__ : List[str] = Path(__file__).parent / '''model_card_template.md''' lowercase__ : Union[str, Any] = uuida().hex lowercase__ : Tuple = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[int] = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __lowercase ( _a = None ): snake_case_ : List[str] = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_a , _a ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(_a , _a ): ua += "; " + user_agent return ua def __lowercase ( _a , _a = None , _a = None ): if token is None: snake_case_ : Union[str, Any] = HfFolder.get_token() if organization is None: snake_case_ : int = whoami(_a )['''name'''] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def __lowercase ( _a , _a ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_a , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ : Union[str, Any] = args.hub_token if hasattr(_a , '''hub_token''' ) else None snake_case_ : Dict = get_full_repo_name(_a , token=_a ) snake_case_ : List[str] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_a , model_name=_a , repo_name=_a , dataset_name=args.dataset_name if hasattr(_a , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_a , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_a , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_a , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_a , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_a , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_a , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_a , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_a , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ : Tuple = os.path.join(args.output_dir , '''README.md''' ) model_card.save(_a ) def __lowercase ( _a , _a = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ : Tuple = str(Path(_a ).as_posix() ) snake_case_ : int = re.search(r'''snapshots/([^/]+)/''' , _a ) if search is None: return None snake_case_ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase__ : str = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowercase__ : List[Any] = os.path.join(hf_cache_home, '''diffusers''') def __lowercase ( _a = None , _a = None ): if new_cache_dir is None: snake_case_ : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ : List[str] = old_diffusers_cache snake_case_ : Union[str, Any] = Path(_a ).expanduser() snake_case_ : str = Path(_a ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ : List[Any] = new_cache_dir / old_blob_path.relative_to(_a ) new_blob_path.parent.mkdir(parents=_a , exist_ok=_a ) os.replace(_a , _a ) try: os.symlink(_a , _a ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase__ : Optional[Any] = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowercase__ : Optional[int] = 0 else: with open(cache_version_file) as f: try: lowercase__ : Optional[Any] = int(f.read()) except ValueError: lowercase__ : Optional[Any] = 0 if cache_version < 1: lowercase__ : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowercase__ : Optional[Any] = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __lowercase ( _a , _a = None ): if variant is not None: snake_case_ : str = weights_name.split('''.''' ) snake_case_ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] snake_case_ : List[Any] = '''.'''.join(_a ) return weights_name def __lowercase ( _a , *, _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a=None , ): snake_case_ : Dict = str(_a ) if os.path.isfile(_a ): return pretrained_model_name_or_path elif os.path.isdir(_a ): if os.path.isfile(os.path.join(_a , _a ) ): # Load from a PyTorch checkpoint snake_case_ : Dict = os.path.join(_a , _a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_a , _a , _a ) ): snake_case_ : List[Any] = os.path.join(_a , _a , _a ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_a ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ : str = hf_hub_download( _a , filename=_add_variant(_a , _a ) , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , _a , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_a , _a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(_a , _a )}' so that the correct variant file can be added." , _a , ) try: # 2. Load model file as usual snake_case_ : Tuple = hf_hub_download( _a , filename=_a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " '''this model name. Check the model page at ''' f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
155
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCamelCase_ ( _a : str , _a : Any=100 , _a : int=" " ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = text.split(_a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_a ) , _a )] def lowerCamelCase_ ( _a : dict ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Dict = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_a ): titles.append(title if title is not None else """""" ) texts.append(_a ) return {"title": titles, "text": texts} def lowerCamelCase_ ( _a : dict , _a : DPRContextEncoder , _a : DPRContextEncoderTokenizerFast ): '''simple docstring''' UpperCAmelCase_ : List[str] = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_a , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] UpperCAmelCase_ : Tuple = ctx_encoder(input_ids.to(device=_a ) , return_dict=_a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase_ ( _a : "RagExampleArguments" , _a : "ProcessingArguments" , _a : "IndexHnswArguments" , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCAmelCase_ : Optional[int] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCAmelCase_ : Tuple = dataset.map(_a , batched=_a , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCAmelCase_ : List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_a ) UpperCAmelCase_ : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCAmelCase_ : Any = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space UpperCAmelCase_ : List[str] = dataset.map( partial(_a , ctx_encoder=_a , ctx_tokenizer=_a ) , batched=_a , batch_size=processing_args.batch_size , features=_a , ) # And finally save your dataset UpperCAmelCase_ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCAmelCase_ : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_a ) # And save the index UpperCAmelCase_ : Optional[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _snake_case : '''simple docstring''' A__ : str = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) A__ : Optional[str] = field( default=__snake_case , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) A__ : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) A__ : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) A__ : Optional[str] = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _snake_case : '''simple docstring''' A__ : Optional[int] = field( default=__snake_case , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) A__ : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _snake_case : '''simple docstring''' A__ : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) A__ : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
345
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Dict = '''lilt''' def __init__( self , _UpperCamelCase=3_0_5_2_2 , _UpperCamelCase=7_6_8 , _UpperCamelCase=1_2 , _UpperCamelCase=1_2 , _UpperCamelCase=3_0_7_2 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1E-12 , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=4 , _UpperCamelCase=1_0_2_4 , **_UpperCamelCase , ) -> Optional[int]: super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Union[str, Any] = position_embedding_type UpperCAmelCase_ : Optional[int] = classifier_dropout UpperCAmelCase_ : List[Any] = channel_shrink_ratio UpperCAmelCase_ : Optional[Any] = max_ad_position_embeddings
369
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __UpperCAmelCase = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __UpperCAmelCase = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = SavedModel() UpperCAmelCase_ : Optional[Any] = [] with open(os.path.join(__snake_case , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: UpperCAmelCase_ : Optional[Any] = json.load(__snake_case )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__snake_case )] ) with open(__snake_case , 'rb' ) as f: saved_model.ParseFromString(f.read() ) UpperCAmelCase_ : List[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCAmelCase_ : Optional[int] = sorted(__snake_case ) UpperCAmelCase_ : int = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__snake_case ) if strict and len(__snake_case ) > 0: raise Exception(F"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(__snake_case ) > 0: print(F"Found the following incompatible ops for the opset {opset}:" ) print(*__snake_case , sep='\n' ) else: print(F"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) __UpperCAmelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
145
0
def lowerCAmelCase_ ( __A ) -> list: '''simple docstring''' def merge(__A, __A ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__UpperCAmelCase ) <= 1: return collection UpperCAmelCase__ = len(__UpperCAmelCase ) // 2 return merge(merge_sort(collection[:mid] ), merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase__ = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
65
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __A = False class UpperCAmelCase (unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): lowercase__: Dict = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: List[str] = '''A painting of a squirrel eating a burger ''' lowercase__: str = torch.manual_seed(0 ) lowercase__: Union[str, Any] = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) lowercase__: Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = generator.manual_seed(0 ) lowercase__: List[str] = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _snake_case ( self ): lowercase__: Dict = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Tuple = '''A painting of a squirrel eating a burger ''' lowercase__: Optional[Any] = torch.manual_seed(0 ) lowercase__: Tuple = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images lowercase__: Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__: Any = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
177
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger() @dataclass class lowercase : """simple docstring""" _a = 42 _a = field(default_factory=A__ ) _a = field(default_factory=A__ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase_ , nn.Convad ) or isinstance(UpperCamelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase_ ) def __call__( self , UpperCamelCase_ ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase_ ) [x.remove() for x in self.handles] return self @property def lowerCAmelCase__ ( self ): '''simple docstring''' return list(filter(lambda UpperCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowercase : """simple docstring""" _a = 42 _a = 42 _a = 1 _a = field(default_factory=A__ ) _a = field(default_factory=A__ ) _a = True def __call__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = Tracker(self.dest )(UpperCamelCase_ ).parametrized UpperCamelCase__ :Optional[Any] = Tracker(self.src )(UpperCamelCase_ ).parametrized UpperCamelCase__ :List[Any] = list(filter(lambda UpperCamelCase_ : type(UpperCamelCase_ ) not in self.src_skip , UpperCamelCase_ ) ) UpperCamelCase__ :List[Any] = list(filter(lambda UpperCamelCase_ : type(UpperCamelCase_ ) not in self.dest_skip , UpperCamelCase_ ) ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(UpperCamelCase_ )} operations while''' F''' destination module has {len(UpperCamelCase_ )}.''' ) for dest_m, src_m in zip(UpperCamelCase_ , UpperCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class lowercase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' super().__init__() UpperCamelCase__ :List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), F'''Unexpected layer name {k}''' UpperCamelCase__ :str = len(UpperCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) UpperCamelCase__ :int = nn.ModuleDict(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return get_trunk_forward_outputs( UpperCamelCase_ , out_feat_keys=UpperCamelCase_ , feature_blocks=self._feature_blocks , ) class lowercase ( A__ ): """simple docstring""" def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , UpperCamelCase_ ): '''simple docstring''' if x not in self: UpperCamelCase__ :str = self.convert_name_to_timm(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = partial(lambda: (timm.create_model(UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval(), None) ) else: UpperCamelCase__ :Any = super().__getitem__(UpperCamelCase_ ) return val class lowercase ( A__ ): """simple docstring""" def __getitem__( self , UpperCamelCase_ ): '''simple docstring''' if "seer" in x and "in1k" not in x: UpperCamelCase__ :str = RegNetModel else: UpperCamelCase__ :int = RegNetForImageClassification return val def a ( __a , __a , __a ) -> str: '''simple docstring''' for from_key, to_key in keys: UpperCamelCase__ :Dict = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def a ( __a , __a , __a , __a , __a , __a = True , ) -> Tuple: '''simple docstring''' print(f'''Converting {name}...''' ) with torch.no_grad(): UpperCamelCase__ , UpperCamelCase__ :str = from_model_func() UpperCamelCase__ :Dict = our_model_func(__a ).eval() UpperCamelCase__ :Any = ModuleTransfer(src=__a , dest=__a , raise_if_mismatch=__a ) UpperCamelCase__ :Dict = torch.randn((1, 3, 224, 224) ) module_transfer(__a ) if from_state_dict is not None: UpperCamelCase__ :List[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCamelCase__ :List[str] = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] UpperCamelCase__ :Optional[Any] = manually_copy_vissl_head(__a , our_model.state_dict() , __a ) our_model.load_state_dict(__a ) UpperCamelCase__ :Optional[int] = our_model(__a , output_hidden_states=__a ) UpperCamelCase__ :List[str] = ( our_outputs.logits if isinstance(__a , __a ) else our_outputs.last_hidden_state ) UpperCamelCase__ :int = from_model(__a ) UpperCamelCase__ :Optional[Any] = from_output[-1] if type(__a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCamelCase__ :Any = our_outputs.hidden_states[-1] assert torch.allclose(__a , __a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=__a , ) UpperCamelCase__ :List[Any] = 224 if '''seer''' not in name else 384 # we can use the convnext one UpperCamelCase__ :Optional[Any] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=__a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=__a , ) print(f'''Pushed {name}''' ) def a ( __a , __a = None , __a = True ) -> Dict: '''simple docstring''' UpperCamelCase__ :int = '''imagenet-1k-id2label.json''' UpperCamelCase__ :str = 1000 UpperCamelCase__ :str = (1, num_labels) UpperCamelCase__ :Optional[int] = '''huggingface/label-files''' UpperCamelCase__ :List[Any] = num_labels UpperCamelCase__ :List[Any] = json.load(open(cached_download(hf_hub_url(__a , __a , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCamelCase__ :Optional[Any] = {int(__a ): v for k, v in idalabel.items()} UpperCamelCase__ :Optional[Any] = idalabel UpperCamelCase__ :Tuple = {v: k for k, v in idalabel.items()} UpperCamelCase__ :Any = partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) UpperCamelCase__ :str = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } UpperCamelCase__ :Optional[Any] = NameToOurModelFuncMap() UpperCamelCase__ :Dict = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__a , __a ) -> Tuple[nn.Module, Dict]: UpperCamelCase__ :List[str] = torch.hub.load_state_dict_from_url(__a , model_dir=str(__a ) , map_location='''cpu''' ) UpperCamelCase__ :Optional[Any] = model_func() # check if we have a head, if yes add it UpperCamelCase__ :int = files['''classy_state_dict''']['''base_model''']['''model'''] UpperCamelCase__ :Optional[int] = model_state_dict['''trunk'''] model.load_state_dict(__a ) return model.eval(), model_state_dict["heads"] # pretrained UpperCamelCase__ :Tuple = partial( __a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCamelCase__ :str = partial( __a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCamelCase__ :Any = partial( __a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCamelCase__ :Tuple = partial( __a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned UpperCamelCase__ :str = partial( __a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCamelCase__ :Tuple = partial( __a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCamelCase__ :Optional[Any] = partial( __a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCamelCase__ :Union[str, Any] = partial( __a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( __a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __a , __a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __a , __a , __a , ) return config, expected_shape if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __snake_case = parser.parse_args() __snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
219
'''simple docstring''' from __future__ import annotations __snake_case = [True] * 1000001 __snake_case = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): __snake_case = False i += 1 def a ( __a ) -> bool: '''simple docstring''' return seive[n] def a ( __a ) -> bool: '''simple docstring''' return any(digit in '''02468''' for digit in str(__a ) ) def a ( __a = 1000000 ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Any = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__a ) and not contains_an_even_digit(__a ): UpperCamelCase__ :str = str(__a ) UpperCamelCase__ :List[str] = [int(str_num[j:] + str_num[:j] ) for j in range(len(__a ) )] if all(is_prime(__a ) for i in list_nums ): result.append(__a ) return result def a ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(F"""{len(find_circular_primes()) = }""")
219
1
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase ( _lowerCamelCase : float , _lowerCamelCase : int ): A__ = u for i in range(1 , __snake_case ): A__ = temp * (u - i) return temp def UpperCamelCase ( ): A__ = int(input("enter the numbers of values: " ) ) A__ = [] for _ in range(__snake_case ): y.append([] ) for i in range(__snake_case ): for j in range(__snake_case ): y[i].append(__snake_case ) A__ = 0 print("enter the values of parameters in a list: " ) A__ = list(map(__snake_case , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(__snake_case ): A__ = float(input() ) A__ = int(input("enter the value to interpolate: " ) ) A__ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __snake_case ): for j in range(n - i ): A__ = y[j + 1][i - 1] - y[j][i - 1] A__ = y[0][0] for i in range(1 , __snake_case ): summ += (ucal(__snake_case , __snake_case ) * y[0][i]) / math.factorial(__snake_case ) print(F"the value at {value} is {summ}" ) if __name__ == "__main__": main()
237
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A : int = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class a__ ( a_, unittest.TestCase ): __lowerCAmelCase = DebertaVaTokenizer __lowerCAmelCase = DebertaVaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def __magic_name__ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase : Any = DebertaVaTokenizer(_a , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , _a ): lowercase : int = "this is a test" lowercase : Tuple = "this is a test" return input_text, output_text def __magic_name__ ( self ): lowercase : List[Any] = "<pad>" lowercase : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __magic_name__ ( self ): lowercase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(_a ) , 30_001 ) def __magic_name__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def __magic_name__ ( self ): # fmt: off lowercase : List[str] = " \tHeLLo!how \n Are yoU? " lowercase : str = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on lowercase : Union[str, Any] = DebertaVaTokenizer(_a , do_lower_case=_a ) lowercase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : str = DebertaVaTokenizerFast(_a , do_lower_case=_a ) lowercase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __magic_name__ ( self ): pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): # fmt: off lowercase : Optional[Any] = "I was born in 92000, and this is falsé." lowercase : Tuple = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : List[Any] = DebertaVaTokenizer(_a , split_by_punct=_a ) lowercase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , split_by_punct=_a ) lowercase : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Tuple = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : List[str] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : List[Any] = "I was born in 92000, and this is falsé." lowercase : Optional[int] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on lowercase : List[Any] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Dict = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : Union[str, Any] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : Dict = " \tHeLLo!how \n Are yoU? " lowercase : str = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on lowercase : Optional[int] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : List[str] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : str = self.get_tokenizer() lowercase : Dict = self.get_rust_tokenizer() lowercase : str = "I was born in 92000, and this is falsé." lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.encode(_a , add_special_tokens=_a ) lowercase : Dict = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = self.get_rust_tokenizer() lowercase : Tuple = tokenizer.encode(_a ) lowercase : List[str] = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : str = "This is a test" lowercase : Tuple = [13, 1, 4_398, 25, 21, 1_289] lowercase : Optional[int] = ["▁", "T", "his", "▁is", "▁a", "▁test"] lowercase : Optional[Any] = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] lowercase : Any = DebertaVaTokenizer(_a , keep_accents=_a ) lowercase : Dict = DebertaVaTokenizerFast(_a , keep_accents=_a ) lowercase : str = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) lowercase : int = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : Any = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Any = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] lowercase : List[str] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] lowercase : str = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on lowercase : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = rust_tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : Optional[int] = DebertaVaTokenizer(_a ) lowercase : List[Any] = tokenizer.encode("sequence builders" ) lowercase : Dict = tokenizer.encode("multi-sequence build" ) lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(_a ) lowercase : Dict = tokenizer.build_inputs_with_special_tokens(_a , _a ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _a ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _a , ) @slow def __magic_name__ ( self ): # fmt: off lowercase : Dict = {"input_ids": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
202
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , UpperCAmelCase_ , ): lowerCamelCase =parent lowerCamelCase =13 lowerCamelCase =7 lowerCamelCase =30 lowerCamelCase =self.seq_length + self.mem_len lowerCamelCase =15 lowerCamelCase =True lowerCamelCase =True lowerCamelCase =99 lowerCamelCase =[10, 50, 80] lowerCamelCase =32 lowerCamelCase =32 lowerCamelCase =4 lowerCamelCase =8 lowerCamelCase =128 lowerCamelCase =2 lowerCamelCase =2 lowerCamelCase =None lowerCamelCase =1 lowerCamelCase =0 lowerCamelCase =3 lowerCamelCase =self.vocab_size - 1 lowerCamelCase =0.0_1 def _snake_case ( self ): lowerCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase =None if self.use_labels: lowerCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase =TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _snake_case ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =TFTransfoXLModel(UpperCAmelCase_ ) lowerCamelCase , lowerCamelCase =model(UpperCAmelCase_ ).to_tuple() lowerCamelCase ={"""input_ids""": input_ids_a, """mems""": mems_a} lowerCamelCase , lowerCamelCase =model(UpperCAmelCase_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =TFTransfoXLLMHeadModel(UpperCAmelCase_ ) lowerCamelCase , lowerCamelCase =model(UpperCAmelCase_ ).to_tuple() lowerCamelCase ={"""input_ids""": input_ids_a, """labels""": lm_labels} lowerCamelCase , lowerCamelCase =model(UpperCAmelCase_ ).to_tuple() lowerCamelCase , lowerCamelCase =model([input_ids_a, mems_a] ).to_tuple() lowerCamelCase ={"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} lowerCamelCase , lowerCamelCase =model(UpperCAmelCase_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =TFTransfoXLForSequenceClassification(UpperCAmelCase_ ) lowerCamelCase =model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self ): lowerCamelCase =self.prepare_config_and_inputs() ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) =config_and_inputs lowerCamelCase ={"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( a , a , unittest.TestCase ): __A = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __A = () if is_tf_available() else () __A = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __A = False __A = False __A = False __A = False def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _snake_case ( self ): lowerCamelCase =TFTransfoXLModelTester(self ) lowerCamelCase =ConfigTester(self , config_class=UpperCAmelCase_ , d_embed=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): self.model_tester.set_seed() lowerCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*UpperCAmelCase_ ) def _snake_case ( self ): self.model_tester.set_seed() lowerCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase =[TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowerCamelCase =model.get_output_embeddings() assert isinstance(UpperCAmelCase_ , tf.keras.layers.Layer ) lowerCamelCase =model.get_bias() assert name is None else: lowerCamelCase =model.get_output_embeddings() assert x is None lowerCamelCase =model.get_bias() assert name is None def _snake_case ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def _snake_case ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase =TFTransfoXLModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def _snake_case ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def _snake_case ( self ): lowerCamelCase =TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off lowerCamelCase =tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowerCamelCase =[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowerCamelCase =model.generate(UpperCAmelCase_ , max_length=200 , do_sample=UpperCAmelCase_ ) self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase_ )
262
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( a , a , unittest.TestCase ): __A = IFInpaintingSuperResolutionPipeline __A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __A = PipelineTesterMixin.required_optional_params - {"""latents"""} def _snake_case ( self ): return self._get_superresolution_dummy_components() def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ): if str(UpperCAmelCase_ ).startswith("""mps""" ): lowerCamelCase =torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case ( self ): self._test_save_load_local() def _snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
262
1
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer a = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'AutoTokenizer' _a = ['tokenizer'] _a = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any]=None ): super().__init__(lowerCAmelCase ) lowerCAmelCase = speaker_embeddings @classmethod def __lowercase ( cls : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple="speaker_embeddings_path.json" , **lowerCAmelCase : Any ): if speaker_embeddings_dict_path is not None: lowerCAmelCase = get_file_from_repo( lowerCAmelCase , lowerCAmelCase , subfolder=kwargs.pop("""subfolder""" , lowerCAmelCase ) , cache_dir=kwargs.pop("""cache_dir""" , lowerCAmelCase ) , force_download=kwargs.pop("""force_download""" , lowerCAmelCase ) , proxies=kwargs.pop("""proxies""" , lowerCAmelCase ) , resume_download=kwargs.pop("""resume_download""" , lowerCAmelCase ) , local_files_only=kwargs.pop("""local_files_only""" , lowerCAmelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , lowerCAmelCase ) , revision=kwargs.pop("""revision""" , lowerCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(lowerCAmelCase , lowerCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) lowerCAmelCase = None else: with open(lowerCAmelCase ) as speaker_embeddings_json: lowerCAmelCase = json.load(lowerCAmelCase ) else: lowerCAmelCase = None lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) return cls(tokenizer=lowerCAmelCase , speaker_embeddings=lowerCAmelCase ) def __lowercase ( self : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any]="speaker_embeddings_path.json" , lowerCAmelCase : Optional[Any]="speaker_embeddings" , lowerCAmelCase : bool = False , **lowerCAmelCase : Dict , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCAmelCase , lowerCAmelCase , """v2""" ) , exist_ok=lowerCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowerCAmelCase = self._load_voice_preset(lowerCAmelCase ) lowerCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , lowerCAmelCase , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowerCAmelCase , ) lowerCAmelCase = os.path.join(lowerCAmelCase , f'''{prompt_key}_{key}.npy''' ) lowerCAmelCase = tmp_dict with open(os.path.join(lowerCAmelCase , lowerCAmelCase ) , """w""" ) as fp: json.dump(lowerCAmelCase , lowerCAmelCase ) super().save_pretrained(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def __lowercase ( self : List[str] , lowerCAmelCase : str = None , **lowerCAmelCase : Tuple ): lowerCAmelCase = self.speaker_embeddings[voice_preset] lowerCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) lowerCAmelCase = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , lowerCAmelCase ) , cache_dir=kwargs.pop("""cache_dir""" , lowerCAmelCase ) , force_download=kwargs.pop("""force_download""" , lowerCAmelCase ) , proxies=kwargs.pop("""proxies""" , lowerCAmelCase ) , resume_download=kwargs.pop("""resume_download""" , lowerCAmelCase ) , local_files_only=kwargs.pop("""local_files_only""" , lowerCAmelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , lowerCAmelCase ) , revision=kwargs.pop("""revision""" , lowerCAmelCase ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) lowerCAmelCase = np.load(lowerCAmelCase ) return voice_preset_dict def __lowercase ( self : List[str] , lowerCAmelCase : Optional[dict] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : List[str] , lowerCAmelCase : int=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Union[str, Any]="pt" , lowerCAmelCase : Optional[int]=256 , lowerCAmelCase : str=False , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : List[Any]=False , **lowerCAmelCase : Optional[Any] , ): if voice_preset is not None and not isinstance(lowerCAmelCase , lowerCAmelCase ): if ( isinstance(lowerCAmelCase , lowerCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowerCAmelCase = self._load_voice_preset(lowerCAmelCase ) else: if isinstance(lowerCAmelCase , lowerCAmelCase ) and not voice_preset.endswith(""".npz""" ): lowerCAmelCase = voice_preset + """.npz""" lowerCAmelCase = np.load(lowerCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCAmelCase , **lowerCAmelCase ) lowerCAmelCase = BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) lowerCAmelCase = self.tokenizer( lowerCAmelCase , return_tensors=lowerCAmelCase , padding="""max_length""" , max_length=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , add_special_tokens=lowerCAmelCase , **lowerCAmelCase , ) if voice_preset is not None: lowerCAmelCase = voice_preset return encoded_text
155
"""simple docstring""" import argparse import json from tqdm import tqdm def lowercase () -> Dict: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=snake_case__ , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=snake_case__ , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=snake_case__ , help="""where to store parsed gold_data_path file""" , ) lowerCAmelCase = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: lowerCAmelCase = json.load(snake_case__ ) for dpr_record in tqdm(snake_case__ ): lowerCAmelCase = dpr_record["""question"""] lowerCAmelCase = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(snake_case__ ) + """\n""" ) if __name__ == "__main__": main()
155
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __A = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
108
"""simple docstring""" import numpy as np def a__ ( __SCREAMING_SNAKE_CASE ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
108
1
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _A = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a_ , a_ ): @register_to_config def __init__( self : int , UpperCamelCase : bool , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None ) -> Tuple: """simple docstring""" super().__init__() lowerCAmelCase__ : Any = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowerCAmelCase__ : Union[str, Any] = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ ) else: lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Dict = torch.nn.Parameter(lowerCAmelCase__ ) class _lowerCamelCase ( a_ ): _lowerCamelCase :VQModel _lowerCamelCase :CLIPTextModel _lowerCamelCase :CLIPTokenizer _lowerCamelCase :TransformeraDModel _lowerCamelCase :LearnedClassifierFreeSamplingEmbeddings _lowerCamelCase :VQDiffusionScheduler def __init__( self : Tuple , UpperCamelCase : VQModel , UpperCamelCase : CLIPTextModel , UpperCamelCase : CLIPTokenizer , UpperCamelCase : TransformeraDModel , UpperCamelCase : VQDiffusionScheduler , UpperCamelCase : LearnedClassifierFreeSamplingEmbeddings , ) -> Dict: """simple docstring""" super().__init__() self.register_modules( vqvae=lowerCAmelCase__ , transformer=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Dict = len(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else 1 # get prompt text embeddings lowerCAmelCase__ : Dict = self.tokenizer( lowerCAmelCase__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowerCAmelCase__ : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase__ : Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowerCAmelCase__ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase__ : Dict = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowerCAmelCase__ : str = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=lowerCAmelCase__ ) # duplicate text embeddings for each generation per prompt lowerCAmelCase__ : List[Any] = prompt_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowerCAmelCase__ : List[str] = self.learned_classifier_free_sampling_embeddings.embeddings lowerCAmelCase__ : Tuple = negative_prompt_embeds.unsqueeze(0 ).repeat(lowerCAmelCase__ , 1 , 1 ) else: lowerCAmelCase__ : List[str] = [""] * batch_size lowerCAmelCase__ : Optional[int] = text_input_ids.shape[-1] lowerCAmelCase__ : str = self.tokenizer( lowerCAmelCase__ , padding="""max_length""" , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="""pt""" , ) lowerCAmelCase__ : int = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings lowerCAmelCase__ : str = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=lowerCAmelCase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ : Any = negative_prompt_embeds.shape[1] lowerCAmelCase__ : Union[str, Any] = negative_prompt_embeds.repeat(1 , lowerCAmelCase__ , 1 ) lowerCAmelCase__ : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ : List[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Any , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 1_00 , UpperCamelCase : float = 5.0 , UpperCamelCase : float = 1.0 , UpperCamelCase : int = 1 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ : Any = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = len(lowerCAmelCase__ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__ )}""" ) lowerCAmelCase__ : Any = batch_size * num_images_per_prompt lowerCAmelCase__ : int = guidance_scale > 1.0 lowerCAmelCase__ : int = self._encode_prompt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(lowerCAmelCase__ )}.""" ) # get the initial completely masked latents unless the user supplied it lowerCAmelCase__ : Optional[Any] = (batch_size, self.transformer.num_latent_pixels) if latents is None: lowerCAmelCase__ : List[str] = self.transformer.num_vector_embeds - 1 lowerCAmelCase__ : List[Any] = torch.full(lowerCAmelCase__ , lowerCAmelCase__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) lowerCAmelCase__ : Dict = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCAmelCase__ , device=self.device ) lowerCAmelCase__ : Dict = self.scheduler.timesteps.to(self.device ) lowerCAmelCase__ : List[str] = latents for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the sample if we are doing classifier free guidance lowerCAmelCase__ : Optional[Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowerCAmelCase__ : Optional[int] = self.transformer(lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , timestep=lowerCAmelCase__ ).sample if do_classifier_free_guidance: lowerCAmelCase__ : Union[str, Any] = model_output.chunk(2 ) lowerCAmelCase__ : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowerCAmelCase__ , dim=1 , keepdim=lowerCAmelCase__ ) lowerCAmelCase__ : Union[str, Any] = self.truncate(lowerCAmelCase__ , lowerCAmelCase__ ) # remove `log(0)`'s (`-inf`s) lowerCAmelCase__ : Tuple = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ : str = self.scheduler.step(lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ : Union[str, Any] = self.vqvae.config.vq_embed_dim lowerCAmelCase__ : Tuple = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowerCAmelCase__ : List[Any] = self.vqvae.quantize.get_codebook_entry(lowerCAmelCase__ , shape=lowerCAmelCase__ ) lowerCAmelCase__ : Tuple = self.vqvae.decode(lowerCAmelCase__ , force_not_quantize=lowerCAmelCase__ ).sample lowerCAmelCase__ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase__ : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ : List[Any] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float ) -> torch.FloatTensor: """simple docstring""" lowerCAmelCase__ : List[Any] = torch.sort(lowerCAmelCase__ , 1 , descending=lowerCAmelCase__ ) lowerCAmelCase__ : List[str] = torch.exp(lowerCAmelCase__ ) lowerCAmelCase__ : List[str] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowerCAmelCase__ : Optional[int] = torch.full_like(keep_mask[:, 0:1, :] , lowerCAmelCase__ ) lowerCAmelCase__ : Tuple = torch.cat((all_true, keep_mask) , dim=1 ) lowerCAmelCase__ : Optional[Any] = keep_mask[:, :-1, :] lowerCAmelCase__ : Optional[int] = keep_mask.gather(1 , indices.argsort(1 ) ) lowerCAmelCase__ : Tuple = log_p_x_0.clone() lowerCAmelCase__ : Tuple = -torch.inf # -inf = log(0) return rv
242
'''simple docstring''' def __UpperCAmelCase ( a_: int = 50 ): _UpperCAmelCase : str = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
145
0
"""simple docstring""" def __A ( a_ :list , a_ :int , a_ :int = 0 , a_ :int = 0) -> int: __a : Optional[Any] = right or len(a_) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a_ , a_ , left + 1 , right - 1) if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def __A ( a_ :np.ndarray) -> np.ndarray: __a , __a , __a : Union[str, Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def __A ( a_ :np.ndarray) -> np.ndarray: return (gray > 1_27) & (gray <= 2_55) def __A ( a_ :np.ndarray , a_ :np.ndarray) -> np.ndarray: __a : Optional[int] = np.zeros_like(a_) __a : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1)) # Copy image to padded image __a : int = image # Iterate over image & apply kernel for x in range(image.shape[1]): for y in range(image.shape[0]): __a : Optional[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __a : Any = int(summation > 0) return output if __name__ == "__main__": # read original image A = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' A = np.array(Image.open(lena_path)) # kernel to be applied A = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) A = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image A = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
188
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __lowerCamelCase : List[Any] = True except (ImportError, AttributeError): __lowerCamelCase : Optional[int] = object def __SCREAMING_SNAKE_CASE ( *__UpperCamelCase : Dict , **__UpperCamelCase : Dict ) -> Optional[int]: """simple docstring""" pass __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Tuple = logging.get_logger('''transformers-cli/serving''') def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Namespace ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__UpperCamelCase , args.host , args.port , args.workers ) class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = 42 class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = 42 class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = 42 class __snake_case ( lowerCamelCase_ ): @staticmethod def __a ( _lowercase : ArgumentParser ): """simple docstring""" SCREAMING_SNAKE_CASE__ = parser.add_parser( """serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" , type=_lowercase , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , ) serve_parser.add_argument("""--host""" , type=_lowercase , default="""localhost""" , help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" , type=_lowercase , default=88_88 , help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" , type=_lowercase , default=1 , help="""Number of http workers""" ) serve_parser.add_argument("""--model""" , type=_lowercase , help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""" , type=_lowercase , help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" , type=_lowercase , help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" , type=_lowercase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) serve_parser.set_defaults(func=_lowercase ) def __init__( self : Dict , _lowercase : Pipeline , _lowercase : str , _lowercase : int , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = pipeline SCREAMING_SNAKE_CASE__ = host SCREAMING_SNAKE_CASE__ = port SCREAMING_SNAKE_CASE__ = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(f"""Serving model over {host}:{port}""" ) SCREAMING_SNAKE_CASE__ = FastAPI( routes=[ APIRoute( """/""" , self.model_info , response_model=_lowercase , response_class=_lowercase , methods=["""GET"""] , ), APIRoute( """/tokenize""" , self.tokenize , response_model=_lowercase , response_class=_lowercase , methods=["""POST"""] , ), APIRoute( """/detokenize""" , self.detokenize , response_model=_lowercase , response_class=_lowercase , methods=["""POST"""] , ), APIRoute( """/forward""" , self.forward , response_model=_lowercase , response_class=_lowercase , methods=["""POST"""] , ), ] , timeout=6_00 , ) def __a ( self : Any ): """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def __a ( self : Union[str, Any] ): """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __a ( self : int , _lowercase : str = Body(_lowercase , embed=_lowercase ) , _lowercase : bool = Body(_lowercase , embed=_lowercase ) ): """simple docstring""" try: SCREAMING_SNAKE_CASE__ = self._pipeline.tokenizer.tokenize(_lowercase ) if return_ids: SCREAMING_SNAKE_CASE__ = self._pipeline.tokenizer.convert_tokens_to_ids(_lowercase ) return ServeTokenizeResult(tokens=_lowercase , tokens_ids=_lowercase ) else: return ServeTokenizeResult(tokens=_lowercase ) except Exception as e: raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(_lowercase )} ) def __a ( self : Optional[int] , _lowercase : List[int] = Body(_lowercase , embed=_lowercase ) , _lowercase : bool = Body(_lowercase , embed=_lowercase ) , _lowercase : bool = Body(_lowercase , embed=_lowercase ) , ): """simple docstring""" try: SCREAMING_SNAKE_CASE__ = self._pipeline.tokenizer.decode(_lowercase , _lowercase , _lowercase ) return ServeDeTokenizeResult(model="""""" , text=_lowercase ) except Exception as e: raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(_lowercase )} ) async def __a ( self : Any , _lowercase : List[str]=Body(_lowercase , embed=_lowercase ) ): """simple docstring""" if len(_lowercase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model SCREAMING_SNAKE_CASE__ = self._pipeline(_lowercase ) return ServeForwardResult(output=_lowercase ) except Exception as e: raise HTTPException(5_00 , {"""error""": str(_lowercase )} )
219
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCamelCase : Any = 16 __lowerCamelCase : List[Any] = 32 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 , __UpperCamelCase : str = "bert-base-cased" ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE__ = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" model.eval() SCREAMING_SNAKE_CASE__ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: SCREAMING_SNAKE_CASE__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) SCREAMING_SNAKE_CASE__ = metric.compute() return eval_metric["accuracy"] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ = config["""lr"""] SCREAMING_SNAKE_CASE__ = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ = int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ = args.model_name_or_path set_seed(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_dataloaders(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE__ = optimizer_cls(params=model.parameters() , lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE__ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE__ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=0 , num_training_steps=__UpperCamelCase , ) else: SCREAMING_SNAKE_CASE__ = DummyScheduler(__UpperCamelCase , total_num_steps=__UpperCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE__ = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = evaluate.load("""glue""" , """mrpc""" ) SCREAMING_SNAKE_CASE__ = num_epochs if args.partial_train_epoch is not None: SCREAMING_SNAKE_CASE__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) SCREAMING_SNAKE_CASE__ = args.resume_from_checkpoint.split("""epoch_""" )[1] SCREAMING_SNAKE_CASE__ = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break SCREAMING_SNAKE_CASE__ = int(__UpperCamelCase ) + 1 SCREAMING_SNAKE_CASE__ = evaluation_loop(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) accelerator.print("""resumed checkpoint performance:""" , __UpperCamelCase ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model SCREAMING_SNAKE_CASE__ = {} for epoch in range(__UpperCamelCase , __UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.loss SCREAMING_SNAKE_CASE__ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 SCREAMING_SNAKE_CASE__ = f"""epoch_{epoch}""" SCREAMING_SNAKE_CASE__ = os.path.join(args.output_dir , __UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = evaluation_loop(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = accuracy SCREAMING_SNAKE_CASE__ = lr_scheduler.get_lr()[0] SCREAMING_SNAKE_CASE__ = optimizer.param_groups[0]["""lr"""] SCREAMING_SNAKE_CASE__ = epoch SCREAMING_SNAKE_CASE__ = overall_step accelerator.print(f"""epoch {epoch}:""" , __UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__UpperCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__UpperCamelCase , ) parser.add_argument( """--output_dir""" , type=__UpperCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=__UpperCamelCase , default=2 , help="""Number of train epochs.""" , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
219
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Any = """transfo-xl""" __lowerCamelCase : str = ["""mems"""] __lowerCamelCase : int = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case__=26_7735 , snake_case__=[2_0000, 4_0000, 20_0000] , snake_case__=1024 , snake_case__=1024 , snake_case__=16 , snake_case__=64 , snake_case__=4096 , snake_case__=4 , snake_case__=False , snake_case__=18 , snake_case__=1600 , snake_case__=1000 , snake_case__=True , snake_case__=True , snake_case__=0 , snake_case__=-1 , snake_case__=True , snake_case__=0.1 , snake_case__=0.0 , snake_case__=True , snake_case__="normal" , snake_case__=0.01 , snake_case__=0.01 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__=0 , **snake_case__ , ) -> Dict: '''simple docstring''' UpperCAmelCase : str =vocab_size UpperCAmelCase : List[str] =[] self.cutoffs.extend(snake_case__ ) if proj_share_all_but_first: UpperCAmelCase : Optional[int] =[False] + [True] * len(self.cutoffs ) else: UpperCAmelCase : Tuple =[False] + [False] * len(self.cutoffs ) UpperCAmelCase : Optional[Any] =d_model UpperCAmelCase : Optional[int] =d_embed UpperCAmelCase : Optional[int] =d_head UpperCAmelCase : Any =d_inner UpperCAmelCase : int =div_val UpperCAmelCase : Dict =pre_lnorm UpperCAmelCase : Tuple =n_layer UpperCAmelCase : Optional[Any] =n_head UpperCAmelCase : Optional[int] =mem_len UpperCAmelCase : Any =same_length UpperCAmelCase : Any =attn_type UpperCAmelCase : int =clamp_len UpperCAmelCase : str =sample_softmax UpperCAmelCase : List[Any] =adaptive UpperCAmelCase : Union[str, Any] =dropout UpperCAmelCase : Dict =dropatt UpperCAmelCase : int =untie_r UpperCAmelCase : Optional[int] =init UpperCAmelCase : Dict =init_range UpperCAmelCase : Any =proj_init_std UpperCAmelCase : int =init_std UpperCAmelCase : int =layer_norm_epsilon super().__init__(eos_token_id=snake_case__ , **snake_case__ ) @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
78
import sys def lowerCAmelCase_ ( __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =len(__lowerCAmelCase ) UpperCAmelCase : List[str] =[[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] UpperCAmelCase : List[Any] =[[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] for chain_length in range(2 , __lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase : str =a + chain_length - 1 UpperCAmelCase : Union[str, Any] =sys.maxsize for c in range(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : List[Any] =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase : Optional[Any] =cost UpperCAmelCase : Dict =c return matrix, sol def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' if i == j: print('''A''' + str(__lowerCAmelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__lowerCAmelCase , __lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCAmelCase , optimal_solution[i][j] + 1 , __lowerCAmelCase ) print(''')''' , end=''' ''' ) def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' UpperCAmelCase : Dict =[30, 35, 15, 5, 10, 20, 25] UpperCAmelCase : Optional[Any] =len(__lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase , UpperCAmelCase : Optional[int] =matrix_chain_order(__lowerCAmelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
78
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class snake_case__: '''simple docstring''' def __init__( self , __lowercase , __lowercase=1_3 , __lowercase=3_2 , __lowercase=2 , __lowercase=3 , __lowercase=1_6 , __lowercase=[1, 2, 1] , __lowercase=[2, 2, 4] , __lowercase=2 , __lowercase=2.0 , __lowercase=True , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase="gelu" , __lowercase=False , __lowercase=True , __lowercase=0.02 , __lowercase=1e-5 , __lowercase=True , __lowercase=None , __lowercase=True , __lowercase=1_0 , __lowercase=8 , __lowercase=["stage1", "stage2", "stage3"] , __lowercase=[1, 2, 3] , ) -> Tuple: lowerCAmelCase_ : int = parent lowerCAmelCase_ : Any = batch_size lowerCAmelCase_ : Optional[int] = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : Tuple = embed_dim lowerCAmelCase_ : List[Any] = depths lowerCAmelCase_ : Union[str, Any] = num_heads lowerCAmelCase_ : Dict = window_size lowerCAmelCase_ : Tuple = mlp_ratio lowerCAmelCase_ : Optional[int] = qkv_bias lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob lowerCAmelCase_ : List[Any] = drop_path_rate lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Optional[Any] = use_absolute_embeddings lowerCAmelCase_ : List[Any] = patch_norm lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Tuple = is_training lowerCAmelCase_ : Union[str, Any] = scope lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : List[Any] = type_sequence_label_size lowerCAmelCase_ : Tuple = encoder_stride lowerCAmelCase_ : Dict = out_features lowerCAmelCase_ : Any = out_indices def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : int = None if self.use_labels: lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : str = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> List[str]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase ) -> Any: lowerCAmelCase_ : Tuple = MaskFormerSwinModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowerCAmelCase_ : List[str] = model(__lowercase ) lowerCAmelCase_ : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase_ : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase ) -> Tuple: lowerCAmelCase_ : Dict = MaskFormerSwinBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() lowerCAmelCase_ : List[str] = model(__lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(__lowercase ): lowerCAmelCase_ : Tuple = ['''stem'''] lowerCAmelCase_ : int = MaskFormerSwinBackbone(config=__lowercase ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Dict = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Any = config_and_inputs lowerCAmelCase_ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : List[str] = False def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : List[Any] = MaskFormerSwinModelTester(self ) lowerCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__lowercase , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def lowercase_ ( self ) -> Tuple: pass def lowercase_ ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def lowercase_ ( self ) -> Any: lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowercase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def lowercase_ ( self ) -> Any: pass @unittest.skip('''Swin does not support feedforward chunking''' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(__lowercase ) lowerCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : str = [*signature.parameters.keys()] lowerCAmelCase_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def lowercase_ ( self ) -> Tuple: pass def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> str: lowerCAmelCase_ : Union[str, Any] = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Any = model(**self._prepare_for_class(__lowercase , __lowercase ) ) lowerCAmelCase_ : Union[str, Any] = outputs.hidden_states lowerCAmelCase_ : Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__lowercase ) , __lowercase ) # Swin has a different seq_length lowerCAmelCase_ : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase_ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = True self.check_hidden_states_output(__lowercase , __lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : Dict = True self.check_hidden_states_output(__lowercase , __lowercase , __lowercase , __lowercase ) def lowercase_ ( self ) -> Optional[int]: lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : List[Any] = 3 lowerCAmelCase_ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase_ : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase_ : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase_ : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = True self.check_hidden_states_output(__lowercase , __lowercase , __lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(__lowercase , __lowercase , __lowercase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def lowercase_ ( self ) -> Tuple: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def lowercase_ ( self ) -> int: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Tuple: lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowercase ): lowerCAmelCase_ : Optional[int] = 0 return t def check_equivalence(__lowercase , __lowercase , __lowercase , __lowercase={} ): with torch.no_grad(): lowerCAmelCase_ : int = model(**__lowercase , return_dict=__lowercase , **__lowercase ) lowerCAmelCase_ : Any = model(**__lowercase , return_dict=__lowercase , **__lowercase ).to_tuple() def recursive_check(__lowercase , __lowercase ): if isinstance(__lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__lowercase , __lowercase ): recursive_check(__lowercase , __lowercase ) elif isinstance(__lowercase , __lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__lowercase , __lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowercase ) , set_nan_tensor_to_zero(__lowercase ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(__lowercase ).any()} and `inf`: {torch.isinf(__lowercase )}. Dict has""" f""" `nan`: {torch.isnan(__lowercase ).any()} and `inf`: {torch.isinf(__lowercase )}.""" ) , ) recursive_check(__lowercase , __lowercase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(__lowercase ) model.to(__lowercase ) model.eval() lowerCAmelCase_ : Dict = self._prepare_for_class(__lowercase , __lowercase ) lowerCAmelCase_ : str = self._prepare_for_class(__lowercase , __lowercase ) check_equivalence(__lowercase , __lowercase , __lowercase ) lowerCAmelCase_ : str = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) lowerCAmelCase_ : Optional[int] = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) check_equivalence(__lowercase , __lowercase , __lowercase ) lowerCAmelCase_ : List[str] = self._prepare_for_class(__lowercase , __lowercase ) lowerCAmelCase_ : Union[str, Any] = self._prepare_for_class(__lowercase , __lowercase ) check_equivalence(__lowercase , __lowercase , __lowercase , {'''output_hidden_states''': True} ) lowerCAmelCase_ : List[Any] = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) lowerCAmelCase_ : Union[str, Any] = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) check_equivalence(__lowercase , __lowercase , __lowercase , {'''output_hidden_states''': True} ) @require_torch class snake_case__( unittest.TestCase, UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = (MaskFormerSwinBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : str = MaskFormerSwinConfig def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : List[Any] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Dict = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: lowerCAmelCase_ : int = backbone_class(__lowercase ) backbone.to(__lowercase ) backbone.eval() lowerCAmelCase_ : Optional[int] = backbone(**__lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowerCAmelCase_ : int = backbone(**__lowercase , output_hidden_states=__lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowerCAmelCase_ : List[Any] = backbone(**__lowercase , output_attentions=__lowercase ) self.assertIsNotNone(outputs.attentions )
262
from math import sqrt def lowerCAmelCase ( lowerCAmelCase_ )-> bool: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase_ : List[Any] = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase_ : Optional[int] = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase_ : Tuple = False break # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'status' must been from type bool" return status def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase_ : Tuple = list(range(2 , n + 1 ) ) lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase_ : str = 0 # filters actual prime numbers. lowerCAmelCase_ : Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase_ : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase_ : int = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase_ : List[Any] = 2 lowerCAmelCase_ : Optional[int] = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[int]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : Dict = 0 # prime factorization of 'number' lowerCAmelCase_ : Any = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : List[Any] = 0 # prime factorization of 'number' lowerCAmelCase_ : Dict = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" lowerCAmelCase_ : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase_ : int = get_prime_numbers(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = len(lowerCAmelCase_ ) # run variable for while-loops. lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Tuple = None # exit variable. for break up the loops lowerCAmelCase_ : int = True while i < len_pn and loop: lowerCAmelCase_ : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase_ : Tuple = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : int = 0 while numbera != 0: lowerCAmelCase_ : str = numbera % numbera lowerCAmelCase_ : List[Any] = numbera lowerCAmelCase_ : Any = rest # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : List[Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Union[str, Any] = max(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_ , lowerCAmelCase_ ) ): ans *= n else: lowerCAmelCase_ : List[str] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase_ : Union[str, Any] = p_number_a + 1 # jump to the next number lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase_ : List[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase_ : Union[str, Any] = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase_ : Optional[Any] = gcd(abs(lowerCAmelCase_ ) , abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase_ : Any = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase_ : Union[str, Any] = ans ans += fiba lowerCAmelCase_ : Optional[Any] = tmp return ans
262
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'trocr' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Union[str, Any] , _A : Dict=50_265 , _A : Any=1_024 , _A : List[Any]=12 , _A : Any=16 , _A : Optional[Any]=4_096 , _A : Tuple="gelu" , _A : Dict=512 , _A : str=0.1 , _A : Tuple=0.0 , _A : Union[str, Any]=0.0 , _A : Union[str, Any]=2 , _A : Tuple=0.0_2 , _A : Dict=0.0 , _A : Tuple=True , _A : Any=False , _A : int=True , _A : Optional[Any]=True , _A : Optional[Any]=1 , _A : str=0 , _A : List[Any]=2 , **_A : Any , ): '''simple docstring''' UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Any = d_model UpperCAmelCase__ : Optional[int] = decoder_layers UpperCAmelCase__ : Dict = decoder_attention_heads UpperCAmelCase__ : str = decoder_ffn_dim UpperCAmelCase__ : Tuple = activation_function UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : int = dropout UpperCAmelCase__ : List[str] = attention_dropout UpperCAmelCase__ : int = activation_dropout UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : Optional[int] = decoder_layerdrop UpperCAmelCase__ : Tuple = use_cache UpperCAmelCase__ : int = scale_embedding UpperCAmelCase__ : Dict = use_learned_position_embeddings UpperCAmelCase__ : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
299
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
1
"""simple docstring""" import re def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Tuple = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": lowerCAmelCase__ = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
108
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while b: lowerCAmelCase , lowerCAmelCase : Any = b, a % b return a def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(SCREAMING_SNAKE_CASE , a % b ) def a__ ( ): '''simple docstring''' print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
108
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-question_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-question_encoder-multiset-base''': 5_1_2, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-reader-single-nq-base''': 5_1_2, '''facebook/dpr-reader-multiset-base''': 5_1_2, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __lowerCamelCase ( a__ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = DPRContextEncoderTokenizer class __lowerCamelCase ( a__ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = DPRQuestionEncoderTokenizer SCREAMING_SNAKE_CASE__ = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) SCREAMING_SNAKE_CASE__ = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) SCREAMING_SNAKE_CASE__ = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(a__ ) class __lowerCamelCase : """simple docstring""" def __call__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) elif titles is None or texts is None: lowercase_ = titles if texts is None else texts return super().__call__( _lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) lowercase_ = titles if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [titles] lowercase_ = texts if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [texts] lowercase_ = len(_lowerCamelCase ) lowercase_ = questions if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [questions] * n_passages assert len(_lowerCamelCase ) == len( _lowerCamelCase ), F'There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts.' lowercase_ = super().__call__(_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['''input_ids'''] lowercase_ = super().__call__(_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['''input_ids'''] lowercase_ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCamelCase , _lowerCamelCase ) ] } if return_attention_mask is not False: lowercase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase_ = attention_mask return self.pad(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 16 , UpperCAmelCase = 64 , UpperCAmelCase = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' lowercase_ = reader_input['''input_ids'''] lowercase_ = reader_output[:3] lowercase_ = len(_lowerCamelCase ) lowercase_ = sorted(range(_lowerCamelCase ) , reverse=_lowerCamelCase , key=relevance_logits.__getitem__ ) lowercase_ = [] for doc_id in sorted_docs: lowercase_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase_ = sequence_ids.index(self.pad_token_id ) else: lowercase_ = len(_lowerCamelCase ) lowercase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCamelCase , top_spans=_lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCamelCase , start_index=_lowerCamelCase , end_index=_lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[DPRSpanPrediction]: '''simple docstring''' lowercase_ = [] for start_index, start_score in enumerate(_lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase_ = sorted(_lowerCamelCase , key=lambda UpperCAmelCase : x[1] , reverse=_lowerCamelCase ) lowercase_ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' lowercase_ = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __lowerCamelCase ( a__ , a__ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = DPRReaderTokenizer
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=400 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=[0.5, 0.5, 0.5] , _snake_case=[0.5, 0.5, 0.5] , ): """simple docstring""" _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 18} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std def snake_case ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = LevitImageProcessor if is_vision_available() else None def snake_case ( self ): """simple docstring""" _lowerCAmelCase = LevitImageProcessingTester(self ) @property def snake_case ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
82
def UpperCAmelCase__ ( _A : dict ): '''simple docstring''' a__ =set() # To detect a back edge, keep track of vertices currently in the recursion stack a__ =set() return any( node not in visited and depth_first_search(_A , _A , _A , _A ) for node in graph ) def UpperCAmelCase__ ( _A : dict , _A : int , _A : set , _A : set ): '''simple docstring''' visited.add(_A ) rec_stk.add(_A ) for node in graph[vertex]: if node not in visited: if depth_first_search(_A , _A , _A , _A ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_A ) return False if __name__ == "__main__": from doctest import testmod testmod()
188
0
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class UpperCamelCase_ ( a_ ): _A : "DiagonalGaussianDistribution" class UpperCamelCase_ ( a_ , a_ ): _A : Dict = True @register_to_config def __init__( self , snake_case__ = 3 , snake_case__ = 3 , snake_case__ = ("DownEncoderBlock2D",) , snake_case__ = ("UpDecoderBlock2D",) , snake_case__ = (64,) , snake_case__ = 1 , snake_case__ = "silu" , snake_case__ = 4 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 0.18_215 , ) -> List[Any]: """simple docstring""" super().__init__() # pass init params to Encoder UpperCAmelCase = Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) # pass init params to Decoder UpperCAmelCase = Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , norm_num_groups=snake_case__ , act_fn=snake_case__ , ) UpperCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase = nn.Convad(snake_case__ , snake_case__ , 1 ) UpperCAmelCase = False UpperCAmelCase = False # only relevant if vae tiling is enabled UpperCAmelCase = self.config.sample_size UpperCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase = 0.25 def UpperCamelCase_ ( self , snake_case__ , snake_case__=False ) -> Tuple: """simple docstring""" if isinstance(snake_case__ , (Encoder, Decoder) ): UpperCAmelCase = value def UpperCamelCase_ ( self , snake_case__ = True ) -> Dict: """simple docstring""" UpperCAmelCase = use_tiling def UpperCamelCase_ ( self ) -> int: """simple docstring""" self.enable_tiling(snake_case__ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = True def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self ) -> Dict[str, AttentionProcessor]: """simple docstring""" UpperCAmelCase = {} def fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__ ): if hasattr(snake_case__ , """set_processor""" ): UpperCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , snake_case__ , snake_case__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__ ) return processors def UpperCamelCase_ ( self , snake_case__ ) -> Tuple: """simple docstring""" UpperCAmelCase = len(self.attn_processors.keys() ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(snake_case__ )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__ ): if hasattr(snake_case__ , """set_processor""" ): if not isinstance(snake_case__ , snake_case__ ): module.set_processor(snake_case__ ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , snake_case__ , snake_case__ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def UpperCamelCase_ ( self , snake_case__ , snake_case__ = True ) -> AutoencoderKLOutput: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(snake_case__ , return_dict=snake_case__ ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase = [self.encoder(snake_case__ ) for x_slice in x.split(1 )] UpperCAmelCase = torch.cat(snake_case__ ) else: UpperCAmelCase = self.encoder(snake_case__ ) UpperCAmelCase = self.quant_conv(snake_case__ ) UpperCAmelCase = DiagonalGaussianDistribution(snake_case__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(snake_case__ , return_dict=snake_case__ ) UpperCAmelCase = self.post_quant_conv(snake_case__ ) UpperCAmelCase = self.decoder(snake_case__ ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) @apply_forward_hook def UpperCamelCase_ ( self , snake_case__ , snake_case__ = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: UpperCAmelCase = [self._decode(snake_case__ ).sample for z_slice in z.split(1 )] UpperCAmelCase = torch.cat(snake_case__ ) else: UpperCAmelCase = self._decode(snake_case__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: """simple docstring""" UpperCAmelCase = min(a.shape[2] , b.shape[2] , snake_case__ ) for y in range(snake_case__ ): UpperCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = min(a.shape[3] , b.shape[3] , snake_case__ ) for x in range(snake_case__ ): UpperCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def UpperCamelCase_ ( self , snake_case__ , snake_case__ = True ) -> AutoencoderKLOutput: """simple docstring""" UpperCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase = [] for i in range(0 , x.shape[2] , snake_case__ ): UpperCAmelCase = [] for j in range(0 , x.shape[3] , snake_case__ ): UpperCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase = self.encoder(snake_case__ ) UpperCAmelCase = self.quant_conv(snake_case__ ) row.append(snake_case__ ) rows.append(snake_case__ ) UpperCAmelCase = [] for i, row in enumerate(snake_case__ ): UpperCAmelCase = [] for j, tile in enumerate(snake_case__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase = self.blend_v(rows[i - 1][j] , snake_case__ , snake_case__ ) if j > 0: UpperCAmelCase = self.blend_h(row[j - 1] , snake_case__ , snake_case__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(snake_case__ , dim=3 ) ) UpperCAmelCase = torch.cat(snake_case__ , dim=2 ) UpperCAmelCase = DiagonalGaussianDistribution(snake_case__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" UpperCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase = [] for i in range(0 , z.shape[2] , snake_case__ ): UpperCAmelCase = [] for j in range(0 , z.shape[3] , snake_case__ ): UpperCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase = self.post_quant_conv(snake_case__ ) UpperCAmelCase = self.decoder(snake_case__ ) row.append(snake_case__ ) rows.append(snake_case__ ) UpperCAmelCase = [] for i, row in enumerate(snake_case__ ): UpperCAmelCase = [] for j, tile in enumerate(snake_case__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase = self.blend_v(rows[i - 1][j] , snake_case__ , snake_case__ ) if j > 0: UpperCAmelCase = self.blend_h(row[j - 1] , snake_case__ , snake_case__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(snake_case__ , dim=3 ) ) UpperCAmelCase = torch.cat(snake_case__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = False , snake_case__ = True , snake_case__ = None , ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" UpperCAmelCase = sample UpperCAmelCase = self.encode(snake_case__ ).latent_dist if sample_posterior: UpperCAmelCase = posterior.sample(generator=snake_case__ ) else: UpperCAmelCase = posterior.mode() UpperCAmelCase = self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
248
"""simple docstring""" def _lowerCAmelCase ( ): '''simple docstring''' return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
248
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase__ ( lowercase_ :ArgumentParser ) -> List[Any]: raise NotImplementedError() @abstractmethod def UpperCAmelCase__ ( self :Any ) -> List[Any]: raise NotImplementedError()
78
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort snake_case_ = """1""" snake_case_ = """0""" snake_case_ = """1""" snake_case_ = ort.SessionOptions() snake_case_ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") snake_case_ = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] snake_case_ = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) snake_case_ = ort.RunOptions() snake_case_ = 128 snake_case_ = 1 snake_case_ = np.ones((batch, sequence), dtype=np.intaa) snake_case_ = np.ones((batch, sequence), dtype=np.intaa) snake_case_ = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") snake_case_ = time.time() snake_case_ = 2000 snake_case_ = {} for iter in range(max_iters): snake_case_ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1000 / max_iters))
78
1
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any) -> float: '''simple docstring''' if principal <= 0: raise Exception("Principal borrowed must be > 0") if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0") if years_to_repay <= 0 or not isinstance(__UpperCAmelCase , __UpperCAmelCase): raise Exception("Years to repay must be an integer > 0") # Yearly rate is divided by 12 to get monthly rate __UpperCamelCase : Tuple = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __UpperCamelCase : str = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
356
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCamelCase__ : '''simple docstring''' def __init__( self :Optional[Any] , a :Optional[Any] , a :Dict=1_3 , a :Tuple=7 , a :List[Any]=True , a :List[str]=True , a :List[Any]=True , a :Optional[Any]=True , a :Union[str, Any]=9_9 , a :int=3_2 , a :Optional[Any]=2 , a :List[str]=4 , a :Optional[Any]=3_7 , a :Union[str, Any]="gelu" , a :Optional[int]=0.1 , a :Dict=0.1 , a :Tuple=5_1_2 , a :Union[str, Any]=1_6 , a :int=2 , a :Any=0.02 , a :Union[str, Any]=False , a :int=True , a :str="None" , a :Union[str, Any]=3 , a :str=4 , a :List[Any]=None , ) -> Tuple: __UpperCamelCase : Tuple = parent __UpperCamelCase : List[str] = batch_size __UpperCamelCase : Optional[Any] = seq_length __UpperCamelCase : Any = is_training __UpperCamelCase : Dict = use_input_mask __UpperCamelCase : List[str] = use_token_type_ids __UpperCamelCase : Optional[int] = use_labels __UpperCamelCase : Optional[Any] = vocab_size __UpperCamelCase : Optional[Any] = hidden_size __UpperCamelCase : Dict = num_hidden_layers __UpperCamelCase : Any = num_attention_heads __UpperCamelCase : str = intermediate_size __UpperCamelCase : Union[str, Any] = hidden_act __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : Optional[Any] = attention_probs_dropout_prob __UpperCamelCase : Tuple = max_position_embeddings __UpperCamelCase : Tuple = type_vocab_size __UpperCamelCase : Any = type_sequence_label_size __UpperCamelCase : int = initializer_range __UpperCamelCase : Dict = num_labels __UpperCamelCase : Dict = num_choices __UpperCamelCase : List[str] = relative_attention __UpperCamelCase : Union[str, Any] = position_biased_input __UpperCamelCase : Any = pos_att_type __UpperCamelCase : Optional[Any] = scope def _lowerCamelCase ( self :List[Any] ) -> List[Any]: __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Tuple = None if self.use_input_mask: __UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : List[Any] = None if self.use_token_type_ids: __UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Optional[int] = None __UpperCamelCase : List[Any] = None if self.use_labels: __UpperCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : List[str] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self :Optional[int] , a :int , a :List[Any] , a :Optional[int] , a :Union[str, Any] , a :Union[str, Any] , a :str , a :int ) -> Optional[int]: __UpperCamelCase : List[str] = TFDebertaVaModel(config=a ) __UpperCamelCase : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCamelCase : Optional[Any] = [input_ids, input_mask] __UpperCamelCase : Optional[int] = model(a ) __UpperCamelCase : Any = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self :str , a :List[Any] , a :Dict , a :Tuple , a :Union[str, Any] , a :str , a :Optional[int] , a :Optional[int] ) -> Optional[int]: __UpperCamelCase : List[Any] = TFDebertaVaForMaskedLM(config=a ) __UpperCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self :List[Any] , a :Optional[int] , a :Optional[Any] , a :int , a :Optional[int] , a :Any , a :Dict , a :List[Any] ) -> Optional[int]: __UpperCamelCase : Optional[int] = self.num_labels __UpperCamelCase : int = TFDebertaVaForSequenceClassification(config=a ) __UpperCamelCase : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Optional[int] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self :Optional[Any] , a :int , a :Dict , a :Union[str, Any] , a :Tuple , a :Tuple , a :Union[str, Any] , a :str ) -> int: __UpperCamelCase : Tuple = self.num_labels __UpperCamelCase : str = TFDebertaVaForTokenClassification(config=a ) __UpperCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Union[str, Any] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self :List[str] , a :List[Any] , a :Union[str, Any] , a :List[str] , a :Union[str, Any] , a :Optional[Any] , a :Union[str, Any] , a :Tuple ) -> int: __UpperCamelCase : List[Any] = TFDebertaVaForQuestionAnswering(config=a ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Tuple = model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self :List[str] ) -> List[Any]: __UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : List[Any] = config_and_inputs __UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( __lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _A = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _A = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Dict = TFDebertaVaModelTester(self ) __UpperCamelCase : int = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _lowerCamelCase ( self :Tuple ) -> Optional[int]: self.config_tester.run_common_tests() def _lowerCamelCase ( self :List[Any] ) -> List[str]: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self :Optional[int] ) -> List[Any]: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def _lowerCamelCase ( self :Optional[Any] ) -> str: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _lowerCamelCase ( self :Optional[Any] ) -> Dict: __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _lowerCamelCase ( self :Any ) -> Optional[Any]: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @slow def _lowerCamelCase ( self :int ) -> int: __UpperCamelCase : Tuple = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(a ) @require_tf class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def _lowerCamelCase ( self :Optional[Any] ) -> Any: pass @slow def _lowerCamelCase ( self :Any ) -> Optional[int]: __UpperCamelCase : List[Any] = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) __UpperCamelCase : List[Any] = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __UpperCamelCase : Optional[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCamelCase : str = model(a , attention_mask=a )[0] __UpperCamelCase : Optional[int] = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , a , atol=1E-4 )
151
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase__ ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): """simple docstring""" def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = load_tool('''text-to-speech''' ) self.tool.setup() def _UpperCamelCase ( self ) -> Optional[int]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = self.tool('''hey''' ) SCREAMING_SNAKE_CASE_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def _UpperCamelCase ( self ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = self.tool('''hey''' ) SCREAMING_SNAKE_CASE_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
299
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
1
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _lowerCAmelCase : List[str] = get_logger(__name__) class UpperCAmelCase_ ( enum.Enum ): __SCREAMING_SNAKE_CASE : List[str] = 'all_checks' __SCREAMING_SNAKE_CASE : str = 'basic_checks' __SCREAMING_SNAKE_CASE : Dict = 'no_checks' class UpperCAmelCase_ ( _UpperCamelCase ): pass class UpperCAmelCase_ ( _UpperCamelCase ): pass class UpperCAmelCase_ ( _UpperCamelCase ): pass class UpperCAmelCase_ ( _UpperCamelCase ): pass def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[dict] , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : int=None ) -> Optional[Any]: '''simple docstring''' if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) _UpperCAmelCase : List[str] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase : Optional[int] = " for " + verification_name if verification_name is not None else "" if len(SCREAMING_SNAKE_CASE__ ) > 0: raise NonMatchingChecksumError( f'Checksums didn\'t match{for_verification_name}:\n' f'{bad_urls}\n' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class UpperCAmelCase_ ( _UpperCamelCase ): pass class UpperCAmelCase_ ( _UpperCamelCase ): pass class UpperCAmelCase_ ( _UpperCamelCase ): pass class UpperCAmelCase_ ( _UpperCamelCase ): pass def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[dict] , SCREAMING_SNAKE_CASE__ : dict ) -> Union[str, Any]: '''simple docstring''' if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) _UpperCAmelCase : Union[str, Any] = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE__ ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE__ ) ) logger.info("All the splits matched successfully." ) def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = True ) -> dict: '''simple docstring''' if record_checksum: _UpperCAmelCase : List[str] = shaaaa() with open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b"" ): m.update(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : str = m.hexdigest() else: _UpperCAmelCase : Union[str, Any] = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE__ ), "checksum": checksum} def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
202
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] while len(SCREAMING_SNAKE_CASE__ ) > 1: _UpperCAmelCase , _UpperCAmelCase : int = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) start.append(SCREAMING_SNAKE_CASE__ ) end.append(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) end.reverse() return start + collection + end if __name__ == "__main__": _lowerCAmelCase : int = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : List[str] = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
202
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger() def lowerCamelCase__ ( A__ : int , A__ : str , A__ : LevitConfig , A__ : Path , A__ : bool = True ): '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __lowerCamelCase = timm.create_model("""levit_128s""" , pretrained=A__ ) else: __lowerCamelCase = timm.create_model("""levit_128""" , pretrained=A__ ) if hidden_sizes == 192: __lowerCamelCase = timm.create_model("""levit_192""" , pretrained=A__ ) if hidden_sizes == 256: __lowerCamelCase = timm.create_model("""levit_256""" , pretrained=A__ ) if hidden_sizes == 384: __lowerCamelCase = timm.create_model("""levit_384""" , pretrained=A__ ) from_model.eval() __lowerCamelCase = LevitForImageClassificationWithTeacher(A__ ).eval() __lowerCamelCase = OrderedDict() __lowerCamelCase = from_model.state_dict() __lowerCamelCase = list(from_model.state_dict().keys() ) __lowerCamelCase = list(our_model.state_dict().keys() ) print(len(A__ ) , len(A__ ) ) for i in range(len(A__ ) ): __lowerCamelCase = weights[og_keys[i]] our_model.load_state_dict(A__ ) __lowerCamelCase = torch.randn((2, 3, 224, 224) ) __lowerCamelCase = from_model(A__ ) __lowerCamelCase = our_model(A__ ).logits assert torch.allclose(A__ , A__ ), "The model logits don't match the original one." __lowerCamelCase = name print(A__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __lowerCamelCase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'Pushed {checkpoint_name}' ) def lowerCamelCase__ ( A__ : Path , A__ : str = None , A__ : bool = True ): '''simple docstring''' __lowerCamelCase = """imagenet-1k-id2label.json""" __lowerCamelCase = 1000 __lowerCamelCase = (1, num_labels) __lowerCamelCase = """huggingface/label-files""" __lowerCamelCase = num_labels __lowerCamelCase = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) __lowerCamelCase = {int(A__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = partial(A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ ) __lowerCamelCase = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } __lowerCamelCase = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , A__ , names_to_config[model_name] , A__ , A__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , A__ , A__ , A__ , A__ ) return config, expected_shape if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
12
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class a__: def __init__( self : str , __snake_case : Union[str, Any] , __snake_case : List[str]=13 , __snake_case : Tuple=7 , __snake_case : Optional[Any]=False , __snake_case : Dict=True , __snake_case : List[Any]=False , __snake_case : Optional[int]=False , __snake_case : Optional[Any]=19 , __snake_case : Any=32 , __snake_case : Union[str, Any]=5 , __snake_case : Union[str, Any]=4 , __snake_case : int=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=0.1 , __snake_case : int=5_12 , __snake_case : int=16 , __snake_case : Tuple=2 , __snake_case : str=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : List[Any]=None , ): a : Tuple = parent a : List[str] = batch_size a : Optional[Any] = seq_length a : Tuple = is_training a : Optional[Any] = use_input_mask a : List[Any] = use_token_type_ids a : List[Any] = use_labels a : int = vocab_size a : Union[str, Any] = hidden_size a : Any = num_hidden_layers a : List[str] = num_attention_heads a : int = intermediate_size a : str = hidden_act a : Tuple = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : List[str] = max_position_embeddings a : Any = type_vocab_size a : List[str] = type_sequence_label_size a : Union[str, Any] = initializer_range a : Optional[int] = num_labels a : Optional[Any] = num_choices a : Optional[int] = scope def lowercase_ ( self : List[Any] ): a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Dict = None if self.use_input_mask: a : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a : Optional[Any] = None a : Optional[int] = None a : Dict = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) a : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : List[Any] ): a : Any = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__snake_case , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def lowercase_ ( self : Optional[Any] , __snake_case : int , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Any ): a : Tuple = EsmForProteinFolding(config=__snake_case ).float() model.to(__snake_case ) model.eval() a : Dict = model(__snake_case , attention_mask=__snake_case ) a : Union[str, Any] = model(__snake_case ) a : List[Any] = model(__snake_case ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowercase_ ( self : Optional[Any] ): a : Tuple = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Optional[Any] = config_and_inputs a : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = False lowercase__ = (EsmForProteinFolding,) if is_torch_available() else () lowercase__ = () lowercase__ = {} if is_torch_available() else {} lowercase__ = False def lowercase_ ( self : int ): a : Tuple = EsmFoldModelTester(self ) a : Any = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowercase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowercase_ ( self : Union[str, Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) @unittest.skip('Does not support attention outputs' ) def lowercase_ ( self : str ): pass @unittest.skip def lowercase_ ( self : Optional[int] ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase_ ( self : Optional[int] ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold does not support passing input embeds!' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : Union[str, Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def lowercase_ ( self : int ): pass @unittest.skip('ESMFold only has one output format.' ) def lowercase_ ( self : Dict ): pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def lowercase_ ( self : Tuple ): pass @unittest.skip('ESMFold does not support input chunking.' ) def lowercase_ ( self : List[str] ): pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def lowercase_ ( self : List[Any] ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : Union[str, Any] ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : Any ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self : List[str] ): pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def lowercase_ ( self : Dict ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self : Union[str, Any] ): pass @require_torch class a__( lowerCamelCase__ ): @slow def lowercase_ ( self : Optional[int] ): a : Optional[Any] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() a : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) a : Any = model(__snake_case )['positions'] a : Dict = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __snake_case , atol=1e-4 ) )
297
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = OpenAIGPTTokenizer lowercase_ = OpenAIGPTTokenizerFast lowercase_ = True lowercase_ = False def snake_case ( self : Dict ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowercase__ : List[Any] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : Dict = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : Tuple ): return "lower newer", "lower newer" def snake_case ( self : Optional[int] ): lowercase__ : List[str] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowercase__ : int = "lower" lowercase__ : List[str] = ["low", "er</w>"] lowercase__ : int = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Any = tokens + ["<unk>"] lowercase__ : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Any=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # Simple input lowercase__ : Dict = "This is a simple input" lowercase__ : Tuple = ["This is a simple input 1", "This is a simple input 2"] lowercase__ : Optional[Any] = ("This is a simple input", "This is a pair") lowercase__ : Dict = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" , ) def snake_case ( self : Union[str, Any] ): pass @require_ftfy @require_spacy @require_tokenizers class snake_case__(_UpperCamelCase ): """simple docstring""" pass
360
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
121
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __snake_case : Optional[int] = imread(r"""digital_image_processing/image_data/lena_small.jpg""") __snake_case : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[Any] = cn.convert_to_negative(a__) # assert negative_img array for at least one True assert negative_img.any() def _UpperCAmelCase ( ): '''simple docstring''' with Image.open("""digital_image_processing/image_data/lena_small.jpg""") as img: # Work around assertion for response assert str(cc.change_contrast(a__ , 1_1_0)).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""") def _UpperCAmelCase ( ): '''simple docstring''' a_ : str = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _UpperCAmelCase ( ): '''simple docstring''' a_ : Union[str, Any] = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0) # assert ambiguous array for all == True assert canny_img.all() a_ : Any = canny.canny(a__) # assert canny array for at least one True assert canny_array.any() def _UpperCAmelCase ( ): '''simple docstring''' assert gg.gaussian_filter(a__ , 5 , sigma=0.9).all() def _UpperCAmelCase ( ): '''simple docstring''' a_ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) a_ : List[str] = conv.img_convolve(a__ , a__).astype(a__) assert res.any() def _UpperCAmelCase ( ): '''simple docstring''' assert med.median_filter(a__ , 3).any() def _UpperCAmelCase ( ): '''simple docstring''' a_ , a_ : Any = sob.sobel_filter(a__) assert grad.any() and theta.any() def _UpperCAmelCase ( ): '''simple docstring''' a_ : Dict = sp.make_sepia(a__ , 2_0) assert sepia.all() def _UpperCAmelCase ( a__ = "digital_image_processing/image_data/lena_small.jpg"): '''simple docstring''' a_ : Any = bs.Burkes(imread(a__ , 1) , 1_2_0) burkes.process() assert burkes.output_img.any() def _UpperCAmelCase ( a__ = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' a_ : Tuple = rs.NearestNeighbour(imread(a__ , 1) , 4_0_0 , 2_0_0) nn.process() assert nn.output.any() def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[Any] = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. a_ : Optional[Any] = imread(a__ , 0) # Test for get_neighbors_pixel function() return not None a_ : str = 0 a_ : Dict = 0 a_ : Tuple = image[x_coordinate][y_coordinate] a_ : List[str] = lbp.get_neighbors_pixel( a__ , a__ , a__ , a__) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image a_ : Dict = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): a_ : Any = lbp.local_binary_value(a__ , a__ , a__) assert lbp_image.any()
248
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ): '''simple docstring''' a_ : Tuple = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=a__) a_ : Any = parser.add_subparsers(help="""accelerate command helpers""") # Register commands get_config_parser(subparsers=a__) env_command_parser(subparsers=a__) launch_command_parser(subparsers=a__) tpu_command_parser(subparsers=a__) test_command_parser(subparsers=a__) # Let's go a_ : Any = parser.parse_args() if not hasattr(a__ , """func"""): parser.print_help() exit(1) # Run args.func(a__) if __name__ == "__main__": main()
248
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case = 1_00_00_00 ) -> int: """simple docstring""" _UpperCamelCase = 1 _UpperCamelCase = 1 _UpperCamelCase = {1: 1} for inputa in range(2, __snake_case ): _UpperCamelCase = 0 _UpperCamelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _UpperCamelCase = (3 * number) + 1 counter += 1 if inputa not in counters: _UpperCamelCase = counter if counter > pre_counter: _UpperCamelCase = inputa _UpperCamelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
370
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) _UpperCamelCase = str(bin(__snake_case ) ) binary_number += "0" * shift_amount return binary_number def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) _UpperCamelCase = str(bin(__snake_case ) )[2:] if shift_amount >= len(__snake_case ): return "0b0" _UpperCamelCase = binary_number[: len(__snake_case ) - shift_amount] return "0b" + shifted_binary_number def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number _UpperCamelCase = '''0''' + str(bin(__snake_case ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number _UpperCamelCase = len(bin(__snake_case )[3:] ) # Find 2's complement of number _UpperCamelCase = bin(abs(__snake_case ) - (1 << binary_number_length) )[3:] _UpperCamelCase = ( '''1''' + '''0''' * (binary_number_length - len(__snake_case )) + binary_number ) if shift_amount >= len(__snake_case ): return "0b" + binary_number[0] * len(__snake_case ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__snake_case ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
100
0
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCAmelCase ( UpperCAmelCase ) -> Any: snake_case_ = [False] * len(UpperCAmelCase ) snake_case_ = [-1] * len(UpperCAmelCase ) def dfs(UpperCAmelCase , UpperCAmelCase ): snake_case_ = True snake_case_ = c for u in graph[v]: if not visited[u]: dfs(UpperCAmelCase , 1 - c ) for i in range(len(UpperCAmelCase ) ): if not visited[i]: dfs(UpperCAmelCase , 0 ) for i in range(len(UpperCAmelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __UpperCamelCase = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
69
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = "▁" lowercase__ = {"vocab_file": "spiece.model"} lowercase__ = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } lowercase__ = { "google/reformer-crime-and-punishment": 524288, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowercase_ : Dict , lowercase_ : Tuple="</s>" , lowercase_ : Dict="<unk>" , lowercase_ : Tuple=[] , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : List[str] , ) -> None: UpperCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase : List[Any] = vocab_file UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self : List[str] ) -> Dict[str, int]: UpperCAmelCase : int = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> str: UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , lowercase_ : Any ) -> List[str]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase : Dict = {} UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple ) -> Optional[int]: return self.sp_model.piece_to_id(lowercase_ ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> List[str]: if index < self.sp_model.get_piece_size(): UpperCAmelCase : Tuple = self.sp_model.IdToPiece(lowercase_ ) return token def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> Optional[int]: UpperCAmelCase : Dict = [] UpperCAmelCase : int = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase : Any = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : int = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
151
0
def _SCREAMING_SNAKE_CASE ( lowercase : list ): '''simple docstring''' if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase_ = grid[0] for row_n in range(1 , len(lowercase ) ): lowerCamelCase_ = grid[row_n] lowerCamelCase_ = fill_row(lowercase , lowercase ) lowerCamelCase_ = grid[row_n] return grid[-1][-1] def _SCREAMING_SNAKE_CASE ( lowercase : list , lowercase : list ): '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
208
def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : int ): '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(lowercase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
208
1
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( a_, unittest.TestCase ): __lowerCAmelCase = BioGptTokenizer __lowerCAmelCase = False def __magic_name__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowercase : Union[str, Any] = dict(zip(_a , range(len(_a ) ) ) ) lowercase : Optional[int] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(_a ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(_a ) ) def __magic_name__ ( self , _a ): lowercase : Optional[Any] = "lower newer" lowercase : str = "lower newer" return input_text, output_text def __magic_name__ ( self ): lowercase : int = BioGptTokenizer(self.vocab_file , self.merges_file ) lowercase : Any = "lower" lowercase : List[Any] = ["low", "er</w>"] lowercase : Optional[int] = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = tokens + ["<unk>"] lowercase : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @slow def __magic_name__ ( self ): lowercase : Optional[int] = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) lowercase : List[Any] = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowercase : Any = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(_a ) lowercase : int = tokenizer.build_inputs_with_special_tokens(_a , _a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
202
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _A : Optional[Any] = 1_00 _A : Optional[int] = set(range(3, NUM_PRIMES, 2)) primes.add(2) _A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def __magic_name__ ( __snake_case : int ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase : set[int] = set() lowercase : int lowercase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __magic_name__ ( __snake_case : int = 5000 ) -> int | None: for number_to_partition in range(1 , __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
202
1
import qiskit def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 2) -> qiskit.result.counts.Counts: a = qubits # Using Aer's simulator a = qiskit.Aer.get_backend("aer_simulator") # Creating a Quantum Circuit acting on the q register a = qiskit.QuantumCircuit(__UpperCamelCase , __UpperCamelCase) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0) for i in range(1 , __UpperCamelCase): # Adding CX (CNOT) gate circuit.cx(i - 1 , __UpperCamelCase) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__UpperCamelCase)) , list(range(__UpperCamelCase))) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator a = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=10_00) return job.result().get_counts(__UpperCamelCase) if __name__ == "__main__": print(F'Total count for various states are: {quantum_entanglement(3)}')
180
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a__ : def __init__( self , A , A=2 , A=32 , A=16 , A=3 , A=True , A=True , A=32 , A=4 , A=[0, 1, 2, 3] , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=0.0_2 , A=3 , A=[1, 384, 24, 24] , A=True , A=None , ) -> Any: '''simple docstring''' a = parent a = batch_size a = image_size a = patch_size a = num_channels a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = backbone_out_indices a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = num_labels a = backbone_featmap_shape a = scope a = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) a = (image_size // patch_size) ** 2 a = num_patches + 1 def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=A , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowerCAmelCase_ ( self , A , A , A ) -> str: '''simple docstring''' a = DPTModel(config=A ) model.to(A ) model.eval() a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , A , A , A ) -> Optional[int]: '''simple docstring''' a = self.num_labels a = DPTForDepthEstimation(A ) model.to(A ) model.eval() a = model(A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self , A , A , A ) -> Dict: '''simple docstring''' a = self.num_labels a = DPTForSemanticSegmentation(A ) model.to(A ) model.eval() a = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a : Union[str, Any] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a : Optional[int] = False a : List[Any] = False a : int = False def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a = DPTModelTester(self ) a = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(A ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , A ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*A ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True if model_class in get_values(A ): continue a = model_class(A ) model.to(A ) model.train() a = self._prepare_for_class(A , A , return_labels=A ) a = model(**A ).loss loss.backward() def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = False a = True if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue a = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() a = self._prepare_for_class(A , A , return_labels=A ) a = model(**A ).loss loss.backward() def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() a = _config_zero_init(A ) for model_class in self.all_model_classes: a = model_class(config=A ) # Skip the check for the backbone a = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": a = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' pass @slow def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: a = DPTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() a = "add" with self.assertRaises(A ): a = DPTForDepthEstimation(A ) def SCREAMING_SNAKE_CASE ( ) -> str: a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision @slow class a__ ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) a = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(A ) a = prepare_img() a = image_processor(images=A , return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): a = model(**A ) a = outputs.predicted_depth # verify the predicted depth a = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , A ) a = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , A , atol=1e-4 ) )
180
1
class a : def __init__( self :Optional[Any] ): snake_case__ : str = '''''' snake_case__ : Union[str, Any] = '''''' snake_case__ : Optional[int] = [] def __lowerCamelCase ( self :List[str] ,__lowercase :int ,__lowercase :int ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: snake_case__ : Dict = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) else: snake_case__ : str = self.__min_dist_top_down_dp(lowerCAmelCase_ ,n - 1 ) snake_case__ : Dict = self.__min_dist_top_down_dp(m - 1 ,lowerCAmelCase_ ) snake_case__ : Optional[int] = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) snake_case__ : str = 1 + min(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) return self.dp[m][n] def __lowerCamelCase ( self :str ,__lowercase :str ,__lowercase :str ): snake_case__ : Optional[int] = worda snake_case__ : Optional[Any] = worda snake_case__ : Any = [[-1 for _ in range(len(lowerCAmelCase_ ) )] for _ in range(len(lowerCAmelCase_ ) )] return self.__min_dist_top_down_dp(len(lowerCAmelCase_ ) - 1 ,len(lowerCAmelCase_ ) - 1 ) def __lowerCamelCase ( self :str ,__lowercase :str ,__lowercase :str ): snake_case__ : str = worda snake_case__ : Tuple = worda snake_case__ : Dict = len(lowerCAmelCase_ ) snake_case__ : Optional[int] = len(lowerCAmelCase_ ) snake_case__ : str = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty snake_case__ : Union[str, Any] = j elif j == 0: # second string is empty snake_case__ : Tuple = i elif worda[i - 1] == worda[j - 1]: # last characters are equal snake_case__ : str = self.dp[i - 1][j - 1] else: snake_case__ : List[str] = self.dp[i][j - 1] snake_case__ : Optional[int] = self.dp[i - 1][j] snake_case__ : Tuple = self.dp[i - 1][j - 1] snake_case__ : str = 1 + min(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) return self.dp[m][n] if __name__ == "__main__": A__ = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() A__ = input('''Enter the first string: ''').strip() A__ = input('''Enter the second string: ''').strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
230
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCamelCase__ ( a = True , *a , **a ) -> Optional[Any]: if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) _A: Optional[Any] = False if main_process_only: _A: Union[str, Any] = PartialState().local_process_index == 0 return _tqdm(*a , **a , disable=a )
121
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[int] = ['''input_features'''] def __init__(self , __magic_name__=80 , __magic_name__=1_6000 , __magic_name__=160 , __magic_name__=30 , __magic_name__=400 , __magic_name__=0.0 , __magic_name__=False , **__magic_name__ , ) -> Optional[int]: '''simple docstring''' super().__init__( feature_size=__magic_name__ , sampling_rate=__magic_name__ , padding_value=__magic_name__ , return_attention_mask=__magic_name__ , **__magic_name__ , ) snake_case_ : Optional[int] = n_fft snake_case_ : List[str] = hop_length snake_case_ : List[Any] = chunk_length snake_case_ : Any = chunk_length * sampling_rate snake_case_ : Dict = self.n_samples // hop_length snake_case_ : int = sampling_rate snake_case_ : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__magic_name__ , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__magic_name__ , norm='''slaney''' , mel_scale='''slaney''' , ) def lowerCamelCase (self , __magic_name__ ) -> np.ndarray: '''simple docstring''' snake_case_ : int = spectrogram( __magic_name__ , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) snake_case_ : Any = log_spec[:, :-1] snake_case_ : Any = np.maximum(__magic_name__ , log_spec.max() - 8.0 ) snake_case_ : int = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase (__magic_name__ , __magic_name__ , __magic_name__ = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: snake_case_ : str = np.array(__magic_name__ , np.intaa ) snake_case_ : Any = [] for vector, length in zip(__magic_name__ , attention_mask.sum(-1 ) ): snake_case_ : Tuple = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: snake_case_ : Tuple = padding_value normed_input_values.append(__magic_name__ ) else: snake_case_ : Optional[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__(self , __magic_name__ , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = "max_length" , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) snake_case_ : List[str] = isinstance(__magic_name__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) snake_case_ : List[Any] = is_batched_numpy or ( isinstance(__magic_name__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__magic_name__ , np.ndarray ): snake_case_ : List[str] = np.asarray(__magic_name__ , dtype=np.floataa ) elif isinstance(__magic_name__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Union[str, Any] = [np.asarray([raw_speech] ).T] snake_case_ : List[Any] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding snake_case_ : Any = self.pad( __magic_name__ , padding=__magic_name__ , max_length=max_length if max_length else self.n_samples , truncation=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: snake_case_ : List[str] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) snake_case_ : Union[str, Any] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format snake_case_ : int = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) snake_case_ : Dict = [self._np_extract_fbank_features(__magic_name__ ) for waveform in input_features[0]] if isinstance(input_features[0] , __magic_name__ ): snake_case_ : Union[str, Any] = [np.asarray(__magic_name__ , dtype=np.floataa ) for feature in input_features] else: snake_case_ : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) snake_case_ : Dict = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: snake_case_ : Dict = padded_inputs.convert_to_tensors(__magic_name__ ) return padded_inputs def lowerCamelCase (self ) -> Dict[str, Any]: '''simple docstring''' snake_case_ : int = copy.deepcopy(self.__dict__ ) snake_case_ : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
279
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : lowerCamelCase_ : Optional[int] = field( default=128, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCamelCase_ : bool = field( default=_a, metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) }, ) @dataclass class __lowerCAmelCase : lowerCamelCase_ : str = field( default=_a, metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase_ : str = field( default=_a, metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) lowerCamelCase_ : Optional[bool] = field( default=_a, metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''}, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''}, ) lowerCamelCase_ : str = field( default='''main''', metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''}, ) lowerCamelCase_ : bool = field( default=_a, metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) }, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''}, ) def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : List[Any] = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) datasets.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: snake_case_ : Union[str, Any] = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case_ : str = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Optional[int] = train_dataset.features['''label'''].names if training_args.do_eval: snake_case_ : Dict = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Tuple = eval_dataset.features['''label'''].names if training_args.do_predict: snake_case_ : int = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Optional[int] = predict_dataset.features['''label'''].names # Labels snake_case_ : int = len(_UpperCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCamelCase , idalabel={str(_UpperCamelCase ): label for i, label in enumerate(_UpperCamelCase )} , labelaid={label: i for i, label in enumerate(_UpperCamelCase )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: snake_case_ : Dict = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case_ : str = False def preprocess_function(_UpperCamelCase ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=_UpperCamelCase , max_length=data_args.max_seq_length , truncation=_UpperCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: snake_case_ : List[Any] = min(len(_UpperCamelCase ) , data_args.max_train_samples ) snake_case_ : int = train_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): snake_case_ : Optional[int] = train_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_UpperCamelCase ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: snake_case_ : List[str] = min(len(_UpperCamelCase ) , data_args.max_eval_samples ) snake_case_ : List[str] = eval_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): snake_case_ : List[str] = eval_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: snake_case_ : Union[str, Any] = min(len(_UpperCamelCase ) , data_args.max_predict_samples ) snake_case_ : Dict = predict_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): snake_case_ : List[str] = predict_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function snake_case_ : int = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase ): snake_case_ : List[str] = p.predictions[0] if isinstance(p.predictions , _UpperCamelCase ) else p.predictions snake_case_ : Tuple = np.argmax(_UpperCamelCase , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case_ : Optional[int] = default_data_collator elif training_args.fpaa: snake_case_ : Any = DataCollatorWithPadding(_UpperCamelCase , pad_to_multiple_of=8 ) else: snake_case_ : Any = None # Initialize our Trainer snake_case_ : Any = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: snake_case_ : int = None if training_args.resume_from_checkpoint is not None: snake_case_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : Dict = last_checkpoint snake_case_ : int = trainer.train(resume_from_checkpoint=_UpperCamelCase ) snake_case_ : Union[str, Any] = train_result.metrics snake_case_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) snake_case_ : Dict = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , _UpperCamelCase ) trainer.save_metrics('''train''' , _UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case_ : Any = trainer.evaluate(eval_dataset=_UpperCamelCase ) snake_case_ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase ) snake_case_ : str = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''eval''' , _UpperCamelCase ) trainer.save_metrics('''eval''' , _UpperCamelCase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) snake_case_ , snake_case_ , snake_case_ : Optional[int] = trainer.predict(_UpperCamelCase , metric_key_prefix='''predict''' ) snake_case_ : Union[str, Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_UpperCamelCase ) ) snake_case_ : Optional[int] = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''predict''' , _UpperCamelCase ) trainer.save_metrics('''predict''' , _UpperCamelCase ) snake_case_ : List[Any] = np.argmax(_UpperCamelCase , axis=1 ) snake_case_ : Optional[Any] = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(_UpperCamelCase , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(_UpperCamelCase ): snake_case_ : List[str] = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
279
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
228
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__)
100
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.txt'} _a = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } _a = { 'facebook/esm2_t6_8M_UR50D': 1_024, 'facebook/esm2_t12_35M_UR50D': 1_024, } def __a ( __lowerCamelCase ): with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : int = f.read().splitlines() return [l.strip() for l in lines] class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase_ , lowercase_="<unk>" , lowercase_="<cls>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_="<eos>" , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) UpperCAmelCase_ : str = load_vocab_file(lowercase_ ) UpperCAmelCase_ : Any = dict(enumerate(self.all_tokens ) ) UpperCAmelCase_ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase_ : int = unk_token UpperCAmelCase_ : Optional[int] = cls_token UpperCAmelCase_ : Optional[int] = pad_token UpperCAmelCase_ : Optional[int] = mask_token UpperCAmelCase_ : List[Any] = eos_token UpperCAmelCase_ : str = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self._id_to_token.get(lowercase_ , self.unk_token ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self._token_to_id.get(lowercase_ , self._token_to_id.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ , **lowercase_ ): """simple docstring""" return text.split() def UpperCamelCase__ ( self , lowercase_=False ): """simple docstring""" return len(self._id_to_token ) def UpperCamelCase__ ( self ): """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self._token_to_id.get(lowercase_ , self._token_to_id.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self._id_to_token.get(lowercase_ , self.unk_token ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : List[Any] = [self.cls_token_id] UpperCAmelCase_ : int = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase_ : Dict = [1] + ([0] * len(lowercase_ )) + [1] if token_ids_a is not None: mask += [0] * len(lowercase_ ) + [1] return mask def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = os.path.join(lowercase_ , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(lowercase_ , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.get_vocab_size(with_added_tokens=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = False ): """simple docstring""" return super()._add_tokens(lowercase_ , special_tokens=lowercase_ )
23
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
1
'''simple docstring''' def a_ ( _lowerCAmelCase ) -> float: __lowerCamelCase : str = 0 while len(_lowerCAmelCase ) > 1: __lowerCamelCase : Union[str, Any] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __lowerCamelCase : Any = files.index(min(_lowerCAmelCase ) ) temp += files[min_index] files.pop(_lowerCAmelCase ) files.append(_lowerCAmelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
208
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = 100 ,) -> float: __lowerCamelCase : Dict = x_start __lowerCamelCase : int = fnc(_lowerCAmelCase ) __lowerCamelCase : Dict = 0.0 for _ in range(_lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length __lowerCamelCase : List[str] = (x_end - x_start) / steps + xa __lowerCamelCase : List[Any] = fnc(_lowerCAmelCase ) length += math.hypot(xa - xa ,fxa - fxa ) # Increment step __lowerCamelCase : Any = xa __lowerCamelCase : Tuple = fxa return length if __name__ == "__main__": def a_ ( _lowerCAmelCase ) -> Dict: return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') _UpperCamelCase = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
208
1
def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Tuple = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowerCAmelCase ( ) -> Union[str, Any]: __A : Optional[int] = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=__snake_case , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=__snake_case , default=5 ) parser.add_argument('--batch_size' , type=__snake_case , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=__snake_case , default=1 ) parser.add_argument('--freeze' , type=__snake_case , default=__snake_case ) parser.add_argument('--learning_rate' , type=__snake_case , default=5e-4 ) parser.add_argument('--seed' , type=__snake_case , default=0 ) parser.add_argument('--lr_scheduler_type' , type=__snake_case , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=__snake_case , default=10 ) parser.add_argument('--weight_decay' , type=__snake_case , default=0.01 ) parser.add_argument('--output_dir' , type=__snake_case , default='./results' ) return parser.parse_args() lowercase__ : Tuple = load('''accuracy''') def _lowerCAmelCase ( __snake_case : int ) -> Any: __A ,__A : List[Any] = eval_pred __A : Dict = np.argmax(__snake_case , axis=1 ) return metric.compute(predictions=__snake_case , references=__snake_case ) class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : int = trainer def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' if control.should_evaluate: __A : str = deepcopy(_UpperCAmelCase) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train') return control_copy def _lowerCAmelCase ( ) -> str: __A : List[Any] = get_args() set_seed(args.seed ) __A : Union[str, Any] = load_dataset('codeparrot/codecomplex' , split='train' ) __A : Optional[int] = dataset.train_test_split(test_size=0.2 ) __A : Union[str, Any] = train_test['test'].train_test_split(test_size=0.5 ) __A : Optional[Any] = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) __A : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) __A : Tuple = tokenizer.eos_token __A : Dict = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __A : Optional[int] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __A : Optional[Any] = False __A : Dict = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(__snake_case : Optional[Any] ): __A : Optional[Any] = tokenizer(example['src'] , truncation=__snake_case , max_length=10_24 ) __A : str = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __A : str = train_test_validation.map( __snake_case , batched=__snake_case , remove_columns=train_test_validation['train'].column_names , ) __A : str = DataCollatorWithPadding(tokenizer=__snake_case ) __A : str = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) __A : Tuple = Trainer( model=__snake_case , args=__snake_case , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=__snake_case , data_collator=__snake_case , compute_metrics=__snake_case , ) print('Training...' ) trainer.add_callback(CustomCallback(__snake_case ) ) trainer.train() if __name__ == "__main__": main()
190
0
import numpy as np def snake_case ( snake_case__ :np.ndarray , snake_case__ :float) -> np.ndarray: return np.where(vector > 0 , snake_case__ , (alpha * (np.exp(snake_case__) - 1))) if __name__ == "__main__": import doctest doctest.testmod()
180
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def snake_case ( snake_case__ :int , snake_case__ :List[str] , snake_case__ :Union[str, Any]) -> str: # Initialise PyTorch model _A = AlbertConfig.from_json_file(snake_case__) print(F'''Building PyTorch model from configuration: {config}''') _A = AlbertForPreTraining(snake_case__) # Load weights from tf checkpoint load_tf_weights_in_albert(snake_case__ , snake_case__ , snake_case__) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , snake_case__) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
180
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): lowerCAmelCase : str = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: lowerCAmelCase : Optional[int] = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_: Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE_: List[str] = numpy_to_pil(_UpperCAmelCase ) return images def A_ ( _UpperCAmelCase ): if images.ndim == 3: SCREAMING_SNAKE_CASE_: Optional[int] = images[None, ...] SCREAMING_SNAKE_CASE_: List[Any] = (images * 2_55).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE_: Dict = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: SCREAMING_SNAKE_CASE_: Any = [Image.fromarray(_UpperCAmelCase ) for image in images] return pil_images
127
def A_ ( _UpperCAmelCase = 10**9 ): SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Optional[int] = 2 SCREAMING_SNAKE_CASE_: int = 0 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[str] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value SCREAMING_SNAKE_CASE_: Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
127
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) lowerCamelCase_ : str = 10 def lowerCamelCase (self , **__magic_name__ ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**__magic_name__ ) return config def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__magic_name__ ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = self.scheduler_classes[0] snake_case_ : int = self.get_scheduler_config() snake_case_ : str = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : List[str] = torch.manual_seed(0 ) snake_case_ : str = self.dummy_model() snake_case_ : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : Any = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : str = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) snake_case_ : List[str] = model(__magic_name__ , __magic_name__ ) snake_case_ : Dict = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) snake_case_ : str = output.prev_sample snake_case_ : Optional[Any] = torch.sum(torch.abs(__magic_name__ ) ) snake_case_ : Dict = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = self.scheduler_classes[0] snake_case_ : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case_ : Optional[Any] = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : Optional[int] = self.dummy_model() snake_case_ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : List[str] = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : int = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) snake_case_ : List[Any] = model(__magic_name__ , __magic_name__ ) snake_case_ : Optional[int] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) snake_case_ : str = output.prev_sample snake_case_ : List[str] = torch.sum(torch.abs(__magic_name__ ) ) snake_case_ : str = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = self.scheduler_classes[0] snake_case_ : List[Any] = self.get_scheduler_config() snake_case_ : List[str] = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) snake_case_ : Optional[int] = torch.manual_seed(0 ) snake_case_ : Tuple = self.dummy_model() snake_case_ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case_ : List[Any] = sample.to(__magic_name__ ) for t in scheduler.timesteps: snake_case_ : Optional[int] = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) snake_case_ : int = model(__magic_name__ , __magic_name__ ) snake_case_ : Any = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) snake_case_ : Optional[int] = output.prev_sample snake_case_ : Dict = torch.sum(torch.abs(__magic_name__ ) ) snake_case_ : Optional[int] = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = self.scheduler_classes[0] snake_case_ : List[Any] = self.get_scheduler_config() snake_case_ : Optional[int] = scheduler_class(**__magic_name__ , use_karras_sigmas=__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) snake_case_ : Optional[int] = torch.manual_seed(0 ) snake_case_ : List[Any] = self.dummy_model() snake_case_ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case_ : Tuple = sample.to(__magic_name__ ) for t in scheduler.timesteps: snake_case_ : int = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) snake_case_ : Any = model(__magic_name__ , __magic_name__ ) snake_case_ : List[str] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) snake_case_ : Any = output.prev_sample snake_case_ : List[Any] = torch.sum(torch.abs(__magic_name__ ) ) snake_case_ : List[Any] = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
279
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __lowerCAmelCase ( _a ): lowerCamelCase_ : int = '''''' lowerCamelCase_ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase_ : str = None # compression type in fsspec. ex: "gzip" lowerCamelCase_ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__(self , __magic_name__ = "" , __magic_name__ = None , __magic_name__ = None , **__magic_name__ ) -> Any: '''simple docstring''' super().__init__(self , **__magic_name__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case_ : Union[str, Any] = fsspec.open( __magic_name__ , mode='''rb''' , protocol=__magic_name__ , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case_ : Tuple = os.path.basename(self.file.path.split('''::''' )[0] ) snake_case_ : Optional[Any] = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) snake_case_ : Dict = None @classmethod def lowerCamelCase (cls , __magic_name__ ) -> Optional[int]: '''simple docstring''' return super()._strip_protocol(__magic_name__ ).lstrip('''/''' ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' if self.dir_cache is None: snake_case_ : Optional[int] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} snake_case_ : List[str] = {f['''name''']: f} def lowerCamelCase (self , __magic_name__ ) -> Optional[Any]: '''simple docstring''' return self.file.open().read() def lowerCamelCase (self , __magic_name__ , __magic_name__ = "rb" , __magic_name__=None , __magic_name__=True , __magic_name__=None , **__magic_name__ , ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = self._strip_protocol(__magic_name__ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class __lowerCAmelCase ( _a ): lowerCamelCase_ : Union[str, Any] = '''bz2''' lowerCamelCase_ : Any = '''bz2''' lowerCamelCase_ : int = '''.bz2''' class __lowerCAmelCase ( _a ): lowerCamelCase_ : Union[str, Any] = '''gzip''' lowerCamelCase_ : Dict = '''gzip''' lowerCamelCase_ : int = '''.gz''' class __lowerCAmelCase ( _a ): lowerCamelCase_ : Any = '''lz4''' lowerCamelCase_ : Any = '''lz4''' lowerCamelCase_ : Optional[Any] = '''.lz4''' class __lowerCAmelCase ( _a ): lowerCamelCase_ : Tuple = '''xz''' lowerCamelCase_ : Any = '''xz''' lowerCamelCase_ : int = '''.xz''' class __lowerCAmelCase ( _a ): lowerCamelCase_ : Union[str, Any] = '''zstd''' lowerCamelCase_ : Tuple = '''zstd''' lowerCamelCase_ : Any = '''.zst''' def __init__(self , __magic_name__ , __magic_name__ = "rb" , __magic_name__ = None , __magic_name__ = None , __magic_name__ = DEFAULT_BLOCK_SIZE , **__magic_name__ , ) -> Tuple: '''simple docstring''' super().__init__( fo=__magic_name__ , mode=__magic_name__ , target_protocol=__magic_name__ , target_options=__magic_name__ , block_size=__magic_name__ , **__magic_name__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case_ : Dict = self.file.__enter__ class __lowerCAmelCase : def __init__(self , __magic_name__ ) -> List[Any]: '''simple docstring''' snake_case_ : str = file_ def __enter__(self ) -> List[Any]: '''simple docstring''' self._file.__enter__() return self def __exit__(self , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' self._file.__exit__(*__magic_name__ , **__magic_name__ ) def __iter__(self ) -> Optional[int]: '''simple docstring''' return iter(self._file ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' return next(self._file ) def __getattr__(self , __magic_name__ ) -> str: '''simple docstring''' return getattr(self._file , __magic_name__ ) def fixed_enter(*__magic_name__ , **__magic_name__ ): return WrappedFile(_enter(*__magic_name__ , **__magic_name__ ) ) snake_case_ : Tuple = fixed_enter
279
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any]=100 , snake_case_ : Any=13 , snake_case_ : Optional[int]=30 , snake_case_ : str=2 , snake_case_ : int=3 , snake_case_ : Optional[int]=True , snake_case_ : int=True , snake_case_ : Optional[Any]=32 , snake_case_ : str=4 , snake_case_ : List[Any]=4 , snake_case_ : Any=37 , snake_case_ : List[str]="gelu" , snake_case_ : Optional[int]=0.1 , snake_case_ : int=0.1 , snake_case_ : Tuple=10 , snake_case_ : Any=0.02 , snake_case_ : Any=3 , snake_case_ : Tuple=None , snake_case_ : str=[0, 1, 2, 3] , ): UpperCamelCase_: Any = parent UpperCamelCase_: str = 100 UpperCamelCase_: Optional[Any] = batch_size UpperCamelCase_: int = image_size UpperCamelCase_: str = patch_size UpperCamelCase_: Dict = num_channels UpperCamelCase_: str = is_training UpperCamelCase_: List[str] = use_labels UpperCamelCase_: Optional[Any] = hidden_size UpperCamelCase_: str = num_hidden_layers UpperCamelCase_: List[Any] = num_attention_heads UpperCamelCase_: str = intermediate_size UpperCamelCase_: str = hidden_act UpperCamelCase_: Optional[Any] = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: int = type_sequence_label_size UpperCamelCase_: Any = initializer_range UpperCamelCase_: int = scope UpperCamelCase_: Tuple = out_indices UpperCamelCase_: List[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_: int = (image_size // patch_size) ** 2 UpperCamelCase_: str = num_patches + 1 def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: List[str] = None UpperCamelCase_: Dict = None if self.use_labels: UpperCamelCase_: List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_: List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase__ ( self : int ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowerCAmelCase__ ( self : str , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = BeitModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase_: Optional[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict ): UpperCamelCase_: Any = BeitForMaskedImageModeling(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase_: Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCAmelCase__ ( self : Dict , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : List[Any] ): UpperCamelCase_: Dict = self.type_sequence_label_size UpperCamelCase_: Optional[int] = BeitForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase_: str = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase_: List[Any] = 1 UpperCamelCase_: int = BeitForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Any = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self : str , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : List[str] ): UpperCamelCase_: str = self.num_labels UpperCamelCase_: Union[str, Any] = BeitForSemanticSegmentation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase_: List[str] = model(UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCamelCase_: Any = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Optional[int] = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Any = config_and_inputs UpperCamelCase_: List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase : int = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase : str = False __UpperCamelCase : Dict = False __UpperCamelCase : List[Any] = False def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Dict = BeitModelTester(self ) UpperCamelCase_: str = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def lowerCAmelCase__ ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`""" ) def lowerCAmelCase__ ( self : Dict ): pass def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_, UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Optional[Any] = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_: Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_, UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Tuple = model_class(UpperCamelCase_ ) UpperCamelCase_: Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: int = [*signature.parameters.keys()] UpperCamelCase_: Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_ ) def lowerCAmelCase__ ( self : Optional[Any] ): if not self.model_tester.is_training: return UpperCamelCase_, UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(UpperCamelCase_ ), BeitForMaskedImageModeling]: continue UpperCamelCase_: Union[str, Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() UpperCamelCase_: List[str] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) UpperCamelCase_: int = model(**UpperCamelCase_ ).loss loss.backward() def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_, UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase_: Union[str, Any] = False UpperCamelCase_: int = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(UpperCamelCase_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase_: Union[str, Any] = model_class(UpperCamelCase_ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase_ ) model.train() UpperCamelCase_: Tuple = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) UpperCamelCase_: Tuple = model(**UpperCamelCase_ ).loss loss.backward() def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_, UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Any = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: UpperCamelCase_: Optional[int] = model_class(config=UpperCamelCase_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def lowerCAmelCase__ ( self : Optional[Any] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: Any = BeitModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def A__ ( ) -> int: UpperCamelCase_: Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self : List[Any] ): return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[str] = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(UpperCamelCase_ ) UpperCamelCase_: int = self.default_image_processor UpperCamelCase_: Any = prepare_img() UpperCamelCase_: Tuple = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ).pixel_values.to(UpperCamelCase_ ) # prepare bool_masked_pos UpperCamelCase_: Union[str, Any] = torch.ones((1, 196) , dtype=torch.bool ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase_: Union[str, Any] = model(pixel_values=UpperCamelCase_ , bool_masked_pos=UpperCamelCase_ ) UpperCamelCase_: Any = outputs.logits # verify the logits UpperCamelCase_: List[Any] = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , UpperCamelCase_ ) UpperCamelCase_: int = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCamelCase_ , atol=1e-2 ) ) @slow def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(UpperCamelCase_ ) UpperCamelCase_: Tuple = self.default_image_processor UpperCamelCase_: Optional[Any] = prepare_img() UpperCamelCase_: Tuple = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase_: Dict = model(**UpperCamelCase_ ) UpperCamelCase_: str = outputs.logits # verify the logits UpperCamelCase_: str = torch.Size((1, 1000) ) self.assertEqual(logits.shape , UpperCamelCase_ ) UpperCamelCase_: int = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) ) UpperCamelCase_: int = 281 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( UpperCamelCase_ ) UpperCamelCase_: Union[str, Any] = self.default_image_processor UpperCamelCase_: Any = prepare_img() UpperCamelCase_: int = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase_: Union[str, Any] = model(**UpperCamelCase_ ) UpperCamelCase_: int = outputs.logits # verify the logits UpperCamelCase_: Union[str, Any] = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , UpperCamelCase_ ) UpperCamelCase_: List[str] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) ) UpperCamelCase_: str = 2396 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: str = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) UpperCamelCase_: str = model.to(UpperCamelCase_ ) UpperCamelCase_: Union[str, Any] = BeitImageProcessor(do_resize=UpperCamelCase_ , size=640 , do_center_crop=UpperCamelCase_ ) UpperCamelCase_: Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) UpperCamelCase_: int = Image.open(ds[0]["""file"""] ) UpperCamelCase_: Tuple = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase_: List[str] = model(**UpperCamelCase_ ) UpperCamelCase_: Tuple = outputs.logits # verify the logits UpperCamelCase_: Dict = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , UpperCamelCase_ ) UpperCamelCase_: str = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: UpperCamelCase_: int = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=UpperCamelCase_ , ) else: UpperCamelCase_: Optional[Any] = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=UpperCamelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Optional[int] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) UpperCamelCase_: List[Any] = model.to(UpperCamelCase_ ) UpperCamelCase_: Optional[int] = BeitImageProcessor(do_resize=UpperCamelCase_ , size=640 , do_center_crop=UpperCamelCase_ ) UpperCamelCase_: Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) UpperCamelCase_: str = Image.open(ds[0]["""file"""] ) UpperCamelCase_: str = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase_: str = model(**UpperCamelCase_ ) UpperCamelCase_: int = outputs.logits.detach().cpu() UpperCamelCase_: Any = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ , target_sizes=[(500, 300)] ) UpperCamelCase_: Optional[Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , UpperCamelCase_ ) UpperCamelCase_: Any = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ ) UpperCamelCase_: Union[str, Any] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , UpperCamelCase_ )
355
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) set_seed(7_70) lowerCamelCase_ : str = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } lowerCamelCase_ : Any = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } lowerCamelCase_ : str = os.path.dirname(os.path.abspath(__file__)) lowerCamelCase_ : Any = os.path.join(os.path.expanduser("""~"""), """.cache""") lowerCamelCase_ : Dict = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def A__ ( lowerCamelCase , lowerCamelCase=False ) -> int: UpperCamelCase_: Union[str, Any] = model_type if use_small: key += "_small" return os.path.join(lowerCamelCase , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) hf_hub_download(repo_id=lowerCamelCase , filename=lowerCamelCase , local_dir=lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase="text" ) -> Optional[int]: if model_type == "text": UpperCamelCase_: str = BarkSemanticModel UpperCamelCase_: Dict = BarkSemanticConfig UpperCamelCase_: int = BarkSemanticGenerationConfig elif model_type == "coarse": UpperCamelCase_: str = BarkCoarseModel UpperCamelCase_: int = BarkCoarseConfig UpperCamelCase_: Any = BarkCoarseGenerationConfig elif model_type == "fine": UpperCamelCase_: Optional[Any] = BarkFineModel UpperCamelCase_: int = BarkFineConfig UpperCamelCase_: Dict = BarkFineGenerationConfig else: raise NotImplementedError() UpperCamelCase_: str = F'''{model_type}_small''' if use_small else model_type UpperCamelCase_: List[Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCamelCase ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) UpperCamelCase_: int = torch.load(lowerCamelCase , map_location=lowerCamelCase ) # this is a hack UpperCamelCase_: Tuple = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: UpperCamelCase_: int = model_args["""vocab_size"""] UpperCamelCase_: Optional[int] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments UpperCamelCase_: Tuple = model_args.pop("""n_head""" ) UpperCamelCase_: Dict = model_args.pop("""n_embd""" ) UpperCamelCase_: List[str] = model_args.pop("""n_layer""" ) UpperCamelCase_: Optional[Any] = ConfigClass(**checkpoint["""model_args"""] ) UpperCamelCase_: Optional[Any] = ModelClass(config=lowerCamelCase ) UpperCamelCase_: List[Any] = GenerationConfigClass() UpperCamelCase_: Optional[Any] = model_generation_config UpperCamelCase_: Optional[int] = checkpoint["""model"""] # fixup checkpoint UpperCamelCase_: Dict = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation UpperCamelCase_: Optional[int] = k[len(lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: UpperCamelCase_: Dict = new_k.replace(lowerCamelCase , new_layer_name_dict[old_layer_name] ) UpperCamelCase_: List[str] = state_dict.pop(lowerCamelCase ) UpperCamelCase_: Optional[int] = set(state_dict.keys() ) - set(model.state_dict().keys() ) UpperCamelCase_: Dict = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} UpperCamelCase_: Optional[Any] = set(model.state_dict().keys() ) - set(state_dict.keys() ) UpperCamelCase_: Union[str, Any] = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(lowerCamelCase ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(lowerCamelCase ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) UpperCamelCase_: str = model.num_parameters(exclude_embeddings=lowerCamelCase ) UpperCamelCase_: int = checkpoint["""best_val_loss"""].item() logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowerCamelCase , 3 )} loss''' ) model.eval() model.to(lowerCamelCase ) del checkpoint, state_dict return model def A__ ( lowerCamelCase , lowerCamelCase=False , lowerCamelCase="text" ) -> Any: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() UpperCamelCase_: Union[str, Any] = """cpu""" # do conversion on cpu UpperCamelCase_: int = _get_ckpt_path(lowerCamelCase , use_small=lowerCamelCase ) UpperCamelCase_: Dict = _load_model(lowerCamelCase , lowerCamelCase , model_type=lowerCamelCase , use_small=lowerCamelCase ) # load bark initial model UpperCamelCase_: List[Any] = _bark_load_model(lowerCamelCase , """cpu""" , model_type=lowerCamelCase , use_small=lowerCamelCase ) if model_type == "text": UpperCamelCase_: Tuple = bark_model["""model"""] if model.num_parameters(exclude_embeddings=lowerCamelCase ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model UpperCamelCase_: Optional[Any] = 5 UpperCamelCase_: List[str] = 10 if model_type in ["text", "coarse"]: UpperCamelCase_: int = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) UpperCamelCase_: Tuple = bark_model(lowerCamelCase )[0] UpperCamelCase_: Optional[Any] = model(lowerCamelCase ) # take last logits UpperCamelCase_: Union[str, Any] = output_new_model_total.logits[:, [-1], :] else: UpperCamelCase_: Tuple = 3 UpperCamelCase_: List[Any] = 8 UpperCamelCase_: List[str] = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) UpperCamelCase_: int = model(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Any = bark_model(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> str: UpperCamelCase_: List[str] = os.path.join(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = BarkSemanticConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: List[Any] = BarkCoarseConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: Optional[int] = BarkFineConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: Any = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) UpperCamelCase_: Optional[Any] = BarkSemanticModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: Tuple = BarkCoarseModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: List[str] = BarkFineModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: Tuple = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) UpperCamelCase_: int = BarkConfig.from_sub_model_configs( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) UpperCamelCase_: Optional[Any] = BarkModel(lowerCamelCase ) UpperCamelCase_: int = semantic UpperCamelCase_: Tuple = coarseAcoustic UpperCamelCase_: Optional[int] = fineAcoustic UpperCamelCase_: Any = codec UpperCamelCase_: Dict = bark_generation_config Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) bark.save_pretrained(lowerCamelCase , repo_id=lowerCamelCase , push_to_hub=lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") lowerCamelCase_ : Dict = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
223
0
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(_lowerCAmelCase ), magnitude * sin(_lowerCAmelCase )] return [magnitude * cos(radians(_lowerCAmelCase ) ), magnitude * sin(radians(_lowerCAmelCase ) )] def snake_case_ ( _lowerCAmelCase : NDArray[floataa] , _lowerCAmelCase : NDArray[floataa] , _lowerCAmelCase : float = 10**-1 ) -> bool: UpperCAmelCase : NDArray[floataa] = cross(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : float = sum(_lowerCAmelCase ) return abs(_lowerCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works UpperCamelCase__: List[Any] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) UpperCamelCase__: NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCamelCase__: Optional[Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) UpperCamelCase__: int = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCamelCase__: List[Any] = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) UpperCamelCase__: List[str] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
23
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated UpperCAmelCase_ : str = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ UpperCAmelCase_ : Optional[Any] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase :Optional[Any] = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__magic_name__ )[0] @deprecated(__magic_name__ , """Please use tf.data to implement this functionality.""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> Dict: """simple docstring""" print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=__magic_name__ ) as bytestream: UpperCamelCase :List[Any] = _readaa(__magic_name__ ) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) UpperCamelCase :List[Any] = _readaa(__magic_name__ ) UpperCamelCase :Union[str, Any] = _readaa(__magic_name__ ) UpperCamelCase :int = _readaa(__magic_name__ ) UpperCamelCase :Tuple = bytestream.read(rows * cols * num_images ) UpperCamelCase :int = numpy.frombuffer(__magic_name__ , dtype=numpy.uinta ) UpperCamelCase :Optional[int] = data.reshape(__magic_name__ , __magic_name__ , __magic_name__ , 1 ) return data @deprecated(__magic_name__ , """Please use tf.one_hot on tensors.""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase :List[Any] = labels_dense.shape[0] UpperCamelCase :Dict = numpy.arange(__magic_name__ ) * num_classes UpperCamelCase :str = numpy.zeros((num_labels, num_classes) ) UpperCamelCase :Optional[Any] = 1 return labels_one_hot @deprecated(__magic_name__ , """Please use tf.data to implement this functionality.""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : Dict=False , __magic_name__ : List[Any]=10 ) -> List[Any]: """simple docstring""" print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=__magic_name__ ) as bytestream: UpperCamelCase :Dict = _readaa(__magic_name__ ) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) UpperCamelCase :Optional[Any] = _readaa(__magic_name__ ) UpperCamelCase :List[Any] = bytestream.read(__magic_name__ ) UpperCamelCase :List[Any] = numpy.frombuffer(__magic_name__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__magic_name__ , __magic_name__ ) return labels class _SCREAMING_SNAKE_CASE : @deprecated( __lowerCamelCase , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : int=dtypes.floataa , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=None , ): UpperCamelCase :List[str] = random_seed.get_seed(__lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) UpperCamelCase :Any = dtypes.as_dtype(__lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: UpperCamelCase :int = 10_000 UpperCamelCase :str = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"""images.shape: {images.shape} labels.shape: {labels.shape}""" UpperCamelCase :int = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 UpperCamelCase :Union[str, Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. UpperCamelCase :str = images.astype(numpy.floataa ) UpperCamelCase :List[str] = numpy.multiply(__lowerCamelCase , 1.0 / 255.0 ) UpperCamelCase :str = images UpperCamelCase :Optional[Any] = labels UpperCamelCase :List[Any] = 0 UpperCamelCase :str = 0 @property def _A ( self : List[str] ): return self._images @property def _A ( self : List[str] ): return self._labels @property def _A ( self : Optional[int] ): return self._num_examples @property def _A ( self : Tuple ): return self._epochs_completed def _A ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any=False , __lowerCamelCase : List[str]=True ): if fake_data: UpperCamelCase :Optional[Any] = [1] * 784 UpperCamelCase :Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCamelCase )], [fake_label for _ in range(__lowerCamelCase )], ) UpperCamelCase :List[str] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: UpperCamelCase :Tuple = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) UpperCamelCase :List[str] = self.images[perma] UpperCamelCase :Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch UpperCamelCase :Optional[Any] = self._num_examples - start UpperCamelCase :Dict = self._images[start : self._num_examples] UpperCamelCase :int = self._labels[start : self._num_examples] # Shuffle the data if shuffle: UpperCamelCase :Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) UpperCamelCase :Any = self.images[perm] UpperCamelCase :Optional[int] = self.labels[perm] # Start next epoch UpperCamelCase :Union[str, Any] = 0 UpperCamelCase :List[str] = batch_size - rest_num_examples UpperCamelCase :Optional[Any] = self._index_in_epoch UpperCamelCase :str = self._images[start:end] UpperCamelCase :List[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size UpperCamelCase :Optional[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__magic_name__ , """Please write your own downloading logic.""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" if not gfile.Exists(__magic_name__ ): gfile.MakeDirs(__magic_name__ ) UpperCamelCase :Optional[int] = os.path.join(__magic_name__ , __magic_name__ ) if not gfile.Exists(__magic_name__ ): urllib.request.urlretrieve(__magic_name__ , __magic_name__ ) # noqa: S310 with gfile.GFile(__magic_name__ ) as f: UpperCamelCase :Union[str, Any] = f.size() print("""Successfully downloaded""" , __magic_name__ , __magic_name__ , """bytes.""" ) return filepath @deprecated( __magic_name__ , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any]=False , __magic_name__ : Optional[int]=False , __magic_name__ : int=dtypes.floataa , __magic_name__ : List[str]=True , __magic_name__ : Union[str, Any]=5000 , __magic_name__ : Any=None , __magic_name__ : List[Any]=DEFAULT_SOURCE_URL , ) -> List[Any]: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__magic_name__ , one_hot=__magic_name__ , dtype=__magic_name__ , seed=__magic_name__ ) UpperCamelCase :Optional[int] = fake() UpperCamelCase :Optional[int] = fake() UpperCamelCase :Dict = fake() return _Datasets(train=__magic_name__ , validation=__magic_name__ , test=__magic_name__ ) if not source_url: # empty string check UpperCamelCase :Tuple = DEFAULT_SOURCE_URL UpperCamelCase :Union[str, Any] = """train-images-idx3-ubyte.gz""" UpperCamelCase :int = """train-labels-idx1-ubyte.gz""" UpperCamelCase :Tuple = """t10k-images-idx3-ubyte.gz""" UpperCamelCase :Union[str, Any] = """t10k-labels-idx1-ubyte.gz""" UpperCamelCase :Optional[int] = _maybe_download( __magic_name__ , __magic_name__ , source_url + train_images_file ) with gfile.Open(__magic_name__ , """rb""" ) as f: UpperCamelCase :Any = _extract_images(__magic_name__ ) UpperCamelCase :Dict = _maybe_download( __magic_name__ , __magic_name__ , source_url + train_labels_file ) with gfile.Open(__magic_name__ , """rb""" ) as f: UpperCamelCase :Optional[int] = _extract_labels(__magic_name__ , one_hot=__magic_name__ ) UpperCamelCase :Optional[Any] = _maybe_download( __magic_name__ , __magic_name__ , source_url + test_images_file ) with gfile.Open(__magic_name__ , """rb""" ) as f: UpperCamelCase :List[str] = _extract_images(__magic_name__ ) UpperCamelCase :int = _maybe_download( __magic_name__ , __magic_name__ , source_url + test_labels_file ) with gfile.Open(__magic_name__ , """rb""" ) as f: UpperCamelCase :Union[str, Any] = _extract_labels(__magic_name__ , one_hot=__magic_name__ ) if not 0 <= validation_size <= len(__magic_name__ ): UpperCamelCase :int = ( """Validation size should be between 0 and """ f"""{len(__magic_name__ )}. Received: {validation_size}.""" ) raise ValueError(__magic_name__ ) UpperCamelCase :Tuple = train_images[:validation_size] UpperCamelCase :str = train_labels[:validation_size] UpperCamelCase :str = train_images[validation_size:] UpperCamelCase :Optional[int] = train_labels[validation_size:] UpperCamelCase :Dict = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} UpperCamelCase :Any = _DataSet(__magic_name__ , __magic_name__ , **__magic_name__ ) UpperCamelCase :str = _DataSet(__magic_name__ , __magic_name__ , **__magic_name__ ) UpperCamelCase :str = _DataSet(__magic_name__ , __magic_name__ , **__magic_name__ ) return _Datasets(train=__magic_name__ , validation=__magic_name__ , test=__magic_name__ )
369
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Any=7 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[Any]=30 , __lowerCamelCase : Union[str, Any]=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Tuple=None , __lowerCamelCase : int=True , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , __lowerCamelCase : int=[0.5, 0.5, 0.5] , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=1 / 255 , __lowerCamelCase : str=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCamelCase :List[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} UpperCamelCase :Tuple = parent UpperCamelCase :int = batch_size UpperCamelCase :str = num_channels UpperCamelCase :Dict = min_resolution UpperCamelCase :Any = max_resolution UpperCamelCase :int = do_resize UpperCamelCase :str = size UpperCamelCase :Dict = do_normalize UpperCamelCase :Tuple = image_mean UpperCamelCase :Optional[int] = image_std UpperCamelCase :Tuple = do_rescale UpperCamelCase :Optional[Any] = rescale_factor UpperCamelCase :List[Any] = do_pad def _A ( self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _A ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int]=False ): if not batched: UpperCamelCase :Optional[Any] = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): UpperCamelCase , UpperCamelCase :Union[str, Any] = image.size else: UpperCamelCase , UpperCamelCase :Optional[int] = image.shape[1], image.shape[2] if w < h: UpperCamelCase :int = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase :Tuple = self.size["""shortest_edge"""] elif w > h: UpperCamelCase :List[Any] = self.size["""shortest_edge"""] UpperCamelCase :str = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase :List[Any] = self.size["""shortest_edge"""] UpperCamelCase :str = self.size["""shortest_edge"""] else: UpperCamelCase :List[Any] = [] for image in image_inputs: UpperCamelCase , UpperCamelCase :int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase :int = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] UpperCamelCase :Tuple = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Optional[int] = DeformableDetrImageProcessor if is_vision_available() else None def _A ( self : Optional[Any] ): UpperCamelCase :str = DeformableDetrImageProcessingTester(self ) @property def _A ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Dict ): UpperCamelCase :int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_pad""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) def _A ( self : str ): UpperCamelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) UpperCamelCase :int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def _A ( self : List[Any] ): pass def _A ( self : Dict ): # Initialize image_processing UpperCamelCase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase :Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[int] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase :str = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) UpperCamelCase :int = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : Tuple ): # Initialize image_processing UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Dict = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : Any ): # Initialize image_processing UpperCamelCase :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _A ( self : Optional[Any] ): # prepare image and target UpperCamelCase :int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase :str = json.loads(f.read() ) UpperCamelCase :List[Any] = {"""image_id""": 39_769, """annotations""": target} # encode them UpperCamelCase :Optional[int] = DeformableDetrImageProcessor() UpperCamelCase :Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase :Union[str, Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase ) UpperCamelCase :Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area UpperCamelCase :str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) ) # verify boxes UpperCamelCase :List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase ) UpperCamelCase :List[str] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id UpperCamelCase :Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) ) # verify is_crowd UpperCamelCase :List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) ) # verify class_labels UpperCamelCase :Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) ) # verify orig_size UpperCamelCase :Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) ) # verify size UpperCamelCase :int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) ) @slow def _A ( self : str ): # prepare image, target and masks_path UpperCamelCase :Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase :Any = json.loads(f.read() ) UpperCamelCase :int = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} UpperCamelCase :Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase :Tuple = DeformableDetrImageProcessor(format="""coco_panoptic""" ) UpperCamelCase :Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase :Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase ) UpperCamelCase :Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area UpperCamelCase :List[str] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) ) # verify boxes UpperCamelCase :List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase ) UpperCamelCase :List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id UpperCamelCase :str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) ) # verify is_crowd UpperCamelCase :Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) ) # verify class_labels UpperCamelCase :List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) ) # verify masks UpperCamelCase :Union[str, Any] = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __lowerCamelCase ) # verify orig_size UpperCamelCase :Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) ) # verify size UpperCamelCase :str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) )
62
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : Dict = get_activation('''swish''' ) self.assertIsInstance(_UpperCAmelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = get_activation('''silu''' ) self.assertIsInstance(_UpperCAmelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __lowerCamelCase ( self ): lowercase : Dict = get_activation('''mish''' ) self.assertIsInstance(_UpperCAmelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __lowerCamelCase ( self ): lowercase : Any = get_activation('''gelu''' ) self.assertIsInstance(_UpperCAmelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
337
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Dict = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''roberta''' def __init__( self , _UpperCAmelCase=5_0265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Optional[int] = vocab_size __A : int = hidden_size __A : Union[str, Any] = num_hidden_layers __A : List[str] = num_attention_heads __A : Optional[int] = hidden_act __A : str = intermediate_size __A : Union[str, Any] = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : int = max_position_embeddings __A : str = type_vocab_size __A : Any = initializer_range __A : int = layer_norm_eps __A : Optional[int] = position_embedding_type __A : int = use_cache __A : Union[str, Any] = classifier_dropout class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.task == "multiple-choice": __A : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
190
0
'''simple docstring''' import re from ..utils import cached_file # docstyle-ignore UpperCamelCase : int = """ Human: <<task>> Assistant: """ UpperCamelCase : int = """huggingface-tools/default-prompts""" UpperCamelCase : Dict = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : str , snake_case : List[Any]="run" ) -> Tuple: """simple docstring""" if prompt_or_repo_id is None: a : Optional[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , snake_case ) is not None: return prompt_or_repo_id a : int = cached_file( snake_case , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(snake_case , 'r' , encoding='utf-8' ) as f: return f.read()
350
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ UpperCamelCase : Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ UpperCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="auto" , UpperCAmelCase_ : Any=-1 , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : int=5_0_0 , UpperCAmelCase_ : int="gpt2-large" , UpperCAmelCase_ : Tuple=-1 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : List[str]=2_5 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2_5 , ): """simple docstring""" a : List[str] = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
345
0
import os _SCREAMING_SNAKE_CASE : List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 1_00, "D": 5_00, "M": 10_00} def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = 0 snake_case = 0 while index < len(UpperCamelCase_ ) - 1: snake_case = SYMBOLS[numerals[index]] snake_case = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = '''''' snake_case = num // 10_00 numerals += m_count * "M" num %= 10_00 snake_case = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 snake_case = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ (UpperCamelCase_ = "/p089_roman.txt" ): """simple docstring""" snake_case = 0 with open(os.path.dirname(UpperCamelCase_ ) + roman_numerals_filename ) as filea: snake_case = filea.readlines() for line in lines: snake_case = line.strip() snake_case = parse_roman_numerals(UpperCamelCase_ ) snake_case = generate_roman_numerals(UpperCamelCase_ ) savings += len(UpperCamelCase_ ) - len(UpperCamelCase_ ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
127
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = int(UpperCamelCase_ ) snake_case , snake_case , snake_case = t // 36_00, (t // 60) % 60, t % 60 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=3_00 ): """simple docstring""" return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: snake_case = F'''{elt:.6f}''' if isinstance(UpperCamelCase_ ,UpperCamelCase_ ) else str(UpperCamelCase_ ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A__ : """simple docstring""" __magic_name__ = 5 __magic_name__ = 0.2 def __init__( self , __snake_case , __snake_case = None , __snake_case = True , __snake_case = None , __snake_case = 3_0_0 , ): snake_case = total snake_case = '''''' if prefix is None else prefix snake_case = leave snake_case = parent snake_case = width snake_case = None snake_case = None snake_case = None def a_ ( self , __snake_case , __snake_case = False , __snake_case = None ): snake_case = value if comment is not None: snake_case = comment if self.last_value is None: snake_case = snake_case = time.time() snake_case = snake_case = value snake_case = snake_case = None snake_case = self.warmup snake_case = 1 self.update_bar(__snake_case ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 snake_case = time.time() snake_case = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: snake_case = self.elapsed_time / (value - self.start_value) else: snake_case = None if value >= self.total: snake_case = self.total snake_case = None if not self.leave: self.close() elif self.average_time_per_item is not None: snake_case = self.average_time_per_item * (self.total - value) self.update_bar(__snake_case ) snake_case = value snake_case = current_time if self.average_time_per_item is None: snake_case = 1 else: snake_case = max(int(self.update_every / self.average_time_per_item ) , 1 ) def a_ ( self , __snake_case , __snake_case=None ): snake_case = ''' ''' * (len(str(self.total ) ) - len(str(__snake_case ) )) + str(__snake_case ) if self.elapsed_time is None: snake_case = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: snake_case = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: snake_case = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def a_ ( self ): snake_case = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: snake_case = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def a_ ( self ): if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case , __snake_case=None ): super().__init__(__snake_case ) snake_case = None if column_names is None else [column_names] snake_case = None def a_ ( self ): snake_case = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: snake_case = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def a_ ( self , __snake_case ): if self.inner_table is None: snake_case = [list(values.keys() ), list(values.values() )] else: snake_case = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__snake_case ) snake_case = columns self.inner_table.append([values[c] for c in columns] ) def a_ ( self , __snake_case , __snake_case=None , __snake_case=3_0_0 ): snake_case = NotebookProgressBar(__snake_case , prefix=__snake_case , parent=self , width=__snake_case ) return self.child_bar def a_ ( self ): snake_case = None self.display() class A__ ( snake_case__ ): """simple docstring""" def __init__( self ): snake_case = None snake_case = None snake_case = False def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): snake_case = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' snake_case = 0 snake_case = 0 snake_case = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) snake_case = NotebookTrainingTracker(state.max_steps , __snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): snake_case = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) snake_case = False def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case ): if not has_length(__snake_case ): return if self.prediction_bar is None: if self.training_tracker is not None: snake_case = self.training_tracker.add_child(len(__snake_case ) ) else: snake_case = NotebookProgressBar(len(__snake_case ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): if self.prediction_bar is not None: self.prediction_bar.close() snake_case = None def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: snake_case = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy snake_case = state.global_step self.training_tracker.write_line(__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None , **__snake_case ): if self.training_tracker is not None: snake_case = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: snake_case = log['''loss'''] break if self.first_column == "Epoch": snake_case = int(state.epoch ) else: snake_case = state.global_step snake_case = '''eval''' for k in metrics: if k.endswith('''_loss''' ): snake_case = re.sub(R'''\_loss$''' , '''''' , __snake_case ) snake_case = metrics.pop('''total_flos''' , __snake_case ) snake_case = metrics.pop('''epoch''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_runtime''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , __snake_case ) snake_case = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , __snake_case ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': snake_case = v else: snake_case = k.split('''_''' ) snake_case = ''' '''.join([part.capitalize() for part in splits[1:]] ) snake_case = v self.training_tracker.write_line(__snake_case ) self.training_tracker.remove_child() snake_case = None # Evaluation takes a long time so we should force the next update. snake_case = True def a_ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ): self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=__snake_case ) snake_case = None
127
1
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[torch.FloatTensor] = None __snake_case : torch.FloatTensor = None __snake_case : Optional[Tuple[torch.FloatTensor]] = None __snake_case : Optional[Tuple[torch.FloatTensor]] = None class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Tuple , UpperCAmelCase_: Tuple=1 , UpperCAmelCase_: Any=0 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: str=512 , UpperCAmelCase_: int="cls" , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: str=True , **UpperCAmelCase_: List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = project_dim _SCREAMING_SNAKE_CASE = pooler_fn _SCREAMING_SNAKE_CASE = learn_encoder _SCREAMING_SNAKE_CASE = use_attention_mask class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[Any] = [R"pooler", R"logit_scale"] __snake_case : Any = [R"position_ids", R"predictions.decoder.bias"] __snake_case : str = "roberta" __snake_case : Optional[int] = RobertaSeriesConfig def __init__( self: str , UpperCAmelCase_: Any ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = XLMRobertaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim ) _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , """has_pre_transformation""" , UpperCAmelCase_ ) if self.has_pre_transformation: _SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim ) _SCREAMING_SNAKE_CASE = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.base_model( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , output_attentions=UpperCAmelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=UpperCAmelCase_ , ) if self.has_pre_transformation: _SCREAMING_SNAKE_CASE = outputs["""hidden_states"""][-2] _SCREAMING_SNAKE_CASE = self.pre_LN(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.transformation_pre(UpperCAmelCase_ ) return TransformationModelOutput( projection_state=UpperCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _SCREAMING_SNAKE_CASE = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=UpperCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
125
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ = 1_60_00 ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = int(round(sample_rate * max_length ) ) if len(snake_case__ ) <= sample_length: return wav _SCREAMING_SNAKE_CASE = randint(0 ,len(snake_case__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCAmelCase : __snake_case : Optional[str] = field(default=_UpperCAmelCase ,metadata={"help": "Name of a dataset from the datasets package"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A file containing the training audio paths and labels."} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A file containing the validation audio paths and labels."} ) __snake_case : str = field( default="train" ,metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } ,) __snake_case : str = field( default="validation" ,metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } ,) __snake_case : str = field( default="audio" ,metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} ,) __snake_case : str = field( default="label" ,metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __snake_case : float = field( default=20 ,metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} ,) @dataclass class __UpperCAmelCase : __snake_case : str = field( default="facebook/wav2vec2-base" ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ,) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) __snake_case : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Name or path of preprocessor config."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) __snake_case : Optional[bool] = field( default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def UpperCamelCase ( self: List[str] ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , UpperCAmelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def __lowerCamelCase ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" ,snake_case__ ,snake_case__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. _SCREAMING_SNAKE_CASE = DatasetDict() _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--label_column_name` to the correct text column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _SCREAMING_SNAKE_CASE = raw_datasets.cast_column( data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _SCREAMING_SNAKE_CASE = feature_extractor.model_input_names[0] def train_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [] for audio in batch[data_args.audio_column_name]: _SCREAMING_SNAKE_CASE = random_subsample( audio["""array"""] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(snake_case__ ) _SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [audio["""array"""] for audio in batch[data_args.audio_column_name]] _SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features[data_args.label_column_name].names _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = {}, {} for i, label in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = str(snake_case__ ) _SCREAMING_SNAKE_CASE = label # Load the accuracy metric from the datasets package _SCREAMING_SNAKE_CASE = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case__ ): _SCREAMING_SNAKE_CASE = np.argmax(eval_pred.predictions ,axis=1 ) return metric.compute(predictions=snake_case__ ,references=eval_pred.label_ids ) _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(snake_case__ ) ,labelaid=snake_case__ ,idalabel=snake_case__ ,finetuning_task="""audio-classification""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=snake_case__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(snake_case__ ,output_all_columns=snake_case__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(snake_case__ ,output_all_columns=snake_case__ ) # Initialize our trainer _SCREAMING_SNAKE_CASE = Trainer( model=snake_case__ ,args=snake_case__ ,train_dataset=raw_datasets["""train"""] if training_args.do_train else None ,eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None ,compute_metrics=snake_case__ ,tokenizer=snake_case__ ,) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE = last_checkpoint _SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics("""train""" ,train_result.metrics ) trainer.save_metrics("""train""" ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics("""eval""" ,snake_case__ ) trainer.save_metrics("""eval""" ,snake_case__ ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) if __name__ == "__main__": main()
125
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCAmelCase_ : '''simple docstring''' a__ = None a__ = None a__ = None # sigma(t_i) @classmethod def _lowercase ( cls : List[str] ) -> Dict: """simple docstring""" return cls() @dataclass class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 class UpperCAmelCase_ ( _A , _A ): '''simple docstring''' @property def _lowercase ( self : Any ) -> Tuple: """simple docstring""" return True @register_to_config def __init__( self : Dict , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 100 , UpperCamelCase__ : float = 1.007 , UpperCamelCase__ : float = 80 , UpperCamelCase__ : float = 0.05 , UpperCamelCase__ : float = 50 , ) -> List[Any]: """simple docstring""" pass def _lowercase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return KarrasVeSchedulerState.create() def _lowercase ( self : List[str] , UpperCamelCase__ : KarrasVeSchedulerState , UpperCamelCase__ : int , UpperCamelCase__ : Tuple = () ) -> KarrasVeSchedulerState: """simple docstring""" __magic_name__ = jnp.arange(0 , UpperCamelCase__ )[::-1].copy() __magic_name__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=UpperCamelCase__ , schedule=jnp.array(UpperCamelCase__ , dtype=jnp.floataa ) , timesteps=UpperCamelCase__ , ) def _lowercase ( self : int , UpperCamelCase__ : KarrasVeSchedulerState , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : random.KeyArray , ) -> Tuple[jnp.ndarray, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __magic_name__ = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: __magic_name__ = 0 # sample eps ~ N(0, S_noise^2 * I) __magic_name__ = random.split(UpperCamelCase__ , num=1 ) __magic_name__ = self.config.s_noise * random.normal(key=UpperCamelCase__ , shape=sample.shape ) __magic_name__ = sigma + gamma * sigma __magic_name__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _lowercase ( self : Optional[Any] , UpperCamelCase__ : KarrasVeSchedulerState , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: """simple docstring""" __magic_name__ = sample_hat + sigma_hat * model_output __magic_name__ = (sample_hat - pred_original_sample) / sigma_hat __magic_name__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCamelCase__ , derivative=UpperCamelCase__ , state=UpperCamelCase__ ) def _lowercase ( self : str , UpperCamelCase__ : KarrasVeSchedulerState , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: """simple docstring""" __magic_name__ = sample_prev + sigma_prev * model_output __magic_name__ = (sample_prev - pred_original_sample) / sigma_prev __magic_name__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCamelCase__ , derivative=UpperCamelCase__ , state=UpperCamelCase__ ) def _lowercase ( self : str , UpperCamelCase__ : KarrasVeSchedulerState , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ) -> str: """simple docstring""" raise NotImplementedError()
88
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCAmelCase_ ( __lowerCamelCase : List[Any] ): return x + 2 class a_ ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[int] = "x = 3" lowercase_ :Any = {} lowercase_ :Any = evaluate(lowercase , {} , state=lowercase ) assert result == 3 self.assertDictEqual(lowercase , {"x": 3} ) lowercase_ :Dict = "x = y" lowercase_ :Dict = {"y": 5} lowercase_ :str = evaluate(lowercase , {} , state=lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase , {"x": 5, "y": 5} ) def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :Dict = "y = add_two(x)" lowercase_ :Optional[Any] = {"x": 3} lowercase_ :int = evaluate(lowercase , {"add_two": add_two} , state=lowercase ) assert result == 5 self.assertDictEqual(lowercase , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase_ :List[Any] = evaluate(lowercase , {} , state=lowercase ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : int ): """simple docstring""" lowercase_ :Optional[int] = "x = 3" lowercase_ :Any = {} lowercase_ :Any = evaluate(lowercase , {} , state=lowercase ) assert result == 3 self.assertDictEqual(lowercase , {"x": 3} ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Optional[Any] = "test_dict = {'x': x, 'y': add_two(x)}" lowercase_ :List[str] = {"x": 3} lowercase_ :Any = evaluate(lowercase , {"add_two": add_two} , state=lowercase ) self.assertDictEqual(lowercase , {"x": 3, "y": 5} ) self.assertDictEqual(lowercase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[int] = "x = 3\ny = 5" lowercase_ :Union[str, Any] = {} lowercase_ :Optional[int] = evaluate(lowercase , {} , state=lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase , {"x": 3, "y": 5} ) def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :List[str] = "text = f'This is x: {x}.'" lowercase_ :int = {"x": 3} lowercase_ :int = evaluate(lowercase , {} , state=lowercase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowercase , {"x": 3, "text": "This is x: 3."} ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :List[Any] = "if x <= 3:\n y = 2\nelse:\n y = 5" lowercase_ :List[str] = {"x": 3} lowercase_ :Union[str, Any] = evaluate(lowercase , {} , state=lowercase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowercase , {"x": 3, "y": 2} ) lowercase_ :List[str] = {"x": 8} lowercase_ :Tuple = evaluate(lowercase , {} , state=lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase , {"x": 8, "y": 5} ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Any = "test_list = [x, add_two(x)]" lowercase_ :Optional[int] = {"x": 3} lowercase_ :List[str] = evaluate(lowercase , {"add_two": add_two} , state=lowercase ) self.assertListEqual(lowercase , [3, 5] ) self.assertDictEqual(lowercase , {"x": 3, "test_list": [3, 5]} ) def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :str = "y = x" lowercase_ :Any = {"x": 3} lowercase_ :Tuple = evaluate(lowercase , {} , state=lowercase ) assert result == 3 self.assertDictEqual(lowercase , {"x": 3, "y": 3} ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :List[Any] = "test_list = [x, add_two(x)]\ntest_list[1]" lowercase_ :Dict = {"x": 3} lowercase_ :Any = evaluate(lowercase , {"add_two": add_two} , state=lowercase ) assert result == 5 self.assertDictEqual(lowercase , {"x": 3, "test_list": [3, 5]} ) lowercase_ :Union[str, Any] = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" lowercase_ :List[Any] = {"x": 3} lowercase_ :List[Any] = evaluate(lowercase , {"add_two": add_two} , state=lowercase ) assert result == 5 self.assertDictEqual(lowercase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Dict = "x = 0\nfor i in range(3):\n x = i" lowercase_ :Any = {} lowercase_ :Tuple = evaluate(lowercase , {"range": range} , state=lowercase ) assert result == 2 self.assertDictEqual(lowercase , {"x": 2, "i": 2} )
223
0
'''simple docstring''' from __future__ import annotations def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' snake_case_ = [] create_all_state(1, __lowerCAmelCase, __lowerCAmelCase, [], __lowerCAmelCase ) return result def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, ) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(__lowerCAmelCase, total_number - level + 2 ): current_list.append(__lowerCAmelCase ) create_all_state(i + 1, __lowerCAmelCase, level - 1, __lowerCAmelCase, __lowerCAmelCase ) current_list.pop() def __magic_name__ ( __UpperCAmelCase ) -> None: '''simple docstring''' for i in total_list: print(*__lowerCAmelCase ) if __name__ == "__main__": a : Optional[int] = 4 a : Optional[Any] = 2 a : Union[str, Any] = generate_all_combinations(n, k) print_all_state(total_list)
353
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a : Union[str, Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. a : Any = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) a : int = spec.loader.load_module() a : Dict = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a : str = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') a : str = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def __magic_name__ ( ) -> Any: '''simple docstring''' snake_case_ = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case_ = False # source code of `config_class` snake_case_ = inspect.getsource(__UpperCAmelCase ) snake_case_ = _re_checkpoint.findall(__UpperCAmelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case_ ,snake_case_ = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case_ = F"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: snake_case_ = True break snake_case_ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: snake_case_ = '''\n'''.join(sorted(__UpperCAmelCase ) ) raise ValueError(F"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
72
0
def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
95
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "instructblip_vision_model" def __init__( self , A_=1408 , A_=6144 , A_=39 , A_=16 , A_=224 , A_=14 , A_="gelu" , A_=1E-6 , A_=0.0 , A_=1E-10 , A_=True , **A_ , ) -> Tuple: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =qkv_bias @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "instructblip_qformer" def __init__( self , A_=30522 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0.02 , A_=1E-12 , A_=0 , A_="absolute" , A_=2 , A_=1408 , **A_ , ) -> Optional[Any]: super().__init__(pad_token_id=A_ , **A_ ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =position_embedding_type __UpperCamelCase =cross_attention_frequency __UpperCamelCase =encoder_hidden_size @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __UpperCamelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "instructblip" UpperCAmelCase__ : Optional[Any] = True def __init__( self , A_=None , A_=None , A_=None , A_=32 , **A_ ) -> List[str]: super().__init__(**A_ ) if vision_config is None: __UpperCamelCase ={} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __UpperCamelCase ={} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __UpperCamelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __UpperCamelCase =InstructBlipVisionConfig(**A_ ) __UpperCamelCase =InstructBlipQFormerConfig(**A_ ) __UpperCamelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' __UpperCamelCase =CONFIG_MAPPING[text_model_type](**A_ ) __UpperCamelCase =self.text_config.tie_word_embeddings __UpperCamelCase =self.text_config.is_encoder_decoder __UpperCamelCase =num_query_tokens __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __UpperCamelCase =1.0 __UpperCamelCase =0.02 @classmethod def _a ( cls , A_ , A_ , A_ , **A_ , ) -> Optional[Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A_ , ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.qformer_config.to_dict() __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
62
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class lowerCamelCase (UpperCAmelCase__ ): '''simple docstring''' _snake_case : Tuple = VOCAB_FILES_NAMES _snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Dict = PRETRAINED_VOCAB_FILES_MAP _snake_case : Tuple = ['input_ids', 'attention_mask'] _snake_case : str = MBartTokenizer _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase , ) -> Any: UpperCAmelCase_ : Union[str, Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ : int = vocab_file UpperCAmelCase_ : Optional[int] = False if not self.vocab_file else True UpperCAmelCase_ : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) UpperCAmelCase_ : List[Any] = { lang_code: self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase_ : int = src_lang if src_lang is not None else """en_XX""" UpperCAmelCase_ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase_ : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ) -> str: return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : str = [self.sep_token_id] UpperCAmelCase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCAmelCase_ : List[str] = src_lang UpperCAmelCase_ : Union[str, Any] = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = tgt_lang_id return inputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = "en_XX" , _UpperCamelCase = None , _UpperCamelCase = "ro_RO" , **_UpperCamelCase , ) -> BatchEncoding: UpperCAmelCase_ : int = src_lang UpperCAmelCase_ : Dict = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ) -> str: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Any = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase_ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Tuple = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = [] UpperCAmelCase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase_ : str = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase_ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase_ : int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return UpperCAmelCase_ : Any = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
360
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[str, Any] = '''umt5''' _snake_case : Union[str, Any] = ['''past_key_values'''] def __init__( self , _UpperCamelCase=2_5_0_1_1_2 , _UpperCamelCase=5_1_2 , _UpperCamelCase=6_4 , _UpperCamelCase=1_0_2_4 , _UpperCamelCase=8 , _UpperCamelCase=None , _UpperCamelCase=6 , _UpperCamelCase=3_2 , _UpperCamelCase=1_2_8 , _UpperCamelCase=0.1 , _UpperCamelCase=1E-6 , _UpperCamelCase=1.0 , _UpperCamelCase="gated-gelu" , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase="T5Tokenizer" , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase=1 , _UpperCamelCase=0 , **_UpperCamelCase , ) -> List[Any]: super().__init__( is_encoder_decoder=_UpperCamelCase , tokenizer_class=_UpperCamelCase , tie_word_embeddings=_UpperCamelCase , pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : List[str] = d_model UpperCAmelCase_ : Any = d_kv UpperCAmelCase_ : Optional[int] = d_ff UpperCAmelCase_ : List[Any] = num_layers UpperCAmelCase_ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Optional[int] = relative_attention_num_buckets UpperCAmelCase_ : Dict = relative_attention_max_distance UpperCAmelCase_ : Tuple = dropout_rate UpperCAmelCase_ : Union[str, Any] = layer_norm_epsilon UpperCAmelCase_ : Optional[int] = initializer_factor UpperCAmelCase_ : List[str] = feed_forward_proj UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : List[Any] = self.feed_forward_proj.split('-' ) UpperCAmelCase_ : List[Any] = act_info[-1] UpperCAmelCase_ : Union[str, Any] = act_info[0] == 'gated' if len(_UpperCamelCase ) > 1 and act_info[0] != "gated" or len(_UpperCamelCase ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": UpperCAmelCase_ : Optional[int] = 'gelu_new' @property def __UpperCAmelCase ( self ) -> int: return self.d_model @property def __UpperCAmelCase ( self ) -> Any: return self.num_heads @property def __UpperCAmelCase ( self ) -> List[Any]: return self.num_layers class lowerCamelCase (_snake_case ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase_ : str = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: UpperCAmelCase_ : Optional[int] = 'past_encoder_sequence + sequence' UpperCAmelCase_ : str = {0: 'batch'} UpperCAmelCase_ : Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCAmelCase_ : Optional[int] = {0: 'batch', 1: 'decoder_sequence'} UpperCAmelCase_ : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCamelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __UpperCAmelCase ( self ) -> int: return 1_3 @property def __UpperCAmelCase ( self ) -> float: return 5E-4
145
0
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCAmelCase_ ( snake_case_ : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = tokenizer(example["content"] , truncation=_a )["""input_ids"""] UpperCAmelCase_ = len(example["content"] ) / len(output["input_ids"] ) return output SCREAMING_SNAKE_CASE_: Any =HfArgumentParser(PretokenizationArguments) SCREAMING_SNAKE_CASE_: Dict =parser.parse_args() if args.num_workers is None: SCREAMING_SNAKE_CASE_: Union[str, Any] =multiprocessing.cpu_count() SCREAMING_SNAKE_CASE_: int =AutoTokenizer.from_pretrained(args.tokenizer_dir) SCREAMING_SNAKE_CASE_: Any =time.time() SCREAMING_SNAKE_CASE_: str =load_dataset(args.dataset_name, split='train') print(f"Dataset loaded in {time.time()-t_start:.2f}s") SCREAMING_SNAKE_CASE_: Union[str, Any] =time.time() SCREAMING_SNAKE_CASE_: List[Any] =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(f"Dataset tokenized in {time.time()-t_start:.2f}s") SCREAMING_SNAKE_CASE_: int =time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"Data pushed to the hub in {time.time()-t_start:.2f}s")
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: Tuple ,lowerCamelCase_: List[str] ,lowerCamelCase_: int=13 ,lowerCamelCase_: int=32 ,lowerCamelCase_: Optional[int]=2 ,lowerCamelCase_: Any=3 ,lowerCamelCase_: str=16 ,lowerCamelCase_: Optional[Any]=[1, 2, 1] ,lowerCamelCase_: Tuple=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[Any]=2.0 ,lowerCamelCase_: str=True ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[Any]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Union[str, Any]=False ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Union[str, Any]=None ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=10 ,lowerCamelCase_: Tuple=8 ,) -> List[Any]: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : List[str] = num_heads UpperCAmelCase_ : int = window_size UpperCAmelCase_ : List[str] = mlp_ratio UpperCAmelCase_ : Tuple = qkv_bias UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : int = use_absolute_embeddings UpperCAmelCase_ : Any = patch_norm UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[str] = encoder_stride def A__ ( self: Any ) -> int: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : str = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Union[str, Any]: return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ) -> str: UpperCAmelCase_ : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: List[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : Any = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = self.type_sequence_label_size UpperCAmelCase_ : int = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: str ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) A__ : Optional[Any] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) A__ : List[Any] = False A__ : Tuple = False A__ : int = False A__ : Union[str, Any] = False def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = SwinvaModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ) def A__ ( self: Optional[int] ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: Any ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def A__ ( self: Tuple ) -> List[str]: pass def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = True for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[Any] = outputs.attentions UpperCAmelCase_ : List[str] = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : str = True UpperCAmelCase_ : Optional[Any] = config.window_size**2 UpperCAmelCase_ : Optional[int] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[Any] = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) UpperCAmelCase_ : Optional[Any] = len(lowerCamelCase_ ) # Check attention is always last and order is fine UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) if hasattr(self.model_tester ,"""num_hidden_states_types""" ): UpperCAmelCase_ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase_ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def A__ ( self: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> List[Any]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[str] = outputs.hidden_states UpperCAmelCase_ : Optional[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # Swinv2 has a different seq_length UpperCAmelCase_ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = reshaped_hidden_states[0].shape UpperCAmelCase_ : Optional[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase_ : Any = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = 3 UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def A__ ( self: str ) -> Tuple: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Dict ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( lowerCamelCase_ ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Optional[int] = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) )
345
0
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _a : Optional[Any] = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(UpperCamelCase__ ) # Let's go _a : int = parser.parse_args() if not hasattr(UpperCamelCase__ , """func""" ): parser.print_help() exit(1 ) # Run _a : Dict = args.func(UpperCamelCase__ ) service.run() if __name__ == "__main__": main()
368
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : str ) -> str: # noqa: E741 while r - l > 1: UpperCAmelCase_ : Optional[Any] = (l + r) // 2 if v[m] >= key: UpperCAmelCase_ : Tuple = m else: UpperCAmelCase_ : Optional[Any] = m # noqa: E741 return r def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> int: if len(SCREAMING_SNAKE_CASE__ ) == 0: return 0 UpperCAmelCase_ : Union[str, Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Dict = v[0] for i in range(1, len(SCREAMING_SNAKE_CASE__ ) ): if v[i] < tail[0]: UpperCAmelCase_ : Any = v[i] elif v[i] > tail[length - 1]: UpperCAmelCase_ : Optional[Any] = v[i] length += 1 else: UpperCAmelCase_ : Optional[int] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
125
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __a : __a : int = BlenderbotConfig __a : Any = {} __a : str = "gelu" def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=13 , __magic_name__ : Any=7 , __magic_name__ : Optional[Any]=True , __magic_name__ : str=False , __magic_name__ : Any=99 , __magic_name__ : List[Any]=32 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : List[Any]=4 , __magic_name__ : List[str]=37 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=20 , __magic_name__ : List[str]=2 , __magic_name__ : Any=1 , __magic_name__ : Union[str, Any]=0 , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Union[str, Any] = pad_token_id UpperCAmelCase_ : Tuple = bos_token_id def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ : str = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ : str = prepare_blenderbot_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) return config, inputs_dict def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = TFBlenderbotModel(config=__magic_name__ ).get_decoder() UpperCAmelCase_ : Union[str, Any] = inputs_dict['''input_ids'''] UpperCAmelCase_ : Any = input_ids[:1, :] UpperCAmelCase_ : Tuple = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase_ : List[str] = inputs_dict['''head_mask'''] UpperCAmelCase_ : Any = 1 # first forward pass UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , use_cache=__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ )[0] UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ : Union[str, Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ : Any = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-3 ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Tuple=None, SCREAMING_SNAKE_CASE__ : Any=None, ) -> Any: if attention_mask is None: UpperCAmelCase_ : List[str] = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: UpperCAmelCase_ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Tuple = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __a : Tuple = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __a : List[str] = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __a : List[str] = True __a : Any = False __a : Optional[int] = False def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" UpperCAmelCase_ : Any = TFBlenderbotModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) @require_tokenizers @require_tf class __a (unittest.TestCase ): __a : Union[str, Any] = ["My friends are cool but they eat too many carbs."] __a : List[Any] = "facebook/blenderbot-400M-distill" @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[Any] = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase_ : List[Any] = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase_ : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__magic_name__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
125
1
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase ( lowercase ): UpperCAmelCase : int = 0 UpperCAmelCase : bool = False UpperCAmelCase : float = 3.0 class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Optional[int]) -> Union[str, Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {}) self.assertDictEqual(MockClass(a=2).to_kwargs() , {'a': 2}) self.assertDictEqual(MockClass(a=2 , b=_A).to_kwargs() , {'a': 2, 'b': True}) self.assertDictEqual(MockClass(a=2 , c=2.25).to_kwargs() , {'a': 2, 'c': 2.25}) @require_cuda def _lowercase (self : int) -> int: # If no defaults are changed, `to_kwargs` returns an empty dict. __snake_case : Union[str, Any] = GradScalerKwargs(init_scale=10_24 , growth_factor=2) AcceleratorState._reset_state() __snake_case : int = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler]) print(accelerator.use_fpaa) __snake_case : Union[str, Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0) self.assertEqual(scaler._growth_factor , 2.0) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5) self.assertEqual(scaler._growth_interval , 20_00) self.assertEqual(scaler._enabled , _A) @require_multi_gpu def _lowercase (self : Union[str, Any]) -> Any: __snake_case : List[Any] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)] execute_subprocess_async(_A , env=os.environ.copy()) if __name__ == "__main__": _a : Any= DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _a : Any= Accelerator(kwargs_handlers=[ddp_scaler]) _a : List[str]= torch.nn.Linear(100, 200) _a : int= accelerator.prepare(model) # Check the values changed in kwargs _a : int= "" _a : Tuple= model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
95
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCamelCase ( lowercase ): @require_torch def _lowercase (self : Union[str, Any]) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __snake_case : Any = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' __snake_case : Tuple = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' __snake_case : int = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache __snake_case : int = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_A) BertModel.from_pretrained(_A) BertTokenizer.from_pretrained(_A) pipeline(task='fill-mask' , model=_A) # baseline - just load from_pretrained with normal network __snake_case : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed __snake_case : Union[str, Any] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __snake_case : str = '1' __snake_case : Union[str, Any] = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def _lowercase (self : Union[str, Any]) -> Union[str, Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched __snake_case : Optional[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' __snake_case : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' __snake_case : Union[str, Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache __snake_case : str = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_A) BertModel.from_pretrained(_A) BertTokenizer.from_pretrained(_A) pipeline(task='fill-mask' , model=_A) # baseline - just load from_pretrained with normal network __snake_case : Any = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed __snake_case : int = self.get_env() __snake_case : Tuple = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def _lowercase (self : int) -> Any: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __snake_case : int = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' __snake_case : int = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' __snake_case : Optional[int] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network __snake_case : Optional[Any] = [sys.executable, '-c', '\n'.join([load, run])] # should succeed __snake_case : Optional[int] = self.get_env() __snake_case : Dict = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) # next emulate no network __snake_case : Optional[Any] = [sys.executable, '-c', '\n'.join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __snake_case : Union[str, Any] = '1' __snake_case : str = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def _lowercase (self : str) -> Dict: __snake_case : Dict = '\nfrom transformers import pipeline\n ' __snake_case : List[Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' __snake_case : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' __snake_case : str = self.get_env() __snake_case : Tuple = '1' __snake_case : Tuple = [sys.executable, '-c', '\n'.join([load, mock, run])] __snake_case : Optional[Any] = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '') , ) @require_torch def _lowercase (self : int) -> Optional[Any]: __snake_case : int = '\nfrom transformers import AutoModel\n ' __snake_case : str = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network __snake_case : str = [sys.executable, '-c', '\n'.join([load, run])] # should succeed __snake_case : str = self.get_env() __snake_case : Dict = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __snake_case : List[str] = '1' __snake_case : Optional[int] = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode())
95
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[str] = BioGptTokenizer a__ : int = False def _lowercase (self : Optional[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase_ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase_ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__a ) ) def _lowercase (self : Union[str, Any] , __a : List[Any] ): UpperCAmelCase_ = "lower newer" UpperCAmelCase_ = "lower newer" return input_text, output_text def _lowercase (self : str ): UpperCAmelCase_ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase_ = "lower" UpperCAmelCase_ = ["low", "er</w>"] UpperCAmelCase_ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokens + ["<unk>"] UpperCAmelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
1
"""simple docstring""" lowerCAmelCase__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def snake_case_ ( A_ : dict, A_ : int, A_ : int ): '''simple docstring''' _lowerCamelCase : List[str] = set() # keep track of all the paths to be checked _lowerCamelCase : str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowerCamelCase : str = queue.pop(0 ) # get the last node from the path _lowerCamelCase : List[Any] = path[-1] if node not in explored: _lowerCamelCase : Union[str, Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowerCamelCase : Union[str, Any] = list(A_ ) new_path.append(A_ ) queue.append(A_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A_ ) # in case there's no path between the 2 nodes return [] def snake_case_ ( A_ : dict, A_ : int, A_ : Dict ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowerCamelCase : Optional[int] = [start] _lowerCamelCase : int = set(A_ ) # Keep tab on distances from `start` node. _lowerCamelCase : int = {start: 0, target: -1} while queue: _lowerCamelCase : Optional[Any] = queue.pop(0 ) if node == target: _lowerCamelCase : Any = ( dist[node] if dist[target] == -1 else min(dist[target], dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A_ ) queue.append(A_ ) _lowerCamelCase : Any = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
72
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A ( a ): """simple docstring""" @slow @require_torch def _snake_case ( self ): lowerCamelCase =EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowerCamelCase =BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowerCamelCase =bertabert.config.encoder.vocab_size lowerCamelCase =tokenizer.sep_token_id lowerCamelCase =tokenizer.cls_token_id lowerCamelCase =128 lowerCamelCase =datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowerCamelCase =datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowerCamelCase =train_dataset.select(range(32 ) ) lowerCamelCase =val_dataset.select(range(16 ) ) lowerCamelCase =4 def _map_to_encoder_decoder_inputs(UpperCAmelCase_ ): # Tokenizer will automatically set [BOS] <text> [EOS] lowerCamelCase =tokenizer(batch["""article"""] , padding="""max_length""" , truncation=UpperCAmelCase_ , max_length=512 ) lowerCamelCase =tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=UpperCAmelCase_ , max_length=128 ) lowerCamelCase =inputs.input_ids lowerCamelCase =inputs.attention_mask lowerCamelCase =outputs.input_ids lowerCamelCase =outputs.input_ids.copy() lowerCamelCase =[ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowerCamelCase =outputs.attention_mask assert all(len(UpperCAmelCase_ ) == 512 for x in inputs.input_ids ) assert all(len(UpperCAmelCase_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCAmelCase_ ): lowerCamelCase =pred.label_ids lowerCamelCase =pred.predictions # all unnecessary tokens are removed lowerCamelCase =tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) lowerCamelCase =tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) lowerCamelCase =sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCAmelCase_ ) )] ) / len(UpperCAmelCase_ ) return {"accuracy": accuracy} # map train dataset lowerCamelCase =train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowerCamelCase =val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowerCamelCase =self.get_auto_remove_tmp_dir() lowerCamelCase =SeqaSeqTrainingArguments( output_dir=UpperCAmelCase_ , per_device_train_batch_size=UpperCAmelCase_ , per_device_eval_batch_size=UpperCAmelCase_ , predict_with_generate=UpperCAmelCase_ , evaluation_strategy="""steps""" , do_train=UpperCAmelCase_ , do_eval=UpperCAmelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowerCamelCase =SeqaSeqTrainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , ) # start training trainer.train()
353
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml UpperCAmelCase__ : Dict =NewType('''DataClass''', Any) UpperCAmelCase__ : int =NewType('''DataClassType''', Any) def _lowercase ( _UpperCAmelCase ) -> List[Any]: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def _lowercase ( _UpperCAmelCase ) -> Callable[[str], Any]: lowerCamelCase ={str(_UpperCAmelCase ): choice for choice in choices} return lambda _UpperCAmelCase : str_to_choice.get(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( *, _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = dataclasses.MISSING , _UpperCAmelCase = dataclasses.MISSING , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCamelCase ={} if aliases is not None: lowerCamelCase =aliases if help is not None: lowerCamelCase =help return dataclasses.field(metadata=_UpperCAmelCase , default=_UpperCAmelCase , default_factory=_UpperCAmelCase , **_UpperCAmelCase ) class __A ( a ): __A = 42 def __init__( self , UpperCAmelCase_ , **UpperCAmelCase_ ): # To make the default appear when using --help if "formatter_class" not in kwargs: lowerCamelCase =ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase_ ) if dataclasses.is_dataclass(UpperCAmelCase_ ): lowerCamelCase =[dataclass_types] lowerCamelCase =list(UpperCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase_ ) @staticmethod def _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =f"""--{field.name}""" lowerCamelCase =field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase_ ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) lowerCamelCase =kwargs.pop("""aliases""" , [] ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =[aliases] lowerCamelCase =getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase_ , """UnionType""" ) and isinstance(UpperCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase_ ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" f""" Problem encountered in field '{field.name}'.""" ) if type(UpperCAmelCase_ ) not in field.type.__args__: # filter `str` in Union lowerCamelCase =field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCamelCase =getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCamelCase =( field.type.__args__[0] if isinstance(UpperCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) lowerCamelCase =getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCamelCase ={} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase_ ) and issubclass(field.type , UpperCAmelCase_ )): if origin_type is Literal: lowerCamelCase =field.type.__args__ else: lowerCamelCase =[x.value for x in field.type] lowerCamelCase =make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: lowerCamelCase =field.default else: lowerCamelCase =True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCamelCase =copy(UpperCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. lowerCamelCase =string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCamelCase =False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCamelCase =default # This tells argparse we accept 0 or 1 value after --field_name lowerCamelCase ="""?""" # This is the value that will get picked if we do --field_name (without value) lowerCamelCase =True elif isclass(UpperCAmelCase_ ) and issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =field.type.__args__[0] lowerCamelCase ="""+""" if field.default_factory is not dataclasses.MISSING: lowerCamelCase =field.default_factory() elif field.default is dataclasses.MISSING: lowerCamelCase =True else: lowerCamelCase =field.type if field.default is not dataclasses.MISSING: lowerCamelCase =field.default elif field.default_factory is not dataclasses.MISSING: lowerCamelCase =field.default_factory() else: lowerCamelCase =True parser.add_argument(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCamelCase =False parser.add_argument(f"""--no_{field.name}""" , action="""store_false""" , dest=field.name , **UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): if hasattr(UpperCAmelCase_ , """_argument_group_name""" ): lowerCamelCase =self.add_argument_group(dtype._argument_group_name ) else: lowerCamelCase =self try: lowerCamelCase =get_type_hints(UpperCAmelCase_ ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase_ ): lowerCamelCase =""".""".join(map(UpperCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(UpperCAmelCase_ ): if not field.init: continue lowerCamelCase =type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase_ , UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_=None , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=None , UpperCAmelCase_=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCamelCase =[] if args_filename: args_files.append(Path(UpperCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCamelCase =ArgumentParser() args_file_parser.add_argument(UpperCAmelCase_ , type=UpperCAmelCase_ , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCamelCase , lowerCamelCase =args_file_parser.parse_known_args(args=UpperCAmelCase_ ) lowerCamelCase =vars(UpperCAmelCase_ ).get(args_file_flag.lstrip("""-""" ) , UpperCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase_ ) for p in cmd_args_file_paths] ) lowerCamelCase =[] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCamelCase =file_args + args if args is not None else file_args + sys.argv[1:] lowerCamelCase , lowerCamelCase =self.parse_known_args(args=UpperCAmelCase_ ) lowerCamelCase =[] for dtype in self.dataclass_types: lowerCamelCase ={f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} lowerCamelCase ={k: v for k, v in vars(UpperCAmelCase_ ).items() if k in keys} for k in keys: delattr(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = False ): lowerCamelCase =set(args.keys() ) lowerCamelCase =[] for dtype in self.dataclass_types: lowerCamelCase ={f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} lowerCamelCase ={k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCamelCase =dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase_ )}""" ) return tuple(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = False ): with open(Path(UpperCAmelCase_ ) , encoding="""utf-8""" ) as open_json_file: lowerCamelCase =json.loads(open_json_file.read() ) lowerCamelCase =self.parse_dict(UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = False ): lowerCamelCase =self.parse_dict(yaml.safe_load(Path(UpperCAmelCase_ ).read_text() ) , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
262
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : int ,SCREAMING_SNAKE_CASE__ : int = 1_2_8 ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : float = 2000.0 ,SCREAMING_SNAKE_CASE__ : int = 7_6_8 ,SCREAMING_SNAKE_CASE__ : int = 1_2 ,SCREAMING_SNAKE_CASE__ : int = 1_2 ,SCREAMING_SNAKE_CASE__ : int = 6_4 ,SCREAMING_SNAKE_CASE__ : int = 2_0_4_8 ,SCREAMING_SNAKE_CASE__ : float = 0.1 ,): super().__init__() __lowerCamelCase : Optional[Any] = nn.Sequential( nn.Linear(SCREAMING_SNAKE_CASE__ ,d_model * 4 ,bias=SCREAMING_SNAKE_CASE__) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=SCREAMING_SNAKE_CASE__) ,nn.SiLU() ,) __lowerCamelCase : Tuple = nn.Embedding(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = nn.Dropout(p=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE__): # FiLM conditional T5 decoder __lowerCamelCase : Optional[int] = DecoderLayer(d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__) self.decoders.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = TaLayerNorm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = nn.Dropout(p=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : Tuple = torch.mul(query_input.unsqueeze(-1) ,key_input.unsqueeze(-2)) return mask.unsqueeze(-3) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowerCamelCase : Dict = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype) __lowerCamelCase : List[Any] = self.conditioning_emb(SCREAMING_SNAKE_CASE__).unsqueeze(1) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowerCamelCase : Any = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowerCamelCase : Tuple = torch.broadcast_to( torch.arange(SCREAMING_SNAKE_CASE__ ,device=decoder_input_tokens.device) ,(batch, seq_length) ,) __lowerCamelCase : Tuple = self.position_encoding(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.continuous_inputs_projection(SCREAMING_SNAKE_CASE__) inputs += position_encodings __lowerCamelCase : str = self.dropout(SCREAMING_SNAKE_CASE__) # decoder: No padding present. __lowerCamelCase : List[str] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype) # Translate encoding masks to encoder-decoder masks. __lowerCamelCase : str = [(x, self.encoder_decoder_mask(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowerCamelCase : Union[str, Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1) __lowerCamelCase : Optional[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1) for lyr in self.decoders: __lowerCamelCase : Tuple = lyr( SCREAMING_SNAKE_CASE__ ,conditioning_emb=SCREAMING_SNAKE_CASE__ ,encoder_hidden_states=SCREAMING_SNAKE_CASE__ ,encoder_attention_mask=SCREAMING_SNAKE_CASE__ ,)[0] __lowerCamelCase : List[str] = self.decoder_norm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.post_dropout(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = self.spec_out(SCREAMING_SNAKE_CASE__) return spec_out class A_ ( nn.Module ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Tuple=1E-6): super().__init__() __lowerCamelCase : Any = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__)) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__ ,layer_norm_epsilon=SCREAMING_SNAKE_CASE__ ,)) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__ ,layer_norm_epsilon=SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : str=None ,): __lowerCamelCase : Any = self.layer[0]( SCREAMING_SNAKE_CASE__ ,conditioning_emb=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,) if encoder_hidden_states is not None: __lowerCamelCase : Tuple = torch.where(encoder_attention_mask > 0 ,0 ,-1E10).to( encoder_hidden_states.dtype) __lowerCamelCase : Any = self.layer[1]( SCREAMING_SNAKE_CASE__ ,key_value_states=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,) # Apply Film Conditional Feed Forward layer __lowerCamelCase : Tuple = self.layer[-1](SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) return (hidden_states,) class A_ ( nn.Module ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): super().__init__() __lowerCamelCase : int = TaLayerNorm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = TaFiLMLayer(in_features=d_model * 4 ,out_features=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = Attention(query_dim=SCREAMING_SNAKE_CASE__ ,heads=SCREAMING_SNAKE_CASE__ ,dim_head=SCREAMING_SNAKE_CASE__ ,out_bias=SCREAMING_SNAKE_CASE__ ,scale_qk=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = nn.Dropout(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,SCREAMING_SNAKE_CASE__ : List[str]=None ,): # pre_self_attention_layer_norm __lowerCamelCase : Dict = self.layer_norm(SCREAMING_SNAKE_CASE__) if conditioning_emb is not None: __lowerCamelCase : int = self.FiLMLayer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) # Self-attention block __lowerCamelCase : int = self.attention(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__) return hidden_states class A_ ( nn.Module ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple): super().__init__() __lowerCamelCase : str = Attention(query_dim=SCREAMING_SNAKE_CASE__ ,heads=SCREAMING_SNAKE_CASE__ ,dim_head=SCREAMING_SNAKE_CASE__ ,out_bias=SCREAMING_SNAKE_CASE__ ,scale_qk=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = TaLayerNorm(SCREAMING_SNAKE_CASE__ ,eps=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = nn.Dropout(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,): __lowerCamelCase : str = self.layer_norm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = self.attention( SCREAMING_SNAKE_CASE__ ,encoder_hidden_states=SCREAMING_SNAKE_CASE__ ,attention_mask=attention_mask.squeeze(1) ,) __lowerCamelCase : Optional[int] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__) return layer_output class A_ ( nn.Module ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int]): super().__init__() __lowerCamelCase : Union[str, Any] = TaDenseGatedActDense(d_model=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = TaLayerNorm(SCREAMING_SNAKE_CASE__ ,eps=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = nn.Dropout(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Dict=None): __lowerCamelCase : List[Any] = self.layer_norm(SCREAMING_SNAKE_CASE__) if conditioning_emb is not None: __lowerCamelCase : int = self.film(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = self.DenseReluDense(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__) return hidden_states class A_ ( nn.Module ): def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int]): super().__init__() __lowerCamelCase : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = nn.Dropout(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = NewGELUActivation() def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : List[Any] = self.act(self.wi_a(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Optional[int] = self.wi_a(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = hidden_gelu * hidden_linear __lowerCamelCase : Tuple = self.dropout(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = self.wo(SCREAMING_SNAKE_CASE__) return hidden_states class A_ ( nn.Module ): def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1E-6): super().__init__() __lowerCamelCase : List[Any] = nn.Parameter(torch.ones(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : List[Any] = eps def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : int): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __lowerCamelCase : List[str] = hidden_states.to(torch.floataa).pow(2).mean(-1 ,keepdim=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowerCamelCase : int = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class A_ ( nn.Module ): def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : torch.Tensor): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(SCREAMING_SNAKE_CASE__ ,3.0)))) class A_ ( nn.Module ): def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple): super().__init__() __lowerCamelCase : List[str] = nn.Linear(SCREAMING_SNAKE_CASE__ ,out_features * 2 ,bias=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : List[Any] = self.scale_bias(SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : str = torch.chunk(SCREAMING_SNAKE_CASE__ ,2 ,-1) __lowerCamelCase : Tuple = x * (1 + scale) + shift return x
73
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : List[Any] = self.delimiter if self.column_names is not None: _UpperCAmelCase : Union[str, Any] = self.column_names @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : Tuple = CsvConfig def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : Tuple = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : Union[str, Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Tuple = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Dict = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[Any] = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Tuple = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
145
0
import baseaa def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return baseaa.aaaencode(string.encode("""utf-8""" ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : bytes ): '''simple docstring''' return baseaa.aaadecode(_UpperCamelCase ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
368
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : str = [] __snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __snake_case : List[Any] = result + left + right return input_list def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) <= 1: return input_list __snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) # iteration for two-way merging __snake_case : Tuple = 2 while p <= len(__SCREAMING_SNAKE_CASE ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = i + p - 1 __snake_case : Optional[Any] = (low + high + 1) // 2 __snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # final merge of last two parts if p * 2 >= len(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": lowercase_ = [] else: lowercase_ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
20
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['GLPNFeatureExtractor'] UpperCAmelCase__ = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
289
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = LevitImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = LevitImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
324
0
import requests from bsa import BeautifulSoup def lowerCAmelCase__ ( a__ = "https://www.worldometers.info/coronavirus" ) ->dict: '''simple docstring''' _UpperCamelCase = BeautifulSoup(requests.get(a__ ).text , "html.parser" ) _UpperCamelCase = soup.findAll("h1" ) _UpperCamelCase = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(a__ , a__ )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(F"{key}\n{value}\n")
63
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = 30 _UpperCamelCase = self.seq_length + self.mem_len _UpperCamelCase = 15 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = [10, 50, 80] _UpperCamelCase = 32 _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = 8 _UpperCamelCase = 128 _UpperCamelCase = 2 _UpperCamelCase = 2 _UpperCamelCase = None _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 3 _UpperCamelCase = self.vocab_size - 1 _UpperCamelCase = 0.01 def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" random.seed(self.seed) tf.random.set_seed(self.seed) def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase , _UpperCamelCase = model([input_ids_a, mems_a]).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict) -> str: """simple docstring""" _UpperCamelCase = TFTransfoXLForSequenceClassification(lowercase_) _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __A = () if is_tf_available() else () __A = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str]) -> Any: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCamelCase = TFTransfoXLModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , d_embed=37) def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_) def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: _UpperCamelCase = model.get_output_embeddings() assert isinstance(lowercase_ , tf.keras.layers.Layer) _UpperCamelCase = model.get_bias() assert name is None else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" pass @slow def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFTransfoXLModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.") def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" pass @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved.") @slow def __UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103") # fmt: off _UpperCamelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _UpperCamelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _UpperCamelCase = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_)
63
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger UpperCAmelCase : Optional[int] = get_logger(__name__) class __lowerCAmelCase ( enum.Enum): _lowercase : Dict = """all_checks""" _lowercase : int = """basic_checks""" _lowercase : Union[str, Any] = """no_checks""" class __lowerCAmelCase ( UpperCamelCase__): pass class __lowerCAmelCase ( UpperCamelCase__): pass class __lowerCAmelCase ( UpperCamelCase__): pass class __lowerCAmelCase ( UpperCamelCase__): pass def _A ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) a__ : List[str] =[url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] a__ : Union[str, Any] =" for " + verification_name if verification_name is not None else "" if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( f'''Checksums didn\'t match{for_verification_name}:\n''' f'''{bad_urls}\n''' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class __lowerCAmelCase ( UpperCamelCase__): pass class __lowerCAmelCase ( UpperCamelCase__): pass class __lowerCAmelCase ( UpperCamelCase__): pass class __lowerCAmelCase ( UpperCamelCase__): pass def _A ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ): """simple docstring""" if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) a__ : Optional[Any] =[ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info("All the splits matched successfully." ) def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" if record_checksum: a__ : Tuple =shaaaa() with open(SCREAMING_SNAKE_CASE , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b"" ): m.update(SCREAMING_SNAKE_CASE ) a__ : str =m.hexdigest() else: a__ : Union[str, Any] =None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def _A ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
95
def _A ( SCREAMING_SNAKE_CASE : int = 50 ): """simple docstring""" a__ : Any =[1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
95
1
'''simple docstring''' from random import randint, random def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : int = 5 , ): """simple docstring""" UpperCAmelCase_ : str = [[-1] * number_of_cells] # Create a highway without any car UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[str] = max(lowerCamelCase_ , 0 ) while i < number_of_cells: UpperCAmelCase_ : List[str] = ( randint(0 , lowerCamelCase_ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _lowerCamelCase ( lowerCamelCase_ : list , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Union[str, Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCamelCase_ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCamelCase_ , -1 ) def _lowerCamelCase ( lowerCamelCase_ : list , lowerCamelCase_ : float , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : List[Any] = len(lowerCamelCase_ ) # Beforce calculations, the highway is empty UpperCAmelCase_ : List[str] = [-1] * number_of_cells for car_index in range(lowerCamelCase_ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed UpperCAmelCase_ : Any = min(highway_now[car_index] + 1 , lowerCamelCase_ ) # Number of empty cell before the next car UpperCAmelCase_ : Dict = get_distance(lowerCamelCase_ , lowerCamelCase_ ) - 1 # We can't have the car causing an accident UpperCAmelCase_ : Any = min(next_highway[car_index] , lowerCamelCase_ ) if random() < probability: # Randomly, a driver will slow down UpperCAmelCase_ : Any = max(next_highway[car_index] - 1 , 0 ) return next_highway def _lowerCamelCase ( lowerCamelCase_ : list , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = len(highway[0] ) for i in range(lowerCamelCase_ ): UpperCAmelCase_ : int = update(highway[i] , lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : Tuple = [-1] * number_of_cells for car_index in range(lowerCamelCase_ ): UpperCAmelCase_ : int = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) UpperCAmelCase_ : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position UpperCAmelCase_ : Optional[int] = speed highway.append(lowerCamelCase_ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
274
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" return int(input_a == input_a == 0 ) def _lowerCamelCase ( ): """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
274
1
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : List[str] = '''true''' def __SCREAMING_SNAKE_CASE ( A_ , A_=82 , A_=16 ): set_seed(42 ) lowerCAmelCase__ : Union[str, Any] = RegressionModel() lowerCAmelCase__ : Optional[int] = deepcopy(A_ ) lowerCAmelCase__ : Any = RegressionDataset(length=A_ ) lowerCAmelCase__ : List[str] = DataLoader(A_ , batch_size=A_ ) model.to(accelerator.device ) lowerCAmelCase__ ,lowerCAmelCase__ : Dict = accelerator.prepare(A_ , A_ ) return model, ddp_model, dataloader def __SCREAMING_SNAKE_CASE ( A_ , A_=False ): lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) lowerCAmelCase__ : List[str] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(A_ ): lowerCAmelCase__ : Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A_ , max_length=A_ ) return outputs with accelerator.main_process_first(): lowerCAmelCase__ : Dict = dataset.map( A_ , batched=A_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) lowerCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A_ ): if use_longest: return tokenizer.pad(A_ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(A_ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return DataLoader(A_ , shuffle=A_ , collate_fn=A_ , batch_size=16 ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Union[str, Any] = Accelerator(dispatch_batches=A_ , split_batches=A_ ) lowerCAmelCase__ : str = get_dataloader(A_ , not dispatch_batches ) lowerCAmelCase__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = accelerator.prepare(A_ , A_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Union[str, Any] = [] for batch in dataloader: lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = batch.values() with torch.no_grad(): lowerCAmelCase__ : List[str] = model(A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCAmelCase__ ,lowerCAmelCase__ : int = [], [] for logit, targ in logits_and_targets: logits.append(A_ ) targs.append(A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = torch.cat(A_ ), torch.cat(A_ ) return logits, targs def __SCREAMING_SNAKE_CASE ( A_ , A_=82 , A_=False , A_=False , A_=16 ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = get_basic_setup(A_ , A_ , A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = generate_predictions(A_ , A_ , A_ ) assert ( len(A_ ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A_ )}' def __SCREAMING_SNAKE_CASE ( A_ = False , A_ = False ): lowerCAmelCase__ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = get_mrpc_setup(A_ , A_ ) # First do baseline lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = setup['''no'''] model.to(A_ ) model.eval() for batch in dataloader: batch.to(A_ ) with torch.inference_mode(): lowerCAmelCase__ : Optional[int] = model(**A_ ) lowerCAmelCase__ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=A_ , references=batch['''labels'''] ) lowerCAmelCase__ : Dict = metric.compute() # Then do distributed lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCAmelCase__ : Union[str, Any] = model(**A_ ) lowerCAmelCase__ : int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ : int = batch['''labels'''] lowerCAmelCase__ ,lowerCAmelCase__ : int = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=A_ , references=A_ ) lowerCAmelCase__ : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = Accelerator(split_batches=A_ , dispatch_batches=A_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(A_ , A_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCAmelCase__ : Optional[Any] = Accelerator(split_batches=A_ , dispatch_batches=A_ ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(A_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) lowerCAmelCase__ : List[str] = Accelerator() test_torch_metrics(A_ , 5_12 ) accelerator.state._reset_state() def __SCREAMING_SNAKE_CASE ( A_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
106
from __future__ import annotations import math class snake_case__: '''simple docstring''' def __init__( self , __lowercase ) -> None: lowerCAmelCase_ : str = size # approximate the overall size of segment tree with given value lowerCAmelCase_ : Dict = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowerCAmelCase_ : Dict = [0 for i in range(0 , 4 * size )] lowerCAmelCase_ : Optional[int] = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowercase_ ( self , __lowercase ) -> int: return idx * 2 def lowercase_ ( self , __lowercase ) -> int: return idx * 2 + 1 def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> None: if left_element == right_element: lowerCAmelCase_ : Tuple = a[left_element - 1] else: lowerCAmelCase_ : int = (left_element + right_element) // 2 self.build(self.left(__lowercase ) , __lowercase , __lowercase , __lowercase ) self.build(self.right(__lowercase ) , mid + 1 , __lowercase , __lowercase ) lowerCAmelCase_ : Any = max( self.segment_tree[self.left(__lowercase )] , self.segment_tree[self.right(__lowercase )] ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> bool: if self.flag[idx] is True: lowerCAmelCase_ : Union[str, Any] = self.lazy[idx] lowerCAmelCase_ : Union[str, Any] = False if left_element != right_element: lowerCAmelCase_ : Union[str, Any] = self.lazy[idx] lowerCAmelCase_ : Any = self.lazy[idx] lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Optional[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowerCAmelCase_ : Dict = val if left_element != right_element: lowerCAmelCase_ : Union[str, Any] = val lowerCAmelCase_ : List[Any] = val lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : List[str] = True return True lowerCAmelCase_ : Optional[Any] = (left_element + right_element) // 2 self.update(self.left(__lowercase ) , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) self.update(self.right(__lowercase ) , mid + 1 , __lowercase , __lowercase , __lowercase , __lowercase ) lowerCAmelCase_ : int = max( self.segment_tree[self.left(__lowercase )] , self.segment_tree[self.right(__lowercase )] ) return True def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> int | float: if self.flag[idx] is True: lowerCAmelCase_ : Union[str, Any] = self.lazy[idx] lowerCAmelCase_ : Optional[Any] = False if left_element != right_element: lowerCAmelCase_ : List[Any] = self.lazy[idx] lowerCAmelCase_ : Dict = self.lazy[idx] lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : Optional[int] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowerCAmelCase_ : List[Any] = (left_element + right_element) // 2 lowerCAmelCase_ : Tuple = self.query(self.left(__lowercase ) , __lowercase , __lowercase , __lowercase , __lowercase ) lowerCAmelCase_ : List[Any] = self.query(self.right(__lowercase ) , mid + 1 , __lowercase , __lowercase , __lowercase ) return max(__lowercase , __lowercase ) def __str__( self ) -> str: return str([self.query(1 , 1 , self.size , __lowercase , __lowercase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _UpperCAmelCase : str =[1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _UpperCAmelCase : List[str] =15 _UpperCAmelCase : Any =SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
262
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): UpperCAmelCase : Union[str, Any] = hf_hub_url(repo_id=A_ , path=A_ , revision=A_ ) assert url == F"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(A_ )}"
358
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger A: List[Any] = get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum ): __lowerCAmelCase : Dict = 'all_checks' __lowerCAmelCase : int = 'basic_checks' __lowerCAmelCase : Optional[Any] = 'no_checks' class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass def _snake_case ( UpperCamelCase : Optional[dict] , UpperCamelCase : dict , UpperCamelCase : int=None ): if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) UpperCAmelCase : Tuple = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCAmelCase : Union[str, Any] = """ for """ + verification_name if verification_name is not None else """""" if len(UpperCamelCase ) > 0: raise NonMatchingChecksumError( F"Checksums didn't match{for_verification_name}:\n" F"{bad_urls}\n" """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): pass def _snake_case ( UpperCamelCase : Optional[dict] , UpperCamelCase : dict ): if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) if len(set(UpperCamelCase ) - set(UpperCamelCase ) ) > 0: raise UnexpectedSplits(str(set(UpperCamelCase ) - set(UpperCamelCase ) ) ) UpperCAmelCase : List[str] = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(UpperCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(UpperCamelCase ) ) logger.info("""All the splits matched successfully.""" ) def _snake_case ( UpperCamelCase : str , UpperCamelCase : bool = True ): if record_checksum: UpperCAmelCase : Dict = shaaaa() with open(UpperCamelCase , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"""""" ): m.update(UpperCamelCase ) UpperCAmelCase : Any = m.hexdigest() else: UpperCAmelCase : Dict = None return {"num_bytes": os.path.getsize(UpperCamelCase ), "checksum": checksum} def _snake_case ( UpperCamelCase : Union[str, Any] ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
76
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['LayoutLMv2FeatureExtractor'] _a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if "cls_token" in name: lowercase : List[Any] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase : Any = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase : int = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase : List[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase : List[str] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase : Dict = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase : Tuple = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase : int = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowercase : int = key.split(""".""" ) lowercase : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowercase : Tuple = config.decoder_hidden_size lowercase : int = """decoder.decoder_layers.""" if "weight" in key: lowercase : List[Any] = val[:dim, :] lowercase : Tuple = val[dim : dim * 2, :] lowercase : List[Any] = val[-dim:, :] elif "bias" in key: lowercase : str = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Tuple = config.hidden_size lowercase : Union[str, Any] = """vit.encoder.layer.""" if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Dict = val[-dim:, :] elif "bias" in key: lowercase : Any = val[:dim] lowercase : str = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Union[str, Any] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = ViTMAEConfig() if "large" in checkpoint_url: lowercase : Dict = 1_024 lowercase : str = 4_096 lowercase : Optional[Any] = 24 lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: lowercase : int = 14 lowercase : List[Any] = 1_280 lowercase : int = 5_120 lowercase : List[Any] = 32 lowercase : Any = 16 lowercase : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Tuple = ViTMAEImageProcessor(size=config.image_size ) lowercase : Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowercase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) lowercase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowercase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) lowercase : str = outputs.logits if "large" in checkpoint_url: lowercase : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowercase : Tuple = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowercase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : List[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Dict = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys snake_case__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
1
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
63
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='deta' __a ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[str] , __a : List[str]=None , __a : Dict=9_00 , __a : str=20_48 , __a : Tuple=6 , __a : List[str]=20_48 , __a : str=8 , __a : Union[str, Any]=6 , __a : int=10_24 , __a : List[Any]=8 , __a : Dict=0.0 , __a : Tuple=True , __a : Optional[Any]="relu" , __a : Tuple=2_56 , __a : Optional[Any]=0.1 , __a : int=0.0 , __a : List[Any]=0.0 , __a : Optional[int]=0.02 , __a : str=1.0 , __a : Dict=True , __a : Dict=False , __a : Optional[int]="sine" , __a : Any=5 , __a : List[str]=4 , __a : Optional[int]=4 , __a : List[str]=True , __a : str=3_00 , __a : int=True , __a : int=True , __a : Tuple=1 , __a : Optional[int]=5 , __a : Tuple=2 , __a : Dict=1 , __a : Optional[int]=1 , __a : Any=5 , __a : Optional[int]=2 , __a : Dict=0.1 , __a : str=0.25 , **__a : Tuple , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _a = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(__a , __a ): _a = backbone_config.pop("model_type" ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(__a ) _a = backbone_config _a = num_queries _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = auxiliary_loss _a = position_embedding_type # deformable attributes _a = num_feature_levels _a = encoder_n_points _a = decoder_n_points _a = two_stage _a = two_stage_num_proposals _a = with_box_refine _a = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient _a = focal_alpha super().__init__(is_encoder_decoder=__a , **__a ) @property def UpperCamelCase__ ( self : Optional[Any] ): return self.encoder_attention_heads @property def UpperCamelCase__ ( self : Dict ): return self.d_model def UpperCamelCase__ ( self : List[str] ): _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
63
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def a_ ( __lowercase : int ) -> str: _snake_case = SwinConfig(image_size=192 ) if "base" in model_name: _snake_case = 6 _snake_case = 128 _snake_case = (2, 2, 18, 2) _snake_case = (4, 8, 16, 32) elif "large" in model_name: _snake_case = 12 _snake_case = 192 _snake_case = (2, 2, 18, 2) _snake_case = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) _snake_case = window_size _snake_case = embed_dim _snake_case = depths _snake_case = num_heads return config def a_ ( __lowercase : List[Any] ) -> Tuple: if "encoder.mask_token" in name: _snake_case = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: _snake_case = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: _snake_case = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": _snake_case = 'layernorm.weight' if name == "encoder.norm.bias": _snake_case = 'layernorm.bias' if "decoder" in name: pass else: _snake_case = 'swin.' + name return name def a_ ( __lowercase : List[Any] , __lowercase : int ) -> Tuple: for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(__lowercase ) if "attn_mask" in key: pass elif "qkv" in key: _snake_case = key.split('.' ) _snake_case = int(key_split[2] ) _snake_case = int(key_split[4] ) _snake_case = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[ dim : dim * 2, : ] _snake_case = val[-dim:, :] else: _snake_case = val[ :dim ] _snake_case = val[ dim : dim * 2 ] _snake_case = val[ -dim: ] else: _snake_case = val return orig_state_dict def a_ ( __lowercase : List[str] , __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : Optional[int] ) -> Dict: _snake_case = torch.load(__lowercase , map_location='cpu' )['model'] _snake_case = get_swin_config(__lowercase ) _snake_case = SwinForMaskedImageModeling(__lowercase ) model.eval() _snake_case = convert_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = ViTImageProcessor(size={'height': 192, 'width': 192} ) _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) _snake_case = image_processor(images=__lowercase , return_tensors='pt' ) with torch.no_grad(): _snake_case = model(**__lowercase ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowercase ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
130
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCamelCase : int = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase : bool = field(default=UpperCAmelCase ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) _UpperCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) _UpperCAmelCase : bool = field( default=UpperCAmelCase ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def a_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) _snake_case = import_module('tasks' ) try: _snake_case = getattr(__lowercase , model_args.task_type ) _snake_case = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , __lowercase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _snake_case = token_classification_task.get_labels(data_args.labels ) _snake_case = dict(enumerate(__lowercase ) ) _snake_case = len(__lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowercase , idalabel=__lowercase , labelaid={label: i for i, label in enumerate(__lowercase )} , cache_dir=model_args.cache_dir , ) _snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _snake_case = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , ) # Get datasets _snake_case = ( TokenClassificationDataset( token_classification_task=__lowercase , data_dir=data_args.data_dir , tokenizer=__lowercase , labels=__lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _snake_case = ( TokenClassificationDataset( token_classification_task=__lowercase , data_dir=data_args.data_dir , tokenizer=__lowercase , labels=__lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowercase : np.ndarray , __lowercase : np.ndarray ) -> Tuple[List[int], List[int]]: _snake_case = np.argmax(__lowercase , axis=2 ) _snake_case , _snake_case = preds.shape _snake_case = [[] for _ in range(__lowercase )] _snake_case = [[] for _ in range(__lowercase )] for i in range(__lowercase ): for j in range(__lowercase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowercase : EvalPrediction ) -> Dict: _snake_case , _snake_case = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowercase , __lowercase ), "precision": precision_score(__lowercase , __lowercase ), "recall": recall_score(__lowercase , __lowercase ), "f1": fa_score(__lowercase , __lowercase ), } # Data collator _snake_case = DataCollatorWithPadding(__lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _snake_case = Trainer( model=__lowercase , args=__lowercase , train_dataset=__lowercase , eval_dataset=__lowercase , compute_metrics=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _snake_case = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case = trainer.evaluate() _snake_case = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(__lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , __lowercase , __lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(__lowercase ) # Predict if training_args.do_predict: _snake_case = TokenClassificationDataset( token_classification_task=__lowercase , data_dir=data_args.data_dir , tokenizer=__lowercase , labels=__lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _snake_case , _snake_case , _snake_case = trainer.predict(__lowercase ) _snake_case , _snake_case = align_predictions(__lowercase , __lowercase ) _snake_case = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(__lowercase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , __lowercase , __lowercase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions _snake_case = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(__lowercase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(__lowercase , __lowercase , __lowercase ) return results def a_ ( __lowercase : Optional[Any] ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
130
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig A : Any = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Optional[int] = '''albert''' def __init__( self : str , __lowerCAmelCase : Tuple=3_00_00 , __lowerCAmelCase : List[Any]=1_28 , __lowerCAmelCase : Union[str, Any]=40_96 , __lowerCAmelCase : Dict=12 , __lowerCAmelCase : Tuple=1 , __lowerCAmelCase : List[str]=64 , __lowerCAmelCase : List[Any]=1_63_84 , __lowerCAmelCase : Any=1 , __lowerCAmelCase : Any="gelu_new" , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Dict=5_12 , __lowerCAmelCase : int=2 , __lowerCAmelCase : List[str]=0.0_2 , __lowerCAmelCase : int=1e-12 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Union[str, Any]="absolute" , __lowerCAmelCase : int=0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=3 , **__lowerCAmelCase : Tuple , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) A__ = vocab_size A__ = embedding_size A__ = hidden_size A__ = num_hidden_layers A__ = num_hidden_groups A__ = num_attention_heads A__ = inner_group_num A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = classifier_dropout_prob A__ = position_embedding_type class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def a_ ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
274
from math import ceil def __lowerCamelCase ( __a :int = 1_0_0_1 ) -> int: """simple docstring""" A__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): A__ = 2 * i + 1 A__ = 2 * i A__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
274
1
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase : Any = logging.get_logger(__name__) lowercase : List[str] = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Dict = 'bart' lowercase : List[Any] = ['past_key_values'] lowercase : List[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCamelCase=5_02_65 , __UpperCamelCase=10_24 , __UpperCamelCase=12 , __UpperCamelCase=40_96 , __UpperCamelCase=16 , __UpperCamelCase=12 , __UpperCamelCase=40_96 , __UpperCamelCase=16 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase="gelu" , __UpperCamelCase=10_24 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=0.0 , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=3 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=True , __UpperCamelCase=2 , __UpperCamelCase=2 , **__UpperCamelCase , ) -> str: '''simple docstring''' __UpperCamelCase : Dict = vocab_size __UpperCamelCase : Tuple = max_position_embeddings __UpperCamelCase : Optional[Any] = d_model __UpperCamelCase : List[Any] = encoder_ffn_dim __UpperCamelCase : List[str] = encoder_layers __UpperCamelCase : Optional[Any] = encoder_attention_heads __UpperCamelCase : str = decoder_ffn_dim __UpperCamelCase : List[Any] = decoder_layers __UpperCamelCase : Union[str, Any] = decoder_attention_heads __UpperCamelCase : Tuple = dropout __UpperCamelCase : Tuple = attention_dropout __UpperCamelCase : Optional[int] = activation_dropout __UpperCamelCase : Tuple = activation_function __UpperCamelCase : Union[str, Any] = init_std __UpperCamelCase : Any = encoder_layerdrop __UpperCamelCase : List[str] = decoder_layerdrop __UpperCamelCase : str = classifier_dropout __UpperCamelCase : int = use_cache __UpperCamelCase : Optional[Any] = encoder_layers __UpperCamelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , forced_eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , __UpperCamelCase ): __UpperCamelCase : Tuple = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' "The config can simply be saved and uploaded again to be fixed." ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : Union[str, Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __UpperCamelCase : Optional[Any] = {0: "batch"} __UpperCamelCase : List[str] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __UpperCamelCase : List[Any] = {0: "batch", 1: "decoder_sequence"} __UpperCamelCase : Optional[int] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __UpperCamelCase : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __UpperCamelCase , __UpperCamelCase : List[str] = self.num_layers for i in range(__UpperCamelCase ): __UpperCamelCase : int = {0: "batch", 2: "past_sequence + sequence"} __UpperCamelCase : str = {0: "batch", 2: "past_sequence + sequence"} else: __UpperCamelCase : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : Optional[int] = super().outputs else: __UpperCamelCase : List[str] = super(__UpperCamelCase , self ).outputs if self.use_past: __UpperCamelCase , __UpperCamelCase : List[Any] = self.num_layers for i in range(__UpperCamelCase ): __UpperCamelCase : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} __UpperCamelCase : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Generate decoder inputs __UpperCamelCase : List[Any] = seq_length if not self.use_past else 1 __UpperCamelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __UpperCamelCase : List[Any] = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __UpperCamelCase : Tuple = dict(**__UpperCamelCase , **__UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCamelCase , __UpperCamelCase : Union[str, Any] = common_inputs["input_ids"].shape __UpperCamelCase : Dict = common_inputs["decoder_input_ids"].shape[1] __UpperCamelCase , __UpperCamelCase : int = self.num_attention_heads __UpperCamelCase : Tuple = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase : Optional[int] = decoder_seq_length + 3 __UpperCamelCase : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __UpperCamelCase : Optional[Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase )] , dim=1 ) __UpperCamelCase : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.num_layers __UpperCamelCase : Tuple = min(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase : int = max(__UpperCamelCase , __UpperCamelCase ) - min_num_layers __UpperCamelCase : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__UpperCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), ) ) # TODO: test this. __UpperCamelCase : Any = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__UpperCamelCase , __UpperCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCamelCase , __UpperCamelCase : List[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values __UpperCamelCase : Union[str, Any] = seqlen + 2 __UpperCamelCase , __UpperCamelCase : List[str] = self.num_layers __UpperCamelCase , __UpperCamelCase : List[str] = self.num_attention_heads __UpperCamelCase : int = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase : str = common_inputs["attention_mask"].dtype __UpperCamelCase : Any = torch.cat( [common_inputs["attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) __UpperCamelCase : Dict = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(__UpperCamelCase ) ] return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : int = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCamelCase : Optional[Any] = tokenizer.num_special_tokens_to_add(__UpperCamelCase ) __UpperCamelCase : Dict = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence __UpperCamelCase : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __UpperCamelCase : int = dict(tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase ) ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) elif self.task == "causal-lm": __UpperCamelCase : str = self._generate_dummy_inputs_for_causal_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) else: __UpperCamelCase : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : List[str] = super()._flatten_past_key_values_(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: __UpperCamelCase : Tuple = super(__UpperCamelCase , self )._flatten_past_key_values_( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
171
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Optional[Any] = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : List[str] = 'marian' lowercase : int = ['past_key_values'] lowercase : Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCamelCase=5_81_01 , __UpperCamelCase=None , __UpperCamelCase=10_24 , __UpperCamelCase=12 , __UpperCamelCase=40_96 , __UpperCamelCase=16 , __UpperCamelCase=12 , __UpperCamelCase=40_96 , __UpperCamelCase=16 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="gelu" , __UpperCamelCase=10_24 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=5_81_00 , __UpperCamelCase=False , __UpperCamelCase=5_81_00 , __UpperCamelCase=0 , __UpperCamelCase=0 , __UpperCamelCase=True , **__UpperCamelCase , ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Any = vocab_size __UpperCamelCase : str = decoder_vocab_size or vocab_size __UpperCamelCase : Any = max_position_embeddings __UpperCamelCase : List[Any] = d_model __UpperCamelCase : Optional[int] = encoder_ffn_dim __UpperCamelCase : Union[str, Any] = encoder_layers __UpperCamelCase : Tuple = encoder_attention_heads __UpperCamelCase : Dict = decoder_ffn_dim __UpperCamelCase : Optional[Any] = decoder_layers __UpperCamelCase : Optional[int] = decoder_attention_heads __UpperCamelCase : Union[str, Any] = dropout __UpperCamelCase : List[str] = attention_dropout __UpperCamelCase : int = activation_dropout __UpperCamelCase : Tuple = activation_function __UpperCamelCase : List[str] = init_std __UpperCamelCase : int = encoder_layerdrop __UpperCamelCase : List[Any] = decoder_layerdrop __UpperCamelCase : Dict = use_cache __UpperCamelCase : str = encoder_layers __UpperCamelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase : List[str] = share_encoder_decoder_embeddings super().__init__( pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , forced_eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : Union[str, Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __UpperCamelCase : str = {0: "batch"} __UpperCamelCase : Optional[int] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __UpperCamelCase : Optional[Any] = {0: "batch", 1: "decoder_sequence"} __UpperCamelCase : List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __UpperCamelCase : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __UpperCamelCase , __UpperCamelCase : Any = self.num_layers for i in range(__UpperCamelCase ): __UpperCamelCase : Any = {0: "batch", 2: "past_sequence + sequence"} __UpperCamelCase : List[Any] = {0: "batch", 2: "past_sequence + sequence"} else: __UpperCamelCase : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : List[Any] = super().outputs else: __UpperCamelCase : Optional[Any] = super(__UpperCamelCase , self ).outputs if self.use_past: __UpperCamelCase , __UpperCamelCase : int = self.num_layers for i in range(__UpperCamelCase ): __UpperCamelCase : List[str] = {0: "batch", 2: "past_sequence + sequence"} __UpperCamelCase : str = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : str = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Generate decoder inputs __UpperCamelCase : Any = seq_length if not self.use_past else 1 __UpperCamelCase : int = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __UpperCamelCase : Any = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __UpperCamelCase : List[Any] = dict(**__UpperCamelCase , **__UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCamelCase , __UpperCamelCase : Dict = common_inputs["input_ids"].shape __UpperCamelCase : Dict = common_inputs["decoder_input_ids"].shape[1] __UpperCamelCase , __UpperCamelCase : Any = self.num_attention_heads __UpperCamelCase : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase : List[str] = decoder_seq_length + 3 __UpperCamelCase : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __UpperCamelCase : List[str] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase )] , dim=1 ) __UpperCamelCase : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __UpperCamelCase , __UpperCamelCase : List[str] = self.num_layers __UpperCamelCase : Optional[int] = min(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase : Optional[int] = max(__UpperCamelCase , __UpperCamelCase ) - min_num_layers __UpperCamelCase : Dict = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__UpperCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), ) ) # TODO: test this. __UpperCamelCase : Any = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__UpperCamelCase , __UpperCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : int = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCamelCase , __UpperCamelCase : str = common_inputs["input_ids"].shape # Not using the same length for past_key_values __UpperCamelCase : int = seqlen + 2 __UpperCamelCase , __UpperCamelCase : str = self.num_layers __UpperCamelCase , __UpperCamelCase : List[str] = self.num_attention_heads __UpperCamelCase : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase : Any = common_inputs["attention_mask"].dtype __UpperCamelCase : Optional[Any] = torch.cat( [common_inputs["attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) __UpperCamelCase : int = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(__UpperCamelCase ) ] return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : Any = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCamelCase : List[Any] = tokenizer.num_special_tokens_to_add(__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence __UpperCamelCase : Tuple = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __UpperCamelCase : Tuple = dict(tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase ) ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) else: __UpperCamelCase : int = self._generate_dummy_inputs_for_causal_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : List[Any] = super()._flatten_past_key_values_(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: __UpperCamelCase : str = super(__UpperCamelCase , self )._flatten_past_key_values_( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @property def __lowerCamelCase ( self ) -> float: '''simple docstring''' return 1E-4
171
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE : Tuple = tokenizer("Hello there" , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : str = model(a , labels=a ).loss SCREAMING_SNAKE_CASE : Any = -tf.math.reduce_mean(a ).numpy() SCREAMING_SNAKE_CASE : Union[str, Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
76
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase : Any = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def __lowerCamelCase ( lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: lowerCamelCase = k.replace(lowerCamelCase__ , lowerCamelCase__ ) return k def __lowerCamelCase ( lowerCamelCase__ : dict , lowerCamelCase__ : dict ): '''simple docstring''' lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(lowerCamelCase__ ) lowerCamelCase = PegasusConfig(**lowerCamelCase__ ) lowerCamelCase = PegasusForConditionalGeneration(lowerCamelCase__ ) lowerCamelCase = torch_model.model.state_dict() lowerCamelCase = {} for k, v in tf_weights.items(): lowerCamelCase = rename_state_dict_key(lowerCamelCase__ ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: lowerCamelCase = v.T lowerCamelCase = torch.tensor(lowerCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected lowerCamelCase = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowerCamelCase = mapping["""shared.weight"""] lowerCamelCase = mapping["""shared.weight"""] lowerCamelCase = {k: torch.zeros_like(lowerCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**lowerCamelCase__ ) lowerCamelCase , lowerCamelCase = torch_model.model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) lowerCamelCase = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __lowerCamelCase ( lowerCamelCase__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' lowerCamelCase = tf.train.list_variables(lowerCamelCase__ ) lowerCamelCase = {} lowerCamelCase = ["""Adafactor""", """global_step"""] for name, shape in tqdm(lowerCamelCase__ , desc="""converting tf checkpoint to dict""" ): lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCamelCase = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = array return tf_weights def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = Path(lowerCamelCase__ ).parent.name lowerCamelCase = task_specific_params[f'summarization_{dataset}']["""max_position_embeddings"""] lowerCamelCase = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=lowerCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(lowerCamelCase__ ) # convert model lowerCamelCase = get_tf_weights_as_numpy(lowerCamelCase__ ) lowerCamelCase = task_specific_params[f'summarization_{dataset}'] if dataset == "large": lowerCamelCase = task_specific_params lowerCamelCase = convert_pegasus(lowerCamelCase__ , lowerCamelCase__ ) torch_model.save_pretrained(lowerCamelCase__ ) lowerCamelCase = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(lowerCamelCase__ , Path(lowerCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : Dict = parser.parse_args() if args.save_dir is None: UpperCAmelCase : Optional[int] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase : Dict = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
368
class __lowercase : """simple docstring""" def __init__( self ) -> None: '''simple docstring''' lowerCamelCase = {} # Mapping from char to TrieNode lowerCamelCase = False def __A ( self , A ) -> None: '''simple docstring''' for word in words: self.insert(A ) def __A ( self , A ) -> None: '''simple docstring''' lowerCamelCase = self for char in word: if char not in curr.nodes: lowerCamelCase = TrieNode() lowerCamelCase = curr.nodes[char] lowerCamelCase = True def __A ( self , A ) -> bool: '''simple docstring''' lowerCamelCase = self for char in word: if char not in curr.nodes: return False lowerCamelCase = curr.nodes[char] return curr.is_leaf def __A ( self , A ) -> None: '''simple docstring''' def _delete(A , A , A ) -> bool: if index == len(A ): # If word does not exist if not curr.is_leaf: return False lowerCamelCase = False return len(curr.nodes ) == 0 lowerCamelCase = word[index] lowerCamelCase = curr.nodes.get(A ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCamelCase = _delete(A , A , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , A , 0 ) def __lowerCamelCase ( lowerCamelCase__ : TrieNode , lowerCamelCase__ : str ): '''simple docstring''' if node.is_leaf: print(lowerCamelCase__ , end=""" """ ) for key, value in node.nodes.items(): print_words(lowerCamelCase__ , word + key ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = """banana bananas bandana band apple all beast""".split() lowerCamelCase = TrieNode() root.insert_many(lowerCamelCase__ ) # print_words(root, "") assert all(root.find(lowerCamelCase__ ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : bool ): '''simple docstring''' print(str(lowerCamelCase__ ) , """works!""" if passes else """doesn't work :(""" ) def __lowerCamelCase ( ): '''simple docstring''' assert test_trie() def __lowerCamelCase ( ): '''simple docstring''' print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
66
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A__ ): """simple docstring""" a = 42 a = 42 def __init__( self : List[str] , __lowerCamelCase : UNetaDModel , __lowerCamelCase : KarrasVeScheduler ) -> Tuple: super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : Dict , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , **__lowerCamelCase : Dict , ) -> Union[Tuple, ImagePipelineOutput]: SCREAMING_SNAKE_CASE__ = self.unet.config.sample_size SCREAMING_SNAKE_CASE__ = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE__ = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) SCREAMING_SNAKE_CASE__ = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper SCREAMING_SNAKE_CASE__ = self.scheduler.schedule[t] SCREAMING_SNAKE_CASE__ = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.scheduler.add_noise_to_input(__lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. SCREAMING_SNAKE_CASE__ = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev SCREAMING_SNAKE_CASE__ = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. SCREAMING_SNAKE_CASE__ = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample SCREAMING_SNAKE_CASE__ = self.scheduler.step_correct( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , step_output.prev_sample , step_output['''derivative'''] , ) SCREAMING_SNAKE_CASE__ = step_output.prev_sample SCREAMING_SNAKE_CASE__ = (sample / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
314
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _SCREAMING_SNAKE_CASE : Optional[int] = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ = char SCREAMING_SNAKE_CASE__ = set(_A ) return pairs class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , **__lowerCamelCase : Optional[int] , ) -> Union[str, Any]: super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = merges_file SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 3 self.add_from_file(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ = merges_handle.read().split('''\n''' )[:-1] SCREAMING_SNAKE_CASE__ = [tuple(merge.split()[:-1] ) for merge in merges] SCREAMING_SNAKE_CASE__ = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE__ = {} def lowercase_ ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowercase_ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self : Dict ) -> str: return len(self.encoder ) def lowercase_ ( self : List[Any] ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : Any , __lowerCamelCase : Any ) -> Any: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = bigram SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE__ = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''@@ '''.join(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = word[:-4] SCREAMING_SNAKE_CASE__ = word return word def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = re.findall(r'''\S+\n?''' , __lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def lowercase_ ( self : str , __lowerCamelCase : Optional[int] ) -> Optional[int]: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] ) -> Dict: return self.decoder.get(__lowerCamelCase , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase_ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.merges_file , __lowerCamelCase ) return out_vocab_file, out_merge_file def lowercase_ ( self : int , __lowerCamelCase : Tuple ) -> Optional[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): try: with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return SCREAMING_SNAKE_CASE__ = f.readlines() for lineTmp in lines: SCREAMING_SNAKE_CASE__ = lineTmp.strip() SCREAMING_SNAKE_CASE__ = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) SCREAMING_SNAKE_CASE__ = line[:idx] SCREAMING_SNAKE_CASE__ = len(self.encoder )
314
1
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A_ = logging.getLogger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Tuple=3, UpperCAmelCase__ : List[Any]=1_6, UpperCAmelCase__ : int = 1_0, UpperCAmelCase__ : int = 2 ) ->int: def get_dataset(UpperCAmelCase__ : Optional[Any] ): A__ : Dict = torch.randn(batch_size * n_batches, 1 ) return TensorDataset(UpperCAmelCase__, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1 ) ) A__ : Union[str, Any] = get_dataset(UpperCAmelCase__ ) A__ : Optional[Any] = get_dataset(UpperCAmelCase__ ) A__ : List[Any] = DataLoader(UpperCAmelCase__, shuffle=UpperCAmelCase__, batch_size=UpperCAmelCase__, num_workers=4 ) A__ : Optional[Any] = DataLoader(UpperCAmelCase__, shuffle=UpperCAmelCase__, batch_size=UpperCAmelCase__, num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=None ) ->List[str]: A__ : int = [] for epoch in range(UpperCAmelCase__ ): # Train quickly model.train() for batch in dataloader: A__ : str = batch A__ : List[str] = model(UpperCAmelCase__ ) A__ : List[Any] = torch.nn.functional.mse_loss(UpperCAmelCase__, UpperCAmelCase__ ) accelerator.backward(UpperCAmelCase__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[Any] ): '''simple docstring''' super().__init__() A__ : Optional[Any] = nn.Parameter(torch.randn(1 ) ) A__ : Dict = nn.Parameter(torch.randn(1 ) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : int ): '''simple docstring''' return x * self.a + self.b class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[Any] = DummyModel() A__ : int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Union[str, Any] = dummy_dataloaders() A__ : int = ProjectConfiguration(total_limit=1 , project_dir=snake_case , automatic_checkpoint_naming=snake_case ) # Train baseline A__ : Optional[Any] = Accelerator(project_config=snake_case ) A__ : List[str] = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _UpperCamelCase ( self : Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Union[str, Any] = DummyModel() A__ : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : str = dummy_dataloaders() # Train baseline A__ : Optional[Any] = Accelerator() A__ : List[Any] = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) # Save initial A__ : Dict = os.path.join(snake_case , """initial""" ) accelerator.save_state(snake_case ) (A__) : int = model.a.item(), model.b.item() A__ : Any = optimizer.state_dict() A__ : Optional[int] = train(3 , snake_case , snake_case , snake_case , snake_case ) (A__) : Union[str, Any] = model.a.item(), model.b.item() A__ : List[Any] = optimizer.state_dict() # Train partially set_seed(42 ) A__ : Tuple = DummyModel() A__ : Tuple = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Any = dummy_dataloaders() A__ : int = Accelerator() A__ : Tuple = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) accelerator.load_state(snake_case ) (A__) : Optional[Any] = model.a.item(), model.b.item() A__ : Union[str, Any] = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) A__ : Union[str, Any] = train(2 , snake_case , snake_case , snake_case , snake_case ) # Save everything A__ : int = os.path.join(snake_case , """checkpoint""" ) accelerator.save_state(snake_case ) # Load everything back in and make sure all states work accelerator.load_state(snake_case ) test_rands += train(1 , snake_case , snake_case , snake_case , snake_case ) (A__) : int = model.a.item(), model.b.item() A__ : int = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : int = DummyModel() A__ : Any = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : List[str] = dummy_dataloaders() A__ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=snake_case ) # Train baseline A__ : str = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ : List[str] = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) # Save initial accelerator.save_state() (A__) : Tuple = model.a.item(), model.b.item() A__ : int = optimizer.state_dict() A__ : Tuple = train(3 , snake_case , snake_case , snake_case , snake_case ) (A__) : Tuple = model.a.item(), model.b.item() A__ : Optional[int] = optimizer.state_dict() # Train partially set_seed(42 ) A__ : str = DummyModel() A__ : int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : List[Any] = dummy_dataloaders() A__ : str = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=snake_case ) A__ : List[Any] = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ : str = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) accelerator.load_state(os.path.join(snake_case , """checkpoints""" , """checkpoint_0""" ) ) (A__) : Any = model.a.item(), model.b.item() A__ : int = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) A__ : List[Any] = train(2 , snake_case , snake_case , snake_case , snake_case ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , snake_case , snake_case , snake_case , snake_case ) (A__) : Any = model.a.item(), model.b.item() A__ : Any = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Dict = torch.tensor([1, 2, 3] ) A__ : Tuple = torch.tensor([2, 3, 4] ) A__ : Union[str, Any] = DummyModel() A__ : Optional[Any] = torch.optim.Adam(net.parameters() ) A__ : str = Accelerator() with self.assertRaises(snake_case ) as ve: accelerator.register_for_checkpointing(snake_case , snake_case , snake_case , snake_case ) A__ : str = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : List[Any] = DummyModel() A__ : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Optional[Any] = torch.optim.lr_scheduler.StepLR(snake_case , step_size=1 , gamma=0.99 ) A__ : Optional[int] = dummy_dataloaders() A__ : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=snake_case ) # Train baseline A__ : Dict = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ : str = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # Save initial accelerator.save_state() A__ : int = scheduler.state_dict() train(3 , snake_case , snake_case , snake_case , snake_case , snake_case ) self.assertNotEqual(snake_case , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(snake_case , scheduler.state_dict() ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[int] = DummyModel() A__ : Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=snake_case , total_limit=2 ) # Train baseline A__ : Optional[Any] = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ : Dict = accelerator.prepare(snake_case ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[Any] = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": A_ = '''/tmp/accelerate/state_checkpointing''' A_ = DummyModel() A_ = torch.optim.Adam(params=model.parameters(), lr=1e-3) A_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A_ , A_ = dummy_dataloaders() A_ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A_ , A_ , A_ , A_ , A_ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A_ , A_ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A_ = group['''params'''][0].device break assert param_device.type == accelerator.device.type A_ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: A_ = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: A_ = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
367
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging A_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : Optional[int] , snake_case : List[str]=None , **snake_case : Any ): '''simple docstring''' warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case , ) super().__init__(args=snake_case , **snake_case )
296
0