code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Dict = '''new-model''' if is_tf_available(): class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = NewModelConfig @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'bert-base-cased' __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'bert-base-cased' __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _A ( self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(_A ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _A ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _A ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(_A ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _A ( self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _A ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def _A ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def _A ( self ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE = copy.deepcopy(model.config ) __SCREAMING_SNAKE_CASE = ['FunnelBaseModel'] __SCREAMING_SNAKE_CASE = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def _A ( self ): '''simple docstring''' try: AutoConfig.register('new-model' , _A ) __SCREAMING_SNAKE_CASE = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API __SCREAMING_SNAKE_CASE = BertModelTester(self ).get_config() __SCREAMING_SNAKE_CASE = NewModelConfig(**tiny_config.to_dict() ) __SCREAMING_SNAKE_CASE = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) __SCREAMING_SNAKE_CASE = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _A ( self ): '''simple docstring''' with self.assertRaisesRegex( _A , 'bert-base is not a local folder and is not a valid model identifier' ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained('bert-base' ) def _A ( self ): '''simple docstring''' with self.assertRaisesRegex( _A , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_A , revision='aaaaaa' ) def _A ( self ): '''simple docstring''' with self.assertRaisesRegex( _A , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def _A ( self ): '''simple docstring''' with self.assertRaisesRegex(_A , 'Use `from_pt=True` to load this model' ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
257
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _A = 16 , _A = 88 , _A = None , _A = 1 , _A = 0.0 , _A = 32 , _A = None , _A = False , _A = None , _A = None , _A = "geglu" , _A = None , ): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_A , attention_head_dim=_A , in_channels=_A , num_layers=_A , dropout=_A , norm_num_groups=_A , cross_attention_dim=_A , attention_bias=_A , sample_size=_A , num_vector_embeds=_A , activation_fn=_A , num_embeds_ada_norm=_A , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __SCREAMING_SNAKE_CASE = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __SCREAMING_SNAKE_CASE = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __SCREAMING_SNAKE_CASE = [1, 0] def _A ( self , _A , _A , _A=None , _A=None , _A=None , _A = True , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __SCREAMING_SNAKE_CASE = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __SCREAMING_SNAKE_CASE = self.transformer_index_for_condition[i] __SCREAMING_SNAKE_CASE = self.transformers[transformer_index]( _A , encoder_hidden_states=_A , timestep=_A , cross_attention_kwargs=_A , return_dict=_A , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __SCREAMING_SNAKE_CASE = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __SCREAMING_SNAKE_CASE = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_A )
257
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Union[str, Any] = '''yolos''' def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=[512, 864] , UpperCamelCase__=16 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=100 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(**UpperCamelCase__ ) snake_case : List[str] = hidden_size snake_case : Dict = num_hidden_layers snake_case : str = num_attention_heads snake_case : List[str] = intermediate_size snake_case : Tuple = hidden_act snake_case : Dict = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : List[str] = initializer_range snake_case : Union[str, Any] = layer_norm_eps snake_case : List[str] = image_size snake_case : Tuple = patch_size snake_case : Any = num_channels snake_case : Optional[Any] = qkv_bias snake_case : Optional[Any] = num_detection_tokens snake_case : Union[str, Any] = use_mid_position_embeddings snake_case : int = auxiliary_loss # Hungarian matcher snake_case : List[Any] = class_cost snake_case : int = bbox_cost snake_case : Any = giou_cost # Loss coefficients snake_case : List[Any] = bbox_loss_coefficient snake_case : Optional[Any] = giou_loss_coefficient snake_case : Dict = eos_coefficient class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : List[Any] = version.parse('''1.11''' ) @property def lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCamelCase ( self ) -> float: '''simple docstring''' return 1e-4 @property def lowerCamelCase ( self ) -> int: '''simple docstring''' return 12
359
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : List[str] = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase : str = '''LayoutLMv2ImageProcessor''' __UpperCAmelCase : Dict = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase__ , ) snake_case : Dict = kwargs.pop("feature_extractor" ) snake_case : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor snake_case : Any = self.image_processor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case : Optional[Any] = features["words"] snake_case : Dict = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel values snake_case : Dict = features.pop("pixel_values" ) if return_overflowing_tokens is True: snake_case : Any = self.get_overflowing_images(UpperCamelCase__ , encoded_inputs["overflow_to_sample_mapping"] ) snake_case : str = images return encoded_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : Union[str, Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F' {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}' ) return images_with_overflow def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCamelCase ( self ) -> Dict: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase__ , ) return self.image_processor_class @property def lowerCamelCase ( self ) -> Any: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCamelCase__ , ) return self.image_processor
112
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _UpperCAmelCase : List[Any] = sys.version_info >= (3, 1_0) def __magic_name__( lowerCamelCase=None, lowerCamelCase=None): return field(default_factory=lambda: default, metadata=a__) @dataclass class a__ : """simple docstring""" __UpperCamelCase : int __UpperCamelCase : float __UpperCamelCase : str __UpperCamelCase : bool @dataclass class a__ : """simple docstring""" __UpperCamelCase : int = 42 __UpperCamelCase : str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class a__ : """simple docstring""" __UpperCamelCase : bool = False __UpperCamelCase : bool = True __UpperCamelCase : Optional[bool] = None class a__ ( UpperCamelCase_ ): """simple docstring""" __UpperCamelCase : str = '''titi''' __UpperCamelCase : Any = '''toto''' class a__ ( UpperCamelCase_ ): """simple docstring""" __UpperCamelCase : List[str] = '''titi''' __UpperCamelCase : Union[str, Any] = '''toto''' __UpperCamelCase : List[str] = 42 @dataclass class a__ : """simple docstring""" __UpperCamelCase : BasicEnum = "toto" def _snake_case (self ): __lowerCAmelCase = BasicEnum(self.foo ) @dataclass class a__ : """simple docstring""" __UpperCamelCase : MixedTypeEnum = "toto" def _snake_case (self ): __lowerCAmelCase = MixedTypeEnum(self.foo ) @dataclass class a__ : """simple docstring""" __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[float] = field(default=UpperCamelCase_ , metadata={'help': 'help message'} ) __UpperCamelCase : Optional[str] = None __UpperCamelCase : Optional[List[str]] = list_field(default=[] ) __UpperCamelCase : Optional[List[int]] = list_field(default=[] ) @dataclass class a__ : """simple docstring""" __UpperCamelCase : List[int] = list_field(default=[] ) __UpperCamelCase : List[int] = list_field(default=[1, 2, 3] ) __UpperCamelCase : List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) __UpperCamelCase : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class a__ : """simple docstring""" __UpperCamelCase : List[int] = field() __UpperCamelCase : str = field() __UpperCamelCase : BasicEnum = field() def _snake_case (self ): __lowerCAmelCase = BasicEnum(self.required_enum ) @dataclass class a__ : """simple docstring""" __UpperCamelCase : int __UpperCamelCase : "BasicEnum" = field() __UpperCamelCase : "Optional[bool]" = None __UpperCamelCase : "str" = field(default='toto' , metadata={'help': 'help message'} ) __UpperCamelCase : "List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class a__ : """simple docstring""" __UpperCamelCase : bool = False __UpperCamelCase : bool = True __UpperCamelCase : bool | None = None @dataclass class a__ : """simple docstring""" __UpperCamelCase : int | None = None __UpperCamelCase : float | None = field(default=UpperCamelCase_ , metadata={'help': 'help message'} ) __UpperCamelCase : str | None = None __UpperCamelCase : list[str] | None = list_field(default=[] ) __UpperCamelCase : list[int] | None = list_field(default=[] ) class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self , __lowercase , __lowercase ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __lowerCAmelCase = {k: v for k, v in vars(_A ).items() if k != '''container'''} __lowerCAmelCase = {k: v for k, v in vars(_A ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _A ) and yy.get('''choices''' , _A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_A ) , yy['''type'''](_A ) ) del xx["type"], yy["type"] self.assertEqual(_A , _A ) def _snake_case (self ): __lowerCAmelCase = HfArgumentParser(_A ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_A , required=_A ) expected.add_argument('''--bar''' , type=_A , required=_A ) expected.add_argument('''--baz''' , type=_A , required=_A ) expected.add_argument('''--flag''' , type=_A , default=_A , const=_A , nargs='''?''' ) self.argparsersEqual(_A , _A ) __lowerCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__lowerCAmelCase ) , ) = parser.parse_args_into_dataclasses(_A , look_for_args_file=_A ) self.assertFalse(example.flag ) def _snake_case (self ): __lowerCAmelCase = HfArgumentParser(_A ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_A ) expected.add_argument('''--baz''' , default='''toto''' , type=_A , help='''help message''' ) self.argparsersEqual(_A , _A ) def _snake_case (self ): __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_A , default=_A , const=_A , nargs='''?''' ) expected.add_argument('''--baz''' , type=_A , default=_A , const=_A , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_A , dest='''baz''' ) expected.add_argument('''--opt''' , type=_A , default=_A ) __lowerCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_A ) for dataclass_type in dataclass_types: __lowerCAmelCase = HfArgumentParser(_A ) self.argparsersEqual(_A , _A ) __lowerCAmelCase = parser.parse_args([] ) self.assertEqual(_A , Namespace(foo=_A , baz=_A , opt=_A ) ) __lowerCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_A , Namespace(foo=_A , baz=_A , opt=_A ) ) __lowerCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_A , Namespace(foo=_A , baz=_A , opt=_A ) ) __lowerCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_A , Namespace(foo=_A , baz=_A , opt=_A ) ) __lowerCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_A , Namespace(foo=_A , baz=_A , opt=_A ) ) def _snake_case (self ): __lowerCAmelCase = HfArgumentParser(_A ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_A , _A ) __lowerCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __lowerCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __lowerCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __lowerCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __lowerCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __lowerCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _snake_case (self ): @dataclass class a__ : """simple docstring""" __UpperCamelCase : Literal["titi", "toto", 42] = "toto" __lowerCAmelCase = HfArgumentParser(_A ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_A , _A ) __lowerCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __lowerCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __lowerCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _snake_case (self ): __lowerCAmelCase = HfArgumentParser(_A ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_A ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_A ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_A ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_A ) self.argparsersEqual(_A , _A ) __lowerCAmelCase = parser.parse_args([] ) self.assertEqual( _A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __lowerCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _snake_case (self ): __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_A , type=_A ) expected.add_argument('''--bar''' , default=_A , type=_A , help='''help message''' ) expected.add_argument('''--baz''' , default=_A , type=_A ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_A ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_A ) __lowerCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_A ) for dataclass_type in dataclass_types: __lowerCAmelCase = HfArgumentParser(_A ) self.argparsersEqual(_A , _A ) __lowerCAmelCase = parser.parse_args([] ) self.assertEqual(_A , Namespace(foo=_A , bar=_A , baz=_A , ces=[] , des=[] ) ) __lowerCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_A , Namespace(foo=12 , bar=3.1_4 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _snake_case (self ): __lowerCAmelCase = HfArgumentParser(_A ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_A , required=_A ) expected.add_argument('''--required_str''' , type=_A , required=_A ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_A , ) self.argparsersEqual(_A , _A ) def _snake_case (self ): __lowerCAmelCase = HfArgumentParser(_A ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_A , required=_A ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_A , ) expected.add_argument('''--opt''' , type=_A , default=_A ) expected.add_argument('''--baz''' , default='''toto''' , type=_A , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_A ) self.argparsersEqual(_A , _A ) def _snake_case (self ): __lowerCAmelCase = HfArgumentParser(_A ) __lowerCAmelCase = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } __lowerCAmelCase = parser.parse_dict(_A )[0] __lowerCAmelCase = BasicExample(**_A ) self.assertEqual(_A , _A ) def _snake_case (self ): __lowerCAmelCase = HfArgumentParser(_A ) __lowerCAmelCase = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_A , parser.parse_dict , _A , allow_extra_keys=_A ) def _snake_case (self ): __lowerCAmelCase = HfArgumentParser(_A ) __lowerCAmelCase = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = os.path.join(_A , '''temp_json''' ) os.mkdir(_A ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_A , _A ) __lowerCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __lowerCAmelCase = BasicExample(**_A ) self.assertEqual(_A , _A ) def _snake_case (self ): __lowerCAmelCase = HfArgumentParser(_A ) __lowerCAmelCase = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = os.path.join(_A , '''temp_yaml''' ) os.mkdir(_A ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_A , _A ) __lowerCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __lowerCAmelCase = BasicExample(**_A ) self.assertEqual(_A , _A ) def _snake_case (self ): __lowerCAmelCase = HfArgumentParser(_A ) self.assertIsNotNone(_A )
174
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = process __SCREAMING_SNAKE_CASE = params def __len__( self ): '''simple docstring''' return len(self.dataset ) def __getitem__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.dataset[i] __SCREAMING_SNAKE_CASE = self.process(_A , **self.params ) return processed class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A , _A , _A=None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = loader __SCREAMING_SNAKE_CASE = infer __SCREAMING_SNAKE_CASE = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = loader_batch_size # Internal bookkeeping __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __len__( self ): '''simple docstring''' return len(self.loader ) def __iter__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = iter(self.loader ) return self def _A ( self ): '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __SCREAMING_SNAKE_CASE = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __SCREAMING_SNAKE_CASE = {} for k, element in self._loader_batch_data.items(): if isinstance(_A , _A ): # Convert ModelOutput to tuple first __SCREAMING_SNAKE_CASE = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_A , _A ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __SCREAMING_SNAKE_CASE = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __SCREAMING_SNAKE_CASE = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __SCREAMING_SNAKE_CASE = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __SCREAMING_SNAKE_CASE = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __SCREAMING_SNAKE_CASE = self._loader_batch_data.__class__(_A ) self._loader_batch_index += 1 return result def _A ( self ): '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __SCREAMING_SNAKE_CASE = next(self.iterator ) __SCREAMING_SNAKE_CASE = self.infer(_A , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_A , torch.Tensor ): __SCREAMING_SNAKE_CASE = processed else: __SCREAMING_SNAKE_CASE = list(processed.keys() )[0] __SCREAMING_SNAKE_CASE = processed[key] if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = len(_A ) else: __SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __SCREAMING_SNAKE_CASE = observed_batch_size # Setting internal index to unwrap the batch __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A , _A , _A=None ): '''simple docstring''' super().__init__(_A , _A , _A ) def __iter__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = iter(self.loader ) __SCREAMING_SNAKE_CASE = None return self def _A ( self ): '''simple docstring''' if self.subiterator is None: __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __SCREAMING_SNAKE_CASE = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) __SCREAMING_SNAKE_CASE = next(self.subiterator ) return processed class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __iter__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = iter(self.loader ) return self def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __SCREAMING_SNAKE_CASE = self.loader_batch_item() __SCREAMING_SNAKE_CASE = item.pop('is_last' ) accumulator.append(_A ) if is_last: return accumulator while not is_last: __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_A , torch.Tensor ): __SCREAMING_SNAKE_CASE = processed else: __SCREAMING_SNAKE_CASE = list(processed.keys() )[0] __SCREAMING_SNAKE_CASE = processed[key] if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = len(_A ) else: __SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __SCREAMING_SNAKE_CASE = observed_batch_size __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = 0 while self._loader_batch_index < self.loader_batch_size: __SCREAMING_SNAKE_CASE = self.loader_batch_item() __SCREAMING_SNAKE_CASE = item.pop('is_last' ) accumulator.append(_A ) if is_last: return accumulator else: __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = item.pop('is_last' ) accumulator.append(_A ) return accumulator class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = key def __len__( self ): '''simple docstring''' return len(self.dataset ) def __getitem__( self , _A ): '''simple docstring''' return self.dataset[i][self.key] class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = keya __SCREAMING_SNAKE_CASE = keya def __len__( self ): '''simple docstring''' return len(self.dataset ) def __getitem__( self , _A ): '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
257
0
from collections.abc import Iterable from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : str , __A : int | None = None ): snake_case__ : Tuple = value snake_case__ : Node | None = None # Added in order to delete a node easier snake_case__ : Node | None = None snake_case__ : Node | None = None def __repr__( self : str ): from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : str , __A : Node | None = None ): snake_case__ : List[Any] = root def __str__( self : Dict ): return str(self.root ) def _lowercase ( self : int , __A : Node , __A : Node | None ): if new_children is not None: # reset its kids snake_case__ : Tuple = node.parent if node.parent is not None: # reset its parent if self.is_right(__A ): # If it is the right children snake_case__ : Optional[Any] = new_children else: snake_case__ : Dict = new_children else: snake_case__ : Any = new_children def _lowercase ( self : str , __A : Node ): if node.parent and node.parent.right: return node == node.parent.right return False def _lowercase ( self : Optional[Any] ): return self.root is None def _lowercase ( self : str , __A : Tuple ): snake_case__ : List[Any] = Node(__A ) # create a new Node if self.empty(): # if Tree is empty snake_case__ : Any = new_node # set its root else: # Tree is not empty snake_case__ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: snake_case__ : List[Any] = new_node # We insert the new node in a leaf break else: snake_case__ : Optional[Any] = parent_node.left else: if parent_node.right is None: snake_case__ : str = new_node break else: snake_case__ : str = parent_node.right snake_case__ : int = parent_node def _lowercase ( self : List[Any] , *__A : Union[str, Any] ): for value in values: self.__insert(__A ) def _lowercase ( self : Dict , __A : List[Any] ): if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: snake_case__ : Optional[int] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: snake_case__ : Tuple = node.left if value < node.value else node.right return node def _lowercase ( self : Optional[int] , __A : Node | None = None ): if node is None: if self.root is None: return None snake_case__ : List[str] = self.root if not self.empty(): while node.right is not None: snake_case__ : Dict = node.right return node def _lowercase ( self : int , __A : Node | None = None ): if node is None: snake_case__ : List[Any] = self.root if self.root is None: return None if not self.empty(): snake_case__ : str = self.root while node.left is not None: snake_case__ : Union[str, Any] = node.left return node def _lowercase ( self : Any , __A : int ): snake_case__ : Any = self.search(__A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__A , __A ) elif node.left is None: # Has only right children self.__reassign_nodes(__A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__A , node.left ) else: snake_case__ : Optional[int] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore snake_case__ : List[str] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def _lowercase ( self : Any , __A : Node | None ): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def _lowercase ( self : str , __A : Union[str, Any]=None ): if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def _lowercase ( self : Union[str, Any] , __A : list , __A : Node | None ): if node: self.inorder(__A , node.left ) arr.append(node.value ) self.inorder(__A , node.right ) def _lowercase ( self : Tuple , __A : int , __A : Node ): snake_case__ : list[int] = [] self.inorder(__A , __A ) # append all values to list using inorder traversal return arr[k - 1] def SCREAMING_SNAKE_CASE ( snake_case_ : Node | None ): snake_case__ : Optional[int] = [] if curr_node is not None: snake_case__ : Dict = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def SCREAMING_SNAKE_CASE ( ): snake_case__ : int = (8, 3, 6, 1, 10, 14, 13, 4, 7) snake_case__ : str = BinarySearchTree() for i in testlist: t.insert(snake_case_ ) # Prints all the elements of the list in order traversal print(snake_case_ ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(snake_case_ ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
356
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Optional[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__, snake_case__ : Optional[Any] = emb.weight.shape snake_case__ : Tuple = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) snake_case__ : Optional[int] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Optional[Any]="facebook/mbart-large-en-ro" , snake_case_ : Optional[int]=False , snake_case_ : List[Any]=False ): snake_case__ : Tuple = torch.load(snake_case_ , map_location="cpu" )["model"] remove_ignore_keys_(snake_case_ ) snake_case__ : Any = state_dict["encoder.embed_tokens.weight"].shape[0] snake_case__ : List[Any] = MBartConfig.from_pretrained(snake_case_ , vocab_size=snake_case_ ) if mbart_aa and finetuned: snake_case__ : int = "relu" snake_case__ : List[str] = state_dict["decoder.embed_tokens.weight"] snake_case__ : Tuple = MBartForConditionalGeneration(snake_case_ ) model.model.load_state_dict(snake_case_ ) if finetuned: snake_case__ : Any = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") __lowerCamelCase : Optional[Any] = parser.parse_args() __lowerCamelCase : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
286
0
def UpperCamelCase__( UpperCamelCase__ : int , UpperCamelCase__ : bool = False )->bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis A__ = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] A__ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCamelCase__ , 1 ): if n < _p: # then we have our last prime to check A__ = primes[:idx] break A__ , A__ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: A__ = False for r in range(UpperCamelCase__ ): A__ = pow(UpperCamelCase__ , d * 2**r , UpperCamelCase__ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): A__ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def UpperCamelCase__( )->None: assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
193
a__: Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} a__: str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase__( UpperCamelCase__ : dict[int, list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : list[bool] )->list[int]: A__ = True A__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) order.append(UpperCamelCase__ ) return order def UpperCamelCase__( UpperCamelCase__ : dict[int, list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : list[bool] )->list[int]: A__ = True A__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return component def UpperCamelCase__( UpperCamelCase__ : dict[int, list[int]] )->list[list[int]]: A__ = len(UpperCamelCase__ ) * [False] A__ = {vert: [] for vert in range(len(UpperCamelCase__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(UpperCamelCase__ ) A__ = [] for i, was_visited in enumerate(UpperCamelCase__ ): if not was_visited: order += topology_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = [] A__ = len(UpperCamelCase__ ) * [False] for i in range(len(UpperCamelCase__ ) ): A__ = order[len(UpperCamelCase__ ) - i - 1] if not visited[vert]: A__ = find_components(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) components_list.append(UpperCamelCase__ ) return components_list
193
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : Union[tf.Tensor, np.ndarray] ): if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowerCAmelCase : Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowerCAmelCase : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def _snake_case ( _snake_case : tf.Tensor , _snake_case : Optional[int] = None , _snake_case : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def _snake_case ( _snake_case : Any , _snake_case : List[str] , _snake_case : Dict , _snake_case : Tuple=1E-5 , _snake_case : List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized lowerCAmelCase : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowerCAmelCase : List[Any] = [1] * inputs.shape.rank lowerCAmelCase : List[str] = shape_list(UpperCAmelCase__ )[axis] lowerCAmelCase : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowerCAmelCase : str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def _snake_case ( _snake_case : Dict , _snake_case : Tuple=0 , _snake_case : Any=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowerCAmelCase : List[Any] = tf.shape(UpperCAmelCase__ ) lowerCAmelCase : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowerCAmelCase : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def _snake_case ( _snake_case : tf.Tensor ): if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowerCAmelCase : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowerCAmelCase : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowerCAmelCase : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowerCAmelCase : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _snake_case ( _snake_case : tf.Tensor , _snake_case : int , _snake_case : str = "input_ids" ): tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( f'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding ''' f'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def _snake_case ( _snake_case : List[Any] , _snake_case : str , _snake_case : List[str] ): lowerCAmelCase : int = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowerCAmelCase : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' f'''bytes: {bad_attributes}''' ) lowerCAmelCase : Any = np.asarray(UpperCAmelCase__ ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowerCAmelCase : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowerCAmelCase : Union[str, Any] = chunk_data else: lowerCAmelCase : Any = data def _snake_case ( _snake_case : str , _snake_case : Union[str, Any] ): if name in group.attrs: lowerCAmelCase : Optional[Any] = [n.decode('''utf8''' ) if hasattr(UpperCAmelCase__ , '''decode''' ) else n for n in group.attrs[name]] else: lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(UpperCAmelCase__ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def _snake_case ( _snake_case : Optional[Any] ): def _expand_single_ad_tensor(_snake_case : Optional[Any] ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
371
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
0
'''simple docstring''' import torch from torch import nn class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=1 , UpperCamelCase__ : int=False ): """simple docstring""" super().__init__() UpperCamelCase = n_token UpperCamelCase = d_embed UpperCamelCase = d_proj UpperCamelCase = cutoffs + [n_token] UpperCamelCase = [0] + self.cutoffs UpperCamelCase = div_val UpperCamelCase = self.cutoffs[0] UpperCamelCase = len(self.cutoffs ) - 1 UpperCamelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase = nn.ModuleList() UpperCamelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) ) else: self.out_projs.append(UpperCamelCase__ ) self.out_layers.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) ) self.out_layers.append(nn.Linear(UpperCamelCase__ , r_idx - l_idx ) ) UpperCamelCase = keep_order def A ( self : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ): """simple docstring""" if proj is None: UpperCamelCase = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase = nn.functional.linear(UpperCamelCase__ , proj.t().contiguous() ) UpperCamelCase = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def A ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : str=False ): """simple docstring""" if labels is not None: # Shift so that tokens < n predict n UpperCamelCase = hidden[..., :-1, :].contiguous() UpperCamelCase = labels[..., 1:].contiguous() UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) ) UpperCamelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCamelCase = labels != -1_0_0 UpperCamelCase = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase = ( -nn.functional.log_softmax(UpperCamelCase__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) else: # construct weights and biases UpperCamelCase , UpperCamelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase = self.out_layers[i].weight UpperCamelCase = self.out_layers[i].bias if i == 0: UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase__ ) biases.append(UpperCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0] UpperCamelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) if labels is None: UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase = 0 UpperCamelCase = [0] + self.cutoffs for i in range(len(UpperCamelCase__ ) - 1 ): UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase = (labels >= l_idx) & (labels < r_idx) UpperCamelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase = labels.index_select(0 , UpperCamelCase__ ) - l_idx UpperCamelCase = head_logprob.index_select(0 , UpperCamelCase__ ) UpperCamelCase = hidden.index_select(0 , UpperCamelCase__ ) else: UpperCamelCase = hidden if i == 0: if labels is not None: UpperCamelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i] UpperCamelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) UpperCamelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCamelCase__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def A ( self : List[Any] , UpperCamelCase__ : str ): """simple docstring""" if self.n_clusters == 0: UpperCamelCase = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) else: # construct weights and biases UpperCamelCase , UpperCamelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase = self.out_layers[i].weight UpperCamelCase = self.out_layers[i].bias if i == 0: UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase__ ) biases.append(UpperCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0] UpperCamelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) UpperCamelCase = [0] + self.cutoffs for i in range(len(UpperCamelCase__ ) - 1 ): UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i] UpperCamelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) UpperCamelCase = head_logprob[:, -i] + tail_logprob_i UpperCamelCase = logprob_i return out
28
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
302
0
SCREAMING_SNAKE_CASE : int = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} SCREAMING_SNAKE_CASE : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> list[int]: _lowercase : Optional[int] = True _lowercase : List[Any] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) order.append(lowerCamelCase_ ) return order def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> list[int]: _lowercase : Tuple = True _lowercase : Tuple = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return component def UpperCamelCase_( lowerCamelCase_ ) -> list[list[int]]: _lowercase : List[Any] = len(lowerCamelCase_ ) * [False] _lowercase : dict[int, list[int]] = {vert: [] for vert in range(len(lowerCamelCase_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(lowerCamelCase_ ) _lowercase : Any = [] for i, was_visited in enumerate(lowerCamelCase_ ): if not was_visited: order += topology_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Optional[int] = [] _lowercase : str = len(lowerCamelCase_ ) * [False] for i in range(len(lowerCamelCase_ ) ): _lowercase : Dict = order[len(lowerCamelCase_ ) - i - 1] if not visited[vert]: _lowercase : Tuple = find_components(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) components_list.append(lowerCamelCase_ ) return components_list
84
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE : Optional[int] = 299792458 # Symbols SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = symbols("ct x y z") def UpperCamelCase_( lowerCamelCase_ ) -> float: if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def UpperCamelCase_( lowerCamelCase_ ) -> float: return 1 / sqrt(1 - beta(lowerCamelCase_ ) ** 2 ) def UpperCamelCase_( lowerCamelCase_ ) -> np.ndarray: return np.array( [ [gamma(lowerCamelCase_ ), -gamma(lowerCamelCase_ ) * beta(lowerCamelCase_ ), 0, 0], [-gamma(lowerCamelCase_ ) * beta(lowerCamelCase_ ), gamma(lowerCamelCase_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = None ) -> np.ndarray: # Ensure event is not empty if event is None: _lowercase : Union[str, Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(lowerCamelCase_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE : Optional[int] = transform(29979245) print("Example of four vector: ") print(F"ct' = {four_vector[0]}") print(F"x' = {four_vector[1]}") print(F"y' = {four_vector[2]}") print(F"z' = {four_vector[3]}") # Substitute symbols with numerical values SCREAMING_SNAKE_CASE : Tuple = {ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"\n{numerical_vector}")
84
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any) -> Optional[int]: '''simple docstring''' with open(_lowerCamelCase) as metadata_file: __UpperCamelCase : List[str] = json.load(_lowerCamelCase) __UpperCamelCase : Optional[Any] = LukeConfig(use_entity_aware_attention=_lowerCamelCase , **metadata["model_config"]) # Load in the weights from the checkpoint_path __UpperCamelCase : Dict = torch.load(_lowerCamelCase , map_location="cpu")["""module"""] # Load the entity vocab file __UpperCamelCase : str = load_original_entity_vocab(_lowerCamelCase) # add an entry for [MASK2] __UpperCamelCase : Optional[int] = max(entity_vocab.values()) + 1 config.entity_vocab_size += 1 __UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"]) # Add special tokens to the token vocabulary for downstream tasks __UpperCamelCase : Union[str, Any] = AddedToken("<ent>" , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) __UpperCamelCase : Tuple = AddedToken("<ent2>" , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]}) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}') tokenizer.save_pretrained(_lowerCamelCase) with open(os.path.join(_lowerCamelCase , "tokenizer_config.json") , "r") as f: __UpperCamelCase : Tuple = json.load(_lowerCamelCase) __UpperCamelCase : str = """MLukeTokenizer""" with open(os.path.join(_lowerCamelCase , "tokenizer_config.json") , "w") as f: json.dump(_lowerCamelCase , _lowerCamelCase) with open(os.path.join(_lowerCamelCase , MLukeTokenizer.vocab_files_names["entity_vocab_file"]) , "w") as f: json.dump(_lowerCamelCase , _lowerCamelCase) __UpperCamelCase : str = MLukeTokenizer.from_pretrained(_lowerCamelCase) # Initialize the embeddings of the special tokens __UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(["@"])[0] __UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(["#"])[0] __UpperCamelCase : List[str] = state_dict["""embeddings.word_embeddings.weight"""] __UpperCamelCase : Dict = word_emb[ent_init_index].unsqueeze(0) __UpperCamelCase : Dict = word_emb[enta_init_index].unsqueeze(0) __UpperCamelCase : Optional[int] = torch.cat([word_emb, ent_emb, enta_emb]) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __UpperCamelCase : List[str] = state_dict[bias_name] __UpperCamelCase : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0) __UpperCamelCase : Union[str, Any] = decoder_bias[enta_init_index].unsqueeze(0) __UpperCamelCase : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias]) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers): for matrix_name in ["query.weight", "query.bias"]: __UpperCamelCase : int = F'encoder.layer.{layer_index}.attention.self.' __UpperCamelCase : int = state_dict[prefix + matrix_name] __UpperCamelCase : List[str] = state_dict[prefix + matrix_name] __UpperCamelCase : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __UpperCamelCase : Optional[Any] = state_dict["""entity_embeddings.entity_embeddings.weight"""] __UpperCamelCase : Tuple = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0) __UpperCamelCase : Union[str, Any] = torch.cat([entity_emb, entity_mask_emb]) # add [MASK2] for 'entity_predictions.bias' __UpperCamelCase : int = state_dict["""entity_predictions.bias"""] __UpperCamelCase : str = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0) __UpperCamelCase : Optional[int] = torch.cat([entity_prediction_bias, entity_mask_bias]) __UpperCamelCase : List[str] = LukeForMaskedLM(config=_lowerCamelCase).eval() state_dict.pop("entity_predictions.decoder.weight") state_dict.pop("lm_head.decoder.weight") state_dict.pop("lm_head.decoder.bias") __UpperCamelCase : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head") or key.startswith("entity_predictions")): __UpperCamelCase : int = state_dict[key] else: __UpperCamelCase : Tuple = state_dict[key] __UpperCamelCase : Optional[Any] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase) if set(_lowerCamelCase) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}') if set(_lowerCamelCase) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}') model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __UpperCamelCase : Dict = MLukeTokenizer.from_pretrained(_lowerCamelCase , task="entity_classification") __UpperCamelCase : List[Any] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" __UpperCamelCase : Tuple = (0, 9) __UpperCamelCase : Any = tokenizer(_lowerCamelCase , entity_spans=[span] , return_tensors="pt") __UpperCamelCase : Optional[Any] = model(**_lowerCamelCase) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCamelCase : Optional[Any] = torch.Size((1, 33, 768)) __UpperCamelCase : Dict = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]]) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}') if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-4): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCamelCase : List[Any] = torch.Size((1, 1, 768)) __UpperCamelCase : Any = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]]) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}') if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-4): raise ValueError # Verify masked word/entity prediction __UpperCamelCase : List[str] = MLukeTokenizer.from_pretrained(_lowerCamelCase) __UpperCamelCase : Dict = """Tokyo is the capital of <mask>.""" __UpperCamelCase : str = (24, 30) __UpperCamelCase : str = tokenizer(_lowerCamelCase , entity_spans=[span] , return_tensors="pt") __UpperCamelCase : List[Any] = model(**_lowerCamelCase) __UpperCamelCase : Optional[Any] = encoding["""input_ids"""][0].tolist() __UpperCamelCase : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>")) __UpperCamelCase : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1) assert "Japan" == tokenizer.decode(_lowerCamelCase) __UpperCamelCase : Optional[int] = outputs.entity_logits[0][0].argmax().item() __UpperCamelCase : Any = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:")][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(_lowerCamelCase)) model.save_pretrained(_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any]) -> List[str]: '''simple docstring''' __UpperCamelCase : Optional[int] = ["""[MASK]""", """[PAD]""", """[UNK]"""] __UpperCamelCase : Optional[int] = [json.loads(_lowerCamelCase) for line in open(_lowerCamelCase)] __UpperCamelCase : Optional[int] = {} for entry in data: __UpperCamelCase : Tuple = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __UpperCamelCase : Union[str, Any] = entity_id break __UpperCamelCase : str = F'{language}:{entity_name}' __UpperCamelCase : Union[str, Any] = entity_id return new_mapping if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) lowercase : Optional[int] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
232
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } UpperCamelCase__ : List[Any] = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } @lru_cache() def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : int = bs[:] __SCREAMING_SNAKE_CASE : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : Dict = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[str] = set() __SCREAMING_SNAKE_CASE : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : Optional[int] = char return pairs class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[str] = VOCAB_FILES_NAMES _A : Tuple = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : int = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple="replace" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : Union[str, Any]="</s>" , lowerCAmelCase__ : Any="<s>" , lowerCAmelCase__ : str="<unk>" , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : Union[str, Any]="<mask>" , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : Optional[int] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __SCREAMING_SNAKE_CASE : Dict = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : Optional[int] = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __SCREAMING_SNAKE_CASE : Tuple = merges_handle.read().split("""\n""" )[1:-1] __SCREAMING_SNAKE_CASE : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : str = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : Optional[int] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = bigram __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : List[str] = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Any = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Dict = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Tuple = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = word return word def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = """""".join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __SCREAMING_SNAKE_CASE : str = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : List[str] = """ """ + text return (text, kwargs)
112
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : List[Any] ={'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
147
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : list ): if len(__lowerCamelCase ) <= 1: return lst lowercase_ :Optional[Any] = 1 while i < len(__lowerCamelCase ): if lst[i - 1] <= lst[i]: i += 1 else: lowercase_ , lowercase_ :int = lst[i], lst[i - 1] i -= 1 if i == 0: lowercase_ :Dict = 1 return lst if __name__ == "__main__": lowerCAmelCase : Any =input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase : List[str] =[int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
147
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __magic_name__ = StableDiffusionInpaintPipeline __magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __magic_name__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __magic_name__ = frozenset([] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) A : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=snake_case_ , ) A : Optional[Any] = PNDMScheduler(skip_prk_steps=snake_case_ ) torch.manual_seed(0 ) A : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) A : Any = CLIPTextModel(snake_case_ ) A : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 ) -> Any: """simple docstring""" A : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] A : List[str] = Image.fromarray(np.uinta(snake_case_ ) ).convert('''RGB''' ).resize((64, 64) ) A : int = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(snake_case_ ).startswith('''mps''' ): A : List[str] = torch.manual_seed(snake_case_ ) else: A : Any = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) A : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator A : Tuple = self.get_dummy_components() A : str = StableDiffusionInpaintPipeline(**snake_case_ ) A : str = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) A : Dict = self.get_dummy_inputs(snake_case_ ) A : Dict = sd_pipe(**snake_case_ ).images A : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A : Optional[Any] = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) A : Optional[int] = 'stabilityai/stable-diffusion-2-inpainting' A : Any = StableDiffusionInpaintPipeline.from_pretrained(snake_case_ , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() A : str = 'Face of a yellow cat, high resolution, sitting on a park bench' A : str = torch.manual_seed(0 ) A : Optional[int] = pipe( prompt=snake_case_ , image=snake_case_ , mask_image=snake_case_ , generator=snake_case_ , output_type='''np''' , ) A : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) A : Dict = 'stabilityai/stable-diffusion-2-inpainting' A : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( snake_case_ , torch_dtype=torch.floataa , safety_checker=snake_case_ , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() A : Union[str, Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' A : Tuple = torch.manual_seed(0 ) A : Union[str, Any] = pipe( prompt=snake_case_ , image=snake_case_ , mask_image=snake_case_ , generator=snake_case_ , output_type='''np''' , ) A : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A : Union[str, Any] = 'stabilityai/stable-diffusion-2-inpainting' A : int = PNDMScheduler.from_pretrained(snake_case_ , subfolder='''scheduler''' ) A : Dict = StableDiffusionInpaintPipeline.from_pretrained( snake_case_ , safety_checker=snake_case_ , scheduler=snake_case_ , torch_dtype=torch.floataa , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A : Dict = 'Face of a yellow cat, high resolution, sitting on a park bench' A : Dict = torch.manual_seed(0 ) A : int = pipe( prompt=snake_case_ , image=snake_case_ , mask_image=snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type='''np''' , ) A : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
3
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase_ : List[str] = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def UpperCAmelCase__ ( ): """simple docstring""" A_ : Union[str, Any] = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) A_ : Tuple = os.path.join(_UpperCAmelCase , 'words.txt' ) A_ : List[Any] = '' with open(_UpperCAmelCase ) as f: A_ : int = f.readline() A_ : Optional[Any] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] A_ : Dict = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
286
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _snake_case ( _snake_case ): def __init__( self , _lowerCamelCase = "▁" , _lowerCamelCase = True , _lowerCamelCase = "<unk>" , _lowerCamelCase = "</s>" , _lowerCamelCase = "<pad>" , ): a :Dict = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } a :Any = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): a :Optional[int] = token_dict['''token'''] a :Union[str, Any] = Tokenizer(Unigram() ) a :str = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ), normalizers.Lowercase(), ] ) a :Any = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase , add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) a :Dict = decoders.Metaspace(replacement=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) a :Optional[Any] = TemplateProcessing( single=F'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , ) a :List[Any] = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = 8000 , _lowerCamelCase = True , ): a :Union[str, Any] = trainers.UnigramTrainer( vocab_size=_lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=_lowerCamelCase , ) if isinstance(_lowerCamelCase , _lowerCamelCase ): a :List[str] = [files] self._tokenizer.train(_lowerCamelCase , trainer=_lowerCamelCase ) self.add_unk_id() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = 8000 , _lowerCamelCase = True , ): a :Optional[Any] = trainers.UnigramTrainer( vocab_size=_lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=_lowerCamelCase , ) self._tokenizer.train_from_iterator(_lowerCamelCase , trainer=_lowerCamelCase ) self.add_unk_id() def SCREAMING_SNAKE_CASE__ ( self ): a :Any = json.loads(self._tokenizer.to_str() ) a :List[Any] = self.special_tokens['''unk''']['''id'''] a :Any = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
366
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING snake_case : str = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class _snake_case ( _snake_case ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=None ): a :Tuple = {} if top_k is not None: a :int = top_k return {}, {}, postprocess_params def __call__( self , _lowerCamelCase , **_lowerCamelCase ): return super().__call__(_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :str = load_image(_lowerCamelCase ) a :Any = self.image_processor(images=_lowerCamelCase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :List[str] = self.model(**_lowerCamelCase ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=5 ): if top_k > self.model.config.num_labels: a :List[Any] = self.model.config.num_labels if self.framework == "pt": a :int = model_outputs.logits.softmax(-1 )[0] a , a :Union[str, Any] = probs.topk(_lowerCamelCase ) elif self.framework == "tf": a :Optional[Any] = stable_softmax(model_outputs.logits , axis=-1 )[0] a :Union[str, Any] = tf.math.top_k(_lowerCamelCase , k=_lowerCamelCase ) a , a :Optional[int] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) a :Optional[int] = scores.tolist() a :str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase , _lowerCamelCase )]
281
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=13 , lowerCAmelCase__ : List[str]=32 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : List[Any]=16 , lowerCAmelCase__ : int=[1, 2, 1] , lowerCAmelCase__ : Optional[Any]=[2, 2, 4] , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : str=2.0 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : List[str]=1E-5 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Any=8 , lowerCAmelCase__ : List[str]=["stage1", "stage2", "stage3"] , lowerCAmelCase__ : Optional[int]=[1, 2, 3] , ): SCREAMING_SNAKE_CASE_: Optional[int] = parent SCREAMING_SNAKE_CASE_: Optional[int] = batch_size SCREAMING_SNAKE_CASE_: List[str] = image_size SCREAMING_SNAKE_CASE_: int = patch_size SCREAMING_SNAKE_CASE_: Optional[int] = num_channels SCREAMING_SNAKE_CASE_: Optional[Any] = embed_dim SCREAMING_SNAKE_CASE_: List[str] = depths SCREAMING_SNAKE_CASE_: Any = num_heads SCREAMING_SNAKE_CASE_: Any = window_size SCREAMING_SNAKE_CASE_: str = mlp_ratio SCREAMING_SNAKE_CASE_: Optional[Any] = qkv_bias SCREAMING_SNAKE_CASE_: Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Optional[int] = drop_path_rate SCREAMING_SNAKE_CASE_: Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_: int = use_absolute_embeddings SCREAMING_SNAKE_CASE_: Tuple = patch_norm SCREAMING_SNAKE_CASE_: Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_: Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_: Optional[Any] = is_training SCREAMING_SNAKE_CASE_: List[str] = scope SCREAMING_SNAKE_CASE_: List[Any] = use_labels SCREAMING_SNAKE_CASE_: Any = type_sequence_label_size SCREAMING_SNAKE_CASE_: int = encoder_stride SCREAMING_SNAKE_CASE_: List[str] = out_features SCREAMING_SNAKE_CASE_: Optional[Any] = out_indices def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE_: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any]): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Optional[int] = MaskFormerSwinModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Tuple = model(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) SCREAMING_SNAKE_CASE_: Dict = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = MaskFormerSwinBackbone(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[Any] = model(lowerCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [13, 16, 16, 16]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [16, 32, 64]) # verify ValueError with self.parent.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[Any] = ["stem"] SCREAMING_SNAKE_CASE_: Dict = MaskFormerSwinBackbone(config=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_: int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _UpperCAmelCase : List[Any] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} _UpperCAmelCase : str = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[int] = False def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Dict = MaskFormerSwinModelTester(self) SCREAMING_SNAKE_CASE_: Tuple = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _SCREAMING_SNAKE_CASE ( self : List[str]): pass def _SCREAMING_SNAKE_CASE ( self : Any): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__) @unittest.skip("Swin does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : Optional[int]): pass @unittest.skip("Swin does not support feedforward chunking") def _SCREAMING_SNAKE_CASE ( self : List[str]): pass def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: List[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _SCREAMING_SNAKE_CASE ( self : List[Any]): pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _SCREAMING_SNAKE_CASE ( self : Tuple): pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: List[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE_: int = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) # Swin has a different seq_length SCREAMING_SNAKE_CASE_: Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_: str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: int = 3 SCREAMING_SNAKE_CASE_: Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE_: Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_: Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE_: Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _SCREAMING_SNAKE_CASE ( self : Any): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _SCREAMING_SNAKE_CASE ( self : str): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _SCREAMING_SNAKE_CASE ( self : Any): pass def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = 0 return t def check_equivalence(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]={}): with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[Any] = model(**lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model(**lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__).to_tuple() def recursive_check(lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int]): if isinstance(lowerCAmelCase__ , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase__ , lowerCAmelCase__): recursive_check(lowerCAmelCase__ , lowerCAmelCase__) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(lowerCAmelCase__ , lowerCAmelCase__) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCAmelCase__) , set_nan_tensor_to_zero(lowerCAmelCase__) , atol=1E-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(lowerCAmelCase__).any()} and `inf`: {torch.isinf(lowerCAmelCase__)}. Dict has" F" `nan`: {torch.isnan(lowerCAmelCase__).any()} and `inf`: {torch.isinf(lowerCAmelCase__)}." ) , ) recursive_check(lowerCAmelCase__ , lowerCAmelCase__) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"output_hidden_states": True}) SCREAMING_SNAKE_CASE_: List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"output_hidden_states": True}) @require_torch class __lowercase ( unittest.TestCase , UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () _UpperCAmelCase : str = MaskFormerSwinConfig def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: List[Any] = MaskFormerSwinModelTester(self) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Any = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[str] = backbone_class(lowerCAmelCase__) backbone.to(lowerCAmelCase__) backbone.eval() SCREAMING_SNAKE_CASE_: Any = backbone(**lowerCAmelCase__) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCAmelCase__) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True SCREAMING_SNAKE_CASE_: str = backbone(**lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE_: Dict = backbone(**lowerCAmelCase__ , output_attentions=lowerCAmelCase__) self.assertIsNotNone(outputs.attentions)
13
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "nllb-moe" __UpperCamelCase = ["past_key_values"] __UpperCamelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _a=128_112 , _a=1_024 , _a=12 , _a=4_096 , _a=16 , _a=12 , _a=4_096 , _a=16 , _a=0.05 , _a=0.05 , _a=True , _a=True , _a="relu" , _a=1_024 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.02 , _a=2 , _a=True , _a=False , _a="float32" , _a=False , _a=128 , _a=64 , _a=4 , _a=4 , _a=0.001 , _a=0.001 , _a="all" , _a=False , _a=False , _a=1.0 , _a=0.2 , _a=1 , _a=0 , _a=2 , _a=False , **_a , ): """simple docstring""" lowerCamelCase = vocab_size lowerCamelCase = max_position_embeddings lowerCamelCase = d_model lowerCamelCase = encoder_ffn_dim lowerCamelCase = encoder_layers lowerCamelCase = encoder_attention_heads lowerCamelCase = decoder_ffn_dim lowerCamelCase = decoder_layers lowerCamelCase = decoder_attention_heads lowerCamelCase = dropout lowerCamelCase = attention_dropout lowerCamelCase = activation_dropout lowerCamelCase = activation_function lowerCamelCase = init_std lowerCamelCase = encoder_layerdrop lowerCamelCase = decoder_layerdrop lowerCamelCase = use_cache lowerCamelCase = encoder_layers lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase = router_z_loss_coef lowerCamelCase = router_aux_loss_coef lowerCamelCase = decoder_sparse_step lowerCamelCase = encoder_sparse_step lowerCamelCase = num_experts lowerCamelCase = expert_capacity lowerCamelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) lowerCamelCase = router_dtype lowerCamelCase = router_ignore_padding_tokens lowerCamelCase = batch_prioritized_routing lowerCamelCase = second_expert_policy lowerCamelCase = normalize_router_prob_before_dropping lowerCamelCase = moe_eval_capacity_token_fraction lowerCamelCase = moe_token_dropout lowerCamelCase = output_router_logits super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , **_a , )
168
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def a__ ( snake_case__ ) -> Tuple: if hor == 1_28: lowerCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase = (32, 1_28, 2_56) lowerCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase = (32, 64, 1_28, 2_56) lowerCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase = torch.load(F'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) lowerCamelCase = model.state_dict() lowerCamelCase = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_55_36, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase = UNetaDModel(**snake_case__ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() , F'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(F'hub/hopper-medium-v2/unet/hor{hor}/config.json' , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) def a__ ( ) -> Optional[int]: lowerCamelCase = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 1_28, 2_56), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_55_36, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase = model lowerCamelCase = UNetaDModel(**snake_case__ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
168
1
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A ) -> Optional[Any]: super().__init__() lowerCAmelCase_ :int = nn.ModuleList(__A ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A = None , __A = None , __A = None , __A = None , __A = False , __A = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(__A , __A , self.nets ) ): lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = controlnet( __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , ) # merge samples if i == 0: lowerCAmelCase_ , lowerCAmelCase_ :Tuple = down_samples, mid_sample else: lowerCAmelCase_ :str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__A , __A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __lowerCAmelCase ( self , __A , __A = True , __A = None , __A = False , __A = None , ) -> Optional[Any]: lowerCAmelCase_ :int = 0 lowerCAmelCase_ :Dict = save_directory for controlnet in self.nets: controlnet.save_pretrained( __A , is_main_process=__A , save_function=__A , safe_serialization=__A , variant=__A , ) idx += 1 lowerCAmelCase_ :Any = model_path_to_save + f"""_{idx}""" @classmethod def __lowerCAmelCase ( cls , __A , **__A ) -> List[Any]: lowerCAmelCase_ :int = 0 lowerCAmelCase_ :Dict = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCAmelCase_ :List[Any] = pretrained_model_path while os.path.isdir(__A ): lowerCAmelCase_ :Tuple = ControlNetModel.from_pretrained(__A , **__A ) controlnets.append(__A ) idx += 1 lowerCAmelCase_ :Dict = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(__A )} controlnets loaded from {pretrained_model_path}.""" ) if len(__A ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(__A )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(__A )
84
"""simple docstring""" from PIL import Image def _snake_case ( lowercase__ : Image , lowercase__ : float ) -> Image: '''simple docstring''' def brightness(lowercase__ : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowercase__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 __UpperCAmelCase = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
84
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) _UpperCAmelCase : Tuple = sum(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCAmelCase : Any = True for i in range(1 , s + 1 ): _UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _UpperCAmelCase : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCAmelCase : List[Any] = s - 2 * j break return diff
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) a : Dict = _symbol_database.Default() a : int = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) a : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: a : str = None a : Union[str, Any] = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" a : Tuple = 45 a : Any = 1_581 a : Optional[int] = 1_517 a : Optional[Any] = 1_570 a : Optional[Any] = 1_584 a : Optional[Any] = 1_793 a : Dict = 1_795 a : Any = 1_916 a : Tuple = 1_864 a : Tuple = 1_905 a : Dict = 1_919 a : int = 2_429 a : List[Any] = 2_208 a : Dict = 2_418 a : Union[str, Any] = 2_323 a : str = 2_407 # @@protoc_insertion_point(module_scope)
147
from __future__ import annotations from typing import Any class _a : def __init__(self, SCREAMING_SNAKE_CASE_ = 6 ) -> None: UpperCAmelCase_: Node | None = None UpperCAmelCase_: Node | None = None self.create_linked_list(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCAmelCase_: Optional[Any] = Node() UpperCAmelCase_: Optional[Any] = current_node UpperCAmelCase_: List[str] = current_node UpperCAmelCase_: List[Any] = current_node for _ in range(1, SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Optional[int] = Node() UpperCAmelCase_: Dict = current_node UpperCAmelCase_: Any = previous_node UpperCAmelCase_: Tuple = current_node UpperCAmelCase_: Optional[Any] = self.front UpperCAmelCase_: Any = previous_node def __snake_case (self ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __snake_case (self ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCAmelCase_: Optional[int] = self.rear.next if self.rear: UpperCAmelCase_: Any = data def __snake_case (self ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCAmelCase_: Union[str, Any] = self.front.data UpperCAmelCase_: Any = None return data UpperCAmelCase_: str = self.front UpperCAmelCase_: Union[str, Any] = old_front.next UpperCAmelCase_: int = old_front.data UpperCAmelCase_: Any = None return data def __snake_case (self ) -> None: if self.is_empty(): raise Exception("""Empty Queue""" ) def __snake_case (self ) -> None: if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class _a : def __init__(self ) -> None: UpperCAmelCase_: Any | None = None UpperCAmelCase_: Node | None = None UpperCAmelCase_: Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
147
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[Any] = get_logger() __lowerCamelCase : Optional[dict] = None class A__ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' super().__init__(features=A_ ) import jax from jaxlib.xla_client import Device if isinstance(A_ , A_ ): raise ValueError( F"""Expected {device} to be a `str` not {type(A_ )}, as `jaxlib.xla_extension.Device` """ "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) UpperCamelCase : int = device if isinstance(A_ , A_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase : Union[str, Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) UpperCamelCase : Any = str(jax.devices()[0] ) UpperCamelCase : Optional[Any] = jnp_array_kwargs @staticmethod def __UpperCamelCase( ): '''simple docstring''' import jax return {str(A_ ): device for device in jax.devices()} def __UpperCamelCase( self , A_ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(A_ , A_ ) and column: if all( isinstance(A_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A_ , axis=0 ) return column def __UpperCamelCase( self , A_ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(A_ , (str, bytes, type(A_ )) ): return value elif isinstance(A_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase : Any = {} if isinstance(A_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase : Any = {"dtype": jnp.intaa} else: UpperCamelCase : Any = {"dtype": jnp.intaa} elif isinstance(A_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase : Tuple = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A_ , PIL.Image.Image ): UpperCamelCase : str = np.asarray(A_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase : Optional[int] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A_ , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase( self , A_ ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A_ , "__array__" ) and not isinstance(A_ , jax.Array ): UpperCamelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A_ ) for substruct in data_struct] ) elif isinstance(A_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A_ ) for substruct in data_struct] ) return self._tensorize(A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' return map_nested(self._recursive_tensorize , A_ , map_list=A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.numpy_arrow_extractor().extract_row(A_ ) UpperCamelCase : Tuple = self.python_features_decoder.decode_row(A_ ) return self.recursive_tensorize(A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_column(A_ ) UpperCamelCase : List[str] = self.python_features_decoder.decode_column(A_ , pa_table.column_names[0] ) UpperCamelCase : Any = self.recursive_tensorize(A_ ) UpperCamelCase : int = self._consolidate(A_ ) return column def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.numpy_arrow_extractor().extract_batch(A_ ) UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(A_ ) UpperCamelCase : Dict = self.recursive_tensorize(A_ ) for column_name in batch: UpperCamelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
140
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> list[float]: UpperCamelCase , UpperCamelCase : List[Any] = coefficient_matrix.shape UpperCamelCase , UpperCamelCase : Optional[int] = constant_matrix.shape if rowsa != colsa: UpperCamelCase : List[Any] = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if colsa != 1: UpperCamelCase : Any = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if rowsa != rowsa: UpperCamelCase : Tuple = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowerCAmelCase ) if len(_lowerCAmelCase ) != rowsa: UpperCamelCase : Any = ( "Number of initial values must be equal to number of rows in coefficient " F"""matrix but received {len(_lowerCAmelCase )} and {rowsa}""" ) raise ValueError(_lowerCAmelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) UpperCamelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) UpperCamelCase , UpperCamelCase : str = table.shape strictly_diagonally_dominant(_lowerCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_lowerCAmelCase ): UpperCamelCase : Optional[Any] = [] for row in range(_lowerCAmelCase ): UpperCamelCase : Optional[int] = 0 for col in range(_lowerCAmelCase ): if col == row: UpperCamelCase : Union[str, Any] = table[row][col] elif col == cols - 1: UpperCamelCase : List[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCamelCase : Dict = (temp + val) / denom new_val.append(_lowerCAmelCase ) UpperCamelCase : List[str] = new_val return [float(_lowerCAmelCase ) for i in new_val] def A_ ( _lowerCAmelCase ) -> bool: UpperCamelCase , UpperCamelCase : Dict = table.shape UpperCamelCase : List[Any] = True for i in range(0 , _lowerCAmelCase ): UpperCamelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
140
1
class A_ : def __init__( self : List[str] , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: __lowerCAmelCase: Tuple = size __lowerCAmelCase: Union[str, Any] = [0] * size __lowerCAmelCase: int = [0] * size @staticmethod def UpperCAmelCase ( UpperCAmelCase : Any ) -> List[str]: return index | (index + 1) @staticmethod def UpperCAmelCase ( UpperCAmelCase : Optional[Any] ) -> Optional[int]: return (index & (index + 1)) - 1 def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str ) -> Tuple: __lowerCAmelCase: str = value while index < self.size: __lowerCAmelCase: Optional[int] = self.get_prev(_a ) + 1 if current_left_border == index: __lowerCAmelCase: str = value else: __lowerCAmelCase: Optional[Any] = max(_a , _a , _a ) __lowerCAmelCase: int = self.get_next(_a ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> List[Any]: right -= 1 # Because of right is exclusive __lowerCAmelCase: Any = 0 while left <= right: __lowerCAmelCase: List[Any] = self.get_prev(_a ) if left <= current_left: __lowerCAmelCase: Tuple = max(_a , self.tree[right] ) __lowerCAmelCase: int = current_left else: __lowerCAmelCase: Optional[Any] = max(_a , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
322
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : int = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" __magic_name__ : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert("RGB" ) return image def lowerCAmelCase_ ( _snake_case : str ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : List[str] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def lowerCAmelCase_ ( _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Optional[Any] ) -> int: '''simple docstring''' __magic_name__ : Tuple = dct.pop(_snake_case ) __magic_name__ : int = val def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Optional[Any] ) -> Dict: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __magic_name__ : List[Any] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __magic_name__ : Optional[Any] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __magic_name__ : Optional[int] = torch.cat((q_bias, torch.zeros_like(_snake_case , requires_grad=_snake_case ), v_bias) ) __magic_name__ : Union[str, Any] = qkv_bias def lowerCAmelCase_ ( _snake_case : Dict , _snake_case : str ) -> int: '''simple docstring''' __magic_name__ : List[Any] = 364 if "coco" in model_name else 224 __magic_name__ : Union[str, Any] = BlipaVisionConfig(image_size=_snake_case ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __magic_name__ : List[str] = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=_snake_case ).to_dict() elif "opt-6.7b" in model_name: __magic_name__ : Any = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=_snake_case ).to_dict() elif "t5-xl" in model_name: __magic_name__ : Dict = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __magic_name__ : int = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() __magic_name__ : List[Any] = BlipaConfig(vision_config=_snake_case , text_config=_snake_case ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : str=None , _snake_case : Dict=False ) -> List[Any]: '''simple docstring''' __magic_name__ : Optional[int] = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) __magic_name__ : List[Any] = tokenizer("\n" , add_special_tokens=_snake_case ).input_ids[0] __magic_name__ , __magic_name__ : Tuple = get_blipa_config(_snake_case , eos_token_id=_snake_case ) __magic_name__ : Union[str, Any] = BlipaForConditionalGeneration(_snake_case ).eval() __magic_name__ : Any = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } __magic_name__ , __magic_name__ : Union[str, Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) __magic_name__ : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = load_model_and_preprocess( name=_snake_case , model_type=_snake_case , is_eval=_snake_case , device=_snake_case ) original_model.eval() print("Done!" ) # update state dict keys __magic_name__ : Dict = original_model.state_dict() __magic_name__ : str = create_rename_keys(_snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __magic_name__ : Any = state_dict.pop(_snake_case ) if key.startswith("Qformer.bert" ): __magic_name__ : Optional[int] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: __magic_name__ : Any = key.replace("self" , "attention" ) if "opt_proj" in key: __magic_name__ : Union[str, Any] = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: __magic_name__ : Optional[int] = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): __magic_name__ : List[str] = key.replace("opt" , "language" ) if key.startswith("t5" ): __magic_name__ : Tuple = key.replace("t5" , "language" ) __magic_name__ : Dict = val # read in qv biases read_in_q_v_bias(_snake_case , _snake_case ) __magic_name__ , __magic_name__ : Tuple = hf_model.load_state_dict(_snake_case , strict=_snake_case ) assert len(_snake_case ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __magic_name__ : List[Any] = load_demo_image() __magic_name__ : Tuple = vis_processors["eval"](_snake_case ).unsqueeze(0 ).to(_snake_case ) __magic_name__ : Dict = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(_snake_case ) # create processor __magic_name__ : Optional[Any] = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=_snake_case , image_std=_snake_case ) __magic_name__ : Dict = BlipaProcessor(image_processor=_snake_case , tokenizer=_snake_case ) __magic_name__ : Union[str, Any] = processor(images=_snake_case , return_tensors="pt" ).pixel_values.to(_snake_case ) # make sure processor creates exact same pixel values assert torch.allclose(_snake_case , _snake_case ) original_model.to(_snake_case ) hf_model.to(_snake_case ) with torch.no_grad(): if "opt" in model_name: __magic_name__ : List[Any] = original_model({"image": original_pixel_values, "text_input": [""]} ).logits __magic_name__ : Optional[int] = hf_model(_snake_case , _snake_case ).logits else: __magic_name__ : int = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits __magic_name__ : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __magic_name__ : List[str] = hf_model(_snake_case , _snake_case , labels=_snake_case ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __magic_name__ : List[str] = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=_snake_case ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __magic_name__ : Tuple = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=_snake_case ) else: # cast to same type __magic_name__ : str = logits.dtype assert torch.allclose(original_logits.to(_snake_case ) , _snake_case , atol=1E-2 ) print("Looks ok!" ) print("Generating a caption..." ) __magic_name__ : Optional[int] = "" __magic_name__ : Dict = tokenizer(_snake_case , return_tensors="pt" ).input_ids.to(_snake_case ) __magic_name__ : int = original_model.generate({"image": original_pixel_values} ) __magic_name__ : Optional[Any] = hf_model.generate( _snake_case , _snake_case , do_sample=_snake_case , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , _snake_case ) __magic_name__ : Tuple = input_ids.shape[1] __magic_name__ : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_snake_case ) __magic_name__ : Union[str, Any] = [text.strip() for text in output_text] print("HF generation:" , _snake_case ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() snake_case : Union[str, Any] = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) snake_case : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
281
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ = 1_60_00 ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = int(round(sample_rate * max_length ) ) if len(snake_case__ ) <= sample_length: return wav _SCREAMING_SNAKE_CASE = randint(0 ,len(snake_case__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCAmelCase : __snake_case : Optional[str] = field(default=_UpperCAmelCase ,metadata={"help": "Name of a dataset from the datasets package"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A file containing the training audio paths and labels."} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A file containing the validation audio paths and labels."} ) __snake_case : str = field( default="train" ,metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } ,) __snake_case : str = field( default="validation" ,metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } ,) __snake_case : str = field( default="audio" ,metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} ,) __snake_case : str = field( default="label" ,metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __snake_case : float = field( default=20 ,metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} ,) @dataclass class __UpperCAmelCase : __snake_case : str = field( default="facebook/wav2vec2-base" ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ,) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) __snake_case : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Name or path of preprocessor config."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) __snake_case : Optional[bool] = field( default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def UpperCamelCase ( self: List[str] ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , UpperCAmelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def __lowerCamelCase ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" ,snake_case__ ,snake_case__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. _SCREAMING_SNAKE_CASE = DatasetDict() _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--label_column_name` to the correct text column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _SCREAMING_SNAKE_CASE = raw_datasets.cast_column( data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _SCREAMING_SNAKE_CASE = feature_extractor.model_input_names[0] def train_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [] for audio in batch[data_args.audio_column_name]: _SCREAMING_SNAKE_CASE = random_subsample( audio["""array"""] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(snake_case__ ) _SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [audio["""array"""] for audio in batch[data_args.audio_column_name]] _SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features[data_args.label_column_name].names _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = {}, {} for i, label in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = str(snake_case__ ) _SCREAMING_SNAKE_CASE = label # Load the accuracy metric from the datasets package _SCREAMING_SNAKE_CASE = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case__ ): _SCREAMING_SNAKE_CASE = np.argmax(eval_pred.predictions ,axis=1 ) return metric.compute(predictions=snake_case__ ,references=eval_pred.label_ids ) _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(snake_case__ ) ,labelaid=snake_case__ ,idalabel=snake_case__ ,finetuning_task="""audio-classification""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=snake_case__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(snake_case__ ,output_all_columns=snake_case__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(snake_case__ ,output_all_columns=snake_case__ ) # Initialize our trainer _SCREAMING_SNAKE_CASE = Trainer( model=snake_case__ ,args=snake_case__ ,train_dataset=raw_datasets["""train"""] if training_args.do_train else None ,eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None ,compute_metrics=snake_case__ ,tokenizer=snake_case__ ,) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE = last_checkpoint _SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics("""train""" ,train_result.metrics ) trainer.save_metrics("""train""" ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics("""eval""" ,snake_case__ ) trainer.save_metrics("""eval""" ,snake_case__ ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) if __name__ == "__main__": main()
125
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a_ : str = logging.get_logger(__name__) def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :List[str]=False ) -> str: '''simple docstring''' _a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'transformer.blocks.{i}.norm1.weight', f'vilt.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm1.bias', f'vilt.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.weight', f'vilt.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.bias', f'vilt.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.norm2.weight', f'vilt.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm2.bias', f'vilt.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'transformer.blocks.{i}.mlp.fc1.weight', f'vilt.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc1.bias', f'vilt.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.weight', f'vilt.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.bias', f'vilt.encoder.layer.{i}.output.dense.bias') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _A (lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _a = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.weight' ) _a = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _a = in_proj_weight[ : config.hidden_size, : ] _a = in_proj_bias[: config.hidden_size] _a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a = in_proj_weight[ -config.hidden_size :, : ] _a = in_proj_bias[-config.hidden_size :] def _A (lowerCAmelCase__ :str ) -> Tuple: '''simple docstring''' _a = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def _A (lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str ) -> Optional[int]: '''simple docstring''' _a = dct.pop(lowerCAmelCase__ ) _a = val @torch.no_grad() def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :List[str] ) -> str: '''simple docstring''' _a = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=lowerCAmelCase__ ) _a = False _a = False _a = False _a = False if "vqa" in checkpoint_url: _a = True _a = 31_29 _a = 'huggingface/label-files' _a = 'vqa2-id2label.json' _a = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) _a = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} _a = ViltForQuestionAnswering(lowerCAmelCase__ ) elif "nlvr" in checkpoint_url: _a = True _a = 2 _a = {0: 'False', 1: 'True'} _a = {v: k for k, v in config.idalabel.items()} _a = 3 _a = ViltForImagesAndTextClassification(lowerCAmelCase__ ) elif "irtr" in checkpoint_url: _a = True _a = ViltForImageAndTextRetrieval(lowerCAmelCase__ ) elif "mlm_itm" in checkpoint_url: _a = True _a = ViltForMaskedLM(lowerCAmelCase__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys _a = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu' )['state_dict'] _a = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) if mlm_model or irtr_model: _a = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: _a , _a = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCAmelCase__ ) # Define processor _a = ViltImageProcessor(size=3_84 ) _a = BertTokenizer.from_pretrained('bert-base-uncased' ) _a = ViltProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) # Forward pass on example inputs (image + text) if nlvr_model: _a = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowerCAmelCase__ ).raw ) _a = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowerCAmelCase__ ).raw ) _a = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) _a = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) _a = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) _a = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _a = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowerCAmelCase__ ).raw ) if mlm_model: _a = 'a bunch of [MASK] laying on a [MASK].' else: _a = 'How many cats are there?' _a = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) _a = model(**lowerCAmelCase__ ) # Verify outputs if mlm_model: _a = torch.Size([1, 11, 3_05_22] ) _a = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) # verify masked token prediction equals "cats" _a = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _a = torch.Size([1, 31_29] ) _a = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) # verify vqa prediction equals "2" _a = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _a = torch.Size([1, 2] ) _a = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) a_ : Optional[int] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
168
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) a_ : str = _symbol_database.Default() a_ : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) a_ : List[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: a_ : List[str] = None a_ : Tuple = B"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" a_ : Optional[int] = 4_5 a_ : Union[str, Any] = 1_5_8_1 a_ : List[Any] = 1_5_1_7 a_ : str = 1_5_7_0 a_ : List[Any] = 1_5_8_4 a_ : str = 1_7_9_3 a_ : List[str] = 1_7_9_5 a_ : Any = 1_9_1_6 a_ : List[str] = 1_8_6_4 a_ : Optional[Any] = 1_9_0_5 a_ : int = 1_9_1_9 a_ : int = 2_4_2_9 a_ : Dict = 2_2_0_8 a_ : Any = 2_4_1_8 a_ : Union[str, Any] = 2_3_2_3 a_ : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
168
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class SCREAMING_SNAKE_CASE_ : def __init__( self : str , lowerCamelCase_ : str , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : int=7 , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : int=True , lowerCamelCase_ : List[Any]=99 , lowerCamelCase_ : Optional[int]=32 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : str=4 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : Union[str, Any]=512 , lowerCamelCase_ : Tuple=16 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : List[Any]=0.0_2 , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple="None" , lowerCamelCase_ : str=3 , lowerCamelCase_ : Dict=4 , lowerCamelCase_ : List[str]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = relative_attention UpperCamelCase = position_biased_input UpperCamelCase = pos_att_type UpperCamelCase = scope def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Dict ): """simple docstring""" UpperCamelCase = TFDebertaVaModel(config=lowerCamelCase_ ) UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase = [input_ids, input_mask] UpperCamelCase = model(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict ): """simple docstring""" UpperCamelCase = TFDebertaVaForMaskedLM(config=lowerCamelCase_ ) UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFDebertaVaForSequenceClassification(config=lowerCamelCase_ ) UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFDebertaVaForTokenClassification(config=lowerCamelCase_ ) UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = TFDebertaVaForQuestionAnswering(config=lowerCamelCase_ ) UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = TFDebertaVaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(lowerCamelCase_ ) @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" pass @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) UpperCamelCase = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] UpperCamelCase = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1E-4 )
165
import argparse _SCREAMING_SNAKE_CASE = """docs/source/_static/js/custom.js""" def lowercase( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' with open(UpperCamelCase_ , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 UpperCamelCase = f"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f""" \"v{version}\": \"v{version}\",\n""" with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") _SCREAMING_SNAKE_CASE = parser.parse_args() update_custom_js(args.version)
165
1
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __A : int = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): def __init__( self :str ,*_UpperCamelCase :Union[str, Any] ,**_UpperCamelCase :Tuple ): warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
8
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str=True , lowerCamelCase_ :str="pt" ): '''simple docstring''' snake_case_ : Tuple = {"""add_prefix_space""": True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(""" """ ) else {} snake_case_ : Union[str, Any] = padding_side return tokenizer( [line] , max_length=lowerCamelCase_ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Any=None , ): '''simple docstring''' snake_case_ : Dict = input_ids.ne(lowerCamelCase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any="train" ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :int=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Optional[int]="" ,): super().__init__() snake_case_ : List[str] = Path(_UpperCamelCase ).joinpath(type_path + """.source""" ) snake_case_ : int = Path(_UpperCamelCase ).joinpath(type_path + """.target""" ) snake_case_ : Optional[int] = self.get_char_lens(self.src_file ) snake_case_ : List[str] = max_source_length snake_case_ : str = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' snake_case_ : str = tokenizer snake_case_ : str = prefix if n_obs is not None: snake_case_ : int = self.src_lens[:n_obs] snake_case_ : Tuple = src_lang snake_case_ : str = tgt_lang def __len__( self :Any ): return len(self.src_lens ) def __getitem__( self :List[str] ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Optional[int] = index + 1 # linecache starts at 1 snake_case_ : Dict = self.prefix + linecache.getline(str(self.src_file ) ,_UpperCamelCase ).rstrip("""\n""" ) snake_case_ : List[Any] = linecache.getline(str(self.tgt_file ) ,_UpperCamelCase ).rstrip("""\n""" ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ : int = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer ) snake_case_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer snake_case_ : Optional[Any] = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_source_length ,"""right""" ) snake_case_ : Tuple = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_target_length ,"""right""" ) snake_case_ : int = source_inputs["""input_ids"""].squeeze() snake_case_ : str = target_inputs["""input_ids"""].squeeze() snake_case_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def a__ ( _UpperCamelCase :str ): return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def a__ ( self :Optional[int] ,_UpperCamelCase :List[str] ): snake_case_ : Optional[Any] = torch.stack([x["""input_ids"""] for x in batch] ) snake_case_ : List[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) snake_case_ : Union[str, Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] ) snake_case_ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ : Optional[int] = trim_batch(_UpperCamelCase ,_UpperCamelCase ) snake_case_ , snake_case_ : Dict = trim_batch(_UpperCamelCase ,_UpperCamelCase ,attention_mask=_UpperCamelCase ) snake_case_ : Optional[int] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __A : List[Any] = getLogger(__name__) def UpperCAmelCase ( lowerCamelCase_ :List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(lowerCamelCase_ ) ) def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : int = get_git_info() save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , """git_log.json""" ) ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int]=4 , **lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' with open(lowerCamelCase_ , """w""" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' with open(lowerCamelCase_ ) as f: return json.load(lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = git.Repo(search_parent_directories=lowerCamelCase_ ) snake_case_ : List[str] = { """repo_id""": str(lowerCamelCase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase ( lowerCamelCase_ :Callable , lowerCamelCase_ :Iterable ): '''simple docstring''' return list(map(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , """wb""" ) as f: return pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' def remove_articles(lowerCamelCase_ :str ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , lowerCamelCase_ ) def white_space_fix(lowerCamelCase_ :Optional[Any] ): return " ".join(text.split() ) def remove_punc(lowerCamelCase_ :Tuple ): snake_case_ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase_ :Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : List[Any] = normalize_answer(lowerCamelCase_ ).split() snake_case_ : Optional[int] = normalize_answer(lowerCamelCase_ ).split() snake_case_ : List[Any] = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ ) snake_case_ : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 snake_case_ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case_ : Union[str, Any] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case_ : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ): '''simple docstring''' assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) snake_case_ : Optional[int] = 0 for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ): em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: em /= len(lowerCamelCase_ ) return {"em": em} def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ : Optional[int] = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) continue snake_case_ : str = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p] setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) return hparams, config
8
1
def UpperCamelCase ( __lowercase : int = 10_00 ): '''simple docstring''' A_ : Tuple = 2**power A_ : Any = 0 while n: A_ , A_ : Optional[int] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
140
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
140
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Tuple ={ "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] =[ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _lowercase : Dict =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
266
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase : List[Any] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int =["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowercase : Tuple =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
266
1
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer A_ : int = "bart" A_ : Union[str, Any] = True @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ ) def A ( ): '''simple docstring''' if LOAD_DENSE_INDEX: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) SCREAMING_SNAKE_CASE__ = qar_model.eval() else: SCREAMING_SNAKE_CASE__ = (None, None) if MODEL_TYPE == "bart": SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) SCREAMING_SNAKE_CASE__ = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) SCREAMING_SNAKE_CASE__ = sas_model.eval() else: SCREAMING_SNAKE_CASE__ = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ ) def A ( ): '''simple docstring''' if LOAD_DENSE_INDEX: SCREAMING_SNAKE_CASE__ = faiss.StandardGpuResources() SCREAMING_SNAKE_CASE__ = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )['''train'''] SCREAMING_SNAKE_CASE__ = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 1_28) , ) SCREAMING_SNAKE_CASE__ = faiss.IndexFlatIP(1_28 ) SCREAMING_SNAKE_CASE__ = faiss.index_cpu_to_gpu(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ ) wikiaab_gpu_index_flat.add(SCREAMING_SNAKE_CASE__ ) # TODO fix for larger GPU else: SCREAMING_SNAKE_CASE__ = (None, None) SCREAMING_SNAKE_CASE__ = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) SCREAMING_SNAKE_CASE__ = elia['''train_eli5'''] SCREAMING_SNAKE_CASE__ = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 1_28) ) SCREAMING_SNAKE_CASE__ = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(SCREAMING_SNAKE_CASE__ ) return (elia_train, eli5_train_q_index) A_ : Any = load_indexes() A_ : str = load_models() A_ : Optional[int] = load_train_data() def A ( snake_case__ , snake_case__=10 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = embed_questions_for_retrieval([question] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = eli5_train_q_index.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = [elia_train[int(SCREAMING_SNAKE_CASE__ )] for i in I[0]] return nn_examples def A ( snake_case__ , snake_case__="wiki40b" , snake_case__="dense" , snake_case__=10 ): '''simple docstring''' if source == "none": SCREAMING_SNAKE_CASE__ = (''' <P> '''.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": SCREAMING_SNAKE_CASE__ = query_qa_dense_index( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ = query_es_index( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index_name="""english_wiki40b_snippets_100w""" , n_results=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] SCREAMING_SNAKE_CASE__ = '''question: {} context: {}'''.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case__ : None), } ) def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__=64 , snake_case__=2_56 , snake_case__=False , snake_case__=2 , snake_case__=0.95 , snake_case__=0.8 ): '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE__ = qa_sas_generate( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_answers=1 , num_beams=SCREAMING_SNAKE_CASE__ , min_len=SCREAMING_SNAKE_CASE__ , max_len=SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ , temp=SCREAMING_SNAKE_CASE__ , top_p=SCREAMING_SNAKE_CASE__ , top_k=SCREAMING_SNAKE_CASE__ , max_input_length=10_24 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar A_ : int = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" A_ : Tuple = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia A_ : Dict = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) A_ : Any = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] A_ : Optional[Any] = st.sidebar.checkbox("Demo options") if demo_options: A_ : List[str] = st.sidebar.selectbox( "", action_list, index=3, ) A_ : Optional[Any] = action_list.index(action_st) A_ : Dict = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) A_ : str = show_type == "Show full text of passages" else: A_ : str = 3 A_ : str = True A_ : Optional[Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: A_ : Any = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) A_ : List[str] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) A_ : Tuple = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: A_ : List[Any] = "wiki40b" A_ : str = "dense" A_ : Tuple = "beam" A_ : Dict = 2 A_ : str = 64 A_ : str = 256 A_ : int = None A_ : str = None A_ : List[str] = st.sidebar.checkbox("Generation options") if generate_options: A_ : Union[str, Any] = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) A_ : Optional[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) A_ : Union[str, Any] = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) A_ : Dict = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": A_ : List[Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: A_ : str = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) A_ : Optional[int] = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) A_ : Optional[int] = None # start main text A_ : int = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] A_ : Union[str, Any] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": A_ : Optional[Any] = st.text_input("Enter your question here:", "") else: A_ : Any = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": A_ : List[str] = make_support(question, source=wiki_source, method="dense", n_results=10) A_ : int = make_support(question, source=wiki_source, method="sparse", n_results=10) A_ : List[str] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] A_ : Optional[Any] = support_list[:10] A_ : List[str] = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: A_ : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: A_ : Any = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): A_ : int = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) A_ : Union[str, Any] = res[1].strip() if sec_titles == "": A_ : Optional[int] = "[{}]({})".format(res[0], wiki_url) else: A_ : List[Any] = sec_titles.split(" & ") A_ : Union[str, Any] = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: A_ : Optional[int] = find_nearest_training(question) A_ : List[Any] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) A_ : List[str] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) A_ : Dict = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
165
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __a : __a : int = BlenderbotConfig __a : Any = {} __a : str = "gelu" def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=13 , __magic_name__ : Any=7 , __magic_name__ : Optional[Any]=True , __magic_name__ : str=False , __magic_name__ : Any=99 , __magic_name__ : List[Any]=32 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : List[Any]=4 , __magic_name__ : List[str]=37 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=20 , __magic_name__ : List[str]=2 , __magic_name__ : Any=1 , __magic_name__ : Union[str, Any]=0 , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Union[str, Any] = pad_token_id UpperCAmelCase_ : Tuple = bos_token_id def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ : str = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ : str = prepare_blenderbot_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) return config, inputs_dict def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = TFBlenderbotModel(config=__magic_name__ ).get_decoder() UpperCAmelCase_ : Union[str, Any] = inputs_dict['''input_ids'''] UpperCAmelCase_ : Any = input_ids[:1, :] UpperCAmelCase_ : Tuple = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase_ : List[str] = inputs_dict['''head_mask'''] UpperCAmelCase_ : Any = 1 # first forward pass UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , use_cache=__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ )[0] UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ : Union[str, Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ : Any = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-3 ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Tuple=None, SCREAMING_SNAKE_CASE__ : Any=None, ) -> Any: if attention_mask is None: UpperCAmelCase_ : List[str] = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: UpperCAmelCase_ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Tuple = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __a : Tuple = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __a : List[str] = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __a : List[str] = True __a : Any = False __a : Optional[int] = False def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" UpperCAmelCase_ : Any = TFBlenderbotModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) @require_tokenizers @require_tf class __a (unittest.TestCase ): __a : Union[str, Any] = ["My friends are cool but they eat too many carbs."] __a : List[Any] = "facebook/blenderbot-400M-distill" @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[Any] = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase_ : List[Any] = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase_ : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__magic_name__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
125
0
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self , a__ , a__=2 , a__=8 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=16 , a__=5 , a__=2 , a__=36 , a__="gelu" , a__=0.0 , a__=0.0 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : List[str] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Optional[int] = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Union[str, Any] = use_token_type_ids _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : List[Any] = type_vocab_size _lowerCAmelCase : int = type_sequence_label_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : str = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : Optional[int] = scope def __A ( self ): _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: _lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.get_config() _lowerCAmelCase : str = 300 return config def __A ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : int = self.prepare_config_and_inputs() _lowerCAmelCase : Dict = True _lowerCAmelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = MraModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model(a__ , attention_mask=a__ , token_type_ids=a__ ) _lowerCAmelCase : str = model(a__ , token_type_ids=a__ ) _lowerCAmelCase : Tuple = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : List[Any] = True _lowerCAmelCase : List[str] = MraModel(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model( a__ , attention_mask=a__ , token_type_ids=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) _lowerCAmelCase : Union[str, Any] = model( a__ , attention_mask=a__ , token_type_ids=a__ , encoder_hidden_states=a__ , ) _lowerCAmelCase : List[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = MraForMaskedLM(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = MraForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model( a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : Optional[int] = MraForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self.num_labels _lowerCAmelCase : Optional[int] = MraForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = self.num_choices _lowerCAmelCase : Tuple = MraForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Union[str, Any] = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ): _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : int = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Any = False _UpperCamelCase : Any = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[Any] = () def __A ( self ): _lowerCAmelCase : List[str] = MraModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : str = type self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) @slow def __A ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = MraModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ): return @require_torch class __A ( unittest.TestCase ): @slow def __A ( self ): _lowerCAmelCase : Dict = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) _lowerCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase : List[Any] = model(a__ )[0] _lowerCAmelCase : Any = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , a__ ) _lowerCAmelCase : str = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) ) @slow def __A ( self ): _lowerCAmelCase : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) _lowerCAmelCase : int = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(a__ )[0] _lowerCAmelCase : str = 50265 _lowerCAmelCase : Optional[int] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , a__ ) _lowerCAmelCase : int = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) ) @slow def __A ( self ): _lowerCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) _lowerCAmelCase : str = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase : Any = model(a__ )[0] _lowerCAmelCase : List[Any] = 50265 _lowerCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , a__ ) _lowerCAmelCase : List[str] = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) )
126
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] )
126
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A ( snake_case__ ): '''simple docstring''' if "img_encoder.pos_embed" in name: SCREAMING_SNAKE_CASE__ = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: SCREAMING_SNAKE_CASE__ = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: SCREAMING_SNAKE_CASE__ = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: SCREAMING_SNAKE_CASE__ = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: SCREAMING_SNAKE_CASE__ = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: SCREAMING_SNAKE_CASE__ = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: SCREAMING_SNAKE_CASE__ = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: SCREAMING_SNAKE_CASE__ = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: SCREAMING_SNAKE_CASE__ = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: SCREAMING_SNAKE_CASE__ = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: SCREAMING_SNAKE_CASE__ = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: SCREAMING_SNAKE_CASE__ = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: SCREAMING_SNAKE_CASE__ = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: SCREAMING_SNAKE_CASE__ = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: SCREAMING_SNAKE_CASE__ = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: SCREAMING_SNAKE_CASE__ = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def A ( snake_case__ , snake_case__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(snake_case__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE__ = key.split(""".""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = int(key_split[2] ), int(key_split[4] ) SCREAMING_SNAKE_CASE__ = config.vision_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE__ = val[:dim, :] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE__ = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ = val[:dim] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2] SCREAMING_SNAKE_CASE__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE__ = key.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(key_split[3] ) SCREAMING_SNAKE_CASE__ = config.text_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE__ = val[:dim, :] SCREAMING_SNAKE_CASE__ = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ = val[:dim] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2] SCREAMING_SNAKE_CASE__ = val[-dim:] else: SCREAMING_SNAKE_CASE__ = rename_key(snake_case__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): SCREAMING_SNAKE_CASE__ = val.squeeze_() else: SCREAMING_SNAKE_CASE__ = val return orig_state_dict def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def A ( snake_case__ , snake_case__ , snake_case__="groupvit-gcc-yfcc" , snake_case__=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = GroupViTConfig() SCREAMING_SNAKE_CASE__ = GroupViTModel(snake_case__ ).eval() SCREAMING_SNAKE_CASE__ = torch.load(snake_case__ , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE__ = convert_state_dict(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(snake_case__ ) == 0) # verify result SCREAMING_SNAKE_CASE__ = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=snake_case__ , padding=snake_case__ , return_tensors="""pt""" ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**snake_case__ ) if model_name == "groupvit-gcc-yfcc": SCREAMING_SNAKE_CASE__ = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": SCREAMING_SNAKE_CASE__ = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , snake_case__ , atol=1e-3 ) processor.save_pretrained(snake_case__ ) model.save_pretrained(snake_case__ ) print("""Successfully saved processor and model to""" , snake_case__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(snake_case__ , organization="""nielsr""" ) model.push_to_hub(snake_case__ , organization="""nielsr""" ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) A_ : Tuple = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
165
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType A_ : Dict = logging.get_logger(__name__) A_ : Any = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : Tuple = 'deberta-v2' def __init__( self : Any , __UpperCAmelCase : Optional[Any]=1_2_8_1_0_0 , __UpperCAmelCase : Optional[Any]=1_5_3_6 , __UpperCAmelCase : List[Any]=2_4 , __UpperCAmelCase : str=2_4 , __UpperCAmelCase : Optional[int]=6_1_4_4 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[Any]=5_1_2 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : Any=1e-7 , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Any=-1 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Union[str, Any]="gelu" , **__UpperCAmelCase : Any , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = relative_attention SCREAMING_SNAKE_CASE__ = max_relative_positions SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = position_biased_input # Backwards compatibility if type(__UpperCAmelCase ) == str: SCREAMING_SNAKE_CASE__ = [x.strip() for x in pos_att_type.lower().split("""|""" )] SCREAMING_SNAKE_CASE__ = pos_att_type SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kwargs.get("""pooler_hidden_size""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pooler_dropout SCREAMING_SNAKE_CASE__ = pooler_hidden_act class lowerCamelCase (A__ ): @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 1_2 def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs(preprocessor=__UpperCAmelCase , framework=__UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
165
1
from math import isqrt def __UpperCamelCase ( _lowerCAmelCase ) -> list[int]: """simple docstring""" A : Any = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): A : Dict = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def __UpperCamelCase ( _lowerCAmelCase = 10**8 ) -> int: """simple docstring""" A : Optional[Any] = calculate_prime_numbers(max_number // 2 ) A : List[str] = 0 A : Optional[Any] = 0 A : Optional[Any] = len(_lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
115
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __UpperCamelCase ( ) -> Tuple: """simple docstring""" A , A : Tuple = 9, 14 # noqa: F841 A : Optional[int] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A : int = defaultdict(_lowerCAmelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) A : List[str] = mst(_lowerCAmelCase ) A : str = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: A : Dict = tuple(answer[:2] ) A : List[str] = tuple(edge[::-1] ) assert edge in result or reverse in result
115
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Tuple , *_UpperCamelCase : Any , **_UpperCamelCase : Optional[Any] ) ->None: warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
8
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = nums.pop(0 ) snake_case_ = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def backtrack(SCREAMING_SNAKE_CASE__ ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_, snake_case_ = nums[i], nums[start] backtrack(start + 1 ) snake_case_, snake_case_ = nums[i], nums[start] # backtrack snake_case_ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
8
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' __UpperCamelCase :List[Any] = {} __UpperCamelCase :List[str] = tokenizer(example['''content'''] , truncation=lowerCAmelCase__ )['''input_ids'''] __UpperCamelCase :List[Any] = len(example['''content'''] ) / len(output['''input_ids'''] ) return output __lowercase = HfArgumentParser(PretokenizationArguments) __lowercase = parser.parse_args() if args.num_workers is None: __lowercase = multiprocessing.cpu_count() __lowercase = AutoTokenizer.from_pretrained(args.tokenizer_dir) __lowercase = time.time() __lowercase = load_dataset(args.dataset_name, split='''train''') print(F'Dataset loaded in {time.time()-t_start:.2f}s') __lowercase = time.time() __lowercase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') __lowercase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
359
import os import pytest from transformers.dynamic_module_utils import get_imports __lowercase = ''' import os ''' __lowercase = ''' def foo(): import os return False ''' __lowercase = ''' def foo(): def bar(): if True: import os return False return bar() ''' __lowercase = ''' import os try: import bar except ImportError: raise ValueError() ''' __lowercase = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' __lowercase = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' __lowercase = ''' import os try: import bar except ImportError as e: raise ValueError() ''' __lowercase = ''' import os try: import bar except: raise ValueError() ''' __lowercase = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' __lowercase = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' __lowercase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = os.path.join(SCREAMING_SNAKE_CASE , '''test_file.py''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as _tmp_file: _tmp_file.write(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = get_imports(SCREAMING_SNAKE_CASE ) assert parsed_imports == ["os"]
105
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: __A = float(__UpperCamelCase ) except ValueError: raise ValueError('''Please enter a valid number''' ) __A = decimal - int(__UpperCamelCase ) if fractional_part == 0: return int(__UpperCamelCase ), 1 else: __A = len(str(__UpperCamelCase ).split('''.''' )[1] ) __A = int(decimal * (1_0**number_of_frac_digits) ) __A = 1_0**number_of_frac_digits __A , __A = denominator, numerator while True: __A = dividend % divisor if remainder == 0: break __A , __A = divisor, remainder __A , __A = numerator / divisor, denominator / divisor return int(__UpperCamelCase ), int(__UpperCamelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
266
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase_ = random.Random() if is_torch_available(): import torch def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=1.0 , __UpperCamelCase=None , __UpperCamelCase=None ): """simple docstring""" if rng is None: __A = global_rng __A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any, _lowerCamelCase : List[str], _lowerCamelCase : Any=7, _lowerCamelCase : Optional[int]=4_00, _lowerCamelCase : Optional[int]=20_00, _lowerCamelCase : Dict=1, _lowerCamelCase : Optional[Any]=0.0, _lowerCamelCase : int=1_60_00, _lowerCamelCase : Optional[int]=True, _lowerCamelCase : Dict=True, ): '''simple docstring''' __A = parent __A = batch_size __A = min_seq_length __A = max_seq_length __A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __A = feature_size __A = padding_value __A = sampling_rate __A = return_attention_mask __A = do_normalize def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[Any]=False, _lowerCamelCase : int=False ): '''simple docstring''' def _flatten(_lowerCamelCase : List[str] ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: __A = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __A = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: __A = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : int = ASTFeatureExtractor def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = ASTFeatureExtractionTester(self ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus __A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __A = [floats_list((1, x) )[0] for x in range(8_00, 14_00, 2_00 )] __A = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __A = feat_extract(speech_inputs[0], return_tensors='''np''' ).input_values __A = feat_extract(np_speech_inputs[0], return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) # Test batched __A = feat_extract(_lowerCamelCase, padding=_lowerCamelCase, return_tensors='''np''' ).input_values __A = feat_extract(_lowerCamelCase, padding=_lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase, _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __A = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __A = np.asarray(_lowerCamelCase ) __A = feat_extract(_lowerCamelCase, return_tensors='''np''' ).input_values __A = feat_extract(_lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase, _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' import torch __A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A = np.random.rand(1_00 ).astype(np.floataa ) __A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __A = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __A = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Union[str, Any] ): '''simple docstring''' from datasets import load_dataset __A = load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech __A = ds.sort('''id''' ).select(range(_lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' # fmt: off __A = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on __A = self._load_datasamples(1 ) __A = ASTFeatureExtractor() __A = feature_extractor(_lowerCamelCase, return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape, (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30], _lowerCamelCase, atol=1e-4 ) )
266
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class snake_case_ ( datasets.BeamBasedBuilder ): def UpperCAmelCase__ ( self : int )->Tuple: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=_snake_case , ) def UpperCAmelCase__ ( self : str , _snake_case : int , _snake_case : int )->Tuple: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def UpperCAmelCase__ ( self : Any , _snake_case : Any , _snake_case : int )->Union[str, Any]: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_snake_case ) class snake_case_ ( datasets.BeamBasedBuilder ): def UpperCAmelCase__ ( self : int )->str: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=_snake_case , ) def UpperCAmelCase__ ( self : int , _snake_case : Tuple , _snake_case : Tuple )->Dict: '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def UpperCAmelCase__ ( self : Optional[int] , _snake_case : Any , _snake_case : List[str] )->Optional[Any]: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_snake_case ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def _SCREAMING_SNAKE_CASE ( ) -> str: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class snake_case_ ( __lowercase ): @require_beam def UpperCAmelCase__ ( self : Optional[Any] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowerCAmelCase : Union[str, Any] = DummyBeamDataset(cache_dir=_snake_case , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_snake_case , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) __lowerCAmelCase : Optional[Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _snake_case ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _snake_case ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_snake_case , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def UpperCAmelCase__ ( self : List[str] )->List[str]: '''simple docstring''' import apache_beam as beam __lowerCAmelCase : Optional[Any] = beam.io.parquetio.WriteToParquet __lowerCAmelCase : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowerCAmelCase : List[str] = DummyBeamDataset(cache_dir=_snake_case , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: __lowerCAmelCase : Any = partial(_snake_case , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _snake_case , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( _snake_case , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) __lowerCAmelCase : Any = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _snake_case ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _snake_case ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(_snake_case , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def UpperCAmelCase__ ( self : Union[str, Any] )->Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowerCAmelCase : Any = DummyBeamDataset(cache_dir=_snake_case ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def UpperCAmelCase__ ( self : Any )->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowerCAmelCase : int = NestedBeamDataset(cache_dir=_snake_case , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_snake_case , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) __lowerCAmelCase : Dict = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _snake_case ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _snake_case ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_snake_case , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
356
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] ) -> bool: __lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ) # We need to create solution object to save path. __lowerCAmelCase : str = [[0 for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] __lowerCAmelCase : str = run_maze(SCREAMING_SNAKE_CASE , 0 , 0 , SCREAMING_SNAKE_CASE ) if solved: print("""\n""".join(str(SCREAMING_SNAKE_CASE ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> bool: __lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) # Final check point. if i == j == (size - 1): __lowerCAmelCase : str = 1 return True __lowerCAmelCase : Optional[Any] = (not i < 0) and (not j < 0) # Check lower bounds __lowerCAmelCase : Optional[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowerCAmelCase : int = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowerCAmelCase : Tuple = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE , i + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , j + 1 , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , i - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , j - 1 , SCREAMING_SNAKE_CASE ) ): return True __lowerCAmelCase : Tuple = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
232
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""pixel_values"""] def __init__( self :Any , lowerCamelCase_ :bool = True , lowerCamelCase_ :int = 32 , lowerCamelCase_ :List[str]=PILImageResampling.BILINEAR , lowerCamelCase_ :bool = True , **lowerCamelCase_ :List[Any] , ): """simple docstring""" lowerCamelCase__ : List[str] =do_resize lowerCamelCase__ : Optional[int] =do_rescale lowerCamelCase__ : Union[str, Any] =size_divisor lowerCamelCase__ : List[str] =resample super().__init__(**lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :Optional[ChannelDimension] = None , **lowerCamelCase_ :Optional[Any] ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =get_image_size(lowerCamelCase_ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCamelCase__ : Tuple =height // size_divisor * size_divisor lowerCamelCase__ : str =width // size_divisor * size_divisor lowerCamelCase__ : Optional[Any] =resize(lowerCamelCase_ , (new_h, new_w) , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) return image def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :float , lowerCamelCase_ :Optional[ChannelDimension] = None , **lowerCamelCase_ :Tuple ): """simple docstring""" return rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , lowerCamelCase_ :Optional[bool] = None , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :Optional[bool] = None , lowerCamelCase_ :Optional[Union[TensorType, str]] = None , lowerCamelCase_ :ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase_ :int , ): """simple docstring""" lowerCamelCase__ : List[Any] =do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : List[str] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : List[str] =size_divisor if size_divisor is not None else self.size_divisor lowerCamelCase__ : Any =resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) lowerCamelCase__ : Union[str, Any] =make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. lowerCamelCase__ : List[Any] =[to_numpy_array(lowerCamelCase_ ) for img in images] if do_resize: lowerCamelCase__ : Tuple =[self.resize(lowerCamelCase_ , size_divisor=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_rescale: lowerCamelCase__ : List[Any] =[self.rescale(lowerCamelCase_ , scale=1 / 255 ) for image in images] lowerCamelCase__ : Any =[to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowerCamelCase__ : Tuple ={'pixel_values': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
126
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase_ ( snake_case_ : Dict ) ->Tuple: lowerCamelCase__ : List[str] =fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , snake_case_ ).groups()[0] class A_ ( A__ ): """simple docstring""" def __init__( self :int , lowerCamelCase_ :int , lowerCamelCase_ :Any=None , lowerCamelCase_ :Any=None ): """simple docstring""" lowerCamelCase__ : Tuple =file_names lowerCamelCase__ : str =image_transform lowerCamelCase__ : str =label_to_id def __len__( self :Optional[int] ): """simple docstring""" return len(self.file_names ) def __getitem__( self :Optional[Any] , lowerCamelCase_ :Optional[int] ): """simple docstring""" lowerCamelCase__ : Tuple =self.file_names[idx] lowerCamelCase__ : Dict =PIL.Image.open(lowerCamelCase_ ) lowerCamelCase__ : Dict =raw_image.convert('RGB' ) if self.image_transform is not None: lowerCamelCase__ : int =self.image_transform(lowerCamelCase_ ) lowerCamelCase__ : List[str] =extract_label(lowerCamelCase_ ) if self.label_to_id is not None: lowerCamelCase__ : Optional[int] =self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any ) ->Dict: # Initialize accelerator if args.with_tracking: lowerCamelCase__ : List[str] =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowerCamelCase__ : Tuple =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : Optional[Any] =config['lr'] lowerCamelCase__ : List[str] =int(config['num_epochs'] ) lowerCamelCase__ : List[str] =int(config['seed'] ) lowerCamelCase__ : Dict =int(config['batch_size'] ) lowerCamelCase__ : Optional[int] =config['image_size'] if not isinstance(snake_case_ , (list, tuple) ): lowerCamelCase__ : Optional[int] =(image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": lowerCamelCase__ : Optional[Any] =args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowerCamelCase__ : Union[str, Any] =int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: lowerCamelCase__ : int =None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowerCamelCase__ : Tuple =os.path.split(snake_case_ )[-1].split('.' )[0] accelerator.init_trackers(snake_case_ , snake_case_ ) # Grab all the image filenames lowerCamelCase__ : List[str] =[os.path.join(args.data_dir , snake_case_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences lowerCamelCase__ : str =[extract_label(snake_case_ ) for fname in file_names] lowerCamelCase__ : Any =list(set(snake_case_ ) ) id_to_label.sort() lowerCamelCase__ : List[Any] ={lbl: i for i, lbl in enumerate(snake_case_ )} # Set the seed before splitting the data. np.random.seed(snake_case_ ) torch.manual_seed(snake_case_ ) torch.cuda.manual_seed_all(snake_case_ ) # Split our filenames between train and validation lowerCamelCase__ : int =np.random.permutation(len(snake_case_ ) ) lowerCamelCase__ : Tuple =int(0.8 * len(snake_case_ ) ) lowerCamelCase__ : str =random_perm[:cut] lowerCamelCase__ : Dict =random_perm[cut:] # For training we use a simple RandomResizedCrop lowerCamelCase__ : str =Compose([RandomResizedCrop(snake_case_ , scale=(0.5, 1.0) ), ToTensor()] ) lowerCamelCase__ : Any =PetsDataset( [file_names[i] for i in train_split] , image_transform=snake_case_ , label_to_id=snake_case_ ) # For evaluation, we use a deterministic Resize lowerCamelCase__ : Optional[int] =Compose([Resize(snake_case_ ), ToTensor()] ) lowerCamelCase__ : Dict =PetsDataset([file_names[i] for i in eval_split] , image_transform=snake_case_ , label_to_id=snake_case_ ) # Instantiate dataloaders. lowerCamelCase__ : Optional[Any] =DataLoader(snake_case_ , shuffle=snake_case_ , batch_size=snake_case_ , num_workers=4 ) lowerCamelCase__ : int =DataLoader(snake_case_ , shuffle=snake_case_ , batch_size=snake_case_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : Dict =create_model('resnet50d' , pretrained=snake_case_ , num_classes=len(snake_case_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ : str =model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowerCamelCase__ : Dict =False for param in model.get_classifier().parameters(): lowerCamelCase__ : List[str] =True # We normalize the batches of images to be a bit faster. lowerCamelCase__ : Any =torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) lowerCamelCase__ : Dict =torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ : int =torch.optim.Adam(params=model.parameters() , lr=lr / 2_5 ) # Instantiate learning rate scheduler lowerCamelCase__ : Dict =OneCycleLR(optimizer=snake_case_ , max_lr=snake_case_ , epochs=snake_case_ , steps_per_epoch=len(snake_case_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any =accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase__ : int =0 # We also need to keep track of the starting epoch so files are named properly lowerCamelCase__ : Optional[int] =0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase__ : int =os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowerCamelCase__ : int =[f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowerCamelCase__ : Optional[int] =dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowerCamelCase__ : Tuple =os.path.splitext(snake_case_ )[0] if "epoch" in training_difference: lowerCamelCase__ : Union[str, Any] =int(training_difference.replace('epoch_' , '' ) ) + 1 lowerCamelCase__ : Optional[int] =None else: lowerCamelCase__ : List[Any] =int(training_difference.replace('step_' , '' ) ) lowerCamelCase__ : int =resume_step // len(snake_case_ ) resume_step -= starting_epoch * len(snake_case_ ) # Now we train the model for epoch in range(snake_case_ , snake_case_ ): model.train() if args.with_tracking: lowerCamelCase__ : str =0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowerCamelCase__ : Tuple =accelerator.skip_first_batches(snake_case_ , snake_case_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowerCamelCase__ : str =train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCamelCase__ : int ={k: v.to(accelerator.device ) for k, v in batch.items()} lowerCamelCase__ : List[str] =(batch['image'] - mean) / std lowerCamelCase__ : Any =model(snake_case_ ) lowerCamelCase__ : List[Any] =torch.nn.functional.cross_entropy(snake_case_ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(snake_case_ , snake_case_ ): lowerCamelCase__ : int =f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowerCamelCase__ : List[Any] =os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) model.eval() lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[Any] =0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCamelCase__ : Union[str, Any] ={k: v.to(accelerator.device ) for k, v in batch.items()} lowerCamelCase__ : int =(batch['image'] - mean) / std with torch.no_grad(): lowerCamelCase__ : List[str] =model(snake_case_ ) lowerCamelCase__ : Optional[int] =outputs.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =accelerator.gather_for_metrics((predictions, batch['label']) ) lowerCamelCase__ : Union[str, Any] =predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowerCamelCase__ : List[str] =accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {1_0_0 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 1_0_0 * eval_metric, 'train_loss': total_loss.item() / len(snake_case_ ), 'epoch': epoch, } , step=snake_case_ , ) if checkpointing_steps == "epoch": lowerCamelCase__ : Tuple =f"""epoch_{epoch}""" if args.output_dir is not None: lowerCamelCase__ : Tuple =os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase_ ( ) ->int: lowerCamelCase__ : Any =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=snake_case_ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=snake_case_ , default=snake_case_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=snake_case_ , default=snake_case_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=snake_case_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=snake_case_ , default=snake_case_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=snake_case_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowerCamelCase__ : Dict =parser.parse_args() lowerCamelCase__ : List[str] ={'lr': 3E-2, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 6_4, 'image_size': 2_2_4} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
126
1
def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' return int(input_a == input_a == 0 ) def lowercase__ ( ): '''simple docstring''' print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(F"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(F"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(F"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
145
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __UpperCAmelCase = 'Usage of script: script_name <size_of_canvas:int>' __UpperCAmelCase = [0] * 100 + [1] * 10 random.shuffle(choice) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Any = [[False for i in range(__snake_case )] for j in range(__snake_case )] return canvas def lowercase__ ( __snake_case : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__snake_case ): for j, _ in enumerate(__snake_case ): UpperCAmelCase_ : Tuple = bool(random.getrandbits(1 ) ) def lowercase__ ( __snake_case : list[list[bool]] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = np.array(__snake_case ) UpperCAmelCase_ : Any = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__snake_case ): for c, pt in enumerate(__snake_case ): UpperCAmelCase_ : Optional[int] = __judge_point( __snake_case , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) UpperCAmelCase_ : List[Any] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. UpperCAmelCase_ : list[list[bool]] = current_canvas.tolist() return return_canvas def lowercase__ ( __snake_case : bool , __snake_case : list[list[bool]] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : List[Any] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. UpperCAmelCase_ : List[Any] = pt if pt: if alive < 2: UpperCAmelCase_ : str = False elif alive == 2 or alive == 3: UpperCAmelCase_ : int = True elif alive > 3: UpperCAmelCase_ : List[Any] = False else: if alive == 3: UpperCAmelCase_ : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __UpperCAmelCase = int(sys.argv[1]) # main working structure of this module. __UpperCAmelCase = create_canvas(canvas_size) seed(c) __UpperCAmelCase , __UpperCAmelCase = plt.subplots() fig.show() __UpperCAmelCase = ListedColormap(['w', 'k']) try: while True: __UpperCAmelCase = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
145
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class _A : _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : bool = field( default=lowercase__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) _UpperCamelCase : bool = field( default=lowercase__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=lowercase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=lowercase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=lowercase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class _A : _UpperCamelCase : str = field( default=lowercase__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : str = field( default=lowercase__ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) _UpperCamelCase : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) _UpperCamelCase : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : Optional[bool] = field( default=lowercase__ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) _UpperCamelCase : bool = field( default=lowercase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _UpperCamelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _UpperCamelCase : bool = field( default=lowercase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _UpperCamelCase : bool = field( default=lowercase__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def snake_case( ) -> int: '''simple docstring''' lowercase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , __lowerCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase : List[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) datasets.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowercase : Tuple = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase : List[Any] = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : str = train_dataset.features["""label"""].names if training_args.do_eval: lowercase : Any = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : str = eval_dataset.features["""label"""].names if training_args.do_predict: lowercase : Optional[Any] = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : List[str] = predict_dataset.features["""label"""].names # Labels lowercase : Tuple = len(__lowerCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel={str(__lowerCamelCase ): label for i, label in enumerate(__lowerCamelCase )} , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowercase : List[Any] = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase : List[Any] = False def preprocess_function(__magic_name__ ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=__lowerCamelCase , max_length=data_args.max_seq_length , truncation=__lowerCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: lowercase : int = min(len(__lowerCamelCase ) , data_args.max_train_samples ) lowercase : Dict = train_dataset.select(range(__lowerCamelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowercase : Union[str, Any] = train_dataset.map( __lowerCamelCase , batched=__lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(__lowerCamelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase : Tuple = min(len(__lowerCamelCase ) , data_args.max_eval_samples ) lowercase : List[str] = eval_dataset.select(range(__lowerCamelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowercase : Dict = eval_dataset.map( __lowerCamelCase , batched=__lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowercase : Dict = min(len(__lowerCamelCase ) , data_args.max_predict_samples ) lowercase : Tuple = predict_dataset.select(range(__lowerCamelCase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): lowercase : Any = predict_dataset.map( __lowerCamelCase , batched=__lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function lowercase : Tuple = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__magic_name__ ): lowercase : Optional[Any] = p.predictions[0] if isinstance(p.predictions , __lowerCamelCase ) else p.predictions lowercase : str = np.argmax(__lowerCamelCase , axis=1 ) return metric.compute(predictions=__lowerCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase : Any = default_data_collator elif training_args.fpaa: lowercase : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) else: lowercase : int = None # Initialize our Trainer lowercase : Union[str, Any] = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCamelCase , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: lowercase : List[str] = None if training_args.resume_from_checkpoint is not None: lowercase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase : Union[str, Any] = last_checkpoint lowercase : Any = trainer.train(resume_from_checkpoint=__lowerCamelCase ) lowercase : Dict = train_result.metrics lowercase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCamelCase ) ) lowercase : Dict = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , __lowerCamelCase ) trainer.save_metrics('''train''' , __lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase : Dict = trainer.evaluate(eval_dataset=__lowerCamelCase ) lowercase : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCamelCase ) lowercase : Tuple = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.log_metrics('''eval''' , __lowerCamelCase ) trainer.save_metrics('''eval''' , __lowerCamelCase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) lowercase : Optional[Any] = trainer.predict(__lowerCamelCase , metric_key_prefix='''predict''' ) lowercase : int = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCamelCase ) ) lowercase : Optional[int] = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.log_metrics('''predict''' , __lowerCamelCase ) trainer.save_metrics('''predict''' , __lowerCamelCase ) lowercase : Optional[int] = np.argmax(__lowerCamelCase , axis=1 ) lowercase : Tuple = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(__lowerCamelCase ): lowercase : Tuple = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
308
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class a ( lowercase__ ): """simple docstring""" a : List[str] = 'MCTCTFeatureExtractor' a : str = 'AutoTokenizer' def __init__( self : Tuple , __lowercase : int , __lowercase : Dict ) -> Any: super().__init__(__lowercase , __lowercase ) __UpperCAmelCase : Optional[Any] = self.feature_extractor __UpperCAmelCase : Optional[int] = False def __call__( self : int , *__lowercase : Tuple , **__lowercase : Optional[int] ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowercase , **__lowercase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __UpperCAmelCase : Dict = kwargs.pop("""raw_speech""" ) else: __UpperCAmelCase : Dict = kwargs.pop("""audio""" , __lowercase ) __UpperCAmelCase : List[str] = kwargs.pop("""sampling_rate""" , __lowercase ) __UpperCAmelCase : Tuple = kwargs.pop("""text""" , __lowercase ) if len(__lowercase ) > 0: __UpperCAmelCase : Tuple = args[0] __UpperCAmelCase : str = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __UpperCAmelCase : Tuple = self.feature_extractor(__lowercase , *__lowercase , sampling_rate=__lowercase , **__lowercase ) if text is not None: __UpperCAmelCase : str = self.tokenizer(__lowercase , **__lowercase ) if text is None: return inputs elif audio is None: return encodings else: __UpperCAmelCase : Dict = encodings["""input_ids"""] return inputs def UpperCAmelCase ( self : Optional[Any] , *__lowercase : List[Any] , **__lowercase : int ) -> List[Any]: return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def UpperCAmelCase ( self : Optional[int] , *__lowercase : Optional[Any] , **__lowercase : List[str] ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__lowercase , **__lowercase ) __UpperCAmelCase : Optional[int] = kwargs.pop("""input_features""" , __lowercase ) __UpperCAmelCase : Optional[Any] = kwargs.pop("""labels""" , __lowercase ) if len(__lowercase ) > 0: __UpperCAmelCase : Union[str, Any] = args[0] __UpperCAmelCase : str = args[1:] if input_features is not None: __UpperCAmelCase : Any = self.feature_extractor.pad(__lowercase , *__lowercase , **__lowercase ) if labels is not None: __UpperCAmelCase : Union[str, Any] = self.tokenizer.pad(__lowercase , **__lowercase ) if labels is None: return input_features elif input_features is None: return labels else: __UpperCAmelCase : Any = labels["""input_ids"""] return input_features def UpperCAmelCase ( self : Any , *__lowercase : Union[str, Any] , **__lowercase : Dict ) -> List[Any]: return self.tokenizer.decode(*__lowercase , **__lowercase ) @contextmanager def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = self.tokenizer yield __UpperCAmelCase : List[Any] = self.feature_extractor __UpperCAmelCase : int = False
114
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __a , __a , __a = False, False, False @dataclass class UpperCAmelCase_ : """simple docstring""" lowercase = None lowercase = True lowercase = True lowercase = None # Automatically constructed lowercase = "dict" lowercase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowercase = field(default="Audio" , init=_a , repr=_a ) def __call__( self : Union[str, Any] ): return self.pa_type def lowerCamelCase ( self : Tuple , snake_case_ : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(snake_case_ , snake_case_ ): return {"bytes": None, "path": value} elif isinstance(snake_case_ , snake_case_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes snake_case__ : Any = BytesIO() sf.write(snake_case_ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) snake_case__ : Dict = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: snake_case__ : Tuple = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767 snake_case__ : int = BytesIO(bytes() ) sf.write(snake_case_ , snake_case_ , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowerCamelCase ( self : Any , snake_case_ : dict , snake_case_ : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) snake_case__ : int = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err snake_case__ : Dict = xsplitext(snake_case_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: snake_case__ : Union[str, Any] = token_per_repo_id or {} snake_case__ : Any = path.split("""::""" )[-1] try: snake_case__ : int = string_to_dict(snake_case_ , config.HUB_DATASETS_URL )["""repo_id"""] snake_case__ : str = token_per_repo_id[repo_id] except (ValueError, KeyError): snake_case__ : Any = None with xopen(snake_case_ , """rb""" , use_auth_token=snake_case_ ) as f: snake_case__ : int = sf.read(snake_case_ ) else: snake_case__ : str = sf.read(snake_case_ ) snake_case__ : Dict = array.T if self.mono: snake_case__ : List[Any] = librosa.to_mono(snake_case_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: snake_case__ : Optional[Any] = librosa.resample(snake_case_ , orig_sr=snake_case_ , target_sr=self.sampling_rate ) snake_case__ : str = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase ( self : Union[str, Any] ): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def lowerCamelCase ( self : Any , snake_case_ : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): snake_case__ : Optional[Any] = pa.array([None] * len(snake_case_ ) , type=pa.binary() ) snake_case__ : List[str] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): snake_case__ : Any = pa.array([None] * len(snake_case_ ) , type=pa.string() ) snake_case__ : Optional[Any] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): snake_case__ : List[str] = pa.array([Audio().encode_example(snake_case_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: snake_case__ : int = storage.field("""bytes""" ) else: snake_case__ : str = pa.array([None] * len(snake_case_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: snake_case__ : Optional[Any] = storage.field("""path""" ) else: snake_case__ : Optional[int] = pa.array([None] * len(snake_case_ ) , type=pa.string() ) snake_case__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(snake_case_ , self.pa_type ) def lowerCamelCase ( self : Any , snake_case_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(snake_case_ : Optional[Any] ): with xopen(snake_case_ , """rb""" ) as f: snake_case__ : str = f.read() return bytes_ snake_case__ : Union[str, Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) snake_case__ : List[str] = pa.array( [os.path.basename(snake_case_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) snake_case__ : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(snake_case_ , self.pa_type )
354
'''simple docstring''' import math import qiskit def __snake_case( _lowerCAmelCase = 1 , _lowerCAmelCase = 1 , _lowerCAmelCase = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) or isinstance(_lowerCAmelCase , _lowerCAmelCase ) or isinstance(_lowerCAmelCase , _lowerCAmelCase ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(_lowerCAmelCase ) != input_a) or (math.floor(_lowerCAmelCase ) != input_a) or (math.floor(_lowerCAmelCase ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers snake_case__ : List[str] = qiskit.QuantumRegister(4 , """qr""" ) snake_case__ : Optional[int] = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries snake_case__ : List[Any] = [input_a, input_a, carry_in] snake_case__ : Union[str, Any] = qiskit.QuantumCircuit(_lowerCAmelCase , _lowerCAmelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(_lowerCAmelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_lowerCAmelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_lowerCAmelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , _lowerCAmelCase ) # measure the last two qbits snake_case__ : int = qiskit.Aer.get_backend("""aer_simulator""" ) snake_case__ : Tuple = qiskit.execute(_lowerCAmelCase , _lowerCAmelCase , shots=1_000 ) return job.result().get_counts(_lowerCAmelCase ) if __name__ == "__main__": print(F"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
43
0
import argparse import collections import json import os import re import string import sys import numpy as np snake_case : int = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) snake_case : Optional[Any] = None def __lowerCamelCase ( ): """simple docstring""" a :Optional[int] = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=UpperCAmelCase_ , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=UpperCAmelCase_ , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __lowerCamelCase ( UpperCAmelCase_ : Any ): """simple docstring""" a :Tuple = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a :List[str] = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __lowerCamelCase ( UpperCAmelCase_ : Tuple ): """simple docstring""" def remove_articles(UpperCAmelCase_ : Optional[int] ): return ARTICLES_REGEX.sub(''' ''' , UpperCAmelCase_ ) def white_space_fix(UpperCAmelCase_ : Tuple ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase_ : List[str] ): a :List[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase_ : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase_ ) ) ) ) def __lowerCamelCase ( UpperCAmelCase_ : Any ): """simple docstring""" if not s: return [] return normalize_answer(UpperCAmelCase_ ).split() def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" return int(normalize_answer(UpperCAmelCase_ ) == normalize_answer(UpperCAmelCase_ ) ) def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ): """simple docstring""" a :Dict = get_tokens(UpperCAmelCase_ ) a :Dict = get_tokens(UpperCAmelCase_ ) a :Dict = collections.Counter(UpperCAmelCase_ ) & collections.Counter(UpperCAmelCase_ ) a :List[str] = sum(common.values() ) if len(UpperCAmelCase_ ) == 0 or len(UpperCAmelCase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a :Dict = 1.0 * num_same / len(UpperCAmelCase_ ) a :int = 1.0 * num_same / len(UpperCAmelCase_ ) a :Tuple = (2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): """simple docstring""" a :Union[str, Any] = {} a :int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a :str = qa['''id'''] a :Any = [t for t in qa['''answers''']['''text'''] if normalize_answer(UpperCAmelCase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a :Optional[Any] = [''''''] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue a :List[Any] = preds[qid] # Take max over all gold answers a :Any = max(compute_exact(UpperCAmelCase_ , UpperCAmelCase_ ) for a in gold_answers ) a :Optional[int] = max(compute_fa(UpperCAmelCase_ , UpperCAmelCase_ ) for a in gold_answers ) return exact_scores, fa_scores def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" a :Dict = {} for qid, s in scores.items(): a :Any = na_probs[qid] > na_prob_thresh if pred_na: a :int = float(not qid_to_has_ans[qid] ) else: a :Union[str, Any] = s return new_scores def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any]=None ): """simple docstring""" if not qid_list: a :Optional[Any] = len(UpperCAmelCase_ ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: a :Optional[int] = len(UpperCAmelCase_ ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple ): """simple docstring""" for k in new_eval: a :List[Any] = new_eval[k] def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ): """simple docstring""" plt.step(UpperCAmelCase_ , UpperCAmelCase_ , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(UpperCAmelCase_ , UpperCAmelCase_ , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(UpperCAmelCase_ ) plt.savefig(UpperCAmelCase_ ) plt.clf() def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : str=None ): """simple docstring""" a :Optional[Any] = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : na_probs[k] ) a :List[str] = 0.0 a :str = 1.0 a :Any = 0.0 a :Optional[Any] = [1.0] a :Any = [0.0] a :Tuple = 0.0 for i, qid in enumerate(UpperCAmelCase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] a :List[str] = true_pos / float(i + 1 ) a :str = true_pos / float(UpperCAmelCase_ ) if i == len(UpperCAmelCase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(UpperCAmelCase_ ) recalls.append(UpperCAmelCase_ ) if out_image: plot_pr_curve(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return {"ap": 100.0 * avg_prec} def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any ): """simple docstring""" if out_image_dir and not os.path.exists(UpperCAmelCase_ ): os.makedirs(UpperCAmelCase_ ) a :Optional[int] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a :Union[str, Any] = make_precision_recall_eval( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) a :Union[str, Any] = make_precision_recall_eval( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) a :Union[str, Any] = {k: float(UpperCAmelCase_ ) for k, v in qid_to_has_ans.items()} a :int = make_precision_recall_eval( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , '''pr_exact''' ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , '''pr_f1''' ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , '''pr_oracle''' ) def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ): """simple docstring""" if not qid_list: return a :List[Any] = [na_probs[k] for k in qid_list] a :List[str] = np.ones_like(UpperCAmelCase_ ) / float(len(UpperCAmelCase_ ) ) plt.hist(UpperCAmelCase_ , weights=UpperCAmelCase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(UpperCAmelCase_ , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ): """simple docstring""" a :str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a :List[Any] = num_no_ans a :str = cur_score a :List[Any] = 0.0 a :Tuple = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : na_probs[k] ) for i, qid in enumerate(UpperCAmelCase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: a :Dict = scores[qid] else: if preds[qid]: a :Optional[int] = -1 else: a :Optional[Any] = 0 cur_score += diff if cur_score > best_score: a :Tuple = cur_score a :Dict = na_probs[qid] return 100.0 * best_score / len(UpperCAmelCase_ ), best_thresh def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : str ): """simple docstring""" a , a :List[Any] = find_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) a , a :Optional[int] = find_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) a :Optional[Any] = best_exact a :int = exact_thresh a :Any = best_fa a :int = fa_thresh def __lowerCamelCase ( ): """simple docstring""" with open(OPTS.data_file ) as f: a :Dict = json.load(UpperCAmelCase_ ) a :List[str] = dataset_json['''data'''] with open(OPTS.pred_file ) as f: a :Dict = json.load(UpperCAmelCase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a :Dict = json.load(UpperCAmelCase_ ) else: a :Any = {k: 0.0 for k in preds} a :int = make_qid_to_has_ans(UpperCAmelCase_ ) # maps qid to True/False a :Optional[Any] = [k for k, v in qid_to_has_ans.items() if v] a :Dict = [k for k, v in qid_to_has_ans.items() if not v] a , a :List[Any] = get_raw_scores(UpperCAmelCase_ , UpperCAmelCase_ ) a :Any = apply_no_ans_threshold(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.na_prob_thresh ) a :Any = apply_no_ans_threshold(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.na_prob_thresh ) a :List[Any] = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ ) if has_ans_qids: a :Tuple = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ , qid_list=UpperCAmelCase_ ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , '''HasAns''' ) if no_ans_qids: a :Optional[int] = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ , qid_list=UpperCAmelCase_ ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir ) histogram_na_prob(UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) else: print(json.dumps(UpperCAmelCase_ , indent=2 ) ) if __name__ == "__main__": snake_case : Optional[Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
94
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
105
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A ( __UpperCAmelCase ): __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'Pix2StructImageProcessor' __snake_case = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = False super().__init__(UpperCamelCase__, UpperCamelCase__ ) def __call__( self, UpperCamelCase__=None, UpperCamelCase__ = None, UpperCamelCase__ = True, UpperCamelCase__ = False, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = 2048, UpperCamelCase__ = 0, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = False, UpperCamelCase__ = False, UpperCamelCase__ = False, UpperCamelCase__ = False, UpperCamelCase__ = False, UpperCamelCase__ = True, UpperCamelCase__ = None, **UpperCamelCase__, ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: lowerCAmelCase_ = self.tokenizer lowerCAmelCase_ = self.tokenizer( text=UpperCamelCase__, add_special_tokens=UpperCamelCase__, padding=UpperCamelCase__, truncation=UpperCamelCase__, max_length=UpperCamelCase__, stride=UpperCamelCase__, pad_to_multiple_of=UpperCamelCase__, return_attention_mask=UpperCamelCase__, return_overflowing_tokens=UpperCamelCase__, return_special_tokens_mask=UpperCamelCase__, return_offsets_mapping=UpperCamelCase__, return_token_type_ids=UpperCamelCase__, return_length=UpperCamelCase__, verbose=UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__, ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowerCAmelCase_ = self.image_processor( UpperCamelCase__, return_tensors=UpperCamelCase__, max_patches=UpperCamelCase__, **UpperCamelCase__ ) else: # add pixel_values and bbox lowerCAmelCase_ = self.image_processor( UpperCamelCase__, return_tensors=UpperCamelCase__, max_patches=UpperCamelCase__, header_text=UpperCamelCase__, **UpperCamelCase__ ) if text is not None and not self.image_processor.is_vqa: lowerCAmelCase_ = self.tokenizer( text=UpperCamelCase__, add_special_tokens=UpperCamelCase__, padding=UpperCamelCase__, truncation=UpperCamelCase__, max_length=UpperCamelCase__, stride=UpperCamelCase__, pad_to_multiple_of=UpperCamelCase__, return_attention_mask=UpperCamelCase__, return_overflowing_tokens=UpperCamelCase__, return_special_tokens_mask=UpperCamelCase__, return_offsets_mapping=UpperCamelCase__, return_token_type_ids=UpperCamelCase__, return_length=UpperCamelCase__, verbose=UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__, ) if "attention_mask" in text_encoding: lowerCAmelCase_ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: lowerCAmelCase_ = text_encoding.pop('''input_ids''' ) else: lowerCAmelCase_ = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase__ ) return encoding_image_processor def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__, **UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.tokenizer.model_input_names lowerCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
167
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _A = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') _A , _A = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') _A = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: _A = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _A = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
167
1
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _UpperCamelCase ( __lowercase ): '''simple docstring''' _A : List[Any] = '''char''' _A : str = '''bpe''' _A : str = '''wp''' UpperCamelCase__ : int = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _UpperCamelCase ( __lowercase ): '''simple docstring''' _A : Optional[Any] = ['''image_processor''', '''char_tokenizer'''] _A : Any = '''ViTImageProcessor''' _A : List[str] = '''MgpstrTokenizer''' def __init__( self : Optional[Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("""feature_extractor""" ) __SCREAMING_SNAKE_CASE : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) __SCREAMING_SNAKE_CASE : str = tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained("""gpt2""" ) __SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self : List[str] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: __SCREAMING_SNAKE_CASE : int = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.char_tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif images is None: return encodings else: __SCREAMING_SNAKE_CASE : Union[str, Any] = encodings["input_ids"] return inputs def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = sequences __SCREAMING_SNAKE_CASE : Dict = char_preds.size(0 ) __SCREAMING_SNAKE_CASE : Tuple = self._decode_helper(lowerCAmelCase__ , """char""" ) __SCREAMING_SNAKE_CASE : List[Any] = self._decode_helper(lowerCAmelCase__ , """bpe""" ) __SCREAMING_SNAKE_CASE : int = self._decode_helper(lowerCAmelCase__ , """wp""" ) __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Dict = [char_scores[i], bpe_scores[i], wp_scores[i]] __SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]] __SCREAMING_SNAKE_CASE : Any = scores.index(max(lowerCAmelCase__ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __SCREAMING_SNAKE_CASE : int = {} __SCREAMING_SNAKE_CASE : Union[str, Any] = final_strs __SCREAMING_SNAKE_CASE : Any = final_scores __SCREAMING_SNAKE_CASE : Union[str, Any] = char_strs __SCREAMING_SNAKE_CASE : Tuple = bpe_strs __SCREAMING_SNAKE_CASE : Dict = wp_strs return out def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" if format == DecodeType.CHARACTER: __SCREAMING_SNAKE_CASE : str = self.char_decode __SCREAMING_SNAKE_CASE : str = 1 __SCREAMING_SNAKE_CASE : int = "[s]" elif format == DecodeType.BPE: __SCREAMING_SNAKE_CASE : Dict = self.bpe_decode __SCREAMING_SNAKE_CASE : Any = 2 __SCREAMING_SNAKE_CASE : str = "#" elif format == DecodeType.WORDPIECE: __SCREAMING_SNAKE_CASE : Optional[int] = self.wp_decode __SCREAMING_SNAKE_CASE : int = 1_0_2 __SCREAMING_SNAKE_CASE : List[Any] = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) __SCREAMING_SNAKE_CASE : Optional[Any] = [], [] __SCREAMING_SNAKE_CASE : Dict = pred_logits.size(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(1 ) __SCREAMING_SNAKE_CASE : int = pred_logits.topk(1 , dim=-1 , largest=lowerCAmelCase__ , sorted=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = preds_index.view(-1 , lowerCAmelCase__ )[:, 1:] __SCREAMING_SNAKE_CASE : Dict = decoder(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = torch.nn.functional.softmax(lowerCAmelCase__ , dim=2 ).max(dim=2 ) __SCREAMING_SNAKE_CASE : Tuple = preds_max_prob[:, 1:] for index in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[str] = preds_str[index].find(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = preds_str[index][:pred_eos] __SCREAMING_SNAKE_CASE : Any = preds_index[index].cpu().tolist() __SCREAMING_SNAKE_CASE : Optional[int] = pred_index.index(lowerCAmelCase__ ) if eos_token in pred_index else -1 __SCREAMING_SNAKE_CASE : Any = preds_max_prob[index][: pred_eos_index + 1] __SCREAMING_SNAKE_CASE : Tuple = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCAmelCase__ ) conf_scores.append(lowerCAmelCase__ ) return dec_strs, conf_scores def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(lowerCAmelCase__ )] return decode_strs def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" return self.bpe_tokenizer.batch_decode(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(lowerCAmelCase__ )] return decode_strs
112
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False')) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env') @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ]) class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :List[Any] ) -> Any: if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="utf-8" , check=a , ) assert hasattr(self , "env" ) def _lowerCamelCase ( self :Any , a :Optional[Any] ) -> Dict: __UpperCamelCase : str = f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __UpperCamelCase : Optional[int] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=a , instance_count=a , instance_type=self.instance_type , debugger_hook_config=a , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=a , py_version="py36" , ) def _lowerCamelCase ( self :Dict , a :Dict ) -> Optional[int]: TrainingJobAnalytics(a ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def _lowerCamelCase ( self :Dict , a :Tuple ) -> List[Any]: # create estimator __UpperCamelCase : int = self.create_estimator(a ) # run training estimator.fit() # result dataframe __UpperCamelCase : Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __UpperCamelCase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __UpperCamelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCamelCase : int = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , a )
232
0
from __future__ import annotations def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> list[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = 2 _UpperCAmelCase : List[str] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(SCREAMING_SNAKE_CASE__ ) if n > 1: factors.append(SCREAMING_SNAKE_CASE__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _lowerCAmelCase : List[str] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _UpperCAmelCase : str = k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def __snake_case ( SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' _UpperCAmelCase : List[Any] = DEFAULTS.copy() cfg_kwargs.update(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = PegasusConfig(**SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = PegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[int] = torch_model.model.state_dict() _UpperCAmelCase : Union[str, Any] = {} for k, v in tf_weights.items(): _UpperCAmelCase : Union[str, Any] = rename_state_dict_key(SCREAMING_SNAKE_CASE__ ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: _UpperCAmelCase : Any = v.T _UpperCAmelCase : str = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected _UpperCAmelCase : Tuple = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) _UpperCAmelCase : Any = mapping["shared.weight"] _UpperCAmelCase : Dict = mapping["shared.weight"] _UpperCAmelCase : Dict = {k: torch.zeros_like(SCREAMING_SNAKE_CASE__ ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = torch_model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : Optional[Any] = ["Adafactor", "global_step"] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc="converting tf checkpoint to dict" ): _UpperCAmelCase : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase : int = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = array return tf_weights def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict = Path(SCREAMING_SNAKE_CASE__ ).parent.name _UpperCAmelCase : Tuple = task_specific_params[f'summarization_{dataset}']["max_position_embeddings"] _UpperCAmelCase : Dict = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=SCREAMING_SNAKE_CASE__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(SCREAMING_SNAKE_CASE__ ) # convert model _UpperCAmelCase : Union[str, Any] = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = task_specific_params[f'summarization_{dataset}'] if dataset == "large": _UpperCAmelCase : Optional[int] = task_specific_params _UpperCAmelCase : str = convert_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(SCREAMING_SNAKE_CASE__ , Path(SCREAMING_SNAKE_CASE__ ) / "pytorch_model.bin" ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") _lowerCAmelCase : Union[str, Any] = parser.parse_args() if args.save_dir is None: _lowerCAmelCase : Tuple = Path(args.tf_ckpt_path).parent.name _lowerCAmelCase : Dict = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
202
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np __a = re.compile(R'\b(a|an|the)\b', re.UNICODE) __a = None def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file", metavar="data.json", help="Input data JSON file." ) parser.add_argument("pred_file", metavar="pred.json", help="Model predictions." ) parser.add_argument( "--out-file", "-o", metavar="eval.json", help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file", "-n", metavar="na_prob.json", help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh", "-t", type=a_, default=1.0, help="Predict \"\" if no-answer probability exceeds this (default = 1.0).", ) parser.add_argument( "--out-image-dir", "-p", metavar="out_images", default=a_, help="Save precision-recall curves to directory." ) parser.add_argument("--verbose", "-v", action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : List[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCAmelCase : Union[str, Any] = bool(qa["answers"]["text"] ) return qid_to_has_ans def __UpperCAmelCase ( a_: List[str] ): def remove_articles(a_: str ): return ARTICLES_REGEX.sub(" ", a_ ) def white_space_fix(a_: List[Any] ): return " ".join(text.split() ) def remove_punc(a_: Optional[int] ): _UpperCAmelCase : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a_: List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a_ ) ) ) ) def __UpperCAmelCase ( a_: str ): if not s: return [] return normalize_answer(a_ ).split() def __UpperCAmelCase ( a_: Any, a_: List[str] ): return int(normalize_answer(a_ ) == normalize_answer(a_ ) ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Union[str, Any] = get_tokens(a_ ) _UpperCAmelCase : str = get_tokens(a_ ) _UpperCAmelCase : Union[str, Any] = collections.Counter(a_ ) & collections.Counter(a_ ) _UpperCAmelCase : Optional[Any] = sum(common.values() ) if len(a_ ) == 0 or len(a_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _UpperCAmelCase : Optional[Any] = 1.0 * num_same / len(a_ ) _UpperCAmelCase : str = 1.0 * num_same / len(a_ ) _UpperCAmelCase : List[Any] = (2 * precision * recall) / (precision + recall) return fa def __UpperCAmelCase ( a_: Optional[int], a_: List[Any] ): _UpperCAmelCase : List[str] = {} _UpperCAmelCase : List[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCAmelCase : List[str] = qa["id"] _UpperCAmelCase : Tuple = [t for t in qa["answers"]["text"] if normalize_answer(a_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _UpperCAmelCase : Any = [""] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue _UpperCAmelCase : Tuple = preds[qid] # Take max over all gold answers _UpperCAmelCase : Union[str, Any] = max(compute_exact(a_, a_ ) for a in gold_answers ) _UpperCAmelCase : Tuple = max(compute_fa(a_, a_ ) for a in gold_answers ) return exact_scores, fa_scores def __UpperCAmelCase ( a_: Any, a_: Tuple, a_: List[str], a_: Dict ): _UpperCAmelCase : Any = {} for qid, s in scores.items(): _UpperCAmelCase : Optional[Any] = na_probs[qid] > na_prob_thresh if pred_na: _UpperCAmelCase : str = float(not qid_to_has_ans[qid] ) else: _UpperCAmelCase : List[Any] = s return new_scores def __UpperCAmelCase ( a_: Tuple, a_: str, a_: int=None ): if not qid_list: _UpperCAmelCase : Dict = len(a_ ) return collections.OrderedDict( [ ("exact", 1_00.0 * sum(exact_scores.values() ) / total), ("f1", 1_00.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: _UpperCAmelCase : Any = len(a_ ) return collections.OrderedDict( [ ("exact", 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def __UpperCAmelCase ( a_: Tuple, a_: Dict, a_: Dict ): for k in new_eval: _UpperCAmelCase : Optional[Any] = new_eval[k] def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: Optional[int], a_: Dict ): plt.step(a_, a_, color="b", alpha=0.2, where="post" ) plt.fill_between(a_, a_, step="post", alpha=0.2, color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(a_ ) plt.savefig(a_ ) plt.clf() def __UpperCAmelCase ( a_: Optional[int], a_: Tuple, a_: Optional[Any], a_: Any, a_: str=None, a_: str=None ): _UpperCAmelCase : Any = sorted(a_, key=lambda a_ : na_probs[k] ) _UpperCAmelCase : Any = 0.0 _UpperCAmelCase : Tuple = 1.0 _UpperCAmelCase : Tuple = 0.0 _UpperCAmelCase : Any = [1.0] _UpperCAmelCase : Union[str, Any] = [0.0] _UpperCAmelCase : Optional[int] = 0.0 for i, qid in enumerate(a_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] _UpperCAmelCase : Optional[int] = true_pos / float(i + 1 ) _UpperCAmelCase : Dict = true_pos / float(a_ ) if i == len(a_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(a_ ) recalls.append(a_ ) if out_image: plot_pr_curve(a_, a_, a_, a_ ) return {"ap": 1_00.0 * avg_prec} def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: int, a_: List[str], a_: Optional[int], a_: str ): if out_image_dir and not os.path.exists(a_ ): os.makedirs(a_ ) _UpperCAmelCase : List[Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _UpperCAmelCase : Optional[Any] = make_precision_recall_eval( a_, a_, a_, a_, out_image=os.path.join(a_, "pr_exact.png" ), title="Precision-Recall curve for Exact Match score", ) _UpperCAmelCase : Dict = make_precision_recall_eval( a_, a_, a_, a_, out_image=os.path.join(a_, "pr_f1.png" ), title="Precision-Recall curve for F1 score", ) _UpperCAmelCase : Optional[int] = {k: float(a_ ) for k, v in qid_to_has_ans.items()} _UpperCAmelCase : Dict = make_precision_recall_eval( a_, a_, a_, a_, out_image=os.path.join(a_, "pr_oracle.png" ), title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)", ) merge_eval(a_, a_, "pr_exact" ) merge_eval(a_, a_, "pr_f1" ) merge_eval(a_, a_, "pr_oracle" ) def __UpperCAmelCase ( a_: Dict, a_: Union[str, Any], a_: int, a_: Optional[Any] ): if not qid_list: return _UpperCAmelCase : List[str] = [na_probs[k] for k in qid_list] _UpperCAmelCase : Tuple = np.ones_like(a_ ) / float(len(a_ ) ) plt.hist(a_, weights=a_, bins=20, range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(a_, f"""na_prob_hist_{name}.png""" ) ) plt.clf() def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: Any, a_: Optional[Any] ): _UpperCAmelCase : int = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _UpperCAmelCase : List[Any] = num_no_ans _UpperCAmelCase : Union[str, Any] = cur_score _UpperCAmelCase : str = 0.0 _UpperCAmelCase : Dict = sorted(a_, key=lambda a_ : na_probs[k] ) for i, qid in enumerate(a_ ): if qid not in scores: continue if qid_to_has_ans[qid]: _UpperCAmelCase : Union[str, Any] = scores[qid] else: if preds[qid]: _UpperCAmelCase : Dict = -1 else: _UpperCAmelCase : List[str] = 0 cur_score += diff if cur_score > best_score: _UpperCAmelCase : Optional[Any] = cur_score _UpperCAmelCase : Optional[Any] = na_probs[qid] return 1_00.0 * best_score / len(a_ ), best_thresh def __UpperCAmelCase ( a_: Any, a_: Dict, a_: List[Any], a_: Optional[int], a_: str, a_: str ): _UpperCAmelCase , _UpperCAmelCase : Any = find_best_thresh(a_, a_, a_, a_ ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = find_best_thresh(a_, a_, a_, a_ ) _UpperCAmelCase : List[Any] = best_exact _UpperCAmelCase : Union[str, Any] = exact_thresh _UpperCAmelCase : Optional[int] = best_fa _UpperCAmelCase : List[Any] = fa_thresh def __UpperCAmelCase ( ): with open(OPTS.data_file ) as f: _UpperCAmelCase : int = json.load(a_ ) _UpperCAmelCase : str = dataset_json["data"] with open(OPTS.pred_file ) as f: _UpperCAmelCase : Optional[int] = json.load(a_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _UpperCAmelCase : Tuple = json.load(a_ ) else: _UpperCAmelCase : str = {k: 0.0 for k in preds} _UpperCAmelCase : List[Any] = make_qid_to_has_ans(a_ ) # maps qid to True/False _UpperCAmelCase : str = [k for k, v in qid_to_has_ans.items() if v] _UpperCAmelCase : Tuple = [k for k, v in qid_to_has_ans.items() if not v] _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = get_raw_scores(a_, a_ ) _UpperCAmelCase : List[Any] = apply_no_ans_threshold(a_, a_, a_, OPTS.na_prob_thresh ) _UpperCAmelCase : str = apply_no_ans_threshold(a_, a_, a_, OPTS.na_prob_thresh ) _UpperCAmelCase : Dict = make_eval_dict(a_, a_ ) if has_ans_qids: _UpperCAmelCase : str = make_eval_dict(a_, a_, qid_list=a_ ) merge_eval(a_, a_, "HasAns" ) if no_ans_qids: _UpperCAmelCase : int = make_eval_dict(a_, a_, qid_list=a_ ) merge_eval(a_, a_, "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(a_, a_, a_, a_, a_, a_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(a_, a_, a_, a_, a_, OPTS.out_image_dir ) histogram_na_prob(a_, a_, OPTS.out_image_dir, "hasAns" ) histogram_na_prob(a_, a_, OPTS.out_image_dir, "noAns" ) if OPTS.out_file: with open(OPTS.out_file, "w" ) as f: json.dump(a_, a_ ) else: print(json.dumps(a_, indent=2 ) ) if __name__ == "__main__": __a = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
145
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Dict , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Tuple ) -> None: """simple docstring""" warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
145
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase_ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCamelCase_ : List[Any] = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class _a ( unittest.TestCase ): def _lowercase ( self ) -> str: _snake_case = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir ,"models/bert/" ) ) _snake_case = self.transformer_dir shutil.copy( os.path.join(_SCREAMING_SNAKE_CASE ,"src/transformers/models/bert/modeling_bert.py" ) ,os.path.join(self.transformer_dir ,"models/bert/modeling_bert.py" ) ,) def _lowercase ( self ) -> Any: _snake_case = 'src/transformers' shutil.rmtree(self.transformer_dir ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> str: _snake_case = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _snake_case = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _snake_case = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) _snake_case = black.format_str(_SCREAMING_SNAKE_CASE ,mode=_SCREAMING_SNAKE_CASE ) _snake_case = os.path.join(self.transformer_dir ,"new_code.py" ) with open(_SCREAMING_SNAKE_CASE ,"w" ,newline="\n" ) as f: f.write(_SCREAMING_SNAKE_CASE ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_SCREAMING_SNAKE_CASE ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ,"r" ) as f: self.assertTrue(f.read() ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Dict: _snake_case = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Tuple: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" ,"BertLMPredictionHead" ,REFERENCE_CODE + "\n" ,) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" ,"BertLMPredictionHead" ,_SCREAMING_SNAKE_CASE ,) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" ,"TestModelLMPredictionHead" ,re.sub("Bert" ,"TestModel" ,_SCREAMING_SNAKE_CASE ) ,) # Copy consistency with a really long name _snake_case = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" ,f"""{long_class_name}LMPredictionHead""" ,re.sub("Bert" ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ,) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" ,"TestModelLMPredictionHead" ,_SCREAMING_SNAKE_CASE ,overwrite_result=re.sub("Bert" ,"TestModel" ,_SCREAMING_SNAKE_CASE ) ,) def _lowercase ( self ) -> Optional[Any]: _snake_case = check_copies.LOCALIZED_READMES['README_zh-hans.md'] _snake_case = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _snake_case = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _snake_case = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _snake_case = check_copies.convert_to_localized_md( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,localized_readme["format_model_list"] ) self.assertFalse(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) _snake_case = check_copies.convert_to_localized_md( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_SCREAMING_SNAKE_CASE ) _snake_case = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _snake_case = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _snake_case = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _snake_case = check_copies.convert_to_localized_md( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
362
'''simple docstring''' def __a ( _UpperCamelCase: int ) -> None: """simple docstring""" _snake_case = generate_pascal_triangle(_UpperCamelCase ) for row_idx in range(_UpperCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def __a ( _UpperCamelCase: int ) -> list[list[int]]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _snake_case = [] for current_row_idx in range(_UpperCamelCase ): _snake_case = populate_current_row(_UpperCamelCase , _UpperCamelCase ) triangle.append(_UpperCamelCase ) return triangle def __a ( _UpperCamelCase: list[list[int]] , _UpperCamelCase: int ) -> list[int]: """simple docstring""" _snake_case = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _snake_case , _snake_case = 1, 1 for current_col_idx in range(1 , _UpperCamelCase ): calculate_current_element( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return current_row def __a ( _UpperCamelCase: list[list[int]] , _UpperCamelCase: list[int] , _UpperCamelCase: int , _UpperCamelCase: int , ) -> None: """simple docstring""" _snake_case = triangle[current_row_idx - 1][current_col_idx - 1] _snake_case = triangle[current_row_idx - 1][current_col_idx] _snake_case = above_to_left_elt + above_to_right_elt def __a ( _UpperCamelCase: int ) -> list[list[int]]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _snake_case = [[1]] for row_index in range(1 , _UpperCamelCase ): _snake_case = [0] + result[-1] + [0] _snake_case = row_index + 1 # Calculate the number of distinct elements in a row _snake_case = sum(divmod(_UpperCamelCase , 2 ) ) _snake_case = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _snake_case = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _snake_case = row_first_half + row_second_half result.append(_UpperCamelCase ) return result def __a ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase: Callable , _UpperCamelCase: int ) -> None: _snake_case = F"""{func.__name__}({value})""" _snake_case = timeit(F"""__main__.{call}""" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
142
0
"""simple docstring""" A__ : Any = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
144
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) __lowercase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for attribute in key.split('''.''' ): __UpperCamelCase :str = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __UpperCamelCase :Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __UpperCamelCase :str = value elif weight_type == "weight_g": __UpperCamelCase :List[str] = value elif weight_type == "weight_v": __UpperCamelCase :str = value elif weight_type == "bias": __UpperCamelCase :Union[str, Any] = value else: __UpperCamelCase :str = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = [] __UpperCamelCase :int = fairseq_model.state_dict() __UpperCamelCase :List[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase :List[Any] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCamelCase :List[str] = True else: for key, mapped_key in MAPPING.items(): __UpperCamelCase :Dict = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): __UpperCamelCase :Optional[Any] = True if "*" in mapped_key: __UpperCamelCase :List[str] = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] __UpperCamelCase :Optional[int] = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __UpperCamelCase :int = '''weight_g''' elif "weight_v" in name: __UpperCamelCase :List[Any] = '''weight_v''' elif "weight" in name: __UpperCamelCase :Dict = '''weight''' elif "bias" in name: __UpperCamelCase :Dict = '''bias''' else: __UpperCamelCase :Dict = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = full_name.split('''conv_layers.''' )[-1] __UpperCamelCase :Optional[int] = name.split('''.''' ) __UpperCamelCase :str = int(items[0] ) __UpperCamelCase :List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __UpperCamelCase :Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __UpperCamelCase :Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __UpperCamelCase :int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __UpperCamelCase :Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ): '''simple docstring''' if config_path is not None: __UpperCamelCase :Tuple = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :Optional[int] = HubertConfig() if is_finetuned: if dict_path: __UpperCamelCase :Optional[int] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase :Optional[int] = target_dict.pad_index __UpperCamelCase :Dict = target_dict.bos_index __UpperCamelCase :str = target_dict.eos_index __UpperCamelCase :Dict = len(target_dict.symbols ) __UpperCamelCase :List[Any] = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE , ) __UpperCamelCase :Union[str, Any] = True if config.feat_extract_norm == '''layer''' else False __UpperCamelCase :Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __UpperCamelCase :Any = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :str = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCamelCase :Dict = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __lowercase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
43
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , ): '''simple docstring''' A_ : Any = {} if train_file is not None: A_ : Tuple = [train_file] if eval_file is not None: A_ : Tuple = [eval_file] if test_file is not None: A_ : Tuple = [test_file] A_ : Optional[int] = datasets.load_dataset("""csv""" , data_files=lowerCamelCase__ ) A_ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) A_ : List[Any] = features_name.pop(lowerCamelCase__ ) A_ : Any = list(set(ds[list(files.keys() )[0]][label_name] ) ) A_ : Any = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Tuple = tokenizer.model_input_names A_ : List[str] = {} if len(lowerCamelCase__ ) == 1: for k in files.keys(): A_ : Optional[int] = ds[k].map( lambda lowerCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) , batched=lowerCamelCase__ , ) elif len(lowerCamelCase__ ) == 2: for k in files.keys(): A_ : Union[str, Any] = ds[k].map( lambda lowerCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" , ) , batched=lowerCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A_ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} A_ : int = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A_ : int = {k: v for k, v in ex.items() if k in input_names} A_ : int = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A_ : str = {k: v for k, v in ex.items() if k in input_names} A_ : List[str] = labelaid[ex[label_name]] yield (d, label) A_ : List[str] = ( tf.data.Dataset.from_generator( lowerCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A_ : Dict = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A_ : Optional[Any] = ( tf.data.Dataset.from_generator( lowerCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A_ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A_ : Optional[int] = ( tf.data.Dataset.from_generator( lowerCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A_ : int = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCamelCase :Dict = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : int = field(metadata={'help': 'Which column contains the label'} ) __SCREAMING_SNAKE_CASE : str = field(default=__UpperCAmelCase , metadata={'help': 'The path of the training file'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__UpperCAmelCase , metadata={'help': 'The path of the development file'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__UpperCAmelCase , metadata={'help': 'The path of the test file'} ) __SCREAMING_SNAKE_CASE : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __SCREAMING_SNAKE_CASE : bool = field( default=__UpperCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : bool = field(default=__UpperCAmelCase , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def a ( ): '''simple docstring''' A_ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A_, A_, A_ : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' f'16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A_ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A_, A_, A_, A_ : Dict = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) A_ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCamelCase__ ) , labelaid=lowerCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): A_ : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCamelCase__ ) -> Dict: A_ : Any = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A_ : str = TFTrainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A_ : List[Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) A_ : Union[str, Any] = trainer.evaluate() A_ : str = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(lowerCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) results.update(lowerCamelCase__ ) return results if __name__ == "__main__": main()
135
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=30 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=None , lowercase=2 , ): A_ : List[str] = parent A_ : str = batch_size A_ : Optional[Any] = image_size A_ : List[str] = patch_size A_ : List[str] = num_channels A_ : List[str] = is_training A_ : str = use_labels A_ : List[str] = hidden_size A_ : List[Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : Any = intermediate_size A_ : Optional[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Optional[int] = type_sequence_label_size A_ : Any = initializer_range A_ : int = scope A_ : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Dict = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def _a (self ): A_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Optional[Any] = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _a (self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[str] = ViTModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : List[str] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[str] = ViTForMaskedImageModeling(config=lowercase ) model.to(lowercase ) model.eval() A_ : Tuple = model(lowercase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : Any = ViTForMaskedImageModeling(lowercase ) model.to(lowercase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[int] = model(lowercase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a (self , lowercase , lowercase , lowercase ): A_ : Dict = self.type_sequence_label_size A_ : str = ViTForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : List[str] = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Any = 1 A_ : str = ViTForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Union[str, Any] = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self ): A_ : str = self.prepare_config_and_inputs() ( ( A_ ), ( A_ ), ( A_ ), ) : Optional[int] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = True __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Optional[int] = False def _a (self ): A_ : Any = ViTModelTester(self ) A_ : str = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def _a (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _a (self ): pass def _a (self ): A_, A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def _a (self ): A_, A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(lowercase ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def _a (self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase ) def _a (self ): A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def _a (self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = ViTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def a ( ): '''simple docstring''' A_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def _a (self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def _a (self ): A_ : Optional[int] = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(lowercase ) A_ : List[str] = self.default_image_processor A_ : Tuple = prepare_img() A_ : int = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): A_ : str = model(**lowercase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) A_ : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) ) @slow def _a (self ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. A_ : Optional[int] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(lowercase ) A_ : List[Any] = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=480 ) A_ : Dict = prepare_img() A_ : str = image_processor(images=lowercase , return_tensors="""pt""" ) A_ : int = inputs.pixel_values.to(lowercase ) # forward pass with torch.no_grad(): A_ : int = model(lowercase , interpolate_pos_encoding=lowercase ) # verify the logits A_ : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase ) A_ : List[Any] = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def _a (self ): A_ : List[Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : Any = prepare_img() A_ : List[str] = image_processor(images=lowercase , return_tensors="""pt""" ) A_ : Any = inputs.pixel_values.to(lowercase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : Optional[Any] = model(lowercase )
135
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Dict = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Dict = """camembert""" def __init__( self : str , _lowerCamelCase : Optional[Any]=3_05_22 , _lowerCamelCase : Dict=7_68 , _lowerCamelCase : Optional[Any]=12 , _lowerCamelCase : List[str]=12 , _lowerCamelCase : Union[str, Any]=30_72 , _lowerCamelCase : Optional[int]="gelu" , _lowerCamelCase : List[str]=0.1 , _lowerCamelCase : str=0.1 , _lowerCamelCase : List[str]=5_12 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : List[str]=0.02 , _lowerCamelCase : int=1E-12 , _lowerCamelCase : str=1 , _lowerCamelCase : Tuple=0 , _lowerCamelCase : Any=2 , _lowerCamelCase : Optional[int]="absolute" , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : List[str]=None , **_lowerCamelCase : Dict , ): """simple docstring""" super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[int] = vocab_size A_ : Tuple = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : int = num_attention_heads A_ : Optional[Any] = hidden_act A_ : Tuple = intermediate_size A_ : Union[str, Any] = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Any = type_vocab_size A_ : List[Any] = initializer_range A_ : Union[str, Any] = layer_norm_eps A_ : Any = position_embedding_type A_ : Optional[Any] = use_cache A_ : Union[str, Any] = classifier_dropout class lowercase ( __UpperCAmelCase): @property def a_ ( self : Union[str, Any] ): """simple docstring""" if self.task == "multiple-choice": A_ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A_ : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
167
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase ( unittest.TestCase): def __init__( self : int , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any]=13 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : List[Any]=2_24 , _lowerCamelCase : Tuple=30 , _lowerCamelCase : List[str]=4_00 , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : int=True , _lowerCamelCase : Any=[0.5, 0.5, 0.5] , _lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , ): """simple docstring""" A_ : int = size if size is not None else {'''height''': 18, '''width''': 18} A_ : Optional[int] = parent A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = image_size A_ : List[Any] = min_resolution A_ : str = max_resolution A_ : Dict = do_resize A_ : Dict = size A_ : str = do_normalize A_ : List[str] = image_mean A_ : List[str] = image_std def a_ ( self : Optional[Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( __UpperCAmelCase , unittest.TestCase): __lowerCAmelCase : Optional[int] = ViTImageProcessor if is_vision_available() else None def a_ ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = EfficientFormerImageProcessorTester(self ) @property def a_ ( self : List[Any] ): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def a_ ( self : List[Any] ): """simple docstring""" A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def a_ ( self : str ): """simple docstring""" pass def a_ ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : Dict = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a_ ( self : List[Any] ): """simple docstring""" A_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : str = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a_ ( self : str ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : str = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : List[str] = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
167
1
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __a ( ) -> int: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_UpperCamelCase ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def __a ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def __a ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_UpperCamelCase ): http_head("https://huggingface.co" )
142
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : int = logging.get_logger(__name__) UpperCamelCase_ : Tuple = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = """vit_msn""" def __init__( self ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0_2 ,_SCREAMING_SNAKE_CASE=1e-06 ,_SCREAMING_SNAKE_CASE=224 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=True ,**_SCREAMING_SNAKE_CASE ,) -> int: super().__init__(**_SCREAMING_SNAKE_CASE ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias
142
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : str ) -> str: return " ".join( ''.join(word[::-1] ) if len(__snake_case ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
183
"""simple docstring""" from __future__ import annotations def __magic_name__ ( __snake_case : list[int] ) -> list[int]: if len(__snake_case ) == 0: return array lowercase , lowercase : Tuple = min(__snake_case ), max(__snake_case ) # Compute the variables lowercase : Optional[Any] = _max - _min + 1 lowercase , lowercase : List[str] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase : Tuple = i - _min lowercase : str = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase : Union[str, Any] = 0 for i in range(__snake_case ): while holes_repeat[i] > 0: lowercase : Tuple = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _A : str = input("""Enter numbers separated by comma:\n""") _A : Optional[Any] = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
202
0
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def UpperCAmelCase__ (): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase_ ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def UpperCAmelCase__ (): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def UpperCAmelCase__ (): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase_ ): http_head("https://huggingface.co" )
370
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = R"\w+[.]\d+" __SCREAMING_SNAKE_CASE = re.findall(lowerCAmelCase_ , lowerCAmelCase_ ) for pat in pats: __SCREAMING_SNAKE_CASE = key.replace(lowerCAmelCase_ , "_".join(pat.split("." ) ) ) return key def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __SCREAMING_SNAKE_CASE = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": __SCREAMING_SNAKE_CASE = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=42 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __SCREAMING_SNAKE_CASE = flax_model.init_weights(PRNGKey(lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __SCREAMING_SNAKE_CASE = rename_key(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rename_key_and_reshape_tensor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown __SCREAMING_SNAKE_CASE = jnp.asarray(lowerCAmelCase_ ) return unflatten_dict(lowerCAmelCase_ )
195
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __lowerCAmelCase : Optional[int] =True except (ImportError, AttributeError): __lowerCAmelCase : Optional[Any] =object def _UpperCamelCase ( *lowercase__ , **lowercase__ ): pass __lowerCAmelCase : Union[str, Any] =False __lowerCAmelCase : Union[str, Any] =logging.get_logger('transformers-cli/serving') def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowercase__ , args.host , args.port , args.workers ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : dict class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] SCREAMING_SNAKE_CASE__ : Optional[List[int]] class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any class _lowercase ( A__ ): '''simple docstring''' @staticmethod def __magic_name__( lowerCAmelCase__ :ArgumentParser ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=lowerCAmelCase__ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=lowerCAmelCase__ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=lowerCAmelCase__ , default=8_888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=lowerCAmelCase__ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=lowerCAmelCase__ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=lowerCAmelCase__ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=lowerCAmelCase__ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=lowerCAmelCase__ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self :int , lowerCAmelCase__ :Pipeline , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> Any: __SCREAMING_SNAKE_CASE : str = pipeline __SCREAMING_SNAKE_CASE : Dict = host __SCREAMING_SNAKE_CASE : List[Any] = port __SCREAMING_SNAKE_CASE : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(f'''Serving model over {host}:{port}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['''POST'''] , ), ] , timeout=600 , ) def __magic_name__( self :Union[str, Any] ) -> Optional[int]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def __magic_name__( self :Dict ) -> Any: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __magic_name__( self :str , lowerCAmelCase__ :str = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ :bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> Any: try: __SCREAMING_SNAKE_CASE : int = self._pipeline.tokenizer.tokenize(lowerCAmelCase__ ) if return_ids: __SCREAMING_SNAKE_CASE : List[str] = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) return ServeTokenizeResult(tokens=lowerCAmelCase__ , tokens_ids=lowerCAmelCase__ ) else: return ServeTokenizeResult(tokens=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCAmelCase__ )} ) def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ :bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ :bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , ) -> List[Any]: try: __SCREAMING_SNAKE_CASE : int = self._pipeline.tokenizer.decode(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return ServeDeTokenizeResult(model='''''' , text=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCAmelCase__ )} ) async def __magic_name__( self :Dict , lowerCAmelCase__ :str=Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> Optional[int]: # Check we don't have empty string if len(lowerCAmelCase__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __SCREAMING_SNAKE_CASE : str = self._pipeline(lowerCAmelCase__ ) return ServeForwardResult(output=lowerCAmelCase__ ) except Exception as e: raise HTTPException(500 , {'''error''': str(lowerCAmelCase__ )} )
9
import argparse import os import re import packaging.version _A : Optional[int] = 'examples/' _A : str = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _A : Any = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } _A : List[str] = 'README.md' def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase__ : Tuple = f.read() lowerCamelCase__ , lowerCamelCase__ : Optional[int] = REPLACE_PATTERNS[pattern] lowerCamelCase__ : Union[str, Any] = replace.replace('''VERSION''' , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = re_pattern.sub(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" for folder, directories, fnames in os.walk(UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , pattern='''examples''' ) def _a ( UpperCAmelCase , UpperCAmelCase=False ) -> Dict: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not patch: update_version_in_examples(UpperCAmelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Any = '''🤗 Transformers currently provides the following architectures''' lowerCamelCase__ : Dict = '''1. Want to contribute a new model?''' with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase__ : str = f.readlines() # Find the start of the list. lowerCamelCase__ : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowerCamelCase__ : Any = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowerCamelCase__ : List[str] = f.read() lowerCamelCase__ : Any = REPLACE_PATTERNS['''init'''][0].search(UpperCAmelCase ).groups()[0] return packaging.version.parse(UpperCAmelCase ) def _a ( UpperCAmelCase=False ) -> str: """simple docstring""" lowerCamelCase__ : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowerCamelCase__ : Union[str, Any] = default_version.base_version elif patch: lowerCamelCase__ : str = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: lowerCamelCase__ : Dict = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. lowerCamelCase__ : str = input(f"Which version are you releasing? [{default_version}]" ) if len(UpperCAmelCase ) == 0: lowerCamelCase__ : int = default_version print(f"Updating version to {version}." ) global_version_update(UpperCAmelCase , patch=UpperCAmelCase ) def _a ( ) -> List[Any]: """simple docstring""" lowerCamelCase__ : List[str] = get_version() lowerCamelCase__ : Optional[int] = f"{current_version.major}.{current_version.minor + 1}.0.dev0" lowerCamelCase__ : Union[str, Any] = current_version.base_version # Check with the user we got that right. lowerCamelCase__ : Dict = input(f"Which version are we developing now? [{dev_version}]" ) if len(UpperCAmelCase ) == 0: lowerCamelCase__ : Tuple = dev_version print(f"Updating version to {version}." ) global_version_update(UpperCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _A : Any = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _A : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
142
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class A_ ( __lowerCamelCase , unittest.TestCase ): _lowerCamelCase : Optional[Any] = VideoToVideoSDPipeline _lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {'image', 'width', 'height'} _lowerCamelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {'image'} _lowerCamelCase : Dict = PipelineTesterMixin.required_optional_params - {'latents'} _lowerCamelCase : Optional[int] = False # No `output_type`. _lowerCamelCase : Union[str, Any] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowercase ( self : str ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=3_2 , attention_head_dim=4 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) _UpperCAmelCase = CLIPTextModel(UpperCamelCase_ ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def lowercase ( self : int , snake_case_ : Optional[int] , snake_case_ : List[Any]=0 ): # 3 frames _UpperCAmelCase = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("mps" ): _UpperCAmelCase = torch.manual_seed(UpperCamelCase_ ) else: _UpperCAmelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _UpperCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def lowercase ( self : Any ): _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = VideoToVideoSDPipeline(**UpperCamelCase_ ) _UpperCAmelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase_ ) _UpperCAmelCase = "np" _UpperCAmelCase = sd_pipe(**UpperCamelCase_ ).frames _UpperCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) _UpperCAmelCase = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self : str ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCamelCase_ , expected_max_diff=5e-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowercase ( self : Tuple ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowercase ( self : Tuple ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def lowercase ( self : Tuple ): pass def lowercase ( self : str ): return super().test_progress_bar() @slow @skip_mps class A_ ( unittest.TestCase ): def lowercase ( self : Optional[int] ): _UpperCAmelCase = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames _UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=UpperCamelCase_ ) _UpperCAmelCase = video.to("cuda" ) _UpperCAmelCase = "Spiderman is surfing" _UpperCAmelCase = pipe(UpperCamelCase_ , video=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=3 , output_type="pt" ).frames _UpperCAmelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
357
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE :List[Any] = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } __SCREAMING_SNAKE_CASE :str = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } __SCREAMING_SNAKE_CASE :int = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Dict = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = BertTokenizer def __init__( self : Union[str, Any] , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : Optional[int]=True , snake_case_ : Optional[Any]="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : List[Any]="[PAD]" , snake_case_ : int="[CLS]" , snake_case_ : Dict="[MASK]" , snake_case_ : Any=True , snake_case_ : int=None , **snake_case_ : Optional[int] , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case_ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case_ ) != tokenize_chinese_chars ): _UpperCAmelCase = getattr(snake_case_ , normalizer_state.pop("type" ) ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = tokenize_chinese_chars _UpperCAmelCase = normalizer_class(**snake_case_ ) _UpperCAmelCase = do_lower_case def lowercase ( self : str , snake_case_ : str , snake_case_ : Any=None ): _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Optional[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Any , snake_case_ : str , snake_case_ : Optional[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
156
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
"""simple docstring""" def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str ) -> List[str]: '''simple docstring''' assert x is not None assert y is not None __lowerCamelCase : Optional[int] = len(_lowerCamelCase ) __lowerCamelCase : Optional[int] = len(_lowerCamelCase ) # declaring the array for storing the dp values __lowerCamelCase : Any = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __lowerCamelCase : Dict = 1 if x[i - 1] == y[j - 1] else 0 __lowerCamelCase : List[Any] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __lowerCamelCase : int = "" __lowerCamelCase , __lowerCamelCase : int = m, n while i > 0 and j > 0: __lowerCamelCase : Optional[int] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowerCamelCase : Any = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = '''AGGTAB''' __A = '''GXTXAYB''' __A = 4 __A = '''GTAB''' __A, __A = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
135
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __snake_case : List[str] = """\ """ __snake_case : str = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ __snake_case : List[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 16 , _UpperCamelCase = True , _UpperCamelCase=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": lowerCAmelCase__ = 'cuda' else: lowerCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCamelCase ) lowerCAmelCase__ = model.to(_UpperCamelCase ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: lowerCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" lowerCAmelCase__ = model.config.max_length - 1 else: lowerCAmelCase__ = model.config.max_length lowerCAmelCase__ = tokenizer( _UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors='pt' , return_attention_mask=_UpperCamelCase , ).to(_UpperCamelCase ) lowerCAmelCase__ = encodings['input_ids'] lowerCAmelCase__ = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." lowerCAmelCase__ = [] lowerCAmelCase__ = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ): lowerCAmelCase__ = min(start_index + batch_size , len(_UpperCamelCase ) ) lowerCAmelCase__ = encoded_texts[start_index:end_index] lowerCAmelCase__ = attn_masks[start_index:end_index] if add_start_token: lowerCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCamelCase ) lowerCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) lowerCAmelCase__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCamelCase ), attn_mask] , dim=1 ) lowerCAmelCase__ = encoded_batch with torch.no_grad(): lowerCAmelCase__ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).logits lowerCAmelCase__ = out_logits[..., :-1, :].contiguous() lowerCAmelCase__ = labels[..., 1:].contiguous() lowerCAmelCase__ = attn_mask[..., 1:].contiguous() lowerCAmelCase__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCamelCase )}
122
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Dict = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
122
1
import datasets from .evaluate import evaluate _A : Optional[int] = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _A : int = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _A : int = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __lowerCamelCase ( self : Optional[Any] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def __lowerCamelCase ( self : Dict , A : Tuple , A : Tuple ) ->int: lowerCamelCase__ : Optional[Any] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase__ : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase__ : Tuple = evaluate(dataset=A , predictions=A ) return score
142
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ : int = tmp_path / '''file.csv''' lowerCamelCase__ : Tuple = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Any = tmp_path / '''malformed_file.csv''' lowerCamelCase__ : List[str] = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Dict = tmp_path / '''csv_with_image.csv''' lowerCamelCase__ : int = textwrap.dedent( f"\\n image\n {image_file}\n " ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = tmp_path / '''csv_with_label.csv''' lowerCamelCase__ : List[Any] = textwrap.dedent( '''\ label good bad good ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) @pytest.fixture def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : int = tmp_path / '''csv_with_int_list.csv''' lowerCamelCase__ : Dict = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write(UpperCAmelCase ) return str(UpperCAmelCase ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = Csv() lowerCamelCase__ : List[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(UpperCAmelCase , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(UpperCAmelCase ) in record.message for record in caplog.records ) @require_pil def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" with open(UpperCAmelCase , encoding='''utf-8''' ) as f: lowerCamelCase__ : Tuple = f.read().splitlines()[1] lowerCamelCase__ : Any = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) lowerCamelCase__ : List[str] = csv._generate_tables([[csv_file_with_image]] ) lowerCamelCase__ : Dict = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() lowerCamelCase__ : Tuple = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( UpperCAmelCase ) -> List[Any]: """simple docstring""" with open(UpperCAmelCase , encoding='''utf-8''' ) as f: lowerCamelCase__ : List[Any] = f.read().splitlines()[1:] lowerCamelCase__ : List[Any] = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) lowerCamelCase__ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) lowerCamelCase__ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() lowerCamelCase__ : str = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(UpperCAmelCase ) for label in labels] def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : List[str] = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda UpperCAmelCase : [int(UpperCAmelCase ) for i in x.split()]} ) lowerCamelCase__ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) lowerCamelCase__ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) lowerCamelCase__ : Tuple = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
142
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "labels" def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Dict): if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column] , lowerCAmelCase__): raise ValueError(F"Column {self.label_column} is not a ClassLabel.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Dict = self.label_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.label_column] SCREAMING_SNAKE_CASE_: Optional[int] = label_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return { self.audio_column: "audio", self.label_column: "labels", }
127
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : Any = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowerCAmelCase : str = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = EfficientNetConfig() SCREAMING_SNAKE_CASE_: Any = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE_: Optional[Any] = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE_: List[Any] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE_: Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: Optional[int] = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE_: Dict = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE_: str = "huggingface/label-files" SCREAMING_SNAKE_CASE_: str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: int = 10_00 SCREAMING_SNAKE_CASE_: int = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_: int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Any = idalabel SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in idalabel.items()} return config def A_ ( ): SCREAMING_SNAKE_CASE_: Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: Optional[Any] = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_UpperCAmelCase , ) return preprocessor def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE_: Optional[Any] = sorted(set(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: int = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = {b: str(_UpperCAmelCase ) for b, i in zip(_UpperCAmelCase , range(_UpperCAmelCase ) )} SCREAMING_SNAKE_CASE_: List[Any] = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE_: List[str] = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE_: Optional[Any] = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE_: str = "efficientnet." + item[1] SCREAMING_SNAKE_CASE_: List[str] = "classifier.weight" SCREAMING_SNAKE_CASE_: Optional[Any] = "classifier.bias" return key_mapping def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE_: List[str] = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE_: str = torch.from_numpy(_UpperCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE_: Tuple = torch.from_numpy(np.transpose(_UpperCAmelCase ) ) else: SCREAMING_SNAKE_CASE_: List[str] = torch.from_numpy(_UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCAmelCase ) @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model_classes[model_name]( include_top=_UpperCAmelCase , weights="imagenet" , input_tensor=_UpperCAmelCase , input_shape=_UpperCAmelCase , pooling=_UpperCAmelCase , classes=10_00 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE_: Tuple = original_model.trainable_variables SCREAMING_SNAKE_CASE_: Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE_: List[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE_: str = param.numpy() SCREAMING_SNAKE_CASE_: Union[str, Any] = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE_: Any = get_efficientnet_config(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = EfficientNetForImageClassification(_UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE_: str = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE_: Tuple = rename_keys(_UpperCAmelCase ) replace_params(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE_: Optional[Any] = convert_image_processor(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = hf_model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE_: Tuple = image.img_to_array(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = np.expand_dims(_UpperCAmelCase , axis=0 ) SCREAMING_SNAKE_CASE_: str = original_model.predict(_UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCAmelCase ): os.mkdir(_UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCAmelCase ) preprocessor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"Pushing converted {model_name} to the hub..." ) SCREAMING_SNAKE_CASE_: Optional[Any] = f"efficientnet-{model_name}" preprocessor.push_to_hub(_UpperCAmelCase ) hf_model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowerCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
127
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowerCAmelCase ( __lowerCamelCase ): _a = """levit""" def __init__( self , lowerCAmelCase=224 , lowerCAmelCase=3 , lowerCAmelCase=3 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase=16 , lowerCAmelCase=[128, 256, 384] , lowerCAmelCase=[4, 8, 12] , lowerCAmelCase=[4, 4, 4] , lowerCAmelCase=[16, 16, 16] , lowerCAmelCase=0 , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=0.02 , **lowerCAmelCase , ) -> Dict: '''simple docstring''' super().__init__(**lowerCAmelCase ) _lowercase =image_size _lowercase =num_channels _lowercase =kernel_size _lowercase =stride _lowercase =padding _lowercase =hidden_sizes _lowercase =num_attention_heads _lowercase =depths _lowercase =key_dim _lowercase =drop_path_rate _lowercase =patch_size _lowercase =attention_ratio _lowercase =mlp_ratio _lowercase =initializer_range _lowercase =[ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowerCAmelCase ( __lowerCamelCase ): _a = version.parse("""1.11""" ) @property def A__ ( self ) -> List[str]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A__ ( self ) -> List[str]: '''simple docstring''' return 1e-4
205
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = r'\w+[.]\d+' lowercase = re.findall(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for pat in pats: lowercase = key.replace(__SCREAMING_SNAKE_CASE , '_'.join(pat.split('.' ) ) ) return key def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": lowercase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=42 ): # Step 1: Convert pytorch tensor to numpy lowercase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase = flax_model.init_weights(PRNGKey(__SCREAMING_SNAKE_CASE ) ) lowercase = flatten_dict(__SCREAMING_SNAKE_CASE ) lowercase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase = rename_key(__SCREAMING_SNAKE_CASE ) lowercase = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters lowercase , lowercase = rename_key_and_reshape_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowercase = jnp.asarray(__SCREAMING_SNAKE_CASE ) return unflatten_dict(__SCREAMING_SNAKE_CASE )
195
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __UpperCamelCase ( _A=32 , _A=10 , _A=100 , _A=1026 , _A=True , _A="data/tokenized_stories_train_wikitext103.jbl" , _A="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set lowerCAmelCase_ , lowerCAmelCase_ = generate_datasets( _A , _A , number=_A , min_len=1026 , trim=_A ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCAmelCase_ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model lowerCAmelCase_ = load_gpta('''gpt2''' ).to(_A ) print('''computing perplexity on objective set''' ) lowerCAmelCase_ = compute_perplexity(_A , _A , _A ).item() print('''perplexity on objective set:''' , _A ) # collect igf pairs and save to file demo.jbl collect_objective_set(_A , _A , _A , _A , _A , _A , _A , _A ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __UpperCamelCase ( _A , _A=15 , _A=128 , _A=100 , _A="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model lowerCAmelCase_ = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model lowerCAmelCase_ = SecondaryLearner(_A ) # Train secondary learner lowerCAmelCase_ = train_secondary_learner( _A , _A , max_epochs=_A , batch_size=_A , eval_freq=100 , igf_model_path=_A , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __UpperCamelCase ( _A , _A , _A , _A=32 , _A=1000 , _A=16 , _A=1.0 , _A=recopy_gpta , _A=None , _A=10 , _A="gpt2_finetuned.pt" , ): lowerCAmelCase_ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) lowerCAmelCase_ = RandomSampler(_A ) lowerCAmelCase_ = DataLoader(_A , sampler=_A ) lowerCAmelCase_ = max_steps // (len(_A )) + 1 lowerCAmelCase_ = 0 lowerCAmelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=_A ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = recopy_model(_A , _A , _A ) model.train() if secondary_learner is not None: secondary_learner.to(_A ) secondary_learner.eval() lowerCAmelCase_ = [] lowerCAmelCase_ = 0 lowerCAmelCase_ = [] lowerCAmelCase_ = [] # Compute the performance of the transformer model at the beginning lowerCAmelCase_ = compute_perplexity(_A , _A , _A ) test_perps.append(_A ) print('''Test perplexity, step''' , _A , ''':''' , _A ) for epoch in range(int(_A ) ): for step, example in enumerate(_A ): torch.cuda.empty_cache() lowerCAmelCase_ = random.randint(0 , example.size(2 ) - context_len - 1 ) lowerCAmelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCAmelCase_ = model(_A , labels=_A ) lowerCAmelCase_ = True if secondary_learner is not None: lowerCAmelCase_ = secondary_learner.forward( torch.tensor(_A , dtype=torch.long , device=_A ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_A ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowerCAmelCase_ = -1 if predicted_q < threshold: lowerCAmelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowerCAmelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCAmelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCAmelCase_ = compute_perplexity(_A , _A , _A ) test_perps.append(_A ) print('''Test perplexity, step''' , _A , ''':''' , _A ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _A ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __UpperCamelCase ( ): lowerCAmelCase_ = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=_A , type=_A , required=_A , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=_A , default=_A , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=_A , default=_A , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=_A , type=_A , required=_A , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=_A , type=_A , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=_A , default=_A , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=_A , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=_A , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1000 , type=_A , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=_A , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=_A , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=_A , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=_A , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1026 , type=_A , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=_A , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=_A , type=_A , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=_A , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=_A , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=_A , type=_A , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_A , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner lowerCAmelCase_ = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner lowerCAmelCase_ = training_secondary_learner( _A , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model lowerCAmelCase_ = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowerCAmelCase_ , lowerCAmelCase_ = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1026 , trim=_A ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _A , _A , _A , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_A , secondary_learner=_A , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
167
def __UpperCamelCase ( _A ): lowerCAmelCase_ = [int(_A ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(_A ) == 4 and all(0 <= int(_A ) <= 254 for octet in octets ) if __name__ == "__main__": _A = input().strip() _A = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f"{ip} is a {valid_or_invalid} IP v4 address.")
167
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> List[str]: _A : Optional[Any] = parent _A : int = batch_size _A : List[Any] = seq_length _A : List[Any] = is_training _A : str = use_input_mask _A : List[Any] = use_token_type_ids _A : Any = use_labels _A : Dict = vocab_size _A : List[str] = hidden_size _A : Optional[int] = num_hidden_layers _A : List[str] = num_attention_heads _A : Tuple = intermediate_size _A : Optional[int] = hidden_act _A : Optional[int] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : str = max_position_embeddings _A : Any = type_vocab_size _A : Optional[Any] = type_sequence_label_size _A : Optional[Any] = initializer_range _A : Any = num_labels _A : int = num_choices _A : Any = scope def a__ ( self ) -> List[Any]: _A : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Union[str, Any] = None if self.use_input_mask: _A : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _A : Tuple = None if self.use_token_type_ids: _A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Dict = None _A : List[Any] = None _A : Dict = None if self.use_labels: _A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _A : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ) -> List[Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _A : Optional[int] = LlamaModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a , attention_mask=_a ) _A : str = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> List[str]: _A : Union[str, Any] = True _A : Any = LlamaModel(_a ) model.to(_a ) model.eval() _A : int = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _A : Optional[int] = model( _a , attention_mask=_a , encoder_hidden_states=_a , ) _A : Optional[int] = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> int: _A : List[Any] = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() _A : Optional[Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Any: _A : Optional[Any] = True _A : Tuple = True _A : str = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass _A : Union[str, Any] = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , use_cache=_a , ) _A : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _A : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) _A : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _A : Dict = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , output_hidden_states=_a , )["""hidden_states"""][0] _A : Optional[int] = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , past_key_values=_a , output_hidden_states=_a , )["""hidden_states"""][0] # select random slice _A : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _A : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> int: _A : List[Any] = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Any = config_and_inputs _A : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _a = (LlamaForCausalLM,) if is_torch_available() else () _a = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False def a__ ( self ) -> List[str]: _A : Union[str, Any] = LlamaModelTester(self ) _A : Dict = ConfigTester(self , config_class=_a , hidden_size=37 ) def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> Union[str, Any]: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Optional[Any] = type self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> List[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() _A : List[str] = 3 _A : Optional[Any] = input_dict["""input_ids"""] _A : Tuple = input_ids.ne(1 ).to(_a ) _A : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A : Tuple = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : int = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ) -> Tuple: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : int = 3 _A : Union[str, Any] = """single_label_classification""" _A : Union[str, Any] = input_dict["""input_ids"""] _A : int = input_ids.ne(1 ).to(_a ) _A : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A : Optional[Any] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : Union[str, Any] = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ) -> str: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _A : List[str] = 3 _A : Tuple = """multi_label_classification""" _A : List[str] = input_dict["""input_ids"""] _A : Union[str, Any] = input_ids.ne(1 ).to(_a ) _A : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _A : Optional[int] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : Tuple = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def a__ ( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def a__ ( self , _a ) -> Any: _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : Dict = ids_tensor([1, 10] , config.vocab_size ) _A : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A : str = LlamaModel(_a ) original_model.to(_a ) original_model.eval() _A : Dict = original_model(_a ).last_hidden_state _A : Union[str, Any] = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} _A : Optional[Any] = LlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() _A : Tuple = scaled_model(_a ).last_hidden_state _A : Any = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a , _a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) @require_torch class lowercase ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Dict: _A : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) _A : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _A : Optional[int] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : Any = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Any: _A : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) _A : Dict = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _A : Dict = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Optional[Any]: _A : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) _A : Optional[int] = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _A : Tuple = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def a__ ( self ) -> Optional[Any]: _A : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) _A : int = model(torch.tensor(_a ) ) _A : Tuple = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # fmt: off _A : Any = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def a__ ( self ) -> Any: _A : Any = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" _A : List[Any] = """Simply put, the theory of relativity states that """ _A : Dict = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) _A : List[str] = tokenizer.encode(_a , return_tensors="""pt""" ) _A : Optional[Any] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=_a ) # greedy generation outputs _A : Optional[Any] = model.generate(_a , max_new_tokens=64 , top_p=_a , temperature=1 , do_sample=_a ) _A : Union[str, Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=_a ) self.assertEqual(_a , _a )
26
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Union[str, Any] = ['''image_processor'''] A__ : Any = '''SamImageProcessor''' def __init__( self : Tuple , _snake_case : Tuple ): super().__init__(_snake_case ) __lowercase : str = self.image_processor __lowercase : Any = -10 __lowercase : Dict = self.image_processor.size['''longest_edge'''] def __call__( self : Dict , _snake_case : str=None , _snake_case : Any=None , _snake_case : List[str]=None , _snake_case : Any=None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : List[Any] , ): __lowercase : List[str] = self.image_processor( _snake_case , return_tensors=_snake_case , **_snake_case , ) # pop arguments that are not used in the foward but used nevertheless __lowercase : Optional[int] = encoding_image_processor['''original_sizes'''] if hasattr(_snake_case , '''numpy''' ): # Checks if Torch or TF tensor __lowercase : Optional[int] = original_sizes.numpy() __lowercase , __lowercase , __lowercase : str = self._check_and_preprocess_points( input_points=_snake_case , input_labels=_snake_case , input_boxes=_snake_case , ) __lowercase : int = self._normalize_and_convert( _snake_case , _snake_case , input_points=_snake_case , input_labels=_snake_case , input_boxes=_snake_case , return_tensors=_snake_case , ) return encoding_image_processor def snake_case_ ( self : List[str] , _snake_case : int , _snake_case : Optional[int] , _snake_case : Any=None , _snake_case : Optional[Any]=None , _snake_case : Any=None , _snake_case : str="pt" , ): if input_points is not None: if len(_snake_case ) != len(_snake_case ): __lowercase : Optional[Any] = [ self._normalize_coordinates(self.target_size , _snake_case , original_sizes[0] ) for point in input_points ] else: __lowercase : List[Any] = [ self._normalize_coordinates(self.target_size , _snake_case , _snake_case ) for point, original_size in zip(_snake_case , _snake_case ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowercase , __lowercase : Tuple = self._pad_points_and_labels(_snake_case , _snake_case ) __lowercase : Dict = np.array(_snake_case ) if input_labels is not None: __lowercase : Dict = np.array(_snake_case ) if input_boxes is not None: if len(_snake_case ) != len(_snake_case ): __lowercase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , _snake_case , original_sizes[0] , is_bounding_box=_snake_case ) for box in input_boxes ] else: __lowercase : Tuple = [ self._normalize_coordinates(self.target_size , _snake_case , _snake_case , is_bounding_box=_snake_case ) for box, original_size in zip(_snake_case , _snake_case ) ] __lowercase : Dict = np.array(_snake_case ) if input_boxes is not None: if return_tensors == "pt": __lowercase : int = torch.from_numpy(_snake_case ) # boxes batch size of 1 by default __lowercase : List[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowercase : Dict = tf.convert_to_tensor(_snake_case ) # boxes batch size of 1 by default __lowercase : int = tf.expand_dims(_snake_case , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowercase : Tuple = torch.from_numpy(_snake_case ) # point batch size of 1 by default __lowercase : Tuple = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowercase : List[Any] = tf.convert_to_tensor(_snake_case ) # point batch size of 1 by default __lowercase : Optional[int] = tf.expand_dims(_snake_case , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": __lowercase : int = torch.from_numpy(_snake_case ) # point batch size of 1 by default __lowercase : Any = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowercase : Any = tf.convert_to_tensor(_snake_case ) # point batch size of 1 by default __lowercase : Union[str, Any] = tf.expand_dims(_snake_case , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def snake_case_ ( self : int , _snake_case : Any , _snake_case : str ): __lowercase : Union[str, Any] = max([point.shape[0] for point in input_points] ) __lowercase : List[Any] = [] for i, point in enumerate(_snake_case ): if point.shape[0] != expected_nb_points: __lowercase : Optional[Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __lowercase : Tuple = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_snake_case ) __lowercase : List[Any] = processed_input_points return input_points, input_labels def snake_case_ ( self : Dict , _snake_case : int , _snake_case : np.ndarray , _snake_case : Any , _snake_case : Any=False ): __lowercase , __lowercase : Tuple = original_size __lowercase , __lowercase : Optional[Any] = self.image_processor._get_preprocess_shape(_snake_case , longest_edge=_snake_case ) __lowercase : Optional[int] = deepcopy(_snake_case ).astype(_snake_case ) if is_bounding_box: __lowercase : str = coords.reshape(-1 , 2 , 2 ) __lowercase : Dict = coords[..., 0] * (new_w / old_w) __lowercase : int = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowercase : Optional[Any] = coords.reshape(-1 , 4 ) return coords def snake_case_ ( self : List[str] , _snake_case : List[Any]=None , _snake_case : Any=None , _snake_case : int=None , ): if input_points is not None: if hasattr(_snake_case , '''numpy''' ): # Checks for TF or Torch tensor __lowercase : Tuple = input_points.numpy().tolist() if not isinstance(_snake_case , _snake_case ) or not isinstance(input_points[0] , _snake_case ): raise ValueError('''Input points must be a list of list of floating points.''' ) __lowercase : str = [np.array(_snake_case ) for input_point in input_points] else: __lowercase : str = None if input_labels is not None: if hasattr(_snake_case , '''numpy''' ): __lowercase : Any = input_labels.numpy().tolist() if not isinstance(_snake_case , _snake_case ) or not isinstance(input_labels[0] , _snake_case ): raise ValueError('''Input labels must be a list of list integers.''' ) __lowercase : List[Any] = [np.array(_snake_case ) for label in input_labels] else: __lowercase : Tuple = None if input_boxes is not None: if hasattr(_snake_case , '''numpy''' ): __lowercase : str = input_boxes.numpy().tolist() if ( not isinstance(_snake_case , _snake_case ) or not isinstance(input_boxes[0] , _snake_case ) or not isinstance(input_boxes[0][0] , _snake_case ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) __lowercase : List[Any] = [np.array(_snake_case ).astype(np.floataa ) for box in input_boxes] else: __lowercase : Dict = None return input_points, input_labels, input_boxes @property def snake_case_ ( self : List[Any] ): __lowercase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(_snake_case ) ) def snake_case_ ( self : str , *_snake_case : Union[str, Any] , **_snake_case : Dict ): return self.image_processor.post_process_masks(*_snake_case , **_snake_case )
156
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=3 , __a=32 , __a=3 , __a=10 , __a=[10, 20, 30, 40] , __a=[1, 1, 2, 1] , __a=True , __a=True , __a="relu" , __a=3 , __a=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(__a ) def snake_case ( self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def snake_case ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = TFResNetModel(config=__a ) __lowerCAmelCase = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFResNetForImageClassification(__a ) __lowerCAmelCase = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __UpperCAmelCase : Union[str, Any] =( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __UpperCAmelCase : Optional[int] =False __UpperCAmelCase : Tuple =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Any =False __UpperCAmelCase : int =False def snake_case ( self ): __lowerCAmelCase = TFResNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , has_text_modality=__a ) def snake_case ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def snake_case ( self ): pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case ( self ): def check_hidden_states_output(__a , __a , __a ): __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCAmelCase = layer_type __lowerCAmelCase = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(__a , __a , __a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def snake_case ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFResNetModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case ( self ): __lowerCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__a , return_tensors="tf" ) # forward pass __lowerCAmelCase = model(**__a ) # verify the logits __lowerCAmelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __a ) __lowerCAmelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __a , atol=1e-4 ) )
259
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin A : Optional[int] = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=16 , __a=13 , __a=7 , __a=14 , __a=10 , __a=19 , __a=5 , __a=4 , __a=True , __a=16 , __a=2 , __a=4 , __a=4 , __a="gelu" , __a=0.1 , __a=0.1 , __a=[1, 2, 3, 4, 5] , __a=25 , __a=5 , ): __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def snake_case ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def snake_case ( self , __a ): __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def snake_case ( self ): __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self , __a , __a ): __lowerCAmelCase = AutoformerModel(config=__a ).to(__a ).eval() __lowerCAmelCase = model(**__a ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(__a ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**__a ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(__a ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowerCAmelCase = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =(AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __UpperCAmelCase : List[Any] =(AutoformerForPrediction,) if is_torch_available() else () __UpperCAmelCase : Tuple ={"""feature-extraction""": AutoformerModel} if is_torch_available() else {} __UpperCAmelCase : Tuple =False __UpperCAmelCase : Any =False __UpperCAmelCase : Dict =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Optional[Any] =False def snake_case ( self ): __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , has_text_modality=__a ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["missing_keys"] , [] ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="Model has no tokens embeddings" ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase = inspect.signature(getattr(__a , "forward" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , "seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "decoder_seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "encoder_seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "d_model" , __a ) __lowerCAmelCase = getattr(self.model_tester , "num_attention_heads" , __a ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(__a ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def snake_case ( self ): super().test_retain_grad_hidden_states_attentions() def _lowerCamelCase ( _UpperCamelCase="train-batch.pt" ): '''simple docstring''' __lowerCAmelCase = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=_UpperCamelCase , repo_type="dataset" ) __lowerCAmelCase = torch.load(_UpperCamelCase , map_location=_UpperCamelCase ) return batch @require_torch @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowerCAmelCase = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def snake_case ( self ): __lowerCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowerCAmelCase = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def snake_case ( self ): __lowerCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowerCAmelCase = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=__a ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1e-1 ) )
259
1
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def lowerCamelCase__ ( a__ : int ) -> Tuple: if "cls_token" in name: UpperCamelCase_ = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: UpperCamelCase_ = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: UpperCamelCase_ = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase_ = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: UpperCamelCase_ = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCamelCase_ = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: UpperCamelCase_ = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: UpperCamelCase_ = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: UpperCamelCase_ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCamelCase_ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCamelCase_ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase_ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCamelCase_ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase_ = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: UpperCamelCase_ = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: UpperCamelCase_ = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: UpperCamelCase_ = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase_ = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase_ = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def lowerCamelCase__ ( a__ : Dict , a__ : Optional[int] ) -> str: for key in orig_state_dict.copy().keys(): UpperCamelCase_ = orig_state_dict.pop(a__ ) if "qkv" in key: UpperCamelCase_ = key.split(""".""" ) UpperCamelCase_ = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase_ = config.decoder_hidden_size UpperCamelCase_ = """decoder.decoder_layers.""" if "weight" in key: UpperCamelCase_ = val[:dim, :] UpperCamelCase_ = val[dim : dim * 2, :] UpperCamelCase_ = val[-dim:, :] elif "bias" in key: UpperCamelCase_ = val[:dim] UpperCamelCase_ = val[dim : dim * 2] UpperCamelCase_ = val[-dim:] else: UpperCamelCase_ = config.hidden_size UpperCamelCase_ = """vit.encoder.layer.""" if "weight" in key: UpperCamelCase_ = val[:dim, :] UpperCamelCase_ = val[dim : dim * 2, :] UpperCamelCase_ = val[-dim:, :] elif "bias" in key: UpperCamelCase_ = val[:dim] UpperCamelCase_ = val[dim : dim * 2] UpperCamelCase_ = val[-dim:] else: UpperCamelCase_ = val return orig_state_dict def lowerCamelCase__ ( a__ : int , a__ : Union[str, Any] ) -> Optional[int]: UpperCamelCase_ = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase_ = 1024 UpperCamelCase_ = 4096 UpperCamelCase_ = 24 UpperCamelCase_ = 16 elif "huge" in checkpoint_url: UpperCamelCase_ = 14 UpperCamelCase_ = 1280 UpperCamelCase_ = 5120 UpperCamelCase_ = 32 UpperCamelCase_ = 16 UpperCamelCase_ = ViTMAEForPreTraining(a__ ) UpperCamelCase_ = torch.hub.load_state_dict_from_url(a__ , map_location="""cpu""" )["""model"""] UpperCamelCase_ = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase_ = convert_state_dict(a__ , a__ ) model.load_state_dict(a__ ) model.eval() UpperCamelCase_ = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" UpperCamelCase_ = Image.open(requests.get(a__ , stream=a__ ).raw ) UpperCamelCase_ = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase_ = image_processor(images=a__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) UpperCamelCase_ = model(**a__ ) UpperCamelCase_ = outputs.logits if "large" in checkpoint_url: UpperCamelCase_ = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: UpperCamelCase_ = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: UpperCamelCase_ = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , a__ , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _A = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
122
_A = [0, 2, 4, 6, 8] _A = [1, 3, 5, 7, 9] def lowerCamelCase__ ( a__ : int , a__ : int , a__ : list[int] , a__ : int ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 UpperCamelCase_ = 0 for digit in range(10 ): UpperCamelCase_ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , a__ , a__ ) return result UpperCamelCase_ = 0 for digita in range(10 ): UpperCamelCase_ = digita if (remainder + digita) % 2 == 0: UpperCamelCase_ = ODD_DIGITS else: UpperCamelCase_ = EVEN_DIGITS for digita in other_parity_digits: UpperCamelCase_ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , a__ , a__ , ) return result def lowerCamelCase__ ( a__ : int = 9 ) -> int: UpperCamelCase_ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a__ , 0 , [0] * length , a__ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
122
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase : lowerCAmelCase : Optional[int] = 42 # setable values lowerCAmelCase : Optional[int] = 42 lowerCAmelCase : Optional[int] = 42 lowerCAmelCase : Tuple = None @classmethod def __A ( cls , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): return cls(common=_SCREAMING_SNAKE_CASE , init_noise_sigma=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) @dataclass class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : List[Any] = 42 class UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase : Any = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCAmelCase : Optional[Any] = 42 @property def __A ( self ): return True @register_to_config def __init__( self , UpperCAmelCase__ = 1_000 , UpperCAmelCase__ = 0.0_001 , UpperCAmelCase__ = 0.02 , UpperCAmelCase__ = "linear" , UpperCAmelCase__ = None , UpperCAmelCase__ = "fixed_small" , UpperCAmelCase__ = True , UpperCAmelCase__ = "epsilon" , UpperCAmelCase__ = jnp.floataa , ): A__ = dtype def __A ( self , UpperCAmelCase__ = None ): if common is None: A__ = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution A__ = jnp.array(1.0 , dtype=self.dtype ) A__ = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_SCREAMING_SNAKE_CASE , init_noise_sigma=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None ): return sample def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = () ): A__ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 A__ = (jnp.arange(0 , _SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ): A__ = state.common.alphas_cumprod[t] A__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A__ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: A__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": A__ = jnp.clip(_SCREAMING_SNAKE_CASE , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": A__ = jnp.log(jnp.clip(_SCREAMING_SNAKE_CASE , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": A__ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log A__ = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": A__ = variance A__ = state.common.betas[t] A__ = (predicted_variance + 1) / 2 A__ = frac * max_log + (1 - frac) * min_log return variance def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True , ): A__ = timestep if key is None: A__ = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: A__ = jnp.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , axis=1 ) else: A__ = None # 1. compute alphas, betas A__ = state.common.alphas_cumprod[t] A__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) A__ = 1 - alpha_prod_t A__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A__ = model_output elif self.config.prediction_type == "v_prediction": A__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A__ = jnp.clip(_SCREAMING_SNAKE_CASE , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A__ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t A__ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): A__ = jax.random.split(_SCREAMING_SNAKE_CASE , num=1 ) A__ = jax.random.normal(_SCREAMING_SNAKE_CASE , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise A__ = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) A__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , state=_SCREAMING_SNAKE_CASE ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): return add_noise_common(state.common , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): return get_velocity_common(state.common , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __len__( self ): return self.config.num_train_timesteps
371
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): super().__init__( UpperCAmelCase__ , split=UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = field A__ = path_or_paths if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else {self.split: path_or_paths} A__ = Json( cache_dir=UpperCAmelCase__ , data_files=UpperCAmelCase__ , features=UpperCAmelCase__ , field=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __A ( self ): # Build iterable dataset if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) A__ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) A__ = dataset A__ = path_or_buf A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = "utf-8" A__ = to_json_kwargs def __A ( self ): A__ = self.to_json_kwargs.pop("path_or_buf" , UpperCAmelCase__ ) A__ = self.to_json_kwargs.pop("orient" , "records" ) A__ = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) A__ = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) A__ = self.to_json_kwargs.pop("compression" , UpperCAmelCase__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=UpperCAmelCase__ ) as buffer: A__ = self._write(file_obj=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) A__ = self._write( file_obj=self.path_or_buf , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) return written def __A ( self , UpperCAmelCase__ ): A__ , A__ , A__ , A__ , A__ = args A__ = query_table( table=self.dataset.data , key=slice(UpperCAmelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) A__ = batch.to_pandas().to_json( path_or_buf=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **UpperCAmelCase__ ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ , ): A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): A__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCAmelCase__ ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCAmelCase__ , UpperCAmelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(UpperCAmelCase__ ) return written
198
0
from typing import Dict, Optional import numpy as np import datasets _SCREAMING_SNAKE_CASE : List[str] = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" _SCREAMING_SNAKE_CASE : List[Any] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" _SCREAMING_SNAKE_CASE : Dict = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = None ,UpperCamelCase_ = False ,): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): snake_case = new_id # turn into Numpy arrays snake_case = np.array(UpperCamelCase_ ) snake_case = np.array(UpperCamelCase_ ) if reduce_labels: snake_case = 2_55 snake_case = label - 1 snake_case = 2_55 snake_case = label != ignore_index snake_case = np.not_equal(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = pred_label[mask] snake_case = np.array(UpperCamelCase_ )[mask] snake_case = pred_label[pred_label == label] snake_case = np.histogram(UpperCamelCase_ ,bins=UpperCamelCase_ ,range=(0, num_labels - 1) )[0] snake_case = np.histogram(UpperCamelCase_ ,bins=UpperCamelCase_ ,range=(0, num_labels - 1) )[0] snake_case = np.histogram(UpperCamelCase_ ,bins=UpperCamelCase_ ,range=(0, num_labels - 1) )[0] snake_case = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = None ,UpperCamelCase_ = False ,): """simple docstring""" snake_case = np.zeros((num_labels,) ,dtype=np.floataa ) snake_case = np.zeros((num_labels,) ,dtype=np.floataa ) snake_case = np.zeros((num_labels,) ,dtype=np.floataa ) snake_case = np.zeros((num_labels,) ,dtype=np.floataa ) for result, gt_seg_map in zip(UpperCamelCase_ ,UpperCamelCase_ ): snake_case , snake_case , snake_case , snake_case = intersect_and_union( UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = None ,UpperCamelCase_ = None ,UpperCamelCase_ = False ,): """simple docstring""" snake_case , snake_case , snake_case , snake_case = total_intersect_and_union( UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) # compute metrics snake_case = {} snake_case = total_area_intersect.sum() / total_area_label.sum() snake_case = total_area_intersect / total_area_union snake_case = total_area_intersect / total_area_label snake_case = np.nanmean(UpperCamelCase_ ) snake_case = np.nanmean(UpperCamelCase_ ) snake_case = all_acc snake_case = iou snake_case = acc if nan_to_num is not None: snake_case = {metric: np.nan_to_num(UpperCamelCase_ ,nan=UpperCamelCase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def a_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = None , __snake_case = None , __snake_case = False , ): snake_case = mean_iou( results=__snake_case , gt_seg_maps=__snake_case , num_labels=__snake_case , ignore_index=__snake_case , nan_to_num=__snake_case , label_map=__snake_case , reduce_labels=__snake_case , ) return iou_result
127
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" __magic_name__ = XGLMConfig __magic_name__ = {} __magic_name__ = 'gelu' def __init__( self , __snake_case , __snake_case=1_4 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=9_9 , __snake_case=3_2 , __snake_case=2 , __snake_case=4 , __snake_case=3_7 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_1_2 , __snake_case=0.02 , ): snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_labels snake_case = vocab_size snake_case = d_model snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = ffn_dim snake_case = activation_function snake_case = activation_dropout snake_case = attention_dropout snake_case = max_position_embeddings snake_case = initializer_range snake_case = None snake_case = 0 snake_case = 2 snake_case = 1 def a_ ( self ): return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def a_ ( self ): snake_case = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = self.get_config() snake_case = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def a_ ( self ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__snake_case , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__snake_case , ) def a_ ( self ): snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class A__ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __magic_name__ = (TFXGLMForCausalLM,) if is_tf_available() else () __magic_name__ = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def a_ ( self ): snake_case = TFXGLMModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , n_embd=3_7 ) def a_ ( self ): self.config_tester.run_common_tests() @slow def a_ ( self ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = TFXGLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def a_ ( self ): super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def a_ ( self , __snake_case=True ): snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) snake_case = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off snake_case = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on snake_case = model.generate(__snake_case , do_sample=__snake_case , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __snake_case ) @slow def a_ ( self ): snake_case = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) snake_case = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) snake_case = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): snake_case = model.generate(__snake_case , do_sample=__snake_case , seed=[7, 0] ) snake_case = tokenizer.decode(output_ids[0] , skip_special_tokens=__snake_case ) snake_case = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__snake_case , __snake_case ) @slow def a_ ( self ): snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) snake_case = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) snake_case = '''left''' # use different length sentences to test batching snake_case = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] snake_case = tokenizer(__snake_case , return_tensors='''tf''' , padding=__snake_case ) snake_case = inputs['''input_ids'''] snake_case = model.generate(input_ids=__snake_case , attention_mask=inputs['''attention_mask'''] , max_new_tokens=1_2 ) snake_case = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids snake_case = model.generate(input_ids=__snake_case , max_new_tokens=1_2 ) snake_case = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids snake_case = model.generate(input_ids=__snake_case , max_new_tokens=1_2 ) snake_case = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__snake_case ) snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=__snake_case ) snake_case = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , [non_padded_sentence, padded_sentence] )
127
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __SCREAMING_SNAKE_CASE : @staticmethod def __magic_name__ ( *__lowercase : List[str] , **__lowercase : Any ) -> List[Any]: pass def _a( UpperCamelCase__ : List[str] ): '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __magic_name__ ( self : Any , __lowercase : str , __lowercase : int , __lowercase : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =pipeline( '''document-question-answering''' , model=__lowercase , tokenizer=__lowercase , image_processor=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =INVOICE_URL SCREAMING_SNAKE_CASE__ : Optional[int] =list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) SCREAMING_SNAKE_CASE__ : Optional[int] ='''What is the placebo?''' SCREAMING_SNAKE_CASE__ : Optional[Any] =[ { '''image''': load_image(__lowercase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __magic_name__ ( self : Any , __lowercase : int , __lowercase : Dict ) -> int: SCREAMING_SNAKE_CASE__ : List[str] =dqa_pipeline(__lowercase , top_k=2 ) self.assertEqual( __lowercase , [ [ {'''score''': ANY(__lowercase ), '''answer''': ANY(__lowercase ), '''start''': ANY(__lowercase ), '''end''': ANY(__lowercase )}, {'''score''': ANY(__lowercase ), '''answer''': ANY(__lowercase ), '''start''': ANY(__lowercase ), '''end''': ANY(__lowercase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __magic_name__ ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) SCREAMING_SNAKE_CASE__ : str =INVOICE_URL SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''How many cats are there?''' SCREAMING_SNAKE_CASE__ : int =[ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] SCREAMING_SNAKE_CASE__ : int =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE__ : Dict ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' SCREAMING_SNAKE_CASE__ : Optional[Any] =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE__ : Optional[int] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' SCREAMING_SNAKE_CASE__ : List[Any] =[] SCREAMING_SNAKE_CASE__ : Dict =[] SCREAMING_SNAKE_CASE__ : Any =dqa_pipeline(image=__lowercase , question=__lowercase , words=__lowercase , boxes=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__ ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[int] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) SCREAMING_SNAKE_CASE__ : List[str] =INVOICE_URL SCREAMING_SNAKE_CASE__ : int ='''What is the invoice number?''' SCREAMING_SNAKE_CASE__ : Tuple =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ : Optional[int] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[int] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) SCREAMING_SNAKE_CASE__ : str =INVOICE_URL SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''What is the invoice number?''' SCREAMING_SNAKE_CASE__ : List[Any] =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ : Tuple =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowercase ) SCREAMING_SNAKE_CASE__ : int =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowercase , revision='''3dc6de3''' , ) SCREAMING_SNAKE_CASE__ : str =INVOICE_URL SCREAMING_SNAKE_CASE__ : int ='''What is the invoice number?''' SCREAMING_SNAKE_CASE__ : Optional[int] =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) SCREAMING_SNAKE_CASE__ : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE__ : List[Any] =list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE__ : int =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__ ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowercase , revision='''3dc6de3''' , max_seq_len=50 , ) SCREAMING_SNAKE_CASE__ : int =INVOICE_URL SCREAMING_SNAKE_CASE__ : Tuple ='''What is the invoice number?''' SCREAMING_SNAKE_CASE__ : List[Any] =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE__ : Dict =list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE__ : Optional[int] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def __magic_name__ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) SCREAMING_SNAKE_CASE__ : List[str] =INVOICE_URL SCREAMING_SNAKE_CASE__ : int ='''What is the invoice number?''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __magic_name__ ( self : int ) -> Tuple: pass
222
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : List[str] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE__ : str =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_euler''' ) SCREAMING_SNAKE_CASE__ : List[Any] ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : List[str] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =output.images SCREAMING_SNAKE_CASE__ : int =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : Any =np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[str] =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ : int =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_euler''' ) SCREAMING_SNAKE_CASE__ : Any ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : Dict =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple =sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : Dict =output.images SCREAMING_SNAKE_CASE__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : List[str] =np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Any =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ : Tuple =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) SCREAMING_SNAKE_CASE__ : Tuple ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] =sd_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] =output.images SCREAMING_SNAKE_CASE__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
222
1
"""simple docstring""" import numpy as np def lowercase_ ( _UpperCAmelCase ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
167
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : int = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Union[str, Any] = """transfo-xl""" __lowerCAmelCase : Optional[Any] = ["""mems"""] __lowerCAmelCase : List[str] = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , _lowerCamelCase : List[Any]=26_77_35 , _lowerCamelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _lowerCamelCase : str=10_24 , _lowerCamelCase : Union[str, Any]=10_24 , _lowerCamelCase : Union[str, Any]=16 , _lowerCamelCase : int=64 , _lowerCamelCase : Optional[int]=40_96 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : str=False , _lowerCamelCase : Union[str, Any]=18 , _lowerCamelCase : Optional[Any]=16_00 , _lowerCamelCase : Optional[int]=10_00 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any=True , _lowerCamelCase : Tuple=0 , _lowerCamelCase : List[Any]=-1 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : List[str]=0.1 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : List[str]="normal" , _lowerCamelCase : int=0.01 , _lowerCamelCase : List[str]=0.01 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=1E-5 , _lowerCamelCase : int=0 , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" A_ : Optional[Any] = vocab_size A_ : str = [] self.cutoffs.extend(_lowerCamelCase ) if proj_share_all_but_first: A_ : str = [False] + [True] * len(self.cutoffs ) else: A_ : str = [False] + [False] * len(self.cutoffs ) A_ : Optional[Any] = d_model A_ : Dict = d_embed A_ : List[str] = d_head A_ : List[Any] = d_inner A_ : Dict = div_val A_ : int = pre_lnorm A_ : Optional[Any] = n_layer A_ : List[Any] = n_head A_ : List[Any] = mem_len A_ : Dict = same_length A_ : Optional[Any] = attn_type A_ : Any = clamp_len A_ : Dict = sample_softmax A_ : List[Any] = adaptive A_ : Union[str, Any] = dropout A_ : List[Any] = dropatt A_ : Any = untie_r A_ : Optional[int] = init A_ : int = init_range A_ : List[Any] = proj_init_std A_ : Union[str, Any] = init_std A_ : List[Any] = layer_norm_epsilon super().__init__(eos_token_id=_lowerCamelCase , **_lowerCamelCase ) @property def a_ ( self : Union[str, Any] ): """simple docstring""" logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a_ ( self : Any , _lowerCamelCase : int ): """simple docstring""" raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
167
1
"""simple docstring""" import string def lowerCamelCase_ (UpperCamelCase__ : str ): _UpperCAmelCase : Tuple = '''''' for i in sequence: _UpperCAmelCase : Union[str, Any] = ord(UpperCamelCase__ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def lowerCamelCase_ (UpperCamelCase__ : str ): _UpperCAmelCase : Dict = string.ascii_letters _UpperCAmelCase : List[Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(UpperCamelCase__ )] if c in letters else c for c in sequence ) def lowerCamelCase_ (): from timeit import timeit print('''Running performance benchmarks...''' ) _UpperCAmelCase : Union[str, Any] = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=UpperCamelCase__ )} seconds' ) print(F'> atbash(): {timeit("atbash(printable)" , setup=UpperCamelCase__ )} seconds' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"{example} encrypted in atbash: {atbash(example)}") benchmark()
68
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =42 a__ =None # Automatically constructed a__ ="dict" a__ =None a__ =field(default='''Translation''' ,init=a ,repr=a ) def __call__( self ) -> List[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCAmelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =None a__ =None a__ =None # Automatically constructed a__ ="dict" a__ =None a__ =field(default='''TranslationVariableLanguages''' ,init=a ,repr=a ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : int = sorted(set(self.languages ) ) if self.languages else None _UpperCAmelCase : List[str] = len(self.languages ) if self.languages else None def __call__( self ) -> str: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def __lowerCAmelCase ( self , A ) -> List[Any]: _UpperCAmelCase : List[str] = set(self.languages ) if self.languages and set(A ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(A ) - lang_set ) )}) are not in valid set ({", ".join(A )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(A , A ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = zip(*sorted(A ) ) return {"language": languages, "translation": translations} def __lowerCAmelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
68
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : List[Any] ='distilbert' UpperCamelCase_ : Optional[Any] ={ 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self , SCREAMING_SNAKE_CASE_=3_0522 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=4 * 768 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.2 , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ , ) -> Any: UpperCamelCase :Union[str, Any] = vocab_size UpperCamelCase :str = max_position_embeddings UpperCamelCase :str = sinusoidal_pos_embds UpperCamelCase :str = n_layers UpperCamelCase :Union[str, Any] = n_heads UpperCamelCase :int = dim UpperCamelCase :Tuple = hidden_dim UpperCamelCase :Any = dropout UpperCamelCase :str = attention_dropout UpperCamelCase :List[Any] = activation UpperCamelCase :str = initializer_range UpperCamelCase :List[Any] = qa_dropout UpperCamelCase :Tuple = seq_classif_dropout super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ ( lowercase ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase :Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase :Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
259
def _A ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] ): UpperCamelCase :Tuple = len(SCREAMING_SNAKE_CASE__ ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCamelCase :Dict = 0 print(SCREAMING_SNAKE_CASE__ , end=''',''' ) # Consider rest of the activities for j in range(SCREAMING_SNAKE_CASE__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(SCREAMING_SNAKE_CASE__ , end=''',''' ) UpperCamelCase :List[str] = j if __name__ == "__main__": import doctest doctest.testmod() __snake_case = [1, 3, 0, 5, 8, 5] __snake_case = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
259
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") lowercase_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : A : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A : Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A : Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A : Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) A : bool = field( default=_UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) A : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) A : bool = field( default=_UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class SCREAMING_SNAKE_CASE__ : A : Optional[str] = field(default=_UpperCamelCase , metadata={"help": "The input training data file (a text file)."} ) A : Optional[str] = field( default=_UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) A : bool = field( default=_UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) A : Optional[int] = field( default=_UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) A : Optional[int] = field( default=_UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A : bool = field( default=_UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) A : Optional[int] = field( default=_UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A : Optional[int] = field( default=_UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def snake_case__ ( self : Dict ): if self.train_file is not None: __snake_case : List[str] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : Union[str, Any] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class SCREAMING_SNAKE_CASE__ : A : PreTrainedTokenizerBase A : Union[bool, str, PaddingStrategy] = True A : Optional[int] = None A : Optional[int] = None def __call__( self : str , _lowerCAmelCase : Union[str, Any] ): __snake_case : int = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : int = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : int = len(_UpperCAmelCase ) __snake_case : List[str] = len(features[0]["""input_ids"""] ) __snake_case : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : List[str] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten __snake_case : List[Any] = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : List[str] = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def __lowerCAmelCase ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __snake_case : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : List[str] = {} if data_args.train_file is not None: __snake_case : Optional[Any] = data_args.train_file if data_args.validation_file is not None: __snake_case : Dict = data_args.validation_file __snake_case : Dict = data_args.train_file.split(""".""" )[-1] __snake_case : Any = load_dataset( lowerCAmelCase_ , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : int = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : Optional[Any] = [F'''ending{i}''' for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : List[str] = 'sent2' if data_args.max_seq_length is None: __snake_case : str = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) __snake_case : Optional[Any] = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __snake_case : Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__SCREAMING_SNAKE_CASE : List[Any] ): __snake_case : List[str] = [[context] * 4 for context in examples[context_name]] __snake_case : List[str] = examples[question_header_name] __snake_case : List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCAmelCase_ ) ] # Flatten out __snake_case : List[Any] = list(chain(*lowerCAmelCase_ ) ) __snake_case : Tuple = list(chain(*lowerCAmelCase_ ) ) # Tokenize __snake_case : Union[str, Any] = tokenizer( lowerCAmelCase_ , lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __snake_case : List[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Dict = min(len(lowerCAmelCase_ ) , data_args.max_train_samples ) __snake_case : Tuple = train_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): __snake_case : int = train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : str = min(len(lowerCAmelCase_ ) , data_args.max_eval_samples ) __snake_case : Optional[int] = eval_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): __snake_case : str = eval_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : Optional[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__SCREAMING_SNAKE_CASE : Any ): __snake_case : Optional[Any] = eval_predictions __snake_case : Dict = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , ) # Training if training_args.do_train: __snake_case : List[str] = None if training_args.resume_from_checkpoint is not None: __snake_case : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : int = last_checkpoint __snake_case : Union[str, Any] = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : Optional[Any] = train_result.metrics __snake_case : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __snake_case : List[Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""train""" , lowerCAmelCase_ ) trainer.save_metrics("""train""" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) __snake_case : Union[str, Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
368
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : str = [] __snake_case , __snake_case : List[str] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __snake_case : List[Any] = result + left + right return input_list def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) <= 1: return input_list __snake_case : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) # iteration for two-way merging __snake_case : Tuple = 2 while p <= len(__SCREAMING_SNAKE_CASE ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = i + p - 1 __snake_case : Optional[Any] = (low + high + 1) // 2 __snake_case : str = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # final merge of last two parts if p * 2 >= len(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = i __snake_case : str = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": lowercase_ = [] else: lowercase_ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
20
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _a = {'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( a__ ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , '''width_multiplier''' ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=64 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase="swish" , __lowerCAmelCase=3 , __lowerCAmelCase=32 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=10 , __lowerCAmelCase=None , __lowerCAmelCase=0.2_5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , ) -> List[Any]: lowercase__ : List[str] = parent lowercase__ : List[Any] = batch_size lowercase__ : List[str] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Tuple = num_channels lowercase__ : List[str] = make_divisible(512 * width_multiplier , divisor=8 ) lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = conv_kernel_size lowercase__ : Dict = output_stride lowercase__ : List[Any] = classifier_dropout_prob lowercase__ : str = use_labels lowercase__ : List[Any] = is_training lowercase__ : Tuple = num_labels lowercase__ : Optional[int] = initializer_range lowercase__ : Tuple = scope lowercase__ : List[Any] = width_multiplier lowercase__ : Optional[int] = ffn_dropout lowercase__ : int = attn_dropout def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Any = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase( self ) -> Tuple: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ : Optional[int] = MobileViTVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : str = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Optional[Any] = self.num_labels lowercase__ : Dict = MobileViTVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Optional[Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: lowercase__ : str = self.num_labels lowercase__ : List[Any] = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : int = model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase__ : Union[str, Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase( self ) -> int: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> int: lowercase__ : Tuple = MobileViTVaModelTester(self ) lowercase__ : Any = MobileViTVaConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def _lowerCAmelCase( self ) -> str: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def _lowerCAmelCase( self ) -> Optional[Any]: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def _lowerCAmelCase( self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def _lowerCAmelCase( self ) -> Any: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCAmelCase( self ) -> str: pass def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(__lowerCAmelCase ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : str = [*signature.parameters.keys()] lowercase__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Optional[int] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : Optional[int] = 5 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase__ : str = 2 for i in range(len(__lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) @slow def _lowerCAmelCase( self ) -> List[str]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = MobileViTVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __UpperCamelCase ( ): lowercase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase( self ) -> int: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Dict = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __lowerCAmelCase ) lowercase__ : List[Any] = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**__lowerCAmelCase ) # verify the logits lowercase__ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase__ : int = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : int = model.to(__lowerCAmelCase ) lowercase__ : Any = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : str = prepare_img() lowercase__ : Optional[int] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : str = model(**__lowerCAmelCase ) lowercase__ : Tuple = outputs.logits # verify the logits lowercase__ : List[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=__lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase( self ) -> Any: lowercase__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : List[str] = model.to(__lowerCAmelCase ) lowercase__ : Optional[int] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : int = prepare_img() lowercase__ : List[str] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**__lowerCAmelCase ) lowercase__ : Optional[int] = outputs.logits.detach().cpu() lowercase__ : Any = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase , target_sizes=[(50, 60)] ) lowercase__ : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase ) lowercase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase )
198
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __A = logging.get_logger(__name__) # General docstring __A = "ResNetConfig" # Base docstring __A = "microsoft/resnet-50" __A = [1, 2048, 7, 7] # Image classification docstring __A = "microsoft/resnet-50" __A = "tiger cat" __A = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu") ->Any: '''simple docstring''' super().__init__() lowerCamelCase__: Dict =nn.Convad( UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=kernel_size // 2 , bias=UpperCAmelCase_) lowerCamelCase__: Any =nn.BatchNormad(UpperCAmelCase_) lowerCamelCase__: Optional[int] =ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tensor) ->Tensor: '''simple docstring''' lowerCamelCase__: List[Any] =self.convolution(UpperCAmelCase_) lowerCamelCase__: List[str] =self.normalization(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =self.activation(UpperCAmelCase_) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : ResNetConfig) ->str: '''simple docstring''' super().__init__() lowerCamelCase__: Tuple =ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act) lowerCamelCase__: Optional[int] =nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1) lowerCamelCase__: Optional[Any] =config.num_channels def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Tensor) ->Tensor: '''simple docstring''' lowerCamelCase__: Optional[Any] =pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration.") lowerCamelCase__: Dict =self.embedder(UpperCAmelCase_) lowerCamelCase__: str =self.pooler(UpperCAmelCase_) return embedding class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2) ->Any: '''simple docstring''' super().__init__() lowerCamelCase__: Optional[Any] =nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , stride=UpperCAmelCase_ , bias=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =nn.BatchNormad(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tensor) ->Tensor: '''simple docstring''' lowerCamelCase__: Optional[int] =self.convolution(UpperCAmelCase_) lowerCamelCase__: Any =self.normalization(UpperCAmelCase_) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu") ->Tuple: '''simple docstring''' super().__init__() lowerCamelCase__: Tuple =in_channels != out_channels or stride != 1 lowerCamelCase__: str =( ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_) if should_apply_shortcut else nn.Identity() ) lowerCamelCase__: Tuple =nn.Sequential( ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , activation=UpperCAmelCase_) , ) lowerCamelCase__: Optional[Any] =ACTaFN[activation] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Any) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =hidden_state lowerCamelCase__: List[str] =self.layer(UpperCAmelCase_) lowerCamelCase__: str =self.shortcut(UpperCAmelCase_) hidden_state += residual lowerCamelCase__: Dict =self.activation(UpperCAmelCase_) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu" , UpperCAmelCase_ : int = 4) ->Tuple: '''simple docstring''' super().__init__() lowerCamelCase__: Union[str, Any] =in_channels != out_channels or stride != 1 lowerCamelCase__: List[str] =out_channels // reduction lowerCamelCase__: Optional[Any] =( ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_) if should_apply_shortcut else nn.Identity() ) lowerCamelCase__: Dict =nn.Sequential( ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , activation=UpperCAmelCase_) , ) lowerCamelCase__: Tuple =ACTaFN[activation] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' lowerCamelCase__: str =hidden_state lowerCamelCase__: Optional[Any] =self.layer(UpperCAmelCase_) lowerCamelCase__: List[Any] =self.shortcut(UpperCAmelCase_) hidden_state += residual lowerCamelCase__: Tuple =self.activation(UpperCAmelCase_) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : ResNetConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , ) ->Dict: '''simple docstring''' super().__init__() lowerCamelCase__: List[Any] =ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer lowerCamelCase__: List[str] =nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ , activation=config.hidden_act) , *[layer(UpperCAmelCase_ , UpperCAmelCase_ , activation=config.hidden_act) for _ in range(depth - 1)] , ) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tensor) ->Tensor: '''simple docstring''' lowerCamelCase__: List[Any] =input for layer in self.layers: lowerCamelCase__: Any =layer(UpperCAmelCase_) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : ResNetConfig) ->Any: '''simple docstring''' super().__init__() lowerCamelCase__: Tuple =nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) lowerCamelCase__: int =zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(UpperCAmelCase_ , config.depths[1:]): self.stages.append(ResNetStage(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , depth=UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True) ->BaseModelOutputWithNoAttention: '''simple docstring''' lowerCamelCase__: str =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCamelCase__: Union[str, Any] =hidden_states + (hidden_state,) lowerCamelCase__: str =stage_module(UpperCAmelCase_) if output_hidden_states: lowerCamelCase__: Optional[int] =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ResNetConfig lowercase_ = "resnet" lowercase_ = "pixel_values" lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->Any: '''simple docstring''' if isinstance(UpperCAmelCase_ , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu") elif isinstance(UpperCAmelCase_ , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]=False) ->Any: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: List[str] =value __A = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __A = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , __SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Union[str, Any] , UpperCAmelCase_ : str) ->int: '''simple docstring''' super().__init__(UpperCAmelCase_) lowerCamelCase__: str =config lowerCamelCase__: str =ResNetEmbeddings(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =ResNetEncoder(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None) ->BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' lowerCamelCase__: Optional[int] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__: Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__: int =self.embedder(UpperCAmelCase_) lowerCamelCase__: int =self.encoder( UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_) lowerCamelCase__: int =encoder_outputs[0] lowerCamelCase__: Tuple =self.pooler(UpperCAmelCase_) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Any: '''simple docstring''' super().__init__(UpperCAmelCase_) lowerCamelCase__: int =config.num_labels lowerCamelCase__: Optional[Any] =ResNetModel(UpperCAmelCase_) # classification head lowerCamelCase__: Optional[Any] =nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.LongTensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ) ->ImageClassifierOutputWithNoAttention: '''simple docstring''' lowerCamelCase__: Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__: List[Any] =self.resnet(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_) lowerCamelCase__: int =outputs.pooler_output if return_dict else outputs[1] lowerCamelCase__: Dict =self.classifier(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase__: Dict ="regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase__: Tuple ="single_label_classification" else: lowerCamelCase__: Optional[int] ="multi_label_classification" if self.config.problem_type == "regression": lowerCamelCase__: Dict =MSELoss() if self.num_labels == 1: lowerCamelCase__: str =loss_fct(logits.squeeze() , labels.squeeze()) else: lowerCamelCase__: int =loss_fct(UpperCAmelCase_ , UpperCAmelCase_) elif self.config.problem_type == "single_label_classification": lowerCamelCase__: List[Any] =CrossEntropyLoss() lowerCamelCase__: int =loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": lowerCamelCase__: List[str] =BCEWithLogitsLoss() lowerCamelCase__: int =loss_fct(UpperCAmelCase_ , UpperCAmelCase_) if not return_dict: lowerCamelCase__: List[str] =(logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , __SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : List[Any]) ->Dict: '''simple docstring''' super().__init__(UpperCAmelCase_) super()._init_backbone(UpperCAmelCase_) lowerCamelCase__: int =[config.embedding_size] + config.hidden_sizes lowerCamelCase__: List[Any] =ResNetEmbeddings(UpperCAmelCase_) lowerCamelCase__: Optional[int] =ResNetEncoder(UpperCAmelCase_) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_) @replace_return_docstrings(output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None) ->BackboneOutput: '''simple docstring''' lowerCamelCase__: Optional[Any] =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__: Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__: int =self.embedder(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =self.encoder(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_) lowerCamelCase__: Any =outputs.hidden_states lowerCamelCase__: int =() for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowerCamelCase__: Dict =(feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase_ , )
359
from __future__ import annotations def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(__a ): print(F"""{i}\t\t{d}""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Tuple: """simple docstring""" for j in range(__a ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: str =(graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( __a , __a , __a , __a ) -> list[float]: """simple docstring""" lowerCamelCase__: List[str] =[float("inf" )] * vertex_count lowerCamelCase__: List[str] =0.0 for _ in range(vertex_count - 1 ): for j in range(__a ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =(graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: lowerCamelCase__: int =distance[u] + w lowerCamelCase__: Tuple =check_negative_cycle(__a , __a , __a ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() __A = int(input("Enter number of vertices: ").strip()) __A = int(input("Enter number of edges: ").strip()) __A = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) __A , __A , __A = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) __A = {"src": src, "dst": dest, "weight": weight} __A = int(input("\nEnter shortest path source:").strip()) __A = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
273
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowercase : def __init__( self , A_ , A_=99 , A_=13 , A_=7 , A_=9 , A_=True , A_=True , A_=False , A_=32 , A_=5 , A_=4 , A_=37 , A_=8 , A_=0.1 , A_=0.002 , A_=1 , A_=0 , A_=0 , A_=None , A_=None , ) -> Any: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = encoder_seq_length UpperCamelCase = decoder_seq_length # For common tests UpperCamelCase = self.decoder_seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = d_ff UpperCamelCase = relative_attention_num_buckets UpperCamelCase = dropout_rate UpperCamelCase = initializer_factor UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = decoder_start_token_id UpperCamelCase = None UpperCamelCase = decoder_layers def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return TaConfig.from_pretrained('google/umt5-base' ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_=None , A_=None , A_=None , A_=None , A_=None , ) -> Optional[int]: """simple docstring""" if attention_mask is None: UpperCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=A_ ) if decoder_head_mask is None: UpperCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=A_ ) if cross_attn_head_mask is None: UpperCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=A_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase = self.get_config() UpperCamelCase = config.num_attention_heads UpperCamelCase = self.prepare_inputs_dict(A_ , A_ , A_ ) return config, input_dict def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase , UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __UpperCamelCase ( self ) -> int: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: """simple docstring""" UpperCamelCase = UMTaModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( input_ids=A_ , decoder_input_ids=A_ , attention_mask=A_ , decoder_attention_mask=A_ , ) UpperCamelCase = model(input_ids=A_ , decoder_input_ids=A_ ) UpperCamelCase = result.last_hidden_state UpperCamelCase = result.past_key_values UpperCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(A_ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , ) -> int: """simple docstring""" UpperCamelCase = UMTaModel(config=A_ ).get_decoder().to(A_ ).eval() # first forward pass UpperCamelCase = model(A_ , use_cache=A_ ) UpperCamelCase = model(A_ ) UpperCamelCase = model(A_ , use_cache=A_ ) self.parent.assertTrue(len(A_ ) == len(A_ ) ) self.parent.assertTrue(len(A_ ) == len(A_ ) + 1 ) UpperCamelCase , UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = model(A_ )['last_hidden_state'] UpperCamelCase = model(A_ , past_key_values=A_ )['last_hidden_state'] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) ) def __UpperCamelCase ( self , A_ , A_ , ) -> Optional[Any]: """simple docstring""" UpperCamelCase = UMTaModel(config=A_ ).to(A_ ).half().eval() UpperCamelCase = model(**A_ )['last_hidden_state'] self.parent.assertFalse(torch.isnan(A_ ).any().item() ) @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Any = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __lowercase : int = (UMTaForConditionalGeneration,) if is_torch_available() else () __lowercase : Tuple = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) __lowercase : Dict = True __lowercase : str = False __lowercase : Union[str, Any] = False __lowercase : str = True __lowercase : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests __lowercase : str = [0.8, 0.9] def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() UpperCamelCase = UMTaModel(config_and_inputs[0] ).to(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( A_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=A_ , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*A_ ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] UpperCamelCase = self.model_tester.prepare_config_and_inputs() UpperCamelCase = config_and_inputs[0] UpperCamelCase = UMTaForConditionalGeneration(A_ ).eval() model.to(A_ ) UpperCamelCase = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=A_ ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=A_ ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=A_ ), } for attn_name, (name, mask) in zip(A_ , head_masking.items() ): UpperCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=A_ ) UpperCamelCase = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=A_ , return_dict_in_generate=A_ , **A_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=A_ ).to(A_ ) UpperCamelCase = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=A_ , legacy=A_ ) UpperCamelCase = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] UpperCamelCase = tokenizer(A_ , return_tensors='pt' , padding=A_ ).input_ids # fmt: off UpperCamelCase = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(A_ , A_ ) UpperCamelCase = model.generate(input_ids.to(A_ ) ) UpperCamelCase = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] UpperCamelCase = tokenizer.batch_decode(A_ ) self.assertEqual(A_ , A_ )
222
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
222
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : str ,lowerCAmelCase_ : Optional[str] = None ) -> str: '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase_= quote(lowerCAmelCase_ ) return hfh.hf_hub_url(lowerCAmelCase_ ,lowerCAmelCase_ ,repo_type="""dataset""" ,revision=lowerCAmelCase_ )
277
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __A = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' __A = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' __A = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowercase ( datasets.Metric): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : List[List[List[str]]] , __UpperCAmelCase : List[List[str]] , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__UpperCAmelCase , hypotheses=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase ) }
277
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' raise RuntimeError("CUDA out of memory." ) class a__ ( nn.Module ): """simple docstring""" def __init__( self ) -> Dict: '''simple docstring''' super().__init__() A__ = nn.Linear(3 , 4 ) A__ = nn.BatchNormad(4 ) A__ = nn.Linear(4 , 5 ) def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(lowercase ) ) ) class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase ): nonlocal batch_sizes batch_sizes.append(lowercase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowercase , [128, 64, 32, 16, 8] ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase , lowercase ): nonlocal batch_sizes batch_sizes.append(lowercase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga A__ , A__ = mock_training_loop_function("hello" ) self.assertListEqual(lowercase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowercase ): pass with self.assertRaises(lowercase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowercase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase , lowercase , lowercase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowercase ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(lowercase ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = torch.cuda.memory_allocated() A__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowercase ) A__ = release_memory(lowercase ) self.assertEqual(torch.cuda.memory_allocated() , lowercase )
68
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'gpt_neox_japanese' def __init__( self , lowercase=32000 , lowercase=2560 , lowercase=32 , lowercase=32 , lowercase=4 , lowercase="gelu" , lowercase=1.00 , lowercase=10000 , lowercase=2048 , lowercase=0.02 , lowercase=1e-5 , lowercase=True , lowercase=31996 , lowercase=31999 , lowercase=0.1 , lowercase=0.0 , **lowercase , ) -> Dict: '''simple docstring''' super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_multiple_size A__ = hidden_act A__ = rotary_pct A__ = rotary_emb_base A__ = initializer_range A__ = layer_norm_eps A__ = use_cache A__ = attention_dropout A__ = hidden_dropout
68
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : List[str] = """linear""" lowerCAmelCase : int = """cosine""" lowerCAmelCase : Dict = """cosine_with_restarts""" lowerCAmelCase : Optional[Any] = """polynomial""" lowerCAmelCase : Dict = """constant""" lowerCAmelCase : Any = """constant_with_warmup""" lowerCAmelCase : Union[str, Any] = """piecewise_constant""" def UpperCamelCase ( _A : Optimizer , _A : int = -1 )-> Dict: """simple docstring""" return LambdaLR(_A , lambda _A : 1 , last_epoch=_A ) def UpperCamelCase ( _A : Optimizer , _A : int , _A : int = -1 )-> Optional[Any]: """simple docstring""" def lr_lambda(_A : int ): if current_step < num_warmup_steps: return float(_A ) / float(max(1.0 , _A ) ) return 1.0 return LambdaLR(_A , _A , last_epoch=_A ) def UpperCamelCase ( _A : Optimizer , _A : str , _A : int = -1 )-> Dict: """simple docstring""" A__ = {} A__ = step_rules.split("," ) for rule_str in rule_list[:-1]: A__ , A__ = rule_str.split(":" ) A__ = int(_A ) A__ = float(_A ) A__ = value A__ = float(rule_list[-1] ) def create_rules_function(_A : Any , _A : Optional[int] ): def rule_func(_A : int ) -> float: A__ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ = create_rules_function(_A , _A ) return LambdaLR(_A , _A , last_epoch=_A ) def UpperCamelCase ( _A : Any , _A : Union[str, Any] , _A : str , _A : str=-1 )-> Tuple: """simple docstring""" def lr_lambda(_A : int ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_A , _A , _A ) def UpperCamelCase ( _A : Optimizer , _A : int , _A : int , _A : float = 0.5 , _A : int = -1 )-> Any: """simple docstring""" def lr_lambda(_A : Tuple ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_A ) * 2.0 * progress )) ) return LambdaLR(_A , _A , _A ) def UpperCamelCase ( _A : Optimizer , _A : int , _A : int , _A : int = 1 , _A : int = -1 )-> Any: """simple docstring""" def lr_lambda(_A : Tuple ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_A ) * progress) % 1.0) )) ) return LambdaLR(_A , _A , _A ) def UpperCamelCase ( _A : Union[str, Any] , _A : Union[str, Any] , _A : List[str] , _A : Tuple=1E-7 , _A : Dict=1.0 , _A : Union[str, Any]=-1 )-> Any: """simple docstring""" A__ = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_A : int ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ = lr_init - lr_end A__ = num_training_steps - num_warmup_steps A__ = 1 - (current_step - num_warmup_steps) / decay_steps A__ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_A , _A , _A ) UpperCAmelCase_ : Any = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCamelCase ( _A : Union[str, SchedulerType] , _A : Optimizer , _A : Optional[str] = None , _A : Optional[int] = None , _A : Optional[int] = None , _A : int = 1 , _A : float = 1.0 , _A : int = -1 , )-> Union[str, Any]: """simple docstring""" A__ = SchedulerType(_A ) A__ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_A , last_epoch=_A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_A , step_rules=_A , last_epoch=_A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_A , num_warmup_steps=_A , last_epoch=_A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , num_cycles=_A , last_epoch=_A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , power=_A , last_epoch=_A , ) return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , last_epoch=_A )
198
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): super().__init__( UpperCAmelCase__ , split=UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = field A__ = path_or_paths if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else {self.split: path_or_paths} A__ = Json( cache_dir=UpperCAmelCase__ , data_files=UpperCAmelCase__ , features=UpperCAmelCase__ , field=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __A ( self ): # Build iterable dataset if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) A__ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) A__ = dataset A__ = path_or_buf A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = "utf-8" A__ = to_json_kwargs def __A ( self ): A__ = self.to_json_kwargs.pop("path_or_buf" , UpperCAmelCase__ ) A__ = self.to_json_kwargs.pop("orient" , "records" ) A__ = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) A__ = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) A__ = self.to_json_kwargs.pop("compression" , UpperCAmelCase__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=UpperCAmelCase__ ) as buffer: A__ = self._write(file_obj=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) A__ = self._write( file_obj=self.path_or_buf , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) return written def __A ( self , UpperCAmelCase__ ): A__ , A__ , A__ , A__ , A__ = args A__ = query_table( table=self.dataset.data , key=slice(UpperCAmelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) A__ = batch.to_pandas().to_json( path_or_buf=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **UpperCAmelCase__ ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ , ): A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): A__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCAmelCase__ ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCAmelCase__ , UpperCAmelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(UpperCAmelCase__ ) return written
198
1
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = AudioLDMPipeline lowercase__ = TEXT_TO_AUDIO_PARAMS lowercase__ = TEXT_TO_AUDIO_BATCH_PARAMS lowercase__ = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def __lowerCAmelCase ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=(3_2, 6_4) ,class_embed_type='''simple_projection''' ,projection_class_embeddings_input_dim=3_2 ,class_embeddings_concat=lowercase_ ,) lowerCAmelCase__ : List[Any] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase_ ,set_alpha_to_one=lowercase_ ,) torch.manual_seed(0 ) lowerCAmelCase__ : Any = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=1 ,out_channels=1 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowerCAmelCase__ : Dict = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,projection_dim=3_2 ,) lowerCAmelCase__ : int = ClapTextModelWithProjection(lowercase_ ) lowerCAmelCase__ : Tuple = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' ,model_max_length=7_7 ) lowerCAmelCase__ : Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=1_6_0_0_0 ,upsample_initial_channel=1_6 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=lowercase_ ,) lowerCAmelCase__ : Any = SpeechTaHifiGan(lowercase_ ) lowerCAmelCase__ : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def __lowerCAmelCase ( self : str ,lowercase_ : Dict ,lowercase_ : Optional[Any]=0 ): if str(lowercase_ ).startswith('''mps''' ): lowerCAmelCase__ : Optional[Any] = torch.manual_seed(lowercase_ ) else: lowerCAmelCase__ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase__ : List[str] = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Tuple = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : Optional[int] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : List[str] = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : str = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 2_5_6 lowerCAmelCase__ : str = audio[:1_0] lowerCAmelCase__ : str = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Any = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : int = audioldm_pipe.to(lowercase_ ) lowerCAmelCase__ : Tuple = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : List[str] = 3 * [inputs['''prompt''']] # forward lowerCAmelCase__ : int = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : List[str] = output.audios[0] lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : str = 3 * [inputs.pop('''prompt''' )] lowerCAmelCase__ : List[Any] = audioldm_pipe.tokenizer( lowercase_ ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=lowercase_ ,return_tensors='''pt''' ,) lowerCAmelCase__ : Tuple = text_inputs['''input_ids'''].to(lowercase_ ) lowerCAmelCase__ : List[Any] = audioldm_pipe.text_encoder( lowercase_ ,) lowerCAmelCase__ : Tuple = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase__ : Tuple = F.normalize(lowercase_ ,dim=-1 ) lowerCAmelCase__ : List[Any] = prompt_embeds # forward lowerCAmelCase__ : Union[str, Any] = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : Any = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : List[Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : List[str] = audioldm_pipe.to(lowercase_ ) lowerCAmelCase__ : Dict = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : str = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : int = 3 * ['''this is a negative prompt'''] lowerCAmelCase__ : Any = negative_prompt lowerCAmelCase__ : int = 3 * [inputs['''prompt''']] # forward lowerCAmelCase__ : Tuple = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : List[str] = output.audios[0] lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : Optional[int] = 3 * [inputs.pop('''prompt''' )] lowerCAmelCase__ : Optional[Any] = [] for p in [prompt, negative_prompt]: lowerCAmelCase__ : int = audioldm_pipe.tokenizer( lowercase_ ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=lowercase_ ,return_tensors='''pt''' ,) lowerCAmelCase__ : Optional[Any] = text_inputs['''input_ids'''].to(lowercase_ ) lowerCAmelCase__ : Dict = audioldm_pipe.text_encoder( lowercase_ ,) lowerCAmelCase__ : Dict = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase__ : Any = F.normalize(lowercase_ ,dim=-1 ) embeds.append(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : int = embeds # forward lowerCAmelCase__ : List[str] = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = self.get_dummy_components() lowerCAmelCase__ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowercase_ ) lowerCAmelCase__ : Optional[int] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : List[str] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = '''egg cracking''' lowerCAmelCase__ : Tuple = audioldm_pipe(**lowercase_ ,negative_prompt=lowercase_ ) lowerCAmelCase__ : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 2_5_6 lowerCAmelCase__ : Any = audio[:1_0] lowerCAmelCase__ : List[Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Tuple = self.get_dummy_components() lowerCAmelCase__ : int = PNDMScheduler(skip_prk_steps=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : Optional[int] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Optional[int] = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowerCAmelCase__ : Dict = audioldm_pipe(lowercase_ ,num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowerCAmelCase__ : List[Any] = 2 lowerCAmelCase__ : Union[str, Any] = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt lowerCAmelCase__ : Dict = 2 lowerCAmelCase__ : int = audioldm_pipe(lowercase_ ,num_inference_steps=2 ,num_waveforms_per_prompt=lowercase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts lowerCAmelCase__ : Optional[int] = 2 lowerCAmelCase__ : List[Any] = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=lowercase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : List[Any] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Any = audioldm_pipe.vocoder.config.sampling_rate lowerCAmelCase__ : Any = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : Dict = audioldm_pipe(audio_length_in_s=0.016 ,**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) / vocoder_sampling_rate == 0.016 lowerCAmelCase__ : Union[str, Any] = audioldm_pipe(audio_length_in_s=0.032 ,**lowercase_ ) lowerCAmelCase__ : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) / vocoder_sampling_rate == 0.032 def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : Optional[int] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : str = ['''hey'''] lowerCAmelCase__ : str = audioldm_pipe(lowercase_ ,num_inference_steps=1 ) lowerCAmelCase__ : str = output.audios.shape assert audio_shape == (1, 2_5_6) lowerCAmelCase__ : Tuple = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowerCAmelCase__ : int = SpeechTaHifiGan(lowercase_ ).to(lowercase_ ) lowerCAmelCase__ : str = audioldm_pipe(lowercase_ ,num_inference_steps=1 ) lowerCAmelCase__ : Dict = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def __lowerCAmelCase ( self : Any ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase_ ) def __lowerCAmelCase ( self : Dict ): self._test_inference_batch_single_identical(test_mean_pixel_difference=lowercase_ ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def __lowerCAmelCase ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase_ ) @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Any ,lowercase_ : Any ,lowercase_ : Union[str, Any]="cpu" ,lowercase_ : Any=torch.floataa ,lowercase_ : Tuple=0 ): lowerCAmelCase__ : str = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase__ : str = np.random.RandomState(lowercase_ ).standard_normal((1, 8, 1_2_8, 1_6) ) lowerCAmelCase__ : str = torch.from_numpy(lowercase_ ).to(device=lowercase_ ,dtype=lowercase_ ) lowerCAmelCase__ : List[Any] = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Union[str, Any] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowerCAmelCase__ : List[Any] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.get_inputs(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = 2_5 lowerCAmelCase__ : Optional[Any] = audioldm_pipe(**lowercase_ ).audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 8_1_9_2_0 lowerCAmelCase__ : Optional[Any] = audio[7_7_2_3_0:7_7_2_4_0] lowerCAmelCase__ : Optional[Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) lowerCAmelCase__ : List[str] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Optional[int] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowerCAmelCase__ : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowerCAmelCase__ : str = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Optional[Any] = self.get_inputs(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = audioldm_pipe(**lowercase_ ).audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 8_1_9_2_0 lowerCAmelCase__ : List[Any] = audio[2_7_7_8_0:2_7_7_9_0] lowerCAmelCase__ : Any = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) lowerCAmelCase__ : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
106
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if "cls_token" in name: lowercase : List[Any] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase : Any = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase : int = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase : List[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase : List[str] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase : Dict = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase : Tuple = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase : int = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowercase : int = key.split(""".""" ) lowercase : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowercase : Tuple = config.decoder_hidden_size lowercase : int = """decoder.decoder_layers.""" if "weight" in key: lowercase : List[Any] = val[:dim, :] lowercase : Tuple = val[dim : dim * 2, :] lowercase : List[Any] = val[-dim:, :] elif "bias" in key: lowercase : str = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Tuple = config.hidden_size lowercase : Union[str, Any] = """vit.encoder.layer.""" if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Dict = val[-dim:, :] elif "bias" in key: lowercase : Any = val[:dim] lowercase : str = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Union[str, Any] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = ViTMAEConfig() if "large" in checkpoint_url: lowercase : Dict = 1_024 lowercase : str = 4_096 lowercase : Optional[Any] = 24 lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: lowercase : int = 14 lowercase : List[Any] = 1_280 lowercase : int = 5_120 lowercase : List[Any] = 32 lowercase : Any = 16 lowercase : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Tuple = ViTMAEImageProcessor(size=config.image_size ) lowercase : Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowercase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) lowercase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowercase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) lowercase : str = outputs.logits if "large" in checkpoint_url: lowercase : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowercase : Tuple = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowercase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : List[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : int =Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) UpperCAmelCase : List[str] =Vector() def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[str] =Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(snake_case__ ) , '''(0,0,0,0,0,1)''' ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Union[str, Any] =Vector([1, 2, 3, 4] ) self.assertEqual(len(snake_case__ ) , 4 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : int =Vector([1, 2] ) UpperCAmelCase : Union[str, Any] =Vector([1, 2, 3, 4, 5] ) UpperCAmelCase : List[str] =Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) UpperCAmelCase : Optional[int] =Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Dict =Vector([1, 2, 3] ) UpperCAmelCase : List[Any] =Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : int =Vector([1, 2, 3] ) UpperCAmelCase : int =Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Dict =Vector([1, 2, 3] ) UpperCAmelCase : Dict =Vector([2, -1, 4] ) # for test of dot product UpperCAmelCase : Union[str, Any] =Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : int =Vector([1, 2, 3] ) UpperCAmelCase : Any =Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , snake_case__ , snake_case__ ) ) , '''(3,4,7)''' ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[Any] =Vector([1, 0, 0, 0, 0, 0] ) UpperCAmelCase : Union[str, Any] =x.copy() self.assertEqual(str(snake_case__ ) , str(snake_case__ ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Any =Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(snake_case__ ) , '''(0,1,0)''' ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(snake_case__ ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Union[str, Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase : str =[[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(snake_case__ , snake_case__ ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[str] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase : Union[str, Any] =[[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(snake_case__ , snake_case__ ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : List[str] =Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) UpperCAmelCase : Any =Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Optional[int] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(snake_case__ ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Optional[int] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Optional[Any] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase : Optional[Any] =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Optional[int] =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase : int =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
78
import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> float: '''simple docstring''' UpperCAmelCase : Any =x UpperCAmelCase : List[str] =y for step in range(__lowerCAmelCase ): # noqa: B007 UpperCAmelCase : int =a * a - b * b + x UpperCAmelCase : Union[str, Any] =2 * a * b + y UpperCAmelCase : Optional[int] =a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( __lowerCAmelCase )-> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def lowerCAmelCase_ ( __lowerCAmelCase )-> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__lowerCAmelCase , 1 , 1 ) ) def lowerCAmelCase_ ( __lowerCAmelCase = 8_00 , __lowerCAmelCase = 6_00 , __lowerCAmelCase = -0.6 , __lowerCAmelCase = 0 , __lowerCAmelCase = 3.2 , __lowerCAmelCase = 50 , __lowerCAmelCase = True , )-> Image.Image: '''simple docstring''' UpperCAmelCase : Dict =Image.new('''RGB''' , (image_width, image_height) ) UpperCAmelCase : str =img.load() # loop through the image-coordinates for image_x in range(__lowerCAmelCase ): for image_y in range(__lowerCAmelCase ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase : Union[str, Any] =figure_width / image_width * image_height UpperCAmelCase : Dict =figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase : str =figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase : int =get_distance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase : Any =get_color_coded_rgb(__lowerCAmelCase ) else: UpperCAmelCase : Optional[int] =get_black_and_white_rgb(__lowerCAmelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __snake_case = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
78
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A_ ( a_ , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Tuple = TransfoXLTokenizer _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() lowercase = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): lowercase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_A ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = '<unk> UNwanted , running' lowercase = '<unk> unwanted, running' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): lowercase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_A ) lowercase = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(_A , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [0, 4, 8, 7] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = TransfoXLTokenizer(lower_case=_A ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = TransfoXLTokenizer(lower_case=_A ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = TransfoXLTokenizer(lower_case=_A ) lowercase = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' lowercase = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(_A ) , _A ) self.assertEqual(tokenizer.convert_tokens_to_string(_A ) , _A ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_tokenizer() lowercase = len(_A ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_A ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
195
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") __A : Optional[int] = logging.getLogger(__name__) @dataclass class A_ : UpperCAmelCase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCAmelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A_ : UpperCAmelCase__ = field(default=a_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowercase ( self ): '''simple docstring''' if self.train_file is not None: UpperCAmelCase = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCAmelCase = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A_ : UpperCAmelCase__ = 42 UpperCAmelCase__ = True UpperCAmelCase__ = None UpperCAmelCase__ = None def __call__( self , _A ): '''simple docstring''' UpperCAmelCase = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase = [feature.pop(_A ) for feature in features] UpperCAmelCase = len(_A ) UpperCAmelCase = len(features[0]['''input_ids'''] ) UpperCAmelCase = [ [{k: v[i] for k, v in feature.items()} for i in range(_A )] for feature in features ] UpperCAmelCase = list(chain(*_A ) ) UpperCAmelCase = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten UpperCAmelCase = {k: v.view(_A , _A , -1 ) for k, v in batch.items()} # Add back labels UpperCAmelCase = torch.tensor(_A , dtype=torch.intaa ) return batch def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCAmelCase = {} if data_args.train_file is not None: UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase = data_args.validation_file UpperCAmelCase = data_args.train_file.split('''.''' )[-1] UpperCAmelCase = load_dataset( UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCAmelCase = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCAmelCase = [F"""ending{i}""" for i in range(4 )] UpperCAmelCase = '''sent1''' UpperCAmelCase = '''sent2''' if data_args.max_seq_length is None: UpperCAmelCase = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) UpperCAmelCase = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) UpperCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase__ ): UpperCAmelCase = [[context] * 4 for context in examples[context_name]] UpperCAmelCase = examples[question_header_name] UpperCAmelCase = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(UpperCamelCase__ ) ] # Flatten out UpperCAmelCase = list(chain(*UpperCamelCase__ ) ) UpperCAmelCase = list(chain(*UpperCamelCase__ ) ) # Tokenize UpperCAmelCase = tokenizer( UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) UpperCAmelCase = raw_datasets['''train'''] if data_args.max_train_samples is not None: UpperCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_train_samples ) UpperCAmelCase = train_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): UpperCAmelCase = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) UpperCAmelCase = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: UpperCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_eval_samples ) UpperCAmelCase = eval_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): UpperCAmelCase = eval_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCAmelCase = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase__ ): UpperCAmelCase , UpperCAmelCase = eval_predictions UpperCAmelCase = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCAmelCase = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase = last_checkpoint UpperCAmelCase = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase = train_result.metrics UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) UpperCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics('''train''' , UpperCamelCase__ ) trainer.save_metrics('''train''' , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) UpperCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics('''eval''' , UpperCamelCase__ ) trainer.save_metrics('''eval''' , UpperCamelCase__ ) UpperCAmelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
273
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __snake_case : str = "dinat" __snake_case : Any = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict ,lowerCamelCase__ : Optional[Any]=4 ,lowerCamelCase__ : Any=3 ,lowerCamelCase__ : int=64 ,lowerCamelCase__ : Union[str, Any]=[3, 4, 6, 5] ,lowerCamelCase__ : str=[2, 4, 8, 16] ,lowerCamelCase__ : Tuple=7 ,lowerCamelCase__ : Optional[int]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] ,lowerCamelCase__ : str=3.0 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Union[str, Any]=0.0 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : str=0.1 ,lowerCamelCase__ : str="gelu" ,lowerCamelCase__ : Tuple=0.02 ,lowerCamelCase__ : List[Any]=1e-5 ,lowerCamelCase__ : str=0.0 ,lowerCamelCase__ : str=None ,lowerCamelCase__ : str=None ,**lowerCamelCase__ : Optional[Any] ,) -> List[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = len(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = dilations SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 ,len(lowerCamelCase__ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ ,out_indices=lowerCamelCase__ ,stage_names=self.stage_names )
357
class UpperCamelCase__ : '''simple docstring''' def __init__( self : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = {} def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(lowerCamelCase__ ,""" -> """ ,""" -> """.join([str(lowerCamelCase__ ) for j in self.vertex[i]] ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCamelCase__ ) else: # else make a new vertex SCREAMING_SNAKE_CASE = [to_vertex] def SCREAMING_SNAKE_CASE__ ( self : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : int ,lowerCamelCase__ : list ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = True print(lowerCamelCase__ ,end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCamelCase__ ,lowerCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
193
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = KandinskyInpaintPipeline _SCREAMING_SNAKE_CASE = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _SCREAMING_SNAKE_CASE = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _SCREAMING_SNAKE_CASE = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _SCREAMING_SNAKE_CASE = False @property def lowercase_ ( self : Optional[int] ) ->Optional[Any]: return 3_2 @property def lowercase_ ( self : Dict ) ->Tuple: return 3_2 @property def lowercase_ ( self : List[str] ) ->int: return self.time_input_dim @property def lowercase_ ( self : List[str] ) ->Optional[int]: return self.time_input_dim * 4 @property def lowercase_ ( self : str ) ->List[Any]: return 1_0_0 @property def lowercase_ ( self : Union[str, Any] ) ->Tuple: snake_case__ : List[Any] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def lowercase_ ( self : List[Any] ) ->str: torch.manual_seed(0 ) snake_case__ : Tuple = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=3_7, num_attention_heads=4, num_hidden_layers=5, vocab_size=1_0_0_5, ) snake_case__ : Dict = MultilingualCLIP(_snake_case ) snake_case__ : Any = text_encoder.eval() return text_encoder @property def lowercase_ ( self : Optional[Any] ) ->Union[str, Any]: torch.manual_seed(0 ) snake_case__ : Union[str, Any] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ : Optional[int] = UNetaDConditionModel(**_snake_case ) return model @property def lowercase_ ( self : Any ) ->Tuple: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self : str ) ->Dict: torch.manual_seed(0 ) snake_case__ : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : str ) ->List[Any]: snake_case__ : str = self.dummy_text_encoder snake_case__ : Optional[Any] = self.dummy_tokenizer snake_case__ : List[Any] = self.dummy_unet snake_case__ : Optional[int] = self.dummy_movq snake_case__ : Optional[Any] = DDIMScheduler( num_train_timesteps=1_0_0_0, beta_schedule='linear', beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, clip_sample=_snake_case, set_alpha_to_one=_snake_case, steps_offset=1, prediction_type='epsilon', thresholding=_snake_case, ) snake_case__ : Union[str, Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase_ ( self : str, _snake_case : Any, _snake_case : Tuple=0 ) ->str: snake_case__ : List[str] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(_snake_case ) ).to(_snake_case ) snake_case__ : List[str] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1 ) ).to(_snake_case ) # create init_image snake_case__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(_snake_case ) ).to(_snake_case ) snake_case__ : int = image.cpu().permute(0, 2, 3, 1 )[0] snake_case__ : Dict = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create mask snake_case__ : Optional[Any] = np.ones((6_4, 6_4), dtype=np.floataa ) snake_case__ : Optional[Any] = 0 if str(_snake_case ).startswith('mps' ): snake_case__ : Any = torch.manual_seed(_snake_case ) else: snake_case__ : int = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) snake_case__ : int = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def lowercase_ ( self : List[str] ) ->Any: snake_case__ : Any = 'cpu' snake_case__ : str = self.get_dummy_components() snake_case__ : Any = self.pipeline_class(**_snake_case ) snake_case__ : Any = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) snake_case__ : Optional[int] = pipe(**self.get_dummy_inputs(_snake_case ) ) snake_case__ : int = output.images snake_case__ : str = pipe( **self.get_dummy_inputs(_snake_case ), return_dict=_snake_case, )[0] snake_case__ : Optional[Any] = image[0, -3:, -3:, -1] snake_case__ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Any = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def lowercase_ ( self : Dict ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : int ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Any ) ->Tuple: snake_case__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) snake_case__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) snake_case__ : Dict = np.ones((7_6_8, 7_6_8), dtype=np.floataa ) snake_case__ : Union[str, Any] = 0 snake_case__ : Optional[Any] = 'a hat' snake_case__ : Optional[int] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior', torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) snake_case__ : List[str] = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint', torch_dtype=torch.floataa ) snake_case__ : Any = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) snake_case__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case__ , snake_case__ : List[Any] = pipe_prior( _snake_case, generator=_snake_case, num_inference_steps=5, negative_prompt='', ).to_tuple() snake_case__ : Dict = pipeline( _snake_case, image=_snake_case, mask_image=_snake_case, image_embeds=_snake_case, negative_image_embeds=_snake_case, generator=_snake_case, num_inference_steps=1_0_0, height=7_6_8, width=7_6_8, output_type='np', ) snake_case__ : List[Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_snake_case, _snake_case )
277
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ :Tuple = logging.get_logger(__name__) a_ :Union[str, Any] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """deberta-v2""" def __init__( self : Union[str, Any], _snake_case : Dict=1_2_8_1_0_0, _snake_case : Any=1_5_3_6, _snake_case : Tuple=2_4, _snake_case : int=2_4, _snake_case : Optional[int]=6_1_4_4, _snake_case : Optional[int]="gelu", _snake_case : Optional[int]=0.1, _snake_case : List[str]=0.1, _snake_case : str=5_1_2, _snake_case : Optional[int]=0, _snake_case : Optional[int]=0.0_2, _snake_case : Dict=1e-7, _snake_case : int=False, _snake_case : Any=-1, _snake_case : List[str]=0, _snake_case : Tuple=True, _snake_case : Any=None, _snake_case : Union[str, Any]=0, _snake_case : Tuple="gelu", **_snake_case : Union[str, Any], ) ->Optional[int]: super().__init__(**_snake_case ) snake_case__ : Dict = hidden_size snake_case__ : Optional[int] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : List[str] = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : Optional[Any] = initializer_range snake_case__ : Optional[int] = relative_attention snake_case__ : Tuple = max_relative_positions snake_case__ : Union[str, Any] = pad_token_id snake_case__ : Optional[int] = position_biased_input # Backwards compatibility if type(_snake_case ) == str: snake_case__ : int = [x.strip() for x in pos_att_type.lower().split('|' )] snake_case__ : List[str] = pos_att_type snake_case__ : Union[str, Any] = vocab_size snake_case__ : Optional[int] = layer_norm_eps snake_case__ : Optional[int] = kwargs.get('pooler_hidden_size', _snake_case ) snake_case__ : int = pooler_dropout snake_case__ : str = pooler_hidden_act class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" @property def lowercase_ ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case__ : int = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase_ ( self : Dict ) ->int: return 1_2 def lowercase_ ( self : Tuple, _snake_case : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], _snake_case : int = -1, _snake_case : int = -1, _snake_case : int = -1, _snake_case : bool = False, _snake_case : Optional["TensorType"] = None, _snake_case : int = 3, _snake_case : int = 4_0, _snake_case : int = 4_0, _snake_case : "PreTrainedTokenizerBase" = None, ) ->Mapping[str, Any]: snake_case__ : Union[str, Any] = super().generate_dummy_inputs(preprocessor=_snake_case, framework=_snake_case ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
277
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path UpperCamelCase_ = quote(SCREAMING_SNAKE_CASE_ ) return hfh.hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" , revision=SCREAMING_SNAKE_CASE_ )
60
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( snake_case ): def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , )-> Optional[Any]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=_lowercase , speech_processor=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , unet=_lowercase , scheduler=_lowercase , feature_extractor=_lowercase , ) def UpperCAmelCase_ ( self , _lowercase = "auto" )-> str: if slice_size == "auto": UpperCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowercase ) def UpperCAmelCase_ ( self )-> Optional[int]: self.enable_attention_slicing(_lowercase ) @torch.no_grad() def __call__( self , _lowercase , _lowercase=16_000 , _lowercase = 512 , _lowercase = 512 , _lowercase = 50 , _lowercase = 7.5 , _lowercase = None , _lowercase = 1 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , _lowercase = "pil" , _lowercase = True , _lowercase = None , _lowercase = 1 , **_lowercase , )-> str: UpperCamelCase_ = self.speech_processor.feature_extractor( _lowercase , return_tensors="pt" , sampling_rate=_lowercase ).input_features.to(self.device ) UpperCamelCase_ = self.speech_model.generate(_lowercase , max_length=480_000 ) UpperCamelCase_ = self.speech_processor.tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase , normalize=_lowercase )[ 0 ] if isinstance(_lowercase , _lowercase ): UpperCamelCase_ = 1 elif isinstance(_lowercase , _lowercase ): UpperCamelCase_ = len(_lowercase ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(_lowercase )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(_lowercase )}." ) # get prompt text embeddings UpperCamelCase_ = self.tokenizer( _lowercase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCamelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCamelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = text_embeddings.shape UpperCamelCase_ = text_embeddings.repeat(1 , _lowercase , 1 ) UpperCamelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , _lowercase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase_ = 42 if negative_prompt is None: UpperCamelCase_ = [""] * batch_size elif type(_lowercase ) is not type(_lowercase ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(_lowercase )} !=" F" {type(_lowercase )}." ) elif isinstance(_lowercase , _lowercase ): UpperCamelCase_ = [negative_prompt] elif batch_size != len(_lowercase ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(_lowercase )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: UpperCamelCase_ = negative_prompt UpperCamelCase_ = text_input_ids.shape[-1] UpperCamelCase_ = self.tokenizer( _lowercase , padding="max_length" , max_length=_lowercase , truncation=_lowercase , return_tensors="pt" , ) UpperCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase_ = uncond_embeddings.shape[1] UpperCamelCase_ = uncond_embeddings.repeat(1 , _lowercase , 1 ) UpperCamelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , _lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase_ = torch.randn(_lowercase , generator=_lowercase , device="cpu" , dtype=_lowercase ).to( self.device ) else: UpperCamelCase_ = torch.randn(_lowercase , generator=_lowercase , device=self.device , dtype=_lowercase ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCamelCase_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase_ = {} if accepts_eta: UpperCamelCase_ = eta for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase_ = self.scheduler.scale_model_input(_lowercase , _lowercase ) # predict the noise residual UpperCamelCase_ = self.unet(_lowercase , _lowercase , encoder_hidden_states=_lowercase ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase_ , UpperCamelCase_ = noise_pred.chunk(2 ) UpperCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase , _lowercase ) UpperCamelCase_ = 1 / 0.18_215 * latents UpperCamelCase_ = self.vae.decode(_lowercase ).sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_lowercase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_lowercase , nsfw_content_detected=_lowercase )
60
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
198
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( a__ ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , '''width_multiplier''' ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=64 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase="swish" , __lowerCAmelCase=3 , __lowerCAmelCase=32 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=10 , __lowerCAmelCase=None , __lowerCAmelCase=0.2_5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , ) -> List[Any]: lowercase__ : List[str] = parent lowercase__ : List[Any] = batch_size lowercase__ : List[str] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Tuple = num_channels lowercase__ : List[str] = make_divisible(512 * width_multiplier , divisor=8 ) lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = conv_kernel_size lowercase__ : Dict = output_stride lowercase__ : List[Any] = classifier_dropout_prob lowercase__ : str = use_labels lowercase__ : List[Any] = is_training lowercase__ : Tuple = num_labels lowercase__ : Optional[int] = initializer_range lowercase__ : Tuple = scope lowercase__ : List[Any] = width_multiplier lowercase__ : Optional[int] = ffn_dropout lowercase__ : int = attn_dropout def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Any = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase( self ) -> Tuple: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ : Optional[int] = MobileViTVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : str = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Optional[Any] = self.num_labels lowercase__ : Dict = MobileViTVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Optional[Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: lowercase__ : str = self.num_labels lowercase__ : List[Any] = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : int = model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase__ : Union[str, Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase( self ) -> int: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> int: lowercase__ : Tuple = MobileViTVaModelTester(self ) lowercase__ : Any = MobileViTVaConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def _lowerCAmelCase( self ) -> str: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def _lowerCAmelCase( self ) -> Optional[Any]: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def _lowerCAmelCase( self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def _lowerCAmelCase( self ) -> Any: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCAmelCase( self ) -> str: pass def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(__lowerCAmelCase ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : str = [*signature.parameters.keys()] lowercase__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Optional[int] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : Optional[int] = 5 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase__ : str = 2 for i in range(len(__lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) @slow def _lowerCAmelCase( self ) -> List[str]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = MobileViTVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __UpperCamelCase ( ): lowercase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase( self ) -> int: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Dict = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __lowerCAmelCase ) lowercase__ : List[Any] = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**__lowerCAmelCase ) # verify the logits lowercase__ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase__ : int = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : int = model.to(__lowerCAmelCase ) lowercase__ : Any = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : str = prepare_img() lowercase__ : Optional[int] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : str = model(**__lowerCAmelCase ) lowercase__ : Tuple = outputs.logits # verify the logits lowercase__ : List[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=__lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase( self ) -> Any: lowercase__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : List[str] = model.to(__lowerCAmelCase ) lowercase__ : Optional[int] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : int = prepare_img() lowercase__ : List[str] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**__lowerCAmelCase ) lowercase__ : Optional[int] = outputs.logits.detach().cpu() lowercase__ : Any = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase , target_sizes=[(50, 60)] ) lowercase__ : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase ) lowercase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase )
198
1
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCAmelCase_ = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCAmelCase_ = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( A ) -> List[Any]: snake_case = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=A )[0] @deprecated(A , 'Please use tf.data to implement this functionality.' ) def __magic_name__ ( A ) -> Optional[int]: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=A ) as bytestream: snake_case = _readaa(A ) if magic != 2_0_5_1: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) snake_case = _readaa(A ) snake_case = _readaa(A ) snake_case = _readaa(A ) snake_case = bytestream.read(rows * cols * num_images ) snake_case = numpy.frombuffer(A , dtype=numpy.uinta ) snake_case = data.reshape(A , A , A , 1 ) return data @deprecated(A , 'Please use tf.one_hot on tensors.' ) def __magic_name__ ( A , A ) -> Union[str, Any]: snake_case = labels_dense.shape[0] snake_case = numpy.arange(A ) * num_classes snake_case = numpy.zeros((num_labels, num_classes) ) snake_case = 1 return labels_one_hot @deprecated(A , 'Please use tf.data to implement this functionality.' ) def __magic_name__ ( A , A=False , A=1_0 ) -> Dict: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=A ) as bytestream: snake_case = _readaa(A ) if magic != 2_0_4_9: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) snake_case = _readaa(A ) snake_case = bytestream.read(A ) snake_case = numpy.frombuffer(A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(A , A ) return labels class lowerCamelCase : @deprecated( lowercase_, 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.', ) def __init__( self, lowercase_, lowercase_, lowercase_=False, lowercase_=False, lowercase_=dtypes.floataa, lowercase_=True, lowercase_=None, ) -> Dict: snake_case , snake_case = random_seed.get_seed(lowercase_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) snake_case = dtypes.as_dtype(lowercase_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: snake_case = 10000 snake_case = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' snake_case = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 snake_case = images.reshape( images.shape[0], images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. snake_case = images.astype(numpy.floataa ) snake_case = numpy.multiply(lowercase_, 1.0 / 255.0 ) snake_case = images snake_case = labels snake_case = 0 snake_case = 0 @property def _lowerCamelCase ( self ) -> Dict: return self._images @property def _lowerCamelCase ( self ) -> int: return self._labels @property def _lowerCamelCase ( self ) -> Union[str, Any]: return self._num_examples @property def _lowerCamelCase ( self ) -> List[str]: return self._epochs_completed def _lowerCamelCase ( self, lowercase_, lowercase_=False, lowercase_=True ) -> List[str]: if fake_data: snake_case = [1] * 784 snake_case = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowercase_ )], [fake_label for _ in range(lowercase_ )], ) snake_case = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase_ ) snake_case = self.images[perma] snake_case = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch snake_case = self._num_examples - start snake_case = self._images[start : self._num_examples] snake_case = self._labels[start : self._num_examples] # Shuffle the data if shuffle: snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase_ ) snake_case = self.images[perm] snake_case = self.labels[perm] # Start next epoch snake_case = 0 snake_case = batch_size - rest_num_examples snake_case = self._index_in_epoch snake_case = self._images[start:end] snake_case = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part), axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part), axis=0 ), ) else: self._index_in_epoch += batch_size snake_case = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(A , 'Please write your own downloading logic.' ) def __magic_name__ ( A , A , A ) -> str: if not gfile.Exists(A ): gfile.MakeDirs(A ) snake_case = os.path.join(A , A ) if not gfile.Exists(A ): urllib.request.urlretrieve(A , A ) # noqa: S310 with gfile.GFile(A ) as f: snake_case = f.size() print('Successfully downloaded' , A , A , 'bytes.' ) return filepath @deprecated( A , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def __magic_name__ ( A , A=False , A=False , A=dtypes.floataa , A=True , A=5_0_0_0 , A=None , A=DEFAULT_SOURCE_URL , ) -> Tuple: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=A , one_hot=A , dtype=A , seed=A ) snake_case = fake() snake_case = fake() snake_case = fake() return _Datasets(train=A , validation=A , test=A ) if not source_url: # empty string check snake_case = DEFAULT_SOURCE_URL snake_case = 'train-images-idx3-ubyte.gz' snake_case = 'train-labels-idx1-ubyte.gz' snake_case = 't10k-images-idx3-ubyte.gz' snake_case = 't10k-labels-idx1-ubyte.gz' snake_case = _maybe_download( A , A , source_url + train_images_file ) with gfile.Open(A , 'rb' ) as f: snake_case = _extract_images(A ) snake_case = _maybe_download( A , A , source_url + train_labels_file ) with gfile.Open(A , 'rb' ) as f: snake_case = _extract_labels(A , one_hot=A ) snake_case = _maybe_download( A , A , source_url + test_images_file ) with gfile.Open(A , 'rb' ) as f: snake_case = _extract_images(A ) snake_case = _maybe_download( A , A , source_url + test_labels_file ) with gfile.Open(A , 'rb' ) as f: snake_case = _extract_labels(A , one_hot=A ) if not 0 <= validation_size <= len(A ): snake_case = ( 'Validation size should be between 0 and ' F'''{len(A )}. Received: {validation_size}.''' ) raise ValueError(A ) snake_case = train_images[:validation_size] snake_case = train_labels[:validation_size] snake_case = train_images[validation_size:] snake_case = train_labels[validation_size:] snake_case = {'dtype': dtype, 'reshape': reshape, 'seed': seed} snake_case = _DataSet(A , A , **A ) snake_case = _DataSet(A , A , **A ) snake_case = _DataSet(A , A , **A ) return _Datasets(train=A , validation=A , test=A )
332
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
1
"""simple docstring""" def _lowerCAmelCase ( ): UpperCAmelCase = [] UpperCAmelCase = 1 while len(lowercase_ ) < 1e6: constant.append(str(lowercase_ ) ) i += 1 UpperCAmelCase = ''.join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
78
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """beit""" def __init__( self :List[str] , lowercase_ :List[Any]=81_92 , lowercase_ :str=7_68 , lowercase_ :List[str]=12 , lowercase_ :Optional[int]=12 , lowercase_ :Dict=30_72 , lowercase_ :Tuple="gelu" , lowercase_ :Any=0.0 , lowercase_ :Optional[int]=0.0 , lowercase_ :Dict=0.02 , lowercase_ :int=1E-12 , lowercase_ :List[Any]=2_24 , lowercase_ :Dict=16 , lowercase_ :List[Any]=3 , lowercase_ :List[str]=False , lowercase_ :Optional[Any]=False , lowercase_ :Optional[Any]=False , lowercase_ :Optional[Any]=False , lowercase_ :Union[str, Any]=0.1 , lowercase_ :str=0.1 , lowercase_ :str=True , lowercase_ :List[str]=[3, 5, 7, 11] , lowercase_ :Optional[int]=[1, 2, 3, 6] , lowercase_ :str=True , lowercase_ :int=0.4 , lowercase_ :Union[str, Any]=2_56 , lowercase_ :int=1 , lowercase_ :Tuple=False , lowercase_ :Optional[int]=2_55 , **lowercase_ :str , ) -> Any: super().__init__(**lowercase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = use_mask_token UpperCAmelCase = use_absolute_position_embeddings UpperCAmelCase = use_relative_position_bias UpperCAmelCase = use_shared_relative_position_bias UpperCAmelCase = layer_scale_init_value UpperCAmelCase = drop_path_rate UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase = out_indices UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase = use_auxiliary_head UpperCAmelCase = auxiliary_loss_weight UpperCAmelCase = auxiliary_channels UpperCAmelCase = auxiliary_num_convs UpperCAmelCase = auxiliary_concat_input UpperCAmelCase = semantic_loss_ignore_index class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = version.parse("""1.11""" ) @property def UpperCAmelCase__ ( self :Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase__ ( self :Tuple ) -> float: return 1E-4
78
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
356
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {'''vocab_file''': '''spiece.model'''} __a = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __a = { '''albert-base-v1''': 5_12, '''albert-large-v1''': 5_12, '''albert-xlarge-v1''': 5_12, '''albert-xxlarge-v1''': 5_12, '''albert-base-v2''': 5_12, '''albert-large-v2''': 5_12, '''albert-xlarge-v2''': 5_12, '''albert-xxlarge-v2''': 5_12, } __a = '''▁''' class __SCREAMING_SNAKE_CASE ( A__ ): A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase : Optional[Any] = ( AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ , normalized=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token ) lowercase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) lowercase : List[str] = do_lower_case lowercase : Tuple = remove_space lowercase : Tuple = keep_accents lowercase : str = vocab_file lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase ( self ): return len(self.sp_model ) def __lowerCamelCase ( self ): lowercase : Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowercase : List[Any] = self.__dict__.copy() lowercase : Optional[Any] = None return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : Any = {} lowercase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if self.remove_space: lowercase : int = ''' '''.join(inputs.strip().split() ) else: lowercase : List[Any] = inputs lowercase : int = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: lowercase : Optional[Any] = unicodedata.normalize('''NFKD''' , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE__ )] ) if self.do_lower_case: lowercase : Union[str, Any] = outputs.lower() return outputs def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = self.preprocess_text(SCREAMING_SNAKE_CASE__ ) lowercase : Any = self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) lowercase : Any = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowercase : Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase : Optional[int] = cur_pieces[1:] else: lowercase : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE__ ) else: new_pieces.append(SCREAMING_SNAKE_CASE__ ) return new_pieces def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : str = [] lowercase : Tuple = '''''' lowercase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token lowercase : Union[str, Any] = True lowercase : int = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : Optional[Any] = [self.sep_token_id] lowercase : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : Optional[int] = [self.sep_token_id] lowercase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as fi: lowercase : Dict = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
173
0
'''simple docstring''' import requests UpperCamelCase = 'YOUR API KEY' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = giphy_api_key ) -> list: A: Optional[Any] = '''+'''.join(query.split() ) A: Tuple = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" A: str = requests.get(UpperCamelCase__ ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
319
import random def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : List[Any] )->tuple: A__ , A__ , A__ = [], [], [] for element in data: if element < pivot: less.append(UpperCamelCase__ ) elif element > pivot: greater.append(UpperCamelCase__ ) else: equal.append(UpperCamelCase__ ) return less, equal, greater def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : int )->Optional[int]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(UpperCamelCase__ ) or index < 0: return None A__ = items[random.randint(0 , len(UpperCamelCase__ ) - 1 )] A__ = 0 A__ , A__ , A__ = _partition(UpperCamelCase__ , UpperCamelCase__ ) A__ = len(UpperCamelCase__ ) A__ = len(UpperCamelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCamelCase__ , UpperCamelCase__ ) # must be in larger else: return quick_select(UpperCamelCase__ , index - (m + count) )
193
0
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[int] = (DDPMParallelScheduler,) def a ( self : Any , **_lowercase : Optional[int] ): __UpperCAmelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_lowercase ) return config def a ( self : Dict ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase ) def a ( self : int ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def a ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def a ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def a ( self : Optional[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def a ( self : Optional[Any] ): self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def a ( self : Dict ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def a ( self : Optional[Any] ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def a ( self : int ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = self.dummy_sample_deter + 0.1 __UpperCAmelCase = self.dummy_sample_deter - 0.1 __UpperCAmelCase = samplea.shape[0] __UpperCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) __UpperCAmelCase = torch.arange(_lowercase )[0:3, None].repeat(1 , _lowercase ) __UpperCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __UpperCAmelCase = scheduler.batch_step_no_noise(_lowercase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __UpperCAmelCase = torch.sum(torch.abs(_lowercase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1E-2 assert abs(result_mean.item() - 0.5_005 ) < 1E-3 def a ( self : Union[str, Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual __UpperCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample __UpperCAmelCase = pred_prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowercase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual __UpperCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample __UpperCAmelCase = pred_prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowercase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def a ( self : Optional[Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) __UpperCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: __UpperCAmelCase = -1 else: __UpperCAmelCase = timesteps[i + 1] __UpperCAmelCase = scheduler.previous_timestep(_lowercase ) __UpperCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [1_00, 87, 50, 1, 0] __UpperCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_lowercase )
86
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _lowercase : int = pd.read_csv('sample_data.csv', header=None) _lowercase : str = df.shape[:1][0] # If you're using some other dataset input the target column _lowercase : Optional[int] = df.iloc[:, 1:2] _lowercase : Optional[int] = actual_data.values.reshape(len_data, 1) _lowercase : Any = MinMaxScaler().fit_transform(actual_data) _lowercase : Dict = 10 _lowercase : List[str] = 5 _lowercase : Any = 20 _lowercase : Optional[int] = len_data - periods * look_back _lowercase : Optional[int] = actual_data[:division] _lowercase : Optional[int] = actual_data[division - look_back :] _lowercase ,_lowercase : Tuple = [], [] _lowercase ,_lowercase : Optional[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _lowercase : List[str] = np.array(train_x) _lowercase : str = np.array(test_x) _lowercase : Union[str, Any] = np.array([list(i.ravel()) for i in train_y]) _lowercase : List[Any] = np.array([list(i.ravel()) for i in test_y]) _lowercase : str = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') _lowercase : str = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) _lowercase : str = model.predict(x_test)
86
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : int = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : int = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Any = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Tuple = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : Any , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Tuple="[UNK]" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : List[str]="[PAD]" , UpperCamelCase_ : List[Any]="[CLS]" , UpperCamelCase_ : str="[MASK]" , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Tuple , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[Any] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : List[Any] = do_lower_case lowerCAmelCase : Optional[Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : int = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Tuple = do_lower_case def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int=None ): lowerCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : int = [self.sep_token_id] lowerCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
60
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ : int = logging.get_logger(__name__) def _snake_case ( _snake_case : Union[str, Any] ): lowerCAmelCase : Dict = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): lowerCAmelCase : Union[str, Any] = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): lowerCAmelCase : str = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase : Union[str, Any] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCAmelCase : str = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(_snake_case )-1}''' ) if "norm" in key: lowerCAmelCase : str = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase : Optional[int] = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] lowerCAmelCase : List[str] = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(_snake_case )-1}''' ) if "layer_norm1" in key: lowerCAmelCase : Union[str, Any] = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowerCAmelCase : Any = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase : Tuple = key[key.find('''block''' ) + len('''block''' )] lowerCAmelCase : Tuple = key.replace(f'''block{idx}''' , f'''block.{int(_snake_case )-1}''' ) if "attn.q" in key: lowerCAmelCase : Optional[Any] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowerCAmelCase : Dict = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowerCAmelCase : List[str] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowerCAmelCase : List[Any] = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowerCAmelCase : Optional[Any] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowerCAmelCase : List[Any] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowerCAmelCase : Optional[Any] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowerCAmelCase : int = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase : Optional[Any] = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCAmelCase : int = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(_snake_case )-1}''' ) if "bot_conv" in key: lowerCAmelCase : str = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: lowerCAmelCase : int = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: lowerCAmelCase : str = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: lowerCAmelCase : Union[str, Any] = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: lowerCAmelCase : Any = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: lowerCAmelCase : List[Any] = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: lowerCAmelCase : Union[str, Any] = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): lowerCAmelCase : Optional[Any] = key.replace('''module.last_layer_depth''' , '''head.head''' ) lowerCAmelCase : Union[str, Any] = value return new_state_dict def _snake_case ( _snake_case : Optional[Any] , _snake_case : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase : int = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase : Optional[int] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase : str = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase : Union[str, Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase : Dict = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase : List[str] = kv_bias[config.hidden_sizes[i] :] def _snake_case ( ): lowerCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : str = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def _snake_case ( _snake_case : Dict , _snake_case : Dict , _snake_case : Union[str, Any]=False , _snake_case : List[str]=None ): lowerCAmelCase : Optional[int] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : Dict = image_processor(images=_snake_case , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict lowerCAmelCase : List[str] = torch.load(_snake_case , map_location=torch.device('''cpu''' ) ) # rename keys lowerCAmelCase : Tuple = rename_keys(_snake_case ) # key and value matrices need special treatment read_in_k_v(_snake_case , _snake_case ) # create HuggingFace model and load state dict lowerCAmelCase : str = GLPNForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass lowerCAmelCase : Union[str, Any] = model(_snake_case ) lowerCAmelCase : int = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase : str = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: lowerCAmelCase : str = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase : List[Any] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _snake_case , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_snake_case , ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) snake_case__ : List[str] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
60
1
def A_ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(_UpperCAmelCase )[-10:] if __name__ == "__main__": print(solution())
127
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = ['''pixel_values'''] def __init__( self : List[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Tuple , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = size if size is not None else {"height": 384, "width": 384} SCREAMING_SNAKE_CASE_: Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = do_resize SCREAMING_SNAKE_CASE_: Dict = size SCREAMING_SNAKE_CASE_: int = resample SCREAMING_SNAKE_CASE_: str = do_rescale SCREAMING_SNAKE_CASE_: str = rescale_factor SCREAMING_SNAKE_CASE_: Optional[Any] = do_normalize SCREAMING_SNAKE_CASE_: Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_: List[str] = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_: Optional[int] = do_convert_rgb def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") SCREAMING_SNAKE_CASE_: int = (size["height"], size["width"]) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, float] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[Any] , ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[Any] , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : Dict , ): SCREAMING_SNAKE_CASE_: Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: Optional[int] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_: Any = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_: Optional[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_: Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_: Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_: str = size if size is not None else self.size SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_: List[Any] = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: List[Any] = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: int = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_: Optional[Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_: List[str] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: str = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: List[str] = BatchFeature(data={"pixel_values": images} , tensor_type=lowerCAmelCase__) return encoded_outputs
127
1
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowercase : List[str] = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowercase : Optional[int] = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def lowercase__ ( snake_case_ :Optional[Any] ): __UpperCAmelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=snake_case_ )[0] @deprecated(snake_case_ , '''Please use tf.data to implement this functionality.''' ) def lowercase__ ( snake_case_ :Tuple ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=snake_case_ ) as bytestream: __UpperCAmelCase = _readaa(snake_case_ ) if magic != 2_051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __UpperCAmelCase = _readaa(snake_case_ ) __UpperCAmelCase = _readaa(snake_case_ ) __UpperCAmelCase = _readaa(snake_case_ ) __UpperCAmelCase = bytestream.read(rows * cols * num_images ) __UpperCAmelCase = numpy.frombuffer(snake_case_ , dtype=numpy.uinta ) __UpperCAmelCase = data.reshape(snake_case_ , snake_case_ , snake_case_ , 1 ) return data @deprecated(snake_case_ , '''Please use tf.one_hot on tensors.''' ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :Optional[int] ): __UpperCAmelCase = labels_dense.shape[0] __UpperCAmelCase = numpy.arange(snake_case_ ) * num_classes __UpperCAmelCase = numpy.zeros((num_labels, num_classes) ) __UpperCAmelCase = 1 return labels_one_hot @deprecated(snake_case_ , '''Please use tf.data to implement this functionality.''' ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :int=False , snake_case_ :Optional[int]=10 ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=snake_case_ ) as bytestream: __UpperCAmelCase = _readaa(snake_case_ ) if magic != 2_049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __UpperCAmelCase = _readaa(snake_case_ ) __UpperCAmelCase = bytestream.read(snake_case_ ) __UpperCAmelCase = numpy.frombuffer(snake_case_ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(snake_case_ , snake_case_ ) return labels class _UpperCAmelCase : @deprecated( _lowercase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Tuple , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Dict=False , _lowercase : Tuple=False , _lowercase : Optional[int]=dtypes.floataa , _lowercase : Union[str, Any]=True , _lowercase : Dict=None , ): __UpperCAmelCase , __UpperCAmelCase = random_seed.get_seed(_lowercase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __UpperCAmelCase = dtypes.as_dtype(_lowercase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __UpperCAmelCase = 1_00_00 __UpperCAmelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' __UpperCAmelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __UpperCAmelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __UpperCAmelCase = images.astype(numpy.floataa ) __UpperCAmelCase = numpy.multiply(_lowercase , 1.0 / 255.0 ) __UpperCAmelCase = images __UpperCAmelCase = labels __UpperCAmelCase = 0 __UpperCAmelCase = 0 @property def a ( self : Dict ): return self._images @property def a ( self : Optional[Any] ): return self._labels @property def a ( self : Dict ): return self._num_examples @property def a ( self : Dict ): return self._epochs_completed def a ( self : Any , _lowercase : str , _lowercase : Dict=False , _lowercase : str=True ): if fake_data: __UpperCAmelCase = [1] * 7_84 __UpperCAmelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_lowercase )], [fake_label for _ in range(_lowercase )], ) __UpperCAmelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __UpperCAmelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(_lowercase ) __UpperCAmelCase = self.images[perma] __UpperCAmelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __UpperCAmelCase = self._num_examples - start __UpperCAmelCase = self._images[start : self._num_examples] __UpperCAmelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __UpperCAmelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(_lowercase ) __UpperCAmelCase = self.images[perm] __UpperCAmelCase = self.labels[perm] # Start next epoch __UpperCAmelCase = 0 __UpperCAmelCase = batch_size - rest_num_examples __UpperCAmelCase = self._index_in_epoch __UpperCAmelCase = self._images[start:end] __UpperCAmelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __UpperCAmelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(snake_case_ , '''Please write your own downloading logic.''' ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :List[str] ): if not gfile.Exists(snake_case_ ): gfile.MakeDirs(snake_case_ ) __UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) if not gfile.Exists(snake_case_ ): urllib.request.urlretrieve(snake_case_ , snake_case_ ) # noqa: S310 with gfile.GFile(snake_case_ ) as f: __UpperCAmelCase = f.size() print('''Successfully downloaded''' , snake_case_ , snake_case_ , '''bytes.''' ) return filepath @deprecated( snake_case_ , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str]=False , snake_case_ :List[Any]=False , snake_case_ :List[str]=dtypes.floataa , snake_case_ :str=True , snake_case_ :Optional[int]=5_000 , snake_case_ :str=None , snake_case_ :str=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=snake_case_ , one_hot=snake_case_ , dtype=snake_case_ , seed=snake_case_ ) __UpperCAmelCase = fake() __UpperCAmelCase = fake() __UpperCAmelCase = fake() return _Datasets(train=snake_case_ , validation=snake_case_ , test=snake_case_ ) if not source_url: # empty string check __UpperCAmelCase = DEFAULT_SOURCE_URL __UpperCAmelCase = '''train-images-idx3-ubyte.gz''' __UpperCAmelCase = '''train-labels-idx1-ubyte.gz''' __UpperCAmelCase = '''t10k-images-idx3-ubyte.gz''' __UpperCAmelCase = '''t10k-labels-idx1-ubyte.gz''' __UpperCAmelCase = _maybe_download( snake_case_ , snake_case_ , source_url + train_images_file ) with gfile.Open(snake_case_ , '''rb''' ) as f: __UpperCAmelCase = _extract_images(snake_case_ ) __UpperCAmelCase = _maybe_download( snake_case_ , snake_case_ , source_url + train_labels_file ) with gfile.Open(snake_case_ , '''rb''' ) as f: __UpperCAmelCase = _extract_labels(snake_case_ , one_hot=snake_case_ ) __UpperCAmelCase = _maybe_download( snake_case_ , snake_case_ , source_url + test_images_file ) with gfile.Open(snake_case_ , '''rb''' ) as f: __UpperCAmelCase = _extract_images(snake_case_ ) __UpperCAmelCase = _maybe_download( snake_case_ , snake_case_ , source_url + test_labels_file ) with gfile.Open(snake_case_ , '''rb''' ) as f: __UpperCAmelCase = _extract_labels(snake_case_ , one_hot=snake_case_ ) if not 0 <= validation_size <= len(snake_case_ ): __UpperCAmelCase = ( '''Validation size should be between 0 and ''' F'''{len(snake_case_ )}. Received: {validation_size}.''' ) raise ValueError(snake_case_ ) __UpperCAmelCase = train_images[:validation_size] __UpperCAmelCase = train_labels[:validation_size] __UpperCAmelCase = train_images[validation_size:] __UpperCAmelCase = train_labels[validation_size:] __UpperCAmelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __UpperCAmelCase = _DataSet(snake_case_ , snake_case_ , **snake_case_ ) __UpperCAmelCase = _DataSet(snake_case_ , snake_case_ , **snake_case_ ) __UpperCAmelCase = _DataSet(snake_case_ , snake_case_ , **snake_case_ ) return _Datasets(train=snake_case_ , validation=snake_case_ , test=snake_case_ )
332
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): if tokenize_kwargs is None: __UpperCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __UpperCAmelCase = truncation __UpperCAmelCase = tokenize_kwargs __UpperCAmelCase = {} if return_tensors is not None: __UpperCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def a ( self : List[str] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : int , _lowercase : Tuple , _lowercase : str=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): return super().__call__(*_lowercase , **_lowercase )
332
1
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _lowerCamelCase ( _lowercase , _lowercase ): UpperCAmelCase_ = "pixel_values" UpperCAmelCase_ = False UpperCAmelCase_ = TimmBackboneConfig def __init__(self , __a , **__a ) -> Tuple: requires_backends(self , "timm" ) super().__init__(__a ) UpperCamelCase = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(F"backbone {config.backbone} is not supported by timm." ) if hasattr(__a , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) UpperCamelCase = getattr(__a , "use_pretrained_backbone" , __a ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. UpperCamelCase = config.out_indices if getattr(__a , "out_indices" , __a ) is not None else (-1,) UpperCamelCase = timm.create_model( config.backbone , pretrained=__a , features_only=config.features_only , in_chans=config.num_channels , out_indices=__a , **__a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. UpperCamelCase = self._backbone.return_layers UpperCamelCase = {layer["module"]: str(__a ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__a ) @classmethod def snake_case_ (cls , __a , *__a , **__a ) -> Tuple: requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig UpperCamelCase = kwargs.pop("config" , TimmBackboneConfig() ) UpperCamelCase = kwargs.pop("use_timm_backbone" , __a ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) UpperCamelCase = kwargs.pop("num_channels" , config.num_channels ) UpperCamelCase = kwargs.pop("features_only" , config.features_only ) UpperCamelCase = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) UpperCamelCase = kwargs.pop("out_indices" , config.out_indices ) UpperCamelCase = TimmBackboneConfig( backbone=__a , num_channels=__a , features_only=__a , use_pretrained_backbone=__a , out_indices=__a , ) return super()._from_config(__a , **__a ) def snake_case_ (self , __a ) -> Optional[int]: pass def snake_case_ (self , __a , __a=None , __a=None , __a=None , **__a ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone UpperCamelCase = self._all_layers UpperCamelCase = self._backbone(__a , **__a ) UpperCamelCase = self._return_layers UpperCamelCase = tuple(hidden_states[i] for i in self.out_indices ) else: UpperCamelCase = self._backbone(__a , **__a ) UpperCamelCase = None UpperCamelCase = tuple(__a ) UpperCamelCase = tuple(__a ) if hidden_states is not None else None if not return_dict: UpperCamelCase = (feature_maps,) if output_hidden_states: UpperCamelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=__a , hidden_states=__a , attentions=__a )
244
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return image elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCamelCase = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] UpperCamelCase = np.concatenate(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCamelCase = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 2_55.0 UpperCamelCase = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase = 2.0 * image - 1.0 UpperCamelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) return image def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.99_95 ): """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase = True UpperCamelCase = va.device UpperCamelCase = va.cpu().numpy() UpperCamelCase = va.cpu().numpy() UpperCamelCase = np.sum(va * va / (np.linalg.norm(_SCREAMING_SNAKE_CASE ) * np.linalg.norm(_SCREAMING_SNAKE_CASE )) ) if np.abs(_SCREAMING_SNAKE_CASE ) > DOT_THRESHOLD: UpperCamelCase = (1 - t) * va + t * va else: UpperCamelCase = np.arccos(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.sin(_SCREAMING_SNAKE_CASE ) UpperCamelCase = theta_a * t UpperCamelCase = np.sin(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.sin(theta_a - theta_t ) / sin_theta_a UpperCamelCase = sin_theta_t / sin_theta_a UpperCamelCase = sa * va + sa * va if inputs_are_torch: UpperCamelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) return va def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = F.normalize(_SCREAMING_SNAKE_CASE , dim=-1 ) UpperCamelCase = F.normalize(_SCREAMING_SNAKE_CASE , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" for param in model.parameters(): UpperCamelCase = value class _lowerCamelCase ( _lowercase ): def __init__(self , __a , __a , __a , __a , __a , __a , __a , __a=None , __a=None , __a=None , ) -> Tuple: super().__init__() self.register_modules( vae=__a , text_encoder=__a , clip_model=__a , tokenizer=__a , unet=__a , scheduler=__a , feature_extractor=__a , coca_model=__a , coca_tokenizer=__a , coca_transform=__a , ) UpperCamelCase = ( feature_extractor.size if isinstance(feature_extractor.size , __a ) else feature_extractor.size["shortest_edge"] ) UpperCamelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __a ) set_requires_grad(self.clip_model , __a ) def snake_case_ (self , __a = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def snake_case_ (self ) -> Optional[int]: self.enable_attention_slicing(__a ) def snake_case_ (self ) -> int: set_requires_grad(self.vae , __a ) def snake_case_ (self ) -> Optional[Any]: set_requires_grad(self.vae , __a ) def snake_case_ (self ) -> Optional[int]: set_requires_grad(self.unet , __a ) def snake_case_ (self ) -> str: set_requires_grad(self.unet , __a ) def snake_case_ (self , __a , __a , __a ) -> str: # get the original timestep using init_timestep UpperCamelCase = min(int(num_inference_steps * strength ) , __a ) UpperCamelCase = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case_ (self , __a , __a , __a , __a , __a , __a=None ) -> Tuple: if not isinstance(__a , torch.Tensor ): raise ValueError(F"`image` has to be of type `torch.Tensor` but is {type(__a )}" ) UpperCamelCase = image.to(device=__a , dtype=__a ) if isinstance(__a , __a ): UpperCamelCase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__a ) ] UpperCamelCase = torch.cat(__a , dim=0 ) else: UpperCamelCase = self.vae.encode(__a ).latent_dist.sample(__a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase = 0.18215 * init_latents UpperCamelCase = init_latents.repeat_interleave(__a , dim=0 ) UpperCamelCase = randn_tensor(init_latents.shape , generator=__a , device=__a , dtype=__a ) # get latents UpperCamelCase = self.scheduler.add_noise(__a , __a , __a ) UpperCamelCase = init_latents return latents def snake_case_ (self , __a ) -> Union[str, Any]: UpperCamelCase = self.coca_transform(__a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCamelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCamelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def snake_case_ (self , __a , __a ) -> Union[str, Any]: UpperCamelCase = self.feature_extractor.preprocess(__a ) UpperCamelCase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() UpperCamelCase = self.clip_model.get_image_features(__a ) UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a ) UpperCamelCase = image_embeddings_clip.repeat_interleave(__a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def snake_case_ (self , __a , __a , __a , __a , __a , __a , __a , ) -> List[str]: UpperCamelCase = latents.detach().requires_grad_() UpperCamelCase = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCamelCase = self.scheduler.alphas_cumprod[timestep] UpperCamelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCamelCase = torch.sqrt(__a ) UpperCamelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __a ): UpperCamelCase = self.scheduler.sigmas[index] UpperCamelCase = latents - sigma * noise_pred else: raise ValueError(F"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase = 1 / 0.18215 * sample UpperCamelCase = self.vae.decode(__a ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = transforms.Resize(self.feature_extractor_size )(__a ) UpperCamelCase = self.normalize(__a ).to(latents.dtype ) UpperCamelCase = self.clip_model.get_image_features(__a ) UpperCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__a ) UpperCamelCase = spherical_dist_loss(__a , __a ).mean() * clip_guidance_scale UpperCamelCase = -torch.autograd.grad(__a , __a )[0] if isinstance(self.scheduler , __a ): UpperCamelCase = latents.detach() + grads * (sigma**2) UpperCamelCase = noise_pred_original else: UpperCamelCase = noise_pred_original - torch.sqrt(__a ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , __a , __a , __a = None , __a = None , __a = 5_12 , __a = 5_12 , __a = 0.6 , __a = 50 , __a = 7.5 , __a = 1 , __a = 0.0 , __a = 1_00 , __a = None , __a = "pil" , __a = True , __a = 0.8 , __a = 0.1 , __a = 0.1 , ) -> List[Any]: if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError(F"You have passed {batch_size} batch_size, but only {len(__a )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(__a , torch.Generator ) and batch_size > 1: UpperCamelCase = [generator] + [None] * (batch_size - 1) UpperCamelCase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] UpperCamelCase = [x[0] for x in coca_is_none if x[1]] UpperCamelCase = ", ".join(__a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__a ): raise ValueError( F"Content prompt is None and CoCa [{coca_is_none_str}] is None." F"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCamelCase = self.get_image_description(__a ) if style_prompt is None: if len(__a ): raise ValueError( F"Style prompt is None and CoCa [{coca_is_none_str}] is None." F" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCamelCase = self.get_image_description(__a ) # get prompt text embeddings for content and style UpperCamelCase = self.tokenizer( __a , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , ) UpperCamelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCamelCase = self.tokenizer( __a , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , ) UpperCamelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCamelCase = slerp(__a , __a , __a ) # duplicate text embeddings for each generation per prompt UpperCamelCase = text_embeddings.repeat_interleave(__a , dim=0 ) # set timesteps UpperCamelCase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCamelCase = {} if accepts_offset: UpperCamelCase = 1 self.scheduler.set_timesteps(__a , **__a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCamelCase , UpperCamelCase = self.get_timesteps(__a , __a , self.device ) UpperCamelCase = timesteps[:1].repeat(__a ) # Preprocess image UpperCamelCase = preprocess(__a , __a , __a ) UpperCamelCase = self.prepare_latents( __a , __a , __a , text_embeddings.dtype , self.device , __a ) UpperCamelCase = preprocess(__a , __a , __a ) UpperCamelCase = self.prepare_latents( __a , __a , __a , text_embeddings.dtype , self.device , __a ) UpperCamelCase = slerp(__a , __a , __a ) if clip_guidance_scale > 0: UpperCamelCase = self.get_clip_image_embeddings(__a , __a ) UpperCamelCase = self.get_clip_image_embeddings(__a , __a ) UpperCamelCase = slerp( __a , __a , __a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase = content_text_input.input_ids.shape[-1] UpperCamelCase = self.tokenizer([""] , padding="max_length" , max_length=__a , return_tensors="pt" ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCamelCase = uncond_embeddings.repeat_interleave(__a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCamelCase = torch.randn(__a , generator=__a , device="cpu" , dtype=__a ).to( self.device ) else: UpperCamelCase = torch.randn(__a , generator=__a , device=self.device , dtype=__a ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCamelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase = {} if accepts_eta: UpperCamelCase = eta # check if the scheduler accepts generator UpperCamelCase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCamelCase = generator with self.progress_bar(total=__a ): for i, t in enumerate(__a ): # expand the latents if we are doing classifier free guidance UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = noise_pred.chunk(2 ) UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCamelCase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCamelCase , UpperCamelCase = self.cond_fn( __a , __a , __a , __a , __a , __a , __a , ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase = 1 / 0.18215 * latents UpperCamelCase = self.vae.decode(__a ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(__a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__a , nsfw_content_detected=__a )
244
1
'''simple docstring''' lowerCamelCase : List[str] = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase : Any = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase : Optional[int] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
47
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : int = KandinskyInpaintPipeline UpperCamelCase : Optional[Any] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] UpperCamelCase : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] UpperCamelCase : Any = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] UpperCamelCase : Tuple = False @property def lowerCamelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' return 32 @property def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return 32 @property def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self : Dict ) -> List[Any]: '''simple docstring''' return 100 @property def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowerCamelCase__ ( self : Dict ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE_: List[str] =MultilingualCLIP(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =text_encoder.eval() return text_encoder @property def lowerCamelCase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } SCREAMING_SNAKE_CASE_: str =UNetaDConditionModel(**lowerCAmelCase ) return model @property def lowerCamelCase__ ( self : Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[str] =VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Optional[Any] =self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] =self.dummy_unet SCREAMING_SNAKE_CASE_: Union[str, Any] =self.dummy_movq SCREAMING_SNAKE_CASE_: int =DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str]=0 ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase ) # create init_image SCREAMING_SNAKE_CASE_: List[Any] =floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_: List[str] =Image.fromarray(np.uinta(lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask SCREAMING_SNAKE_CASE_: Dict =np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE_: Optional[Any] =0 if str(lowerCAmelCase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE_: Optional[int] =torch.manual_seed(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_: List[Any] =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict ="""cpu""" SCREAMING_SNAKE_CASE_: List[Any] =self.get_dummy_components() SCREAMING_SNAKE_CASE_: Optional[int] =self.pipeline_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: int =output.images SCREAMING_SNAKE_CASE_: Optional[int] =pipe( **self.get_dummy_inputs(lowerCAmelCase ) , return_dict=lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_: Tuple =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Optional[int] =image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: List[Any] =np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) SCREAMING_SNAKE_CASE_: str =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) SCREAMING_SNAKE_CASE_: List[str] =np.ones((768, 768) , dtype=np.floataa ) SCREAMING_SNAKE_CASE_: List[str] =0 SCREAMING_SNAKE_CASE_: Union[str, Any] ="""a hat""" SCREAMING_SNAKE_CASE_: str =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_: List[str] =pipeline.to(lowerCAmelCase ) pipeline.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =pipe_prior( lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() SCREAMING_SNAKE_CASE_: List[Any] =pipeline( lowerCAmelCase , image=lowerCAmelCase , mask_image=lowerCAmelCase , image_embeds=lowerCAmelCase , negative_image_embeds=lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) SCREAMING_SNAKE_CASE_: int =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase )
173
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
359
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
0
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __lowerCAmelCase (): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
86
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
1
"""simple docstring""" import math def A ( snake_case :int ) -> int: if not isinstance(snake_case , snake_case ): __UpperCamelCase = f'Input value of [number={number}] must be an integer' raise TypeError(snake_case ) if number < 1: __UpperCamelCase = f'Input value of [number={number}] must be > 0' raise ValueError(snake_case ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , snake_case ): for _ in range(snake_case ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): UpperCamelCase : Optional[int] = 0 try: UpperCamelCase : Any = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
359
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def A ( snake_case :str , snake_case :str = "cpu" , snake_case :Union[str, None] = None ) -> None: __UpperCamelCase = torch.load(snake_case , map_location=snake_case ) for k, v in tqdm(state_dict.items() ): if not isinstance(snake_case , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) __UpperCamelCase = v.half() if save_path is None: # overwrite src_path __UpperCamelCase = src_path torch.save(snake_case , snake_case ) if __name__ == "__main__": fire.Fire(convert)
263
0
import math import sys def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if number != int(UpperCamelCase_ ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 snake_case = [-1] * (number + 1) snake_case = 0 for i in range(1 ,number + 1 ): snake_case = sys.maxsize snake_case = int(math.sqrt(UpperCamelCase_ ) ) for j in range(1 ,root + 1 ): snake_case = 1 + answers[i - (j**2)] snake_case = min(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
127
_SCREAMING_SNAKE_CASE : Optional[Any] = tuple[float, float, float] _SCREAMING_SNAKE_CASE : Optional[Any] = tuple[float, float, float] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = end_pointa[0] - end_pointa[0] snake_case = end_pointa[1] - end_pointa[1] snake_case = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = ab[1] * ac[2] - ab[2] * ac[1] # *i snake_case = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j snake_case = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" return tuple(round(UpperCamelCase_ ,UpperCamelCase_ ) for x in vector ) == (0, 0, 0) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = 10 ): """simple docstring""" snake_case = create_vector(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = create_vector(UpperCamelCase_ ,UpperCamelCase_ ) return is_zero_vector(get_ad_vectors_cross(UpperCamelCase_ ,UpperCamelCase_ ) ,UpperCamelCase_ )
127
1
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets __A : int = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __A : List[str] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __A : str = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : int )->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=None )->Dict: return { "matthews_correlation": float(matthews_corrcoef(__UpperCamelCase , __UpperCamelCase , sample_weight=__UpperCamelCase ) ), }
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) requires_backends(self , """decord""" ) self.check_model_type(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ): UpperCamelCase__ = {} if frame_sampling_rate is not None: UpperCamelCase__ = frame_sampling_rate if num_frames is not None: UpperCamelCase__ = num_frames UpperCamelCase__ = {} if top_k is not None: UpperCamelCase__ = top_k return preprocess_params, {}, postprocess_params def __call__(self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1 ): if num_frames is None: UpperCamelCase__ = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): UpperCamelCase__ = BytesIO(requests.get(SCREAMING_SNAKE_CASE_ ).content ) UpperCamelCase__ = VideoReader(SCREAMING_SNAKE_CASE_ ) videoreader.seek(0 ) UpperCamelCase__ = 0 UpperCamelCase__ = num_frames * frame_sampling_rate - 1 UpperCamelCase__ = np.linspace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num=SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) UpperCamelCase__ = videoreader.get_batch(SCREAMING_SNAKE_CASE_ ).asnumpy() UpperCamelCase__ = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework ) return model_inputs def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.model(**SCREAMING_SNAKE_CASE_ ) return model_outputs def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=5 ): if top_k > self.model.config.num_labels: UpperCamelCase__ = self.model.config.num_labels if self.framework == "pt": UpperCamelCase__ = model_outputs.logits.softmax(-1 )[0] UpperCamelCase__ , UpperCamelCase__ = probs.topk(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F"Unsupported framework: {self.framework}" ) UpperCamelCase__ = scores.tolist() UpperCamelCase__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
244
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): UpperCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=SCREAMING_SNAKE_CASE_ , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sgugger/tiny-distilbert-classification""" UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , only_pretrain_model=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=SCREAMING_SNAKE_CASE_ , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ , [config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ , [config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ , [config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """patrickvonplaten/t5-tiny-random""" UpperCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ , configs=[config] ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE_ , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=SCREAMING_SNAKE_CASE_ , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=SCREAMING_SNAKE_CASE_ , save_to_csv=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE_ , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE_ , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(SCREAMING_SNAKE_CASE_ , """env.csv""" ) , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) benchmark.run() self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """env.csv""" ) ).exists() ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE_ ): self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """sequential""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """cumulative""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """current""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=SCREAMING_SNAKE_CASE_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(SCREAMING_SNAKE_CASE_ , """log.txt""" ) , log_print=SCREAMING_SNAKE_CASE_ , trace_memory_line_by_line=SCREAMING_SNAKE_CASE_ , eager_mode=SCREAMING_SNAKE_CASE_ , multi_process=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = TensorFlowBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_ , """log.txt""" ) ).exists() )
244
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> int: __lowerCAmelCase = [1] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0, 0, 0 __lowerCAmelCase = ugly_nums[ia] * 2 __lowerCAmelCase = ugly_nums[ia] * 3 __lowerCAmelCase = ugly_nums[ia] * 5 for _ in range(1 , lowercase ): __lowerCAmelCase = min(lowercase , lowercase , lowercase ) ugly_nums.append(lowercase ) if next_num == next_a: ia += 1 __lowerCAmelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __lowerCAmelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __lowerCAmelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'{ugly_numbers(2_0_0) = }')
46
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : str =KandinskyVaaInpaintPipeline a : int =["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a : str =[ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a : Optional[int] =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Dict =False @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1_00 @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = DDIMScheduler( num_train_timesteps=10_00,beta_schedule="""linear""",beta_start=0.0_0085,beta_end=0.012,clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,steps_offset=1,prediction_type="""epsilon""",thresholding=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __lowerCAmelCase = np.ones((64, 64),dtype=np.floataa ) __lowerCAmelCase = 0 if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ),return_dict=__SCREAMING_SNAKE_CASE,)[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = np.ones((7_68, 7_68),dtype=np.floataa ) __lowerCAmelCase = 0 __lowerCAmelCase = """a hat""" __lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""",torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""",torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=5,negative_prompt="""""",).to_tuple() __lowerCAmelCase = pipeline( image=__SCREAMING_SNAKE_CASE,mask_image=__SCREAMING_SNAKE_CASE,image_embeds=__SCREAMING_SNAKE_CASE,negative_image_embeds=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,height=7_68,width=7_68,output_type="""np""",) __lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
46
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings A_ :Tuple = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(lowercase_ ) class __A ( lowercase_ ): """simple docstring""" UpperCamelCase__ : Any ="""rag""" UpperCamelCase__ : List[Any] =True def __init__( self , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=" / " , lowerCamelCase__=" // " , lowerCamelCase__=5 , lowerCamelCase__=300 , lowerCamelCase__=768 , lowerCamelCase__=8 , lowerCamelCase__="wiki_dpr" , lowerCamelCase__="train" , lowerCamelCase__="compressed" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): """simple docstring""" super().__init__( bos_token_id=lowerCamelCase__ , pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , forced_eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , prefix=lowerCamelCase__ , vocab_size=lowerCamelCase__ , **lowerCamelCase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCamelCase : Dict =kwargs.pop('question_encoder' ) __UpperCamelCase : Any =question_encoder_config.pop('model_type' ) __UpperCamelCase : Optional[Any] =kwargs.pop('generator' ) __UpperCamelCase : Union[str, Any] =decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __UpperCamelCase : List[str] =AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Tuple =AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =reduce_loss __UpperCamelCase : Optional[int] =label_smoothing __UpperCamelCase : Optional[int] =exclude_bos_score __UpperCamelCase : int =do_marginalize __UpperCamelCase : str =title_sep __UpperCamelCase : Tuple =doc_sep __UpperCamelCase : List[str] =n_docs __UpperCamelCase : List[str] =max_combined_length __UpperCamelCase : Any =dataset __UpperCamelCase : Union[str, Any] =dataset_split __UpperCamelCase : List[str] =index_name __UpperCamelCase : List[Any] =retrieval_vector_size __UpperCamelCase : str =retrieval_batch_size __UpperCamelCase : List[str] =passages_path __UpperCamelCase : Union[str, Any] =index_path __UpperCamelCase : List[str] =use_dummy_dataset __UpperCamelCase : Union[str, Any] =output_retrieved __UpperCamelCase : List[str] =do_deduplication __UpperCamelCase : Tuple =use_cache if self.forced_eos_token_id is None: __UpperCamelCase : int =getattr(self.generator , 'forced_eos_token_id' , lowerCamelCase__ ) @classmethod def __lowercase ( cls , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =copy.deepcopy(self.__dict__ ) __UpperCamelCase : Any =self.question_encoder.to_dict() __UpperCamelCase : Optional[Any] =self.generator.to_dict() __UpperCamelCase : Optional[int] =self.__class__.model_type return output
71
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : str = Mapping[str, np.ndarray] lowerCamelCase : List[Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Any = 0.0_1 @dataclasses.dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCAmelCase__ : Optional[Sequence[int]] = None def _SCREAMING_SNAKE_CASE (A ) -> Protein: """simple docstring""" lowercase__ = R'''(\[[A-Z]+\]\n)''' lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = '''X''' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _SCREAMING_SNAKE_CASE (A , A = 0 ) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(A )}" ) return pdb_headers def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = pdb_str.split('''\n''' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['''N/A''']] def make_parent_line(A ) -> str: return f"PARENT {' '.join(A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = '''ATOM''' lowercase__ = atom_name if len(A ) == 4 else f" {atom_name}" lowercase__ = '''''' lowercase__ = '''''' lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '''''' lowercase__ = '''A''' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = '''TER''' lowercase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _SCREAMING_SNAKE_CASE (A ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE (A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
2
0
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=2 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=9_9 , _lowerCamelCase=3_6 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=1_6 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=6 , _lowerCamelCase=6 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , _lowerCamelCase=1_0_0_0 , ): UpperCamelCase_: Any = parent UpperCamelCase_: Tuple = batch_size UpperCamelCase_: Tuple = num_channels UpperCamelCase_: Tuple = image_size UpperCamelCase_: List[Any] = patch_size UpperCamelCase_: List[str] = is_training UpperCamelCase_: Optional[Any] = use_input_mask UpperCamelCase_: Optional[int] = use_token_type_ids UpperCamelCase_: List[str] = use_labels UpperCamelCase_: Dict = vocab_size UpperCamelCase_: List[str] = hidden_size UpperCamelCase_: Union[str, Any] = num_hidden_layers UpperCamelCase_: Dict = num_attention_heads UpperCamelCase_: str = intermediate_size UpperCamelCase_: Tuple = hidden_act UpperCamelCase_: int = hidden_dropout_prob UpperCamelCase_: List[str] = attention_probs_dropout_prob UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: Dict = type_vocab_size UpperCamelCase_: Dict = type_sequence_label_size UpperCamelCase_: str = initializer_range UpperCamelCase_: Any = coordinate_size UpperCamelCase_: List[str] = shape_size UpperCamelCase_: List[str] = num_labels UpperCamelCase_: Any = num_choices UpperCamelCase_: Any = scope UpperCamelCase_: List[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase_: Any = text_seq_length UpperCamelCase_: Tuple = (image_size // patch_size) ** 2 + 1 UpperCamelCase_: int = self.text_seq_length + self.image_seq_length def _a ( self ): UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase_: List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase_: List[str] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase_: Dict = bbox[i, j, 3] UpperCamelCase_: Union[str, Any] = bbox[i, j, 1] UpperCamelCase_: Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase_: Union[str, Any] = bbox[i, j, 2] UpperCamelCase_: Optional[Any] = bbox[i, j, 0] UpperCamelCase_: Tuple = tmp_coordinate UpperCamelCase_: Tuple = tf.constant(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: str = None if self.use_input_mask: UpperCamelCase_: List[str] = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase_: str = None if self.use_token_type_ids: UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase_: int = None UpperCamelCase_: Optional[Any] = None if self.use_labels: UpperCamelCase_: int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Any = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase_: List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = TFLayoutLMvaModel(config=_lowerCamelCase ) # text + image UpperCamelCase_: Tuple = model(_lowerCamelCase , pixel_values=_lowerCamelCase , training=_lowerCamelCase ) UpperCamelCase_: Any = model( _lowerCamelCase , bbox=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , training=_lowerCamelCase , ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , bbox=_lowerCamelCase , pixel_values=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase_: Tuple = model(_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase_: Dict = model({'pixel_values': pixel_values} , training=_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = self.num_labels UpperCamelCase_: Optional[Any] = TFLayoutLMvaForSequenceClassification(config=_lowerCamelCase ) UpperCamelCase_: Optional[int] = model( _lowerCamelCase , bbox=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[Any] = self.num_labels UpperCamelCase_: int = TFLayoutLMvaForTokenClassification(config=_lowerCamelCase ) UpperCamelCase_: List[str] = model( _lowerCamelCase , bbox=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[Any] = 2 UpperCamelCase_: Optional[Any] = TFLayoutLMvaForQuestionAnswering(config=_lowerCamelCase ) UpperCamelCase_: Dict = model( _lowerCamelCase , bbox=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , training=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ): UpperCamelCase_: Optional[int] = self.prepare_config_and_inputs() ((UpperCamelCase_) ,(UpperCamelCase_) ,(UpperCamelCase_) ,(UpperCamelCase_) ,(UpperCamelCase_) ,(UpperCamelCase_) ,(UpperCamelCase_) ,(UpperCamelCase_)): Optional[Any] = config_and_inputs UpperCamelCase_: Union[str, Any] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Any =( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) a : Any =( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) a : List[Any] =False a : Optional[Any] =False a : List[Any] =False def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return True def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): UpperCamelCase_: Tuple = copy.deepcopy(_lowerCamelCase ) if model_class in get_values(_lowerCamelCase ): UpperCamelCase_: int = { k: tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_lowerCamelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_lowerCamelCase ): UpperCamelCase_: Optional[Any] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowerCamelCase ): UpperCamelCase_: Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase_: int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowerCamelCase ): UpperCamelCase_: Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_lowerCamelCase ): UpperCamelCase_: List[Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _a ( self ): UpperCamelCase_: str = TFLayoutLMvaModelTester(self ) UpperCamelCase_: Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=3_7 ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: List[Any] = model_class(_lowerCamelCase ) if getattr(_lowerCamelCase , 'hf_compute_loss' , _lowerCamelCase ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase_: List[str] = self._prepare_for_class(inputs_dict.copy() , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCamelCase_: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_lowerCamelCase )[0] ] UpperCamelCase_: int = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase_: str = self._prepare_for_class(inputs_dict.copy() , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCamelCase_: Dict = prepared_for_class.pop('input_ids' ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , **_lowerCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase_: Optional[int] = self._prepare_for_class(inputs_dict.copy() , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCamelCase_: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: UpperCamelCase_: Any = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase_: List[str] = -1_0_0 UpperCamelCase_: List[Any] = tf.convert_to_tensor(_lowerCamelCase ) UpperCamelCase_: List[Any] = model(_lowerCamelCase , **_lowerCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase_: int = self._prepare_for_class(inputs_dict.copy() , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase_: List[str] = self._prepare_for_class(inputs_dict.copy() , _lowerCamelCase , return_labels=_lowerCamelCase ) # Get keys that were added with the _prepare_for_class function UpperCamelCase_: Dict = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase_: Any = inspect.signature(model.call ).parameters UpperCamelCase_: Union[str, Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase_: List[Any] = {0: 'input_ids'} for label_key in label_keys: UpperCamelCase_: Optional[Any] = signature_names.index(_lowerCamelCase ) UpperCamelCase_: List[Any] = label_key UpperCamelCase_: Union[str, Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase_: Union[str, Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase_: List[Any] = prepared_for_class[value] UpperCamelCase_: Union[str, Any] = tuple(_lowerCamelCase ) # Send to model UpperCamelCase_: List[str] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _a ( self ): ( ( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) , ): List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): ( ( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) , ): Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase_: Dict = type self.model_tester.create_and_check_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): ( ( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) , ): Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): ( ( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) , ): Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): ( ( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @slow def _a ( self ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: str = TFLayoutLMvaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case () -> Any: UpperCamelCase_: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): return LayoutLMvaImageProcessor(apply_ocr=_lowerCamelCase ) if is_vision_available() else None @slow def _a ( self ): UpperCamelCase_: str = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) UpperCamelCase_: Optional[Any] = self.default_image_processor UpperCamelCase_: List[Any] = prepare_img() UpperCamelCase_: Union[str, Any] = image_processor(images=_lowerCamelCase , return_tensors='tf' ).pixel_values UpperCamelCase_: List[Any] = tf.constant([[1, 2]] ) UpperCamelCase_: Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase_: str = model(input_ids=_lowerCamelCase , bbox=_lowerCamelCase , pixel_values=_lowerCamelCase , training=_lowerCamelCase ) # verify the logits UpperCamelCase_: Dict = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , _lowerCamelCase ) UpperCamelCase_: Optional[int] = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
292
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : int = logging.get_logger(__name__) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =['''pixel_values'''] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = 1 / 2_5_5 , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: Any = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCamelCase_: Any = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Any = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCamelCase_: List[Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase , param_name='crop_size' ) UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: Tuple = do_rescale UpperCamelCase_: Dict = do_normalize UpperCamelCase_: Optional[int] = do_center_crop UpperCamelCase_: Tuple = crop_size UpperCamelCase_: Optional[int] = size UpperCamelCase_: Dict = resample UpperCamelCase_: Tuple = rescale_factor UpperCamelCase_: Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase_: Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = get_size_dict(_lowerCamelCase ) if "shortest_edge" in size: UpperCamelCase_: str = get_resize_output_image_size(_lowerCamelCase , size=size['shortest_edge'] , default_to_square=_lowerCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase_: Any = (size['height'], size['width']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: List[str] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCamelCase , size=(size['height'], size['width']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: List[str] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: str = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_: Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_: Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCamelCase_: List[str] = get_size_dict(_lowerCamelCase , param_name='crop_size' , default_to_square=_lowerCamelCase ) UpperCamelCase_: Tuple = resample if resample is not None else self.resample UpperCamelCase_: str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_: Dict = image_mean if image_mean is not None else self.image_mean UpperCamelCase_: Dict = image_std if image_std is not None else self.image_std UpperCamelCase_: Any = size if size is not None else self.size UpperCamelCase_: Optional[Any] = get_size_dict(_lowerCamelCase ) if not is_batched(_lowerCamelCase ): UpperCamelCase_: Dict = [images] if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: List[str] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: List[str] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: UpperCamelCase_: List[str] = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase_: int = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] UpperCamelCase_: List[str] = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: Optional[int] = {'pixel_values': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
292
1