code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __lowercase ( __lowercase ) -> Optional[int]: '''simple docstring''' _A = 384 if "tiny" in model_name: _A = [3, 3, 9, 3] _A = [96, 192, 384, 768] if "small" in model_name: _A = [3, 3, 27, 3] _A = [96, 192, 384, 768] if "base" in model_name: _A = [3, 3, 27, 3] _A = [128, 256, 512, 1024] _A = 512 if "large" in model_name: _A = [3, 3, 27, 3] _A = [192, 384, 768, 1536] _A = 768 if "xlarge" in model_name: _A = [3, 3, 27, 3] _A = [256, 512, 1024, 2048] _A = 1024 # set label information _A = 150 _A = "huggingface/label-files" _A = "ade20k-id2label.json" _A = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _A = {int(__lowercase ): v for k, v in idalabel.items()} _A = {v: k for k, v in idalabel.items()} _A = ConvNextConfig( depths=__lowercase , hidden_sizes=__lowercase , out_features=["stage1", "stage2", "stage3", "stage4"] ) _A = UperNetConfig( backbone_config=__lowercase , auxiliary_in_channels=__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase , ) return config def __lowercase ( __lowercase ) -> List[str]: '''simple docstring''' _A = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def __lowercase ( __lowercase , __lowercase , __lowercase ) -> int: '''simple docstring''' _A = dct.pop(__lowercase ) _A = val def __lowercase ( __lowercase , __lowercase , __lowercase ) -> List[Any]: '''simple docstring''' _A = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } _A = model_name_to_url[model_name] _A = torch.hub.load_state_dict_from_url(__lowercase , map_location="cpu" )["state_dict"] _A = get_upernet_config(__lowercase ) _A = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _A = state_dict.pop(__lowercase ) if "bn" in key: _A = key.replace("bn" , "batch_norm" ) _A = val # rename keys _A = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) model.load_state_dict(__lowercase ) # verify on image _A = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert("RGB" ) _A = SegformerImageProcessor() _A = processor(__lowercase , return_tensors="pt" ).pixel_values with torch.no_grad(): _A = model(__lowercase ) if model_name == "upernet-convnext-tiny": _A = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": _A = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": _A = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": _A = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": _A = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowercase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F"""upernet-convnext-{size}""" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
79
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCamelCase_ = get_logger(__name__) class _UpperCAmelCase : """simple docstring""" snake_case = '''dummy_data''' snake_case = '''datasets''' snake_case = False def __init__( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Union[Version, str] , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[List[Callable]] = None , ): '''simple docstring''' _A = 0 _A = dataset_name _A = cache_dir _A = use_local_dummy_data _A = config # download_callbacks take a single url as input _A = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _A = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _A = str(__UpperCAmelCase ) # to be downloaded _A = None _A = None @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self._dummy_file is None: _A = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def lowerCAmelCase ( self : int ): '''simple docstring''' return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _A = cached_path( __UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=__UpperCAmelCase , force_extract=__UpperCAmelCase ) return os.path.join(__UpperCAmelCase , self.dummy_file_name ) @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase ( self : int ): '''simple docstring''' if self._bucket_url is None: _A = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def lowerCAmelCase ( self : str ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] , *__UpperCAmelCase : Dict ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _A = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _A = self.dummy_file_name # special case when data_url is a dict if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return self.create_dummy_data_dict(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(__UpperCAmelCase , __UpperCAmelCase ) else: return self.create_dummy_data_single(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[int] , *__UpperCAmelCase : Any ): '''simple docstring''' return self.download_and_extract(__UpperCAmelCase ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str ): '''simple docstring''' return self.download_and_extract(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[int] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : List[str] ): '''simple docstring''' return path def lowerCAmelCase ( self : str ): '''simple docstring''' return {} def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for single_url in single_urls: download_callback(__UpperCAmelCase ) else: _A = single_urls download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = [os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase ).name ) ) for x in single_urls] else: _A = single_urls _A = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase ).name ) ) _A = value # make sure that values are unique if all(isinstance(__UpperCAmelCase , __UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _A = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , __UpperCAmelCase ) ) for url in data_url ) _A = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _A = [data_url[0]] * len(__UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _A = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__UpperCAmelCase ) return dummy_data_list def lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _A = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass def lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' def _iter_archive_members(__UpperCAmelCase : List[Any] ): # this preserves the order of the members inside the ZIP archive _A = Path(self.dummy_file ).parent _A = path.relative_to(__UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _A = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__UpperCAmelCase ) _A = Path(__UpperCAmelCase ) _A = _iter_archive_members(__UpperCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__UpperCAmelCase ).as_posix(), file_path.open("rb" ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = [paths] for path in paths: if os.path.isfile(__UpperCAmelCase ): if os.path.basename(__UpperCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__UpperCAmelCase ): if os.path.basename(__UpperCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__UpperCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__UpperCAmelCase , __UpperCAmelCase )
79
1
UpperCamelCase_ : List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCamelCase_ : List[Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCamelCase_ : int = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def __a ( _UpperCamelCase: int , _UpperCamelCase: int , _UpperCamelCase: int ) -> str: """simple docstring""" assert len(str(_UpperCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _snake_case = year // 100 _snake_case = (5 * (century % 4) + 2) % 7 _snake_case = year % 100 _snake_case = centurian % 12 _snake_case = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _snake_case = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _snake_case = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ : List[Any] = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[Any] = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[int] = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Tuple = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCamelCase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
142
0
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowercase__ ( __UpperCamelCase )-> Union[str, Any]: print("""Loading config file...""" ) def flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase="." ): UpperCamelCase = [] for k, v in d.items(): UpperCamelCase = parent_key + sep + k if parent_key else k if isinstance(__UpperCamelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase , sep=__UpperCamelCase ).items() ) else: items.append((new_key, v) ) return dict(__UpperCamelCase ) UpperCamelCase = argparse.Namespace() with open(__UpperCamelCase , """r""" ) as yaml_file: try: UpperCamelCase = yaml.load(__UpperCamelCase , Loader=yaml.FullLoader ) UpperCamelCase = flatten_yaml_as_dict(__UpperCamelCase ) for k, v in flat_cfg.items(): setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(__UpperCamelCase , str(__UpperCamelCase ) ) ) return config def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: UpperCamelCase = MobileViTVaConfig() UpperCamelCase = False # dataset if task_name.startswith("""imagenet1k_""" ): UpperCamelCase = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: UpperCamelCase = 384 else: UpperCamelCase = 256 UpperCamelCase = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): UpperCamelCase = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: UpperCamelCase = 384 else: UpperCamelCase = 256 UpperCamelCase = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): UpperCamelCase = 151 UpperCamelCase = 512 UpperCamelCase = """ade20k-id2label.json""" UpperCamelCase = True elif task_name.startswith("""voc_""" ): UpperCamelCase = 21 UpperCamelCase = 512 UpperCamelCase = """pascal-voc-id2label.json""" UpperCamelCase = True # orig_config UpperCamelCase = load_orig_config_file(__UpperCamelCase ) assert getattr(__UpperCamelCase , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" UpperCamelCase = getattr(__UpperCamelCase , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(__UpperCamelCase , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCamelCase = getattr(__UpperCamelCase , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCamelCase = getattr(__UpperCamelCase , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: UpperCamelCase = getattr(__UpperCamelCase , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) UpperCamelCase = getattr(__UpperCamelCase , """model.segmentation.deeplabv3.aspp_out_channels""" , 512 ) UpperCamelCase = getattr(__UpperCamelCase , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label UpperCamelCase = """huggingface/label-files""" UpperCamelCase = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} return config def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Dict: UpperCamelCase = dct.pop(__UpperCamelCase ) UpperCamelCase = val def lowercase__ ( __UpperCamelCase , __UpperCamelCase=False )-> Optional[int]: if base_model: UpperCamelCase = """""" else: UpperCamelCase = """mobilevitv2.""" UpperCamelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCamelCase = k[8:] else: UpperCamelCase = k if ".block." in k: UpperCamelCase = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: UpperCamelCase = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: UpperCamelCase = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: UpperCamelCase = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: UpperCamelCase = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: UpperCamelCase = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: UpperCamelCase = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: UpperCamelCase = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: UpperCamelCase = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: UpperCamelCase = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: UpperCamelCase = [0, 1] elif i == 4: UpperCamelCase = [0, 1, 2, 3] elif i == 5: UpperCamelCase = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: UpperCamelCase = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: UpperCamelCase = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: UpperCamelCase = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: UpperCamelCase = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: UpperCamelCase = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: UpperCamelCase = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: UpperCamelCase = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: UpperCamelCase = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: UpperCamelCase = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: UpperCamelCase = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: UpperCamelCase = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: UpperCamelCase = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def lowercase__ ( __UpperCamelCase )-> Union[str, Any]: UpperCamelCase = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(__UpperCamelCase ) for k in keys_to_ignore: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( )-> Tuple: UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCamelCase = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[Any]: UpperCamelCase = get_mobilevitva_config(__UpperCamelCase , __UpperCamelCase ) # load original state_dict UpperCamelCase = torch.load(__UpperCamelCase , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): UpperCamelCase = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval() UpperCamelCase = False else: UpperCamelCase = MobileViTVaForImageClassification(__UpperCamelCase ).eval() UpperCamelCase = False # remove and rename some keys of load the original model UpperCamelCase = checkpoint remove_unused_keys(__UpperCamelCase ) UpperCamelCase = create_rename_keys(__UpperCamelCase , base_model=__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load modified state_dict model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCamelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCamelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCamelCase = model(**__UpperCamelCase ) # verify classification model if task_name.startswith("""imagenet""" ): UpperCamelCase = outputs.logits UpperCamelCase = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCamelCase = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
321
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class a_ ( lowerCamelCase ): lowercase = (DDPMParallelScheduler,) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def A__ ( self ) -> List[str]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def A__ ( self ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = self.dummy_sample_deter + 0.1 UpperCamelCase = self.dummy_sample_deter - 0.1 UpperCamelCase = samplea.shape[0] UpperCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , _SCREAMING_SNAKE_CASE ) UpperCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) UpperCamelCase = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
321
1
"""simple docstring""" import datasets __A : List[str] = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" __A : Tuple = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" __A : Tuple = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : Tuple )->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def lowercase__ ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple )->Dict: return {"accuracy": simple_accuracy(__UpperCamelCase , __UpperCamelCase )}
326
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
1
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
108
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _lowercase = field(metadata={"""help""": """Should contain the data files for the task."""} ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(_lowercase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) return results def _A ( _lowercase ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
310
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a :str = logging.get_logger(__name__) a :Optional[Any] = "▁" a :int = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} a :int = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } a :str = {"vinai/bartpho-syllable": 1_024} class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE :int = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE :str = ["""input_ids""", """attention_mask"""] def __init__( self , _a , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a = None , **_a , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) SCREAMING_SNAKE_CASE__ : str = vocab_file SCREAMING_SNAKE_CASE__ : Optional[Any] = monolingual_vocab_file SCREAMING_SNAKE_CASE__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} SCREAMING_SNAKE_CASE__ : int = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_a ) not in self.fairseq_tokens_to_ids: SCREAMING_SNAKE_CASE__ : List[str] = cnt cnt += 1 with open(_a , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): SCREAMING_SNAKE_CASE__ : Any = line.strip().split()[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = len(self.fairseq_tokens_to_ids ) if str(_a ) not in self.fairseq_tokens_to_ids: SCREAMING_SNAKE_CASE__ : str = len(self.fairseq_tokens_to_ids ) SCREAMING_SNAKE_CASE__ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , _a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ : Optional[Any] = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Tuple = [self.cls_token_id] SCREAMING_SNAKE_CASE__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , _a , _a = None , _a = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _a ( self ) -> Optional[Any]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self , _a ) -> List[str]: """simple docstring""" return self.sp_model.encode(_a , out_type=_a ) def _a ( self , _a ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def _a ( self , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = """""".join(_a ).replace(_a , """ """ ).strip() return out_string def _a ( self , _a , _a = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : int = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ : int = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _a ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _a ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_a , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(_a )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
56
"""simple docstring""" class __a : '''simple docstring''' def __init__( self , _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = arr.split(""",""" ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [int(self.array[0] )] * len(self.array ) SCREAMING_SNAKE_CASE__ : List[str] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): SCREAMING_SNAKE_CASE__ : Dict = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) SCREAMING_SNAKE_CASE__ : List[Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": a :Optional[Any] = input("please input some numbers:") a :Optional[Any] = SubArray(whole_array) a :Optional[int] = array.solve_sub_array() print(("the results is:", re))
56
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''roberta''' def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __a : List[Any] = vocab_size __a : Dict = hidden_size __a : Tuple = num_hidden_layers __a : Dict = num_attention_heads __a : Optional[Any] = hidden_act __a : List[Any] = intermediate_size __a : Optional[Any] = hidden_dropout_prob __a : Optional[int] = attention_probs_dropout_prob __a : Optional[Any] = max_position_embeddings __a : List[str] = type_vocab_size __a : str = initializer_range __a : Optional[Any] = layer_norm_eps __a : int = position_embedding_type __a : Optional[Any] = use_cache __a : int = classifier_dropout class __lowercase ( _UpperCamelCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): if self.task == "multiple-choice": __a : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
160
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer a_ : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ : Optional[int] = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } a_ : Any = { 'unc-nlp/lxmert-base-uncased': 5_12, } a_ : int = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class _snake_case ( A__ ): _lowercase : int = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_INIT_CONFIGURATION _lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[Any] = LxmertTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ) -> Any: super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , a) != do_lower_case or normalizer_state.get('strip_accents' , a) != strip_accents or normalizer_state.get('handle_chinese_chars' , a) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(a , normalizer_state.pop('type')) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**a) SCREAMING_SNAKE_CASE = do_lower_case def SCREAMING_SNAKE_CASE__ ( self , a , a=None) -> Optional[int]: SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a) return tuple(a)
327
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = 'laion/clap-htsat-unfused' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self , **a) -> Optional[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **a) def SCREAMING_SNAKE_CASE__ ( self , **a) -> Union[str, Any]: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , a) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') SCREAMING_SNAKE_CASE = self.get_feature_extractor(do_normalize=a , padding_value=1.0) SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , a) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor , a) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) SCREAMING_SNAKE_CASE = floats_list((3, 1000)) SCREAMING_SNAKE_CASE = feature_extractor(a , return_tensors='np') SCREAMING_SNAKE_CASE = processor(audios=a , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) SCREAMING_SNAKE_CASE = 'This is a test string' SCREAMING_SNAKE_CASE = processor(text=a) SCREAMING_SNAKE_CASE = tokenizer(a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(a) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a) self.assertListEqual(a , a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
327
1
'''simple docstring''' import math import sys def lowerCAmelCase_ ( snake_case_ : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = '''''' try: with open(snake_case_ , "rb" ) as binary_file: UpperCAmelCase_ = binary_file.read() for dat in data: UpperCAmelCase_ = f"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def lowerCAmelCase_ ( snake_case_ : Any ) -> str: '''simple docstring''' UpperCAmelCase_ = {'''0''': '''0''', '''1''': '''1'''} UpperCAmelCase_ = '''''', '''''' UpperCAmelCase_ = len(snake_case_ ) for i in range(len(snake_case_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase_ = lexicon[curr_string] result += last_match_id UpperCAmelCase_ = last_match_id + '''0''' if math.loga(snake_case_ ).is_integer(): UpperCAmelCase_ = {} for curr_key in list(snake_case_ ): UpperCAmelCase_ = lexicon.pop(snake_case_ ) UpperCAmelCase_ = new_lex UpperCAmelCase_ = last_match_id + '''1''' index += 1 UpperCAmelCase_ = '''''' return result def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : List[Any] ) -> None: '''simple docstring''' UpperCAmelCase_ = 8 try: with open(snake_case_ , "wb" ) as opened_file: UpperCAmelCase_ = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case_ ) , snake_case_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(snake_case_ , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def lowerCAmelCase_ ( snake_case_ : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCAmelCase_ = data_bits[counter:] UpperCAmelCase_ = data_bits[counter + 1 :] return data_bits def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : int ) -> None: '''simple docstring''' UpperCAmelCase_ = read_file_binary(snake_case_ ) UpperCAmelCase_ = remove_prefix(snake_case_ ) UpperCAmelCase_ = decompress_data(snake_case_ ) write_file_binary(snake_case_ , snake_case_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
1
from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self : Tuple , A : int = 6 ) ->None: lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None self.create_linked_list(A ) def __lowerCamelCase ( self : Optional[int] , A : int ) ->None: lowerCamelCase__ : Optional[int] = Node() lowerCamelCase__ : List[str] = current_node lowerCamelCase__ : Union[str, Any] = current_node lowerCamelCase__ : List[str] = current_node for _ in range(1 , A ): lowerCamelCase__ : List[str] = Node() lowerCamelCase__ : List[Any] = current_node lowerCamelCase__ : Optional[Any] = previous_node lowerCamelCase__ : Dict = current_node lowerCamelCase__ : Union[str, Any] = self.front lowerCamelCase__ : int = previous_node def __lowerCamelCase ( self : Optional[int] ) ->bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __lowerCamelCase ( self : Optional[int] ) ->Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __lowerCamelCase ( self : Optional[int] , A : Any ) ->None: if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCamelCase__ : List[str] = self.rear.next if self.rear: lowerCamelCase__ : Optional[Any] = data def __lowerCamelCase ( self : str ) ->Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCamelCase__ : List[Any] = self.front.data lowerCamelCase__ : Optional[Any] = None return data lowerCamelCase__ : Optional[int] = self.front lowerCamelCase__ : Optional[int] = old_front.next lowerCamelCase__ : Any = old_front.data lowerCamelCase__ : List[str] = None return data def __lowerCamelCase ( self : Dict ) ->None: if self.is_empty(): raise Exception('''Empty Queue''' ) def __lowerCamelCase ( self : int ) ->None: if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ) ->None: lowerCamelCase__ : Any | None = None lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
142
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging A_ = logging.get_logger(__name__) A_ = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowercase( __a ): '''simple docstring''' lowercase__ = "trajectory_transformer" lowercase__ = ["past_key_values"] lowercase__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self: Union[str, Any], a_: List[str]=100, a_: Any=5, a_: Union[str, Any]=1, a_: List[str]=1, a_: Dict=249, a_: str=6, a_: List[str]=17, a_: str=25, a_: List[Any]=4, a_: Union[str, Any]=4, a_: int=128, a_: Union[str, Any]=0.1, a_: str=0.1, a_: int=0.1, a_: Optional[Any]=0.0_006, a_: Dict=512, a_: Tuple=0.02, a_: int=1E-12, a_: List[Any]=1, a_: List[str]=True, a_: Optional[int]=1, a_: Optional[int]=50_256, a_: List[Any]=50_256, **a_: Optional[int], ): '''simple docstring''' _snake_case : int = vocab_size _snake_case : Dict = action_weight _snake_case : Dict = reward_weight _snake_case : Any = value_weight _snake_case : Dict = max_position_embeddings _snake_case : int = block_size _snake_case : Any = action_dim _snake_case : Dict = observation_dim _snake_case : Dict = transition_dim _snake_case : List[Any] = learning_rate _snake_case : Any = n_layer _snake_case : Tuple = n_head _snake_case : Union[str, Any] = n_embd _snake_case : List[Any] = embd_pdrop _snake_case : Any = attn_pdrop _snake_case : int = resid_pdrop _snake_case : int = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : Tuple = kaiming_initializer_range _snake_case : Dict = use_cache super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ )
132
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = AlbertTokenizer lowercase__ = AlbertTokenizerFast lowercase__ = True lowercase__ = True lowercase__ = True def UpperCamelCase_ ( self: str ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : Optional[int] = AlbertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self: Optional[int], a_: int ): '''simple docstring''' _snake_case : Dict = """this is a test""" _snake_case : Optional[int] = """this is a test""" return input_text, output_text def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : str = """<pad>""" _snake_case : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ), a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ), a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<pad>""" ) self.assertEqual(vocab_keys[1], """<unk>""" ) self.assertEqual(vocab_keys[-1], """▁eloquent""" ) self.assertEqual(len(a_ ), 30_000 ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 30_000 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : Tuple = self.get_tokenizer() _snake_case : List[str] = self.get_rust_tokenizer() _snake_case : Optional[int] = """I was born in 92000, and this is falsé.""" _snake_case : Optional[Any] = tokenizer.tokenize(a_ ) _snake_case : List[str] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) _snake_case : Any = rust_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) _snake_case : int = self.get_rust_tokenizer() _snake_case : Dict = tokenizer.encode(a_ ) _snake_case : Optional[int] = rust_tokenizer.encode(a_ ) self.assertListEqual(a_, a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = AlbertTokenizer(a_, keep_accents=a_ ) _snake_case : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a_, ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), [48, 25, 21, 1_289] ) _snake_case : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a_, ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) _snake_case : str = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual(a_, [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) _snake_case : Tuple = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_, ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""], ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = AlbertTokenizer(a_ ) _snake_case : int = tokenizer.encode("""sequence builders""" ) _snake_case : Optional[int] = tokenizer.encode("""multi-sequence build""" ) _snake_case : Any = tokenizer.build_inputs_with_special_tokens(a_ ) _snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(a_, a_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Any = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_, model_name="""albert-base-v2""", revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""", )
132
1
import datasets _UpperCamelCase = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' _UpperCamelCase = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' _UpperCamelCase = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def lowerCAmelCase__( lowercase : str , lowercase : Tuple ) -> Optional[Any]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: '''simple docstring''' return {"accuracy": simple_accuracy(UpperCAmelCase , UpperCAmelCase )}
326
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
1
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCamelCase_ = logging.getLogger(__name__) class snake_case : def __init__( self) ->List[str]: a_ = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: if not self.initialized: a_ = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) a_ = True def UpperCAmelCase__ ( self) ->str: self.retriever.index.init_index() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Dict: a_ , a_ = self.retriever._main_retrieve(__UpperCAmelCase , __UpperCAmelCase) return doc_ids, retrieved_doc_embeds class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None) ->str: if index is not None and index.is_initialized() and len(__UpperCAmelCase) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py ") super().__init__( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) a_ = retrieval_workers if len(self.retrieval_workers) > 0: ray.get( [ worker.create_rag_retriever.remote(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) for worker in self.retrieval_workers ]) def UpperCAmelCase__ ( self) ->List[Any]: logger.info("initializing retrieval") if len(self.retrieval_workers) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers]) else: # Non-distributed training. Load index into this same process. self.index.init_index() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: if len(self.retrieval_workers) > 0: # Select a random retrieval actor. a_ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers) - 1)] a_ , a_ = ray.get(random_worker.retrieve.remote(__UpperCAmelCase , __UpperCAmelCase)) else: a_ , a_ = self._main_retrieve(__UpperCAmelCase , __UpperCAmelCase) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCAmelCase) @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase) ->Dict: return super(__UpperCAmelCase , cls).get_tokenizers(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase) ->str: a_ = kwargs.pop("config" , __UpperCAmelCase) or RagConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase) a_ = RagTokenizer.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase) a_ = rag_tokenizer.question_encoder a_ = rag_tokenizer.generator if indexed_dataset is not None: a_ = "custom" a_ = CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase) else: a_ = cls._build_index(__UpperCAmelCase) return cls( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , retrieval_workers=__UpperCAmelCase , index=__UpperCAmelCase , )
303
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = hf_hub_url(repo_id=UpperCAmelCase , path=UpperCAmelCase , revision=UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(UpperCAmelCase )}'''
303
1
'''simple docstring''' from collections import defaultdict def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ = 1 snake_case_ = True for v in tree[start]: if v not in visited: ret += dfs(__UpperCAmelCase ) if ret % 2 == 0: cuts.append(__UpperCAmelCase ) return ret def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' dfs(1 ) if __name__ == "__main__": a ,a : Dict = 10, 9 a : Dict = defaultdict(list) a : dict[int, bool] = {} a : list[int] = [] a : Tuple = 0 a : str = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
56
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : str = logging.get_logger(__name__) a : str = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class a ( _lowerCamelCase ): snake_case_ = "big_bird" def __init__( self : Union[str, Any] , lowercase_ : List[Any]=5_0358 , lowercase_ : Tuple=768 , lowercase_ : Dict=12 , lowercase_ : str=12 , lowercase_ : Tuple=3072 , lowercase_ : Any="gelu_new" , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : List[Any]=4096 , lowercase_ : List[Any]=2 , lowercase_ : List[str]=0.02 , lowercase_ : Optional[int]=1e-12 , lowercase_ : Tuple=True , lowercase_ : Tuple=0 , lowercase_ : str=1 , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=66 , lowercase_ : Optional[int]="block_sparse" , lowercase_ : Any=True , lowercase_ : List[str]=False , lowercase_ : Any=64 , lowercase_ : Tuple=3 , lowercase_ : Tuple=None , **lowercase_ : Tuple , ): super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = rescale_embeddings snake_case_ = attention_type snake_case_ = use_bias snake_case_ = block_size snake_case_ = num_random_blocks snake_case_ = classifier_dropout class a ( _lowerCamelCase ): @property def A_ ( self : str ): if self.task == "multiple-choice": snake_case_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
56
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Dict = ["image_processor", "tokenizer"] __UpperCAmelCase : List[Any] = "BlipImageProcessor" __UpperCAmelCase : Union[str, Any] = "AutoTokenizer" def __init__( self : int , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] ) -> Optional[Any]: __snake_case : List[Any] = False super().__init__(lowerCamelCase , lowerCamelCase ) __snake_case : int = self.image_processor def __call__( self : List[Any] , lowerCamelCase : ImageInput = None , lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase : bool = True , lowerCamelCase : Union[bool, str, PaddingStrategy] = False , lowerCamelCase : Union[bool, str, TruncationStrategy] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 0 , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[str, TensorType]] = None , **lowerCamelCase : List[str] , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __snake_case : str = self.tokenizer __snake_case : Any = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) return text_encoding # add pixel_values __snake_case : Any = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) else: __snake_case : str = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def __snake_case ( self : List[Any] , *lowerCamelCase : int , **lowerCamelCase : Union[str, Any] ) -> List[str]: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Tuple , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Any ) -> int: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __snake_case ( self : str ) -> Tuple: __snake_case : Union[str, Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
134
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return x if y == 0 else greatest_common_divisor(__lowerCamelCase , x % y ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return (x * y) // greatest_common_divisor(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase = 2_0 ): __snake_case : Optional[Any] = 1 for i in range(1 , n + 1 ): __snake_case : Any = lcm(__lowerCamelCase , __lowerCamelCase ) return g if __name__ == "__main__": print(f'''{solution() = }''')
134
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
1
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A = logging.getLogger(__name__) class _lowerCAmelCase ( a ): """simple docstring""" def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.layer[current_layer](__UpperCAmelCase , __UpperCAmelCase , head_mask[current_layer] ) lowerCAmelCase__ :Dict = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , a , ) class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = BertEncoderWithPabee(__UpperCAmelCase ) self.init_weights() lowerCAmelCase__ :Dict = 0 lowerCAmelCase__ :Tuple = 0 lowerCAmelCase__ :List[str] = 0 lowerCAmelCase__ :Optional[Any] = 0 def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = threshold def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = patience def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = 0 lowerCAmelCase__ :Tuple = 0 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.inference_layers_num / self.inference_instances_num lowerCAmelCase__ :Tuple = ( F"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" F" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(__UpperCAmelCase ) @add_start_docstrings_to_model_forward(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase__ :List[Any] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase__ :List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase__ :List[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase__ :List[Any] = torch.ones(__UpperCAmelCase , device=__UpperCAmelCase ) if token_type_ids is None: lowerCAmelCase__ :List[Any] = torch.zeros(__UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase__ :torch.Tensor = self.get_extended_attention_mask(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = encoder_hidden_states.size() lowerCAmelCase__ :Dict = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase__ :Tuple = torch.ones(__UpperCAmelCase , device=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = self.invert_attention_mask(__UpperCAmelCase ) else: lowerCAmelCase__ :Union[str, Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase__ :Tuple = self.get_head_mask(__UpperCAmelCase , self.config.num_hidden_layers ) lowerCAmelCase__ :Optional[Any] = self.embeddings( input_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = embedding_output if self.training: lowerCAmelCase__ :Optional[Any] = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase__ :List[str] = self.encoder.adaptive_forward( __UpperCAmelCase , current_layer=__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase ) lowerCAmelCase__ :Dict = self.pooler(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = output_layers[i](output_dropout(__UpperCAmelCase ) ) res.append(__UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase__ :Tuple = self.encoder( __UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) lowerCAmelCase__ :Any = self.pooler(encoder_outputs[0] ) lowerCAmelCase__ :List[Any] = [output_layers[self.config.num_hidden_layers - 1](__UpperCAmelCase )] else: lowerCAmelCase__ :int = 0 lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Any = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase__ :Any = self.encoder.adaptive_forward( __UpperCAmelCase , current_layer=__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase ) lowerCAmelCase__ :int = self.pooler(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = output_layers[i](__UpperCAmelCase ) if regression: lowerCAmelCase__ :Tuple = logits.detach() if patient_result is not None: lowerCAmelCase__ :List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase__ :int = 0 else: lowerCAmelCase__ :Tuple = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase__ :List[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(__UpperCAmelCase ) ): patient_counter += 1 else: lowerCAmelCase__ :List[Any] = 0 lowerCAmelCase__ :Optional[Any] = logits if patient_counter == self.patience: break lowerCAmelCase__ :Tuple = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , a , ) class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = config.num_labels lowerCAmelCase__ :Any = BertModelWithPabee(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase__ :int = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :str = self.bert( input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase__ :List[str] = (logits[-1],) if labels is not None: lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Optional[int] = 0 for ix, logits_item in enumerate(__UpperCAmelCase ): if self.num_labels == 1: # We are doing regression lowerCAmelCase__ :Union[str, Any] = MSELoss() lowerCAmelCase__ :List[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase__ :Optional[Any] = CrossEntropyLoss() lowerCAmelCase__ :Union[str, Any] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase__ :Dict = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase__ :Tuple = (total_loss / total_weights,) + outputs return outputs
254
"""simple docstring""" __A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = True lowerCAmelCase__ :Tuple = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) order.append(_SCREAMING_SNAKE_CASE ) return order def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Optional[int] = True lowerCAmelCase__ :Union[str, Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return component def __A (_SCREAMING_SNAKE_CASE ) ->list[list[int]]: """simple docstring""" lowerCAmelCase__ :Any = len(_SCREAMING_SNAKE_CASE ) * [False] lowerCAmelCase__ :dict[int, list[int]] = {vert: [] for vert in range(len(_SCREAMING_SNAKE_CASE ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = [] for i, was_visited in enumerate(_SCREAMING_SNAKE_CASE ): if not was_visited: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = [] lowerCAmelCase__ :int = len(_SCREAMING_SNAKE_CASE ) * [False] for i in range(len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ :Dict = order[len(_SCREAMING_SNAKE_CASE ) - i - 1] if not visited[vert]: lowerCAmelCase__ :Union[str, Any] = find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) components_list.append(_SCREAMING_SNAKE_CASE ) return components_list
254
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :torch.FloatTensor class __a (UpperCamelCase_ , UpperCamelCase_): '''simple docstring''' @register_to_config def __init__( self , _a = 16 , _a = 88 , _a = None , _a = None , _a = 1 , _a = 0.0 , _a = 32 , _a = None , _a = False , _a = None , _a = "geglu" , _a = True , _a = True , ) -> int: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ : Dict = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = attention_head_dim SCREAMING_SNAKE_CASE__ : str = num_attention_heads * attention_head_dim SCREAMING_SNAKE_CASE__ : List[Any] = in_channels SCREAMING_SNAKE_CASE__ : List[str] = torch.nn.GroupNorm(num_groups=_a , num_channels=_a , eps=1E-6 , affine=_a ) SCREAMING_SNAKE_CASE__ : str = nn.Linear(_a , _a ) # 3. Define transformers blocks SCREAMING_SNAKE_CASE__ : Dict = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , cross_attention_dim=_a , activation_fn=_a , attention_bias=_a , double_self_attention=_a , norm_elementwise_affine=_a , ) for d in range(_a ) ] ) SCREAMING_SNAKE_CASE__ : str = nn.Linear(_a , _a ) def _a ( self , _a , _a=None , _a=None , _a=None , _a=1 , _a=None , _a = True , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_states.shape SCREAMING_SNAKE_CASE__ : Dict = batch_frames // num_frames SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_states SCREAMING_SNAKE_CASE__ : List[Any] = hidden_states[None, :].reshape(_a , _a , _a , _a , _a ) SCREAMING_SNAKE_CASE__ : Any = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) SCREAMING_SNAKE_CASE__ : Any = self.norm(_a ) SCREAMING_SNAKE_CASE__ : Dict = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _a , _a ) SCREAMING_SNAKE_CASE__ : str = self.proj_in(_a ) # 2. Blocks for block in self.transformer_blocks: SCREAMING_SNAKE_CASE__ : Optional[Any] = block( _a , encoder_hidden_states=_a , timestep=_a , cross_attention_kwargs=_a , class_labels=_a , ) # 3. Output SCREAMING_SNAKE_CASE__ : str = self.proj_out(_a ) SCREAMING_SNAKE_CASE__ : List[str] = ( hidden_states[None, None, :] .reshape(_a , _a , _a , _a , _a ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) SCREAMING_SNAKE_CASE__ : Tuple = hidden_states.reshape(_a , _a , _a , _a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_a )
132
"""simple docstring""" import os import sys a :Union[str, Any] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) a :int = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Dict: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[int]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> str: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> int: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
132
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Optional[Any] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Any ) -> None: warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
357
'''simple docstring''' import math def a_ ( lowerCamelCase : int ): lowerCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCamelCase ) def a_ ( lowerCamelCase : float = 1 / 12345 ): lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 3 while True: lowerCAmelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCamelCase ): lowerCAmelCase = int(lowerCamelCase ) total_partitions += 1 if check_partition_perfect(lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
55
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) __SCREAMING_SNAKE_CASE : str = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) sd_pipe.set_scheduler('''sample_euler''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe([prompt] , generator=_A , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = output.images __SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) sd_pipe.set_scheduler('''sample_euler''' ) __SCREAMING_SNAKE_CASE : str = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[str] = sd_pipe([prompt] , generator=_A , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __SCREAMING_SNAKE_CASE : Any = output.images __SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __SCREAMING_SNAKE_CASE : int = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) __SCREAMING_SNAKE_CASE : Any = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe( [prompt] , generator=_A , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=_A , ) __SCREAMING_SNAKE_CASE : Tuple = output.images __SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
303
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
303
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ = logging.get_logger(__name__) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = ['input_features', 'attention_mask'] def __init__( self : Union[str, Any],lowercase_ : Dict=8_0,lowercase_ : Optional[Any]=1_6_0_0_0,lowercase_ : Optional[int]=8_0,lowercase_ : List[Any]=0.0,lowercase_ : Optional[int]=True,lowercase_ : Optional[Any]=True,lowercase_ : List[str]=True,**lowercase_ : Any,)-> Any: '''simple docstring''' super().__init__(feature_size=lowercase_,sampling_rate=lowercase_,padding_value=lowercase_,**lowercase_ ) A__ = num_mel_bins A__ = do_ceptral_normalize A__ = normalize_means A__ = normalize_vars A__ = True def snake_case__ ( self : Dict,lowercase_ : np.ndarray,)-> np.ndarray: '''simple docstring''' A__ = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers A__ = torch.from_numpy(lowercase_ ).unsqueeze(0 ) A__ = ta_kaldi.fbank(lowercase_,num_mel_bins=self.num_mel_bins,sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def snake_case__ ( lowercase_ : np.ndarray,lowercase_ : int,lowercase_ : Optional[bool] = True,lowercase_ : Optional[bool] = True,lowercase_ : float = 0.0,)-> np.ndarray: '''simple docstring''' if normalize_means: A__ = x[:input_length].mean(axis=0 ) A__ = np.subtract(lowercase_,lowercase_ ) if normalize_vars: A__ = x[:input_length].std(axis=0 ) A__ = np.divide(lowercase_,lowercase_ ) if input_length < x.shape[0]: A__ = padding_value # make sure array is in float32 A__ = x.astype(np.floataa ) return x def snake_case__ ( self : int,lowercase_ : List[np.ndarray],lowercase_ : Optional[np.ndarray] = None )-> List[np.ndarray]: '''simple docstring''' A__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowercase_,lowercase_,self.normalize_means,self.normalize_vars,self.padding_value ) for x, n in zip(lowercase_,lowercase_ ) ] def __call__( self : Optional[int],lowercase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],lowercase_ : Union[bool, str, PaddingStrategy] = False,lowercase_ : Optional[int] = None,lowercase_ : bool = False,lowercase_ : Optional[int] = None,lowercase_ : Optional[Union[str, TensorType]] = None,lowercase_ : Optional[int] = None,lowercase_ : Optional[bool] = None,**lowercase_ : List[Any],)-> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) A__ = isinstance(lowercase_,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) A__ = is_batched_numpy or ( isinstance(lowercase_,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(lowercase_,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowercase_,np.ndarray ): A__ = np.asarray(lowercase_,dtype=np.floataa ) elif isinstance(lowercase_,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [raw_speech] # extract fbank features A__ = [self._extract_fbank_features(lowercase_ ) for waveform in raw_speech] # convert into correct format for padding A__ = BatchFeature({'input_features': features} ) A__ = self.pad( lowercase_,padding=lowercase_,max_length=lowercase_,truncation=lowercase_,pad_to_multiple_of=lowercase_,return_attention_mask=lowercase_,**lowercase_,) # make sure list is in array format A__ = padded_inputs.get('input_features' ) if isinstance(input_features[0],lowercase_ ): A__ = [np.asarray(lowercase_,dtype=np.floataa ) for feature in input_features] A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(lowercase_,dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: A__ = ( np.array(lowercase_,dtype=np.intaa ) if self._get_padding_strategies(lowercase_,max_length=lowercase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.normalize( padded_inputs['input_features'],attention_mask=lowercase_ ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(lowercase_ ) return padded_inputs
282
from __future__ import annotations from typing import Any def _snake_case( SCREAMING_SNAKE_CASE__ : list ) -> int: '''simple docstring''' if not postfix_notation: return 0 A__ = {'+', '-', '*', '/'} A__ = [] for token in postfix_notation: if token in operations: A__ , A__ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(SCREAMING_SNAKE_CASE__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
282
1
'''simple docstring''' __snake_case : Tuple = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case : Any = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
134
'''simple docstring''' def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(__snake_case : int, __snake_case : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 A__ : int =update_area_of_max_square(__snake_case, col + 1 ) A__ : int =update_area_of_max_square(row + 1, col + 1 ) A__ : int =update_area_of_max_square(row + 1, __snake_case ) if mat[row][col]: A__ : Optional[Any] =1 + min([right, diagonal, down] ) A__ : Dict =max(largest_square_area[0], __snake_case ) return sub_problem_sol else: return 0 A__ : List[Any] =[0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] A__ : str =update_area_of_max_square_using_dp_array(__snake_case, col + 1, __snake_case ) A__ : Any =update_area_of_max_square_using_dp_array(row + 1, col + 1, __snake_case ) A__ : List[str] =update_area_of_max_square_using_dp_array(row + 1, __snake_case, __snake_case ) if mat[row][col]: A__ : Optional[int] =1 + min([right, diagonal, down] ) A__ : Any =max(largest_square_area[0], __snake_case ) A__ : Union[str, Any] =sub_problem_sol return sub_problem_sol else: return 0 A__ : Any =[0] A__ : Optional[Any] =[[-1] * cols for _ in range(__snake_case )] update_area_of_max_square_using_dp_array(0, 0, __snake_case ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Optional[int] =[[0] * (cols + 1) for _ in range(rows + 1 )] A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : List[Any] =dp_array[row][col + 1] A__ : List[str] =dp_array[row + 1][col + 1] A__ : str =dp_array[row + 1][col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Optional[Any] =max(dp_array[row][col], __snake_case ) else: A__ : Tuple =0 return largest_square_area def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Union[str, Any] =[0] * (cols + 1) A__ : int =[0] * (cols + 1) A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : Union[str, Any] =current_row[col + 1] A__ : List[str] =next_row[col + 1] A__ : str =next_row[col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Dict =max(current_row[col], __snake_case ) else: A__ : str =0 A__ : Optional[Any] =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
134
1
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() A__ : int = logging.get_logger('transformers.models.speecht5') def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] ) -> str: hf_model.apply_weight_norm() lowerCamelCase_ : str =checkpoint["input_conv.weight_g"] lowerCamelCase_ : Union[str, Any] =checkpoint["input_conv.weight_v"] lowerCamelCase_ : str =checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): lowerCamelCase_ : str =checkpoint[F"""upsamples.{i}.1.weight_g"""] lowerCamelCase_ : Dict =checkpoint[F"""upsamples.{i}.1.weight_v"""] lowerCamelCase_ : int =checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCamelCase_ : Dict =checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] lowerCamelCase_ : Optional[int] =checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] lowerCamelCase_ : Tuple =checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] lowerCamelCase_ : int =checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] lowerCamelCase_ : Dict =checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] lowerCamelCase_ : str =checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] lowerCamelCase_ : List[str] =checkpoint["output_conv.1.weight_g"] lowerCamelCase_ : str =checkpoint["output_conv.1.weight_v"] lowerCamelCase_ : Dict =checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any=None , lowerCamelCase__ : Union[str, Any]=None , ) -> List[str]: if config_path is not None: lowerCamelCase_ : Optional[int] =SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase__ ) else: lowerCamelCase_ : int =SpeechTaHifiGanConfig() lowerCamelCase_ : str =SpeechTaHifiGan(lowerCamelCase__ ) lowerCamelCase_ : List[Any] =torch.load(lowerCamelCase__ ) load_weights(orig_checkpoint["model"]["generator"] , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Dict =np.load(lowerCamelCase__ ) lowerCamelCase_ : List[Any] =stats[0].reshape(-1 ) lowerCamelCase_ : List[str] =stats[1].reshape(-1 ) lowerCamelCase_ : int =torch.from_numpy(lowerCamelCase__ ).float() lowerCamelCase_ : Union[str, Any] =torch.from_numpy(lowerCamelCase__ ).float() model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) A__ : List[str] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
209
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule A__ : List[str] = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
209
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=10 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : int = image_size __UpperCAmelCase : Any = num_channels __UpperCAmelCase : Optional[Any] = embeddings_size __UpperCAmelCase : Optional[Any] = hidden_sizes __UpperCAmelCase : str = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : Tuple = use_labels __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = scope __UpperCAmelCase : Any = len(__UpperCAmelCase ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Any = self.get_config() return config, pixel_values def __A ( self ) -> Tuple: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = FlaxRegNetModel(config=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = self.num_labels __UpperCAmelCase : List[Any] = FlaxRegNetForImageClassification(config=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase : List[str] = config_and_inputs __UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = FlaxRegNetModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def __A ( self ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> Optional[int]: '''simple docstring''' return def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) __UpperCAmelCase : str = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Any = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCAmelCase : str = model_class(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : List[Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Dict = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(__UpperCAmelCase , **__UpperCAmelCase ): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Tuple = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : Any = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) __UpperCAmelCase : Optional[Any] = self.default_image_processor __UpperCAmelCase : Dict = prepare_img() __UpperCAmelCase : str = image_processor(images=__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : List[str] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : Union[str, Any] = (1, 1_000) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
254
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): """simple docstring""" return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any="attention" ): """simple docstring""" __UpperCAmelCase : int = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) __UpperCAmelCase : Tuple = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __UpperCAmelCase : Tuple = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) __UpperCAmelCase : List[str] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __UpperCAmelCase : List[str] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) __UpperCAmelCase : List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __UpperCAmelCase : Optional[Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) __UpperCAmelCase : Dict = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any]=False ): """simple docstring""" if split_mlp_wi: __UpperCAmelCase : List[str] = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] __UpperCAmelCase : Union[str, Any] = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] __UpperCAmelCase : Dict = (wi_a, wi_a) else: __UpperCAmelCase : Union[str, Any] = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] __UpperCAmelCase : Tuple = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def lowercase_ ( lowerCAmelCase__ : dict , *, lowerCAmelCase__ : int , lowerCAmelCase__ : bool , lowerCAmelCase__ : bool = False ): """simple docstring""" __UpperCAmelCase : Tuple = traverse_util.flatten_dict(variables["""target"""] ) __UpperCAmelCase : Union[str, Any] = {"""/""".join(lowerCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCAmelCase : Any = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase__ ) __UpperCAmelCase : Any = collections.OrderedDict() # Shared embeddings. __UpperCAmelCase : int = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : Union[str, Any] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """attention""" ) __UpperCAmelCase : Any = layer_norm __UpperCAmelCase : List[Any] = k.T __UpperCAmelCase : Optional[int] = o.T __UpperCAmelCase : str = q.T __UpperCAmelCase : Any = v.T # Block i, layer 1 (MLP). __UpperCAmelCase : List[str] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_mlp_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase : int = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = layer_norm if split_mlp_wi: __UpperCAmelCase : List[Any] = wi[0].T __UpperCAmelCase : Any = wi[1].T else: __UpperCAmelCase : Tuple = wi.T __UpperCAmelCase : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Dict = tax_relpos_bias_lookup( lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" ).T __UpperCAmelCase : Optional[int] = old["""encoder/encoder_norm/scale"""] if not scalable_attention: __UpperCAmelCase : Any = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """encoder""" ).T __UpperCAmelCase : Dict = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : str = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_self_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """self_attention""" ) __UpperCAmelCase : int = layer_norm __UpperCAmelCase : Optional[Any] = k.T __UpperCAmelCase : Dict = o.T __UpperCAmelCase : int = q.T __UpperCAmelCase : List[str] = v.T # Block i, layer 1 (Cross Attention). __UpperCAmelCase : Any = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """encoder_decoder_attention""" ) __UpperCAmelCase : Union[str, Any] = layer_norm __UpperCAmelCase : List[Any] = k.T __UpperCAmelCase : int = o.T __UpperCAmelCase : Optional[int] = q.T __UpperCAmelCase : Optional[int] = v.T # Block i, layer 2 (MLP). __UpperCAmelCase : Tuple = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_mlp_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase : Any = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = layer_norm if split_mlp_wi: __UpperCAmelCase : Optional[Any] = wi[0].T __UpperCAmelCase : Optional[int] = wi[1].T else: __UpperCAmelCase : str = wi.T __UpperCAmelCase : int = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Union[str, Any] = tax_relpos_bias_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" ).T __UpperCAmelCase : Dict = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCAmelCase : List[str] = old["""decoder/logits_dense/kernel"""].T return new def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : bool ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : str = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : List[str] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __UpperCAmelCase : Union[str, Any] = state_dict["""shared.weight"""] return state_dict def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Tuple = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) __UpperCAmelCase : Any = convert_tax_to_pytorch( lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ , scalable_attention=lowerCAmelCase__ ) __UpperCAmelCase : str = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , ): """simple docstring""" __UpperCAmelCase : Optional[int] = MTaConfig.from_json_file(lowerCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCAmelCase : List[Any] = UMTaEncoderModel(lowerCAmelCase__ ) else: __UpperCAmelCase : Dict = UMTaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase__ ) print("""Done""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) _UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
254
1
"""simple docstring""" from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase_ = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any=None ) -> Any: require_version(deps[pkg] , lowerCAmelCase__ )
11
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , **_a ): __a = {} if "candidate_labels" in kwargs: __a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ): if isinstance(_a , _a ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(_a ).content else: with open(_a , '''rb''' ) as f: __a = f.read() if isinstance(_a , _a ): __a = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a = candidate_labels __a = [hypothesis_template.format(_a ) for x in candidate_labels] __a = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) __a = [text_inputs] return inputs def __UpperCAmelCase ( self , _a ): __a = model_inputs.pop('''candidate_labels''' ) __a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _a ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**_a , **_a ) __a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , _a ): __a = model_outputs.pop('''candidate_labels''' ) __a = model_outputs['''logits'''][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
11
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = 1 UpperCAmelCase = 3 UpperCAmelCase = (3_2, 3_2) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_A ) return image @property def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=_A , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) return CLIPTextModel(_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=_A , low_res_scheduler=_A , scheduler=_A , vae=_A , text_encoder=_A , tokenizer=_A , max_noise_level=3_5_0 , ) UpperCAmelCase = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = torch.Generator(device=_A ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=_A , generator=_A , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = output.images UpperCAmelCase = torch.Generator(device=_A ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=_A , generator=_A , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , return_dict=_A , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=_A , low_res_scheduler=_A , scheduler=_A , vae=_A , text_encoder=_A , tokenizer=_A , max_noise_level=3_5_0 , ) UpperCAmelCase = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = output.images assert image.shape[0] == 2 UpperCAmelCase = torch.Generator(device=_A ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=_A , generator=_A , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type='''v_prediction''' ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase = unet.half() UpperCAmelCase = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=_A , low_res_scheduler=_A , scheduler=_A , vae=_A , text_encoder=_A , tokenizer=_A , max_noise_level=3_5_0 , ) UpperCAmelCase = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=_A , generator=_A , num_inference_steps=2 , output_type='''np''' , ).images UpperCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) UpperCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained(_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase = '''a cat sitting on a park bench''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=_A , image=_A , generator=_A , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) UpperCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( _A , torch_dtype=torch.floataa , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase = '''a cat sitting on a park bench''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=_A , image=_A , generator=_A , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _lowercase ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) UpperCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( _A , torch_dtype=torch.floataa , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase = '''a cat sitting on a park bench''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=_A , image=_A , generator=_A , num_inference_steps=5 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
273
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : float = 1 / 12345 ): lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 3 while True: lowerCamelCase_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(UpperCAmelCase_ ): lowerCamelCase_ = int(UpperCAmelCase_ ) total_partitions += 1 if check_partition_perfect(UpperCAmelCase_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(UpperCAmelCase_ ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
55
0
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
96
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase: Any = logging.get_logger(__name__) class a__( lowerCamelCase__ ): lowercase__ = """encoder-decoder""" lowercase__ = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" a : List[str] = kwargs.pop('encoder' ) a : Optional[Any] = encoder_config.pop('model_type' ) a : Tuple = kwargs.pop('decoder' ) a : Optional[int] = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig a : Any = AutoConfig.for_model(__snake_case , **__snake_case ) a : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) a : Tuple = True @classmethod def lowercase_ ( cls : int , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) a : List[Any] = True a : Tuple = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def lowercase_ ( self : List[Any] ): a : int = copy.deepcopy(self.__dict__ ) a : List[str] = self.encoder.to_dict() a : Optional[int] = self.decoder.to_dict() a : Optional[Any] = self.__class__.model_type return output
96
1
import os import string import sys _lowerCamelCase : Union[str, Any] = 1 << 8 _lowerCamelCase : Dict = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } _lowerCamelCase : int = KEYMAP['''up'''] _lowerCamelCase : Optional[Any] = KEYMAP['''left'''] if sys.platform == "win32": _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): _lowerCamelCase : Tuple = ord(str(i)) def a_ ( ) -> List[str]: if os.name == "nt": import msvcrt _snake_case = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowercase ) == 0: # Read the keystroke _snake_case = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _snake_case = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _snake_case = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(__lowercase ) if ord(__lowercase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _snake_case = chr(KEYMAP['esc'] ) except KeyError: _snake_case = cha[1] else: _snake_case = ch.decode(__lowercase ) else: _snake_case = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _snake_case = sys.stdin.fileno() _snake_case = termios.tcgetattr(__lowercase ) try: tty.setraw(__lowercase ) _snake_case = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowercase , termios.TCSADRAIN , __lowercase ) return ch def a_ ( ) -> Dict: _snake_case = get_raw_chars() if ord(__lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowercase ) == KEYMAP["esc"]: _snake_case = get_raw_chars() if ord(__lowercase ) == KEYMAP["mod_int"]: _snake_case = get_raw_chars() if ord(__lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowercase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
282
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def a_ ( __lowercase : Dict , __lowercase : int , __lowercase : Optional[Any]=None ) -> Any: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' _snake_case = nn.Parameter(__lowercase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' _snake_case = nn.Parameter(__lowercase ) def a_ ( __lowercase : Any , __lowercase : Dict , __lowercase : Union[str, Any] ) -> Optional[Any]: # set torch weights for 1-to-1 comparison _snake_case = np.asarray(weights[0] ) _snake_case = np.asarray(weights[1] ) _snake_case = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowercase ).view(-1 , __lowercase ).contiguous().transpose(0 , 1 ) , ) def a_ ( __lowercase : str , __lowercase : Tuple , __lowercase : Any ) -> Optional[Any]: # set torch weights for 1-to-1 comparison _snake_case = np.asarray(weights[0] ) _snake_case = np.asarray(weights[1] ) _snake_case = np.asarray(weights[2] ) _snake_case = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowercase ).transpose(1 , 2 ).contiguous().view(-1 , __lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowercase ).view(-1 , __lowercase ).contiguous().transpose(0 , 1 ) , ) def a_ ( __lowercase : Dict , __lowercase : List[str] , __lowercase : Union[str, Any] ) -> Optional[Any]: # layernorm 1 _snake_case = weights[0][0][0] _snake_case = np.asarray(layer_norm_a[0] ) _snake_case = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__lowercase ) , torch.tensor(__lowercase ) , ) # lsh weights + output _snake_case = weights[0][1] if len(__lowercase ) < 4: set_layer_weights_in_torch_lsh(__lowercase , torch_block.attention , __lowercase ) else: set_layer_weights_in_torch_local(__lowercase , torch_block.attention , __lowercase ) # intermediate weighs _snake_case = weights[2][0][1][2] # Chunked Feed Forward if len(__lowercase ) == 4: _snake_case = intermediate_weights[2] # layernorm 2 _snake_case = np.asarray(intermediate_weights[0][0] ) _snake_case = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__lowercase ) , torch.tensor(__lowercase ) , ) # intermediate dense _snake_case = np.asarray(intermediate_weights[1][0] ) _snake_case = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowercase ) , ) # intermediate out _snake_case = np.asarray(intermediate_weights[4][0] ) _snake_case = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowercase ) , ) def a_ ( __lowercase : Tuple , __lowercase : Tuple , __lowercase : Dict ) -> Optional[int]: # reformer model _snake_case = torch_model.reformer # word embeds _snake_case = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__lowercase ) , ) if isinstance(weights[3] , __lowercase ): _snake_case = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _snake_case = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' _snake_case = nn.Parameter(torch.tensor(__lowercase ) ) _snake_case = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __lowercase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _snake_case = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__lowercase , __lowercase , __lowercase ) # output layer norm _snake_case = np.asarray(weights[7][0] ) _snake_case = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__lowercase ) , torch.tensor(__lowercase ) , ) # output embeddings _snake_case = np.asarray(weights[9][0] ) _snake_case = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowercase ) , ) def a_ ( __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[Any] ) -> Optional[int]: # Initialise PyTorch model _snake_case = ReformerConfig.from_json_file(__lowercase ) print(f'''Building PyTorch model from configuration: {config}''' ) _snake_case = ReformerModelWithLMHead(__lowercase ) with open(__lowercase , 'rb' ) as f: _snake_case = pickle.load(__lowercase )['weights'] set_model_weights_in_torch(__lowercase , __lowercase , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
282
1
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCamelCase_ : List[Any] = logging.get_logger(__name__) def __a ( _UpperCamelCase: Optional[int] , _UpperCamelCase: int , _UpperCamelCase: Any ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __a ( _UpperCamelCase: str , _UpperCamelCase: Optional[int] , _UpperCamelCase: List[str] ) -> Tuple: """simple docstring""" _snake_case = to_pil_image(_UpperCAmelCase ) _snake_case = pil_image.size _snake_case = pytesseract.image_to_data(_UpperCAmelCase , lang=_UpperCAmelCase , output_type="dict" , config=_UpperCAmelCase ) _snake_case = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates _snake_case = [idx for idx, word in enumerate(_UpperCAmelCase ) if not word.strip()] _snake_case = [word for idx, word in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] _snake_case = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] _snake_case = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] _snake_case = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] _snake_case = [coord for idx, coord in enumerate(_UpperCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _snake_case = [] for x, y, w, h in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): _snake_case = [x, y, x + w, y + h] actual_boxes.append(_UpperCAmelCase ) # finally, normalize the bounding boxes _snake_case = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _a ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : str = ["""pixel_values"""] def __init__( self ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = 1 / 255 ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = "" ,**_SCREAMING_SNAKE_CASE ,) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) _snake_case = size if size is not None else {'height': 224, 'width': 224} _snake_case = get_size_dict(_SCREAMING_SNAKE_CASE ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_rescale _snake_case = rescale_value _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD _snake_case = apply_ocr _snake_case = ocr_lang _snake_case = tesseract_config def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: _snake_case = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _snake_case = (size['height'], size['width']) return resize(_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: return rescale(_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,**_SCREAMING_SNAKE_CASE ,) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(_SCREAMING_SNAKE_CASE ) _snake_case = resample if resample is not None else self.resample _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = apply_ocr if apply_ocr is not None else self.apply_ocr _snake_case = ocr_lang if ocr_lang is not None else self.ocr_lang _snake_case = tesseract_config if tesseract_config is not None else self.tesseract_config _snake_case = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self ,"pytesseract" ) _snake_case = [] _snake_case = [] for image in images: _snake_case = apply_tesseract(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) words_batch.append(_SCREAMING_SNAKE_CASE ) boxes_batch.append(_SCREAMING_SNAKE_CASE ) if do_resize: _snake_case = [self.resize(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: _snake_case = [self.rescale(image=_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: _snake_case = [self.normalize(image=_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ) for image in images] _snake_case = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for image in images] _snake_case = BatchFeature(data={"pixel_values": images} ,tensor_type=_SCREAMING_SNAKE_CASE ) if apply_ocr: _snake_case = words_batch _snake_case = boxes_batch return data
351
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCamelCase_ : int = TypeVar('''T''') UpperCamelCase_ : Dict = TypeVar('''U''') class _a ( Generic[T, U] ): def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: _snake_case = key _snake_case = val _snake_case = None _snake_case = None def __repr__( self ) -> str: return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _a ( Generic[T, U] ): def __init__( self ) -> None: _snake_case = DoubleLinkedListNode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) _snake_case = DoubleLinkedListNode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) _snake_case , _snake_case = self.rear, self.head def __repr__( self ) -> str: _snake_case = ["DoubleLinkedList"] _snake_case = self.head while node.next is not None: rep.append(str(_SCREAMING_SNAKE_CASE ) ) _snake_case = node.next rep.append(str(self.rear ) ) return ",\n ".join(_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> None: _snake_case = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case = node _snake_case = previous _snake_case = node _snake_case = self.rear def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None _snake_case = node.next _snake_case = node.prev _snake_case = None _snake_case = None return node class _a ( Generic[T, U] ): SCREAMING_SNAKE_CASE_ : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self ,_SCREAMING_SNAKE_CASE ) -> str: _snake_case = DoubleLinkedList() _snake_case = capacity _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = {} def __repr__( self ) -> str: return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self ,_SCREAMING_SNAKE_CASE ) -> bool: return key in self.cache def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _snake_case = self.cache[key] _snake_case = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_SCREAMING_SNAKE_CASE ) return node.val self.miss += 1 return None def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_SCREAMING_SNAKE_CASE ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case = DoubleLinkedListNode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case = value self.list.add(_SCREAMING_SNAKE_CASE ) @classmethod def _lowercase ( cls ,_SCREAMING_SNAKE_CASE = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(_SCREAMING_SNAKE_CASE ) -> Callable[..., U]: def cache_decorator_wrapper(*_SCREAMING_SNAKE_CASE ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case = LRUCache(_SCREAMING_SNAKE_CASE ) _snake_case = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case = func(*_SCREAMING_SNAKE_CASE ) cls.decorator_function_to_instance_map[func].put(args[0] ,_SCREAMING_SNAKE_CASE ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_SCREAMING_SNAKE_CASE ,"cache_info" ,_SCREAMING_SNAKE_CASE ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
142
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _a = logging.get_logger(__name__) class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = ["""audio_values""", """audio_mask"""] def __init__( self , __lowerCAmelCase=2_0_4_8 , __lowerCAmelCase=1 , __lowerCAmelCase=[1_6, 1_6] , __lowerCAmelCase=1_2_8 , __lowerCAmelCase=4_4_1_0_0 , __lowerCAmelCase=8_6 , __lowerCAmelCase=2_0_4_8 , __lowerCAmelCase=0.0 , **__lowerCAmelCase , ): '''simple docstring''' super().__init__( feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCamelCase__ = spectrogram_length lowerCamelCase__ = num_channels lowerCamelCase__ = patch_size lowerCamelCase__ = feature_size // self.patch_size[1] lowerCamelCase__ = n_fft lowerCamelCase__ = sampling_rate // hop_length_to_sampling_rate lowerCamelCase__ = sampling_rate lowerCamelCase__ = padding_value lowerCamelCase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCAmelCase , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=__lowerCAmelCase , norm='''slaney''' , mel_scale='''slaney''' , ).T def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = spectrogram( __lowerCAmelCase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) lowerCamelCase__ = log_spec[:, :-1] lowerCamelCase__ = log_spec - 20.0 lowerCamelCase__ = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , **__lowerCAmelCase , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowerCamelCase__ = isinstance(__lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase__ = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ): lowerCamelCase__ = np.asarray(__lowerCAmelCase , dtype=np.floataa ) elif isinstance(__lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __lowerCAmelCase ): lowerCamelCase__ = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase__ = np.array(__lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase__ = np.ones([len(__lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase__ = padded_audio_features * self.padding_value for i in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = audio_features[i] lowerCamelCase__ = feature # return as BatchFeature if return_attention_mask: lowerCamelCase__ = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: lowerCamelCase__ = {'''audio_values''': padded_audio_features} lowerCamelCase__ = BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase ) return encoded_inputs
209
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = ["""image_processor""", """tokenizer"""] lowerCAmelCase_ = """BlipImageProcessor""" lowerCAmelCase_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = False super().__init__(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.image_processor def __call__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowerCamelCase__ = self.tokenizer lowerCamelCase__ = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) return text_encoding # add pixel_values lowerCamelCase__ = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) if text is not None: lowerCamelCase__ = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) else: lowerCamelCase__ = None if text_encoding is not None: encoding_image_processor.update(__lowerCAmelCase ) return encoding_image_processor def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer.model_input_names lowerCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
209
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Dict = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "mctct" def __init__( self : Union[str, Any] , lowerCAmelCase : Any=8065 , lowerCAmelCase : List[Any]=1536 , lowerCAmelCase : Tuple=36 , lowerCAmelCase : Union[str, Any]=6144 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : str=384 , lowerCAmelCase : List[str]=920 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : Dict=0.3 , lowerCAmelCase : Union[str, Any]="relu" , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : List[str]=0.3 , lowerCAmelCase : Optional[int]=0.3 , lowerCAmelCase : str=1 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : str=2 , lowerCAmelCase : Any=1 , lowerCAmelCase : Dict=0.3 , lowerCAmelCase : Dict=1 , lowerCAmelCase : Any=(7,) , lowerCAmelCase : List[Any]=(3,) , lowerCAmelCase : Optional[int]=80 , lowerCAmelCase : Dict=1 , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]="sum" , lowerCAmelCase : List[Any]=False , **lowerCAmelCase : Tuple , )-> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase , pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = num_attention_heads UpperCAmelCase = attention_head_dim UpperCAmelCase = max_position_embeddings UpperCAmelCase = layer_norm_eps UpperCAmelCase = layerdrop UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id UpperCAmelCase = conv_glu_dim UpperCAmelCase = conv_dropout UpperCAmelCase = num_conv_layers UpperCAmelCase = input_feat_per_channel UpperCAmelCase = input_channels UpperCAmelCase = conv_channels UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCAmelCase = list(lowerCAmelCase ) UpperCAmelCase = list(lowerCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
354
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase__: __magic_name__ : int __magic_name__ : TreeNode | None = None __magic_name__ : TreeNode | None = None _lowercase : Tuple = namedtuple("""CoinsDistribResult""", """moves excess""") def lowerCamelCase__ ( A : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A ) != count_coins(A ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(A : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase , UpperCAmelCase = get_distrib(node.left ) UpperCAmelCase , UpperCAmelCase = get_distrib(node.right ) UpperCAmelCase = 1 - left_distrib_excess UpperCAmelCase = 1 - right_distrib_excess UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(A ) + abs(A ) ) UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A , A ) return get_distrib(A )[0] if __name__ == "__main__": import doctest doctest.testmod()
91
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=None ): require_version(deps[pkg] , UpperCamelCase__ )
11
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase__ ( A__ : Optional[Any] ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase__ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" __lowerCamelCase = [1, 2, 3] with pytest.raises(A__ ): with parallel_backend("""unsupported backend""" ): map_nested(A__ , A__ , num_proc=2 ) with pytest.raises(A__ ): with parallel_backend("""unsupported backend""" ): map_nested(A__ , A__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = [1, 2] __lowerCamelCase = {"""a""": 1, """b""": 2} __lowerCamelCase = {"""a""": [1, 2], """b""": [3, 4]} __lowerCamelCase = {"""a""": {"""1""": 1}, """b""": 2} __lowerCamelCase = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} __lowerCamelCase = [2, 3] __lowerCamelCase = {"""a""": 2, """b""": 3} __lowerCamelCase = {"""a""": [2, 3], """b""": [4, 5]} __lowerCamelCase = {"""a""": {"""1""": 2}, """b""": 3} __lowerCamelCase = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa
29
import qiskit def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) __lowerCamelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase_ = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
29
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""image_processor""", """tokenizer"""] lowerCamelCase__ = """LayoutLMv2ImageProcessor""" lowerCamelCase__ = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , lowercase=None , lowercase=None , **lowercase ): if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase , ) _lowerCamelCase : Union[str, Any] = kwargs.pop('feature_extractor' ) _lowerCamelCase : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase , lowercase ) def __call__( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor _lowerCamelCase : int = self.image_processor(images=lowercase , return_tensors=lowercase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase , lowercase ): _lowerCamelCase : Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) _lowerCamelCase : List[Any] = features['words'] _lowerCamelCase : Any = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) # add pixel values _lowerCamelCase : Dict = features.pop('pixel_values' ) if return_overflowing_tokens is True: _lowerCamelCase : List[Any] = self.get_overflowing_images(lowercase , encoded_inputs['overflow_to_sample_mapping'] ) _lowerCamelCase : int = images return encoded_inputs def A_ ( self , lowercase , lowercase ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _lowerCamelCase : Dict = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase ) != len(lowercase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(lowercase )} and {len(lowercase )}''' ) return images_with_overflow def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def A_ ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def A_ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase , ) return self.image_processor_class @property def A_ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase , ) return self.image_processor
96
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """new-model""" if is_tf_available(): class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = NewModelConfig @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : List[str] = 'bert-base-cased' _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _lowerCamelCase : Union[str, Any] = TFAutoModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A_ ( self ): _lowerCamelCase : List[str] = 'bert-base-cased' _lowerCamelCase : int = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _lowerCamelCase : int = TFAutoModelForPreTraining.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A_ ( self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _lowerCamelCase : int = TFAutoModelForCausalLM.from_pretrained(lowercase ) _lowerCamelCase, _lowerCamelCase : str = TFAutoModelForCausalLM.from_pretrained(lowercase , output_loading_info=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A_ ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _lowerCamelCase : str = TFAutoModelWithLMHead.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A_ ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _lowerCamelCase : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(lowercase ) _lowerCamelCase, _lowerCamelCase : Tuple = TFAutoModelForMaskedLM.from_pretrained(lowercase , output_loading_info=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A_ ( self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _lowerCamelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase ) _lowerCamelCase, _lowerCamelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase , output_loading_info=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A_ ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _lowerCamelCase : str = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _lowerCamelCase : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def A_ ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _lowerCamelCase : List[str] = TFAutoModelForQuestionAnswering.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow @require_tensorflow_probability def A_ ( self ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: _lowerCamelCase : Dict = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) _lowerCamelCase : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained(lowercase ) _lowerCamelCase, _lowerCamelCase : List[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( lowercase , output_loading_info=lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : int = TFAutoModelWithLMHead.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase ) , 14410 ) def A_ ( self ): _lowerCamelCase : Any = TFAutoModelWithLMHead.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase ) , 14410 ) def A_ ( self ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel _lowerCamelCase : List[str] = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(lowercase , lowercase ) _lowerCamelCase : Optional[int] = copy.deepcopy(model.config ) _lowerCamelCase : Dict = ['FunnelBaseModel'] _lowerCamelCase : List[Any] = TFAutoModel.from_config(lowercase ) self.assertIsInstance(lowercase , lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase ) _lowerCamelCase : Tuple = TFAutoModel.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): try: AutoConfig.register('new-model' , lowercase ) _lowerCamelCase : Tuple = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowercase ): auto_class.register(lowercase , lowercase ) auto_class.register(lowercase , lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase ): auto_class.register(lowercase , lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Optional[Any] = BertModelTester(self ).get_config() _lowerCamelCase : Dict = NewModelConfig(**tiny_config.to_dict() ) _lowerCamelCase : int = auto_class.from_config(lowercase ) self.assertIsInstance(lowercase , lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase ) _lowerCamelCase : List[Any] = auto_class.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def A_ ( self ): with self.assertRaisesRegex( lowercase , 'bert-base is not a local folder and is not a valid model identifier' ): _lowerCamelCase : Union[str, Any] = TFAutoModel.from_pretrained('bert-base' ) def A_ ( self ): with self.assertRaisesRegex( lowercase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _lowerCamelCase : str = TFAutoModel.from_pretrained(lowercase , revision='aaaaaa' ) def A_ ( self ): with self.assertRaisesRegex( lowercase , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): _lowerCamelCase : Tuple = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def A_ ( self ): with self.assertRaisesRegex(lowercase , 'Use `from_pt=True` to load this model' ): _lowerCamelCase : Tuple = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def A_ ( self ): # Make sure we have cached the model. _lowerCamelCase : Optional[int] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: _lowerCamelCase : Optional[int] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint _lowerCamelCase : int = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: _lowerCamelCase : List[Any] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
96
1
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Union[str, Any] = '''mask2former''' _UpperCamelCase : str = ['''swin'''] _UpperCamelCase : List[Any] = {'''hidden_size''': '''hidden_dim'''} def __init__( self: str , _SCREAMING_SNAKE_CASE: Optional[Dict] = None , _SCREAMING_SNAKE_CASE: int = 256 , _SCREAMING_SNAKE_CASE: int = 256 , _SCREAMING_SNAKE_CASE: int = 256 , _SCREAMING_SNAKE_CASE: int = 1024 , _SCREAMING_SNAKE_CASE: str = "relu" , _SCREAMING_SNAKE_CASE: int = 6 , _SCREAMING_SNAKE_CASE: int = 10 , _SCREAMING_SNAKE_CASE: int = 8 , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 255 , _SCREAMING_SNAKE_CASE: int = 100 , _SCREAMING_SNAKE_CASE: float = 0.1 , _SCREAMING_SNAKE_CASE: float = 2.0 , _SCREAMING_SNAKE_CASE: float = 5.0 , _SCREAMING_SNAKE_CASE: float = 5.0 , _SCREAMING_SNAKE_CASE: int = 12544 , _SCREAMING_SNAKE_CASE: float = 3.0 , _SCREAMING_SNAKE_CASE: float = 0.75 , _SCREAMING_SNAKE_CASE: float = 0.02 , _SCREAMING_SNAKE_CASE: float = 1.0 , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: List[int] = [4, 8, 16, 32] , _SCREAMING_SNAKE_CASE: bool = None , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> Dict: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) UpperCamelCase_ = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_SCREAMING_SNAKE_CASE , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = backbone_config.pop("model_type" ) UpperCamelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase_ = config_class.from_dict(_SCREAMING_SNAKE_CASE ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) UpperCamelCase_ = backbone_config UpperCamelCase_ = feature_size UpperCamelCase_ = mask_feature_size UpperCamelCase_ = hidden_dim UpperCamelCase_ = encoder_feedforward_dim UpperCamelCase_ = activation_function UpperCamelCase_ = encoder_layers UpperCamelCase_ = decoder_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = dropout UpperCamelCase_ = dim_feedforward UpperCamelCase_ = pre_norm UpperCamelCase_ = enforce_input_projection UpperCamelCase_ = common_stride UpperCamelCase_ = ignore_value UpperCamelCase_ = num_queries UpperCamelCase_ = no_object_weight UpperCamelCase_ = class_weight UpperCamelCase_ = mask_weight UpperCamelCase_ = dice_weight UpperCamelCase_ = train_num_points UpperCamelCase_ = oversample_ratio UpperCamelCase_ = importance_sample_ratio UpperCamelCase_ = init_std UpperCamelCase_ = init_xavier_std UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = feature_strides UpperCamelCase_ = output_auxiliary_logits UpperCamelCase_ = decoder_layers super().__init__(**_SCREAMING_SNAKE_CASE ) @classmethod def lowercase ( cls: Union[str, Any] , _SCREAMING_SNAKE_CASE: PretrainedConfig , **_SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[Any]: """simple docstring""" return cls( backbone_config=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def lowercase ( self: List[Any] ) -> Dict[str, any]: """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.backbone_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
369
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : Any = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["ChineseCLIPFeatureExtractor"] lowercase : List[Any] = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _a ( UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = 384 if "tiny" in model_name: lowerCamelCase__ : Optional[int] = [3, 3, 9, 3] lowerCamelCase__ : Tuple = [96, 192, 384, 768] if "small" in model_name: lowerCamelCase__ : Dict = [3, 3, 27, 3] lowerCamelCase__ : Any = [96, 192, 384, 768] if "base" in model_name: lowerCamelCase__ : Optional[int] = [3, 3, 27, 3] lowerCamelCase__ : Optional[Any] = [128, 256, 512, 1024] lowerCamelCase__ : List[Any] = 512 if "large" in model_name: lowerCamelCase__ : List[str] = [3, 3, 27, 3] lowerCamelCase__ : int = [192, 384, 768, 1536] lowerCamelCase__ : str = 768 if "xlarge" in model_name: lowerCamelCase__ : Any = [3, 3, 27, 3] lowerCamelCase__ : str = [256, 512, 1024, 2048] lowerCamelCase__ : Optional[Any] = 1024 # set label information lowerCamelCase__ : Optional[int] = 150 lowerCamelCase__ : Any = '''huggingface/label-files''' lowerCamelCase__ : Any = '''ade20k-id2label.json''' lowerCamelCase__ : str = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase__ : Optional[Any] = {int(UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Any = ConvNextConfig( depths=UpperCAmelCase , hidden_sizes=UpperCAmelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) lowerCamelCase__ : Dict = UperNetConfig( backbone_config=UpperCAmelCase , auxiliary_in_channels=UpperCAmelCase , num_labels=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , ) return config def _a ( UpperCAmelCase ) -> int: """simple docstring""" lowerCamelCase__ : Dict = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.{j}.gamma", f"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") ) rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.weight", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.bias", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.norm.weight", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.norm.bias", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") ) if i > 0: rename_keys.append((f"backbone.downsample_layers.{i}.0.weight", f"backbone.encoder.stages.{i}.downsampling_layer.0.weight") ) rename_keys.append((f"backbone.downsample_layers.{i}.0.bias", f"backbone.encoder.stages.{i}.downsampling_layer.0.bias") ) rename_keys.append((f"backbone.downsample_layers.{i}.1.weight", f"backbone.encoder.stages.{i}.downsampling_layer.1.weight") ) rename_keys.append((f"backbone.downsample_layers.{i}.1.bias", f"backbone.encoder.stages.{i}.downsampling_layer.1.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : str = dct.pop(UpperCAmelCase ) lowerCamelCase__ : List[Any] = val def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : str = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } lowerCamelCase__ : Union[str, Any] = model_name_to_url[model_name] lowerCamelCase__ : int = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''state_dict'''] lowerCamelCase__ : List[str] = get_upernet_config(UpperCAmelCase ) lowerCamelCase__ : Tuple = UperNetForSemanticSegmentation(UpperCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase__ : Optional[int] = state_dict.pop(UpperCAmelCase ) if "bn" in key: lowerCamelCase__ : str = key.replace('''bn''' , '''batch_norm''' ) lowerCamelCase__ : List[Any] = val # rename keys lowerCamelCase__ : List[str] = create_rename_keys(UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) # verify on image lowerCamelCase__ : Any = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowerCamelCase__ : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ).convert('''RGB''' ) lowerCamelCase__ : Optional[int] = SegformerImageProcessor() lowerCamelCase__ : Any = processor(UpperCAmelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) if model_name == "upernet-convnext-tiny": lowerCamelCase__ : Any = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": lowerCamelCase__ : List[str] = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": lowerCamelCase__ : str = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": lowerCamelCase__ : Optional[int] = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": lowerCamelCase__ : Tuple = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A : Tuple = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
142
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class a ( __lowerCamelCase ): __lowerCAmelCase : Any = """bert""" def __init__( self :str ,__lowercase :Optional[Any]=3_0_5_2_2 ,__lowercase :int=7_6_8 ,__lowercase :List[str]=1_2 ,__lowercase :Optional[int]=1_2 ,__lowercase :int=3_0_7_2 ,__lowercase :Any="gelu" ,__lowercase :Optional[int]=0.1 ,__lowercase :List[Any]=0.1 ,__lowercase :str=5_1_2 ,__lowercase :List[str]=2 ,__lowercase :Dict=0.02 ,__lowercase :str=1e-1_2 ,__lowercase :List[str]=0 ,__lowercase :Optional[Any]="absolute" ,__lowercase :str=True ,__lowercase :Optional[int]=None ,**__lowercase :List[Any] ,): super().__init__(pad_token_id=__lowercase ,**__lowercase ) snake_case__ : Union[str, Any] = vocab_size snake_case__ : Any = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : int = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : Optional[Any] = type_vocab_size snake_case__ : Any = initializer_range snake_case__ : List[Any] = layer_norm_eps snake_case__ : List[str] = position_embedding_type snake_case__ : Tuple = use_cache snake_case__ : Optional[int] = classifier_dropout class a ( __lowerCamelCase ): @property def __lowerCamelCase ( self :int ): if self.task == "multiple-choice": snake_case__ : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case__ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
367
from manim import * class a ( __lowerCamelCase ): def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[Any] = Rectangle(height=0.5 ,width=0.5 ) snake_case__ : Optional[int] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) snake_case__ : Optional[Any] = Rectangle(height=0.25 ,width=0.25 ) snake_case__ : Tuple = [mem.copy() for i in range(6 )] snake_case__ : Optional[int] = [mem.copy() for i in range(6 )] snake_case__ : List[str] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : List[Any] = VGroup(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : List[Any] = Text('''CPU''' ,font_size=2_4 ) snake_case__ : Dict = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowercase ) snake_case__ : Union[str, Any] = [mem.copy() for i in range(4 )] snake_case__ : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : int = Text('''GPU''' ,font_size=2_4 ) snake_case__ : Any = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) gpu.move_to([-1, -1, 0] ) self.add(__lowercase ) snake_case__ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case__ : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Optional[Any] = Text('''Model''' ,font_size=2_4 ) snake_case__ : Dict = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) model.move_to([3, -1.0, 0] ) self.add(__lowercase ) snake_case__ : List[str] = [] snake_case__ : int = [] for i, rect in enumerate(__lowercase ): snake_case__ : Dict = fill.copy().set_fill(__lowercase ,opacity=0.8 ) target.move_to(__lowercase ) model_arr.append(__lowercase ) snake_case__ : Dict = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__lowercase ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__lowercase ) self.add(*__lowercase ,*__lowercase ) snake_case__ : Tuple = [meta_mem.copy() for i in range(6 )] snake_case__ : Optional[int] = [meta_mem.copy() for i in range(6 )] snake_case__ : str = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Union[str, Any] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Tuple = VGroup(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Dict = Text('''Disk''' ,font_size=2_4 ) snake_case__ : Optional[Any] = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) disk.move_to([-4, -1.25, 0] ) self.add(__lowercase ,__lowercase ) snake_case__ : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case__ : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=1_8 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__lowercase ,__lowercase ) snake_case__ : Any = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" ,font_size=1_8 ,) blue_text.next_to(__lowercase ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__lowercase ) snake_case__ : List[str] = MarkupText( F"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" ,font_size=2_4 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ) ) snake_case__ : Optional[Any] = Square(0.3 ) input.set_fill(__lowercase ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__lowercase ,buff=0.5 ) self.play(Write(__lowercase ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__lowercase ,buff=0.02 ) self.play(MoveToTarget(__lowercase ) ) self.play(FadeOut(__lowercase ) ) snake_case__ : Optional[Any] = Arrow(start=__lowercase ,end=__lowercase ,color=__lowercase ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__lowercase ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) snake_case__ : Dict = MarkupText( F"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" ,font_size=2_4 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ,run_time=3 ) ) snake_case__ : Tuple = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(__lowercase ) ,Circumscribe(model_arr[0] ,color=__lowercase ,**__lowercase ) ,Circumscribe(model_cpu_arr[0] ,color=__lowercase ,**__lowercase ) ,Circumscribe(gpu_rect[0] ,color=__lowercase ,**__lowercase ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) snake_case__ : int = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__lowercase ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) snake_case__ : Tuple = AnimationGroup( FadeOut(__lowercase ,run_time=0.5 ) ,MoveToTarget(__lowercase ,run_time=0.5 ) ,FadeIn(__lowercase ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__lowercase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: snake_case__ : str = 0.7 self.play( Circumscribe(model_arr[i] ,**__lowercase ) ,Circumscribe(cpu_left_col_base[i] ,**__lowercase ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__lowercase ,**__lowercase ) ,Circumscribe(gpu_rect[0] ,color=__lowercase ,**__lowercase ) ,Circumscribe(model_arr[i + 1] ,color=__lowercase ,**__lowercase ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__lowercase ,**__lowercase ) ,Circumscribe(cpu_left_col_base[-1] ,color=__lowercase ,**__lowercase ) ,Circumscribe(gpu_rect[0] ,color=__lowercase ,**__lowercase ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) snake_case__ : List[str] = a_c snake_case__ : Optional[int] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__lowercase ) ,FadeOut(__lowercase ,run_time=0.5 ) ,) snake_case__ : Optional[int] = MarkupText(F"""Inference on a model too large for GPU memory\nis successfully completed.""" ,font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ,run_time=3 ) ,MoveToTarget(__lowercase ) ) self.wait()
44
0
"""simple docstring""" from math import pi, sqrt, tan def _lowerCamelCase( a ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def _lowerCamelCase( a , a , a ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _lowerCamelCase( a ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def _lowerCamelCase( a ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def _lowerCamelCase( a , a ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _lowerCamelCase( a , a , a ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) __a = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _lowerCamelCase( a , a ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def _lowerCamelCase( a , a ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(__a , 2 ) * torus_radius * tube_radius def _lowerCamelCase( a , a ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def _lowerCamelCase( a ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def _lowerCamelCase( a , a ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def _lowerCamelCase( a , a , a ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) __a = (sidea + sidea + sidea) / 2 __a = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _lowerCamelCase( a , a ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def _lowerCamelCase( a , a , a ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def _lowerCamelCase( a ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def _lowerCamelCase( a , a ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def _lowerCamelCase( a , a ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def _lowerCamelCase( a , a ): if not isinstance(__a , __a ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \\nequal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \\nlength of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print("""\nSurface Areas of various geometric shapes: \n""") print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
261
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = (PNDMScheduler,) __UpperCamelCase = (("num_inference_steps", 5_0),) def _SCREAMING_SNAKE_CASE ( self : Any , **lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = { '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase_) return config def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[str]=0 , **lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''num_inference_steps''' , lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class.from_pretrained(lowercase_) new_scheduler.set_timesteps(lowercase_) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Optional[Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str]=0 , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('''num_inference_steps''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_) SCREAMING_SNAKE_CASE_ : str = scheduler_class.from_pretrained(lowercase_) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Any = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Tuple = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : str , **lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_scheduler_config(**lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Dict = 10 SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_) for i, t in enumerate(scheduler.prk_timesteps): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_).prev_sample for i, t in enumerate(scheduler.plms_timesteps): SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_).prev_sample return sample def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''num_inference_steps''' , lowercase_) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , '''set_timesteps'''): scheduler.set_timesteps(lowercase_) elif num_inference_steps is not None and not hasattr(lowercase_ , '''set_timesteps'''): SCREAMING_SNAKE_CASE_ : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE_ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE_ : Optional[int] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Dict = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Any = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config(steps_offset=1) SCREAMING_SNAKE_CASE_ : Tuple = scheduler_class(**lowercase_) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02]): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_sample SCREAMING_SNAKE_CASE_ : str = 0.1 * sample SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): SCREAMING_SNAKE_CASE_ : int = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_).prev_sample def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' with self.assertRaises(lowercase_): SCREAMING_SNAKE_CASE_ : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Dict = scheduler_class(**lowercase_) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.full_loop() SCREAMING_SNAKE_CASE_ : List[Any] = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 1_98.13_18) < 1e-2 assert abs(result_mean.item() - 0.25_80) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.full_loop(prediction_type='''v_prediction''') SCREAMING_SNAKE_CASE_ : str = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 67.39_86) < 1e-2 assert abs(result_mean.item() - 0.08_78) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 2_30.03_99) < 1e-2 assert abs(result_mean.item() - 0.29_95) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01) SCREAMING_SNAKE_CASE_ : int = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 1_86.94_82) < 1e-2 assert abs(result_mean.item() - 0.24_34) < 1e-3
91
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): assert isinstance(__lowerCamelCase , __lowerCamelCase ), F'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: __UpperCamelCase =F'The input value of [n={number}] has to be > 0' raise ValueError(__lowerCamelCase ) else: __UpperCamelCase =sylvester(number - 1 ) __UpperCamelCase =num - 1 __UpperCamelCase =num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
351
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) __UpperCamelCase =DetaConfig( backbone_config=SCREAMING_SNAKE_CASE__ , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=SCREAMING_SNAKE_CASE__ , with_box_refine=SCREAMING_SNAKE_CASE__ , two_stage=SCREAMING_SNAKE_CASE__ , ) # set labels __UpperCamelCase ='huggingface/label-files' if "o365" in model_name: __UpperCamelCase =3_66 __UpperCamelCase ='object365-id2label.json' else: __UpperCamelCase =91 __UpperCamelCase ='coco-detection-id2label.json' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =[] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.0.body.layers.{i}.downsample.reduction.weight', F'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.weight', F'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.bias', F'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', F'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', F'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', F'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', F'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.weight', F'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.bias', F'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.weight', F'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.bias', F'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.weight', F'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', F'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', F'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', F'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', F'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', F'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', F'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.weight', F'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.weight', F'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.bias', F'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =dct.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCamelCase =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCamelCase =state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) __UpperCamelCase =state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase =in_proj_weight[:dim, :] __UpperCamelCase =in_proj_bias[: dim] __UpperCamelCase =in_proj_weight[ dim : dim * 2, : ] __UpperCamelCase =in_proj_bias[ dim : dim * 2 ] __UpperCamelCase =in_proj_weight[ -dim :, : ] __UpperCamelCase =in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): # transformer decoder self-attention layers __UpperCamelCase =config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCamelCase =state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __UpperCamelCase =state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase =in_proj_weight[:hidden_size, :] __UpperCamelCase =in_proj_bias[:hidden_size] __UpperCamelCase =in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCamelCase =in_proj_bias[hidden_size : hidden_size * 2] __UpperCamelCase =in_proj_weight[-hidden_size:, :] __UpperCamelCase =in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =get_deta_config(SCREAMING_SNAKE_CASE__ ) # load original state dict if model_name == "deta-swin-large": __UpperCamelCase =hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": __UpperCamelCase =hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'Model name {model_name} not supported' ) __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE__ , param.shape ) # rename keys __UpperCamelCase =create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCamelCase =state_dict.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val if "input_proj" in key: __UpperCamelCase =state_dict.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCamelCase =state_dict.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val # finally, create HuggingFace model and load state dict __UpperCamelCase =DetaForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() __UpperCamelCase ='cuda' if torch.cuda.is_available() else 'cpu' model.to(SCREAMING_SNAKE_CASE__ ) # load image processor __UpperCamelCase =DetaImageProcessor(format='coco_detection' ) # verify our conversion on image __UpperCamelCase =prepare_img() __UpperCamelCase =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __UpperCamelCase =encoding['pixel_values'] __UpperCamelCase =model(pixel_values.to(SCREAMING_SNAKE_CASE__ ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCamelCase =torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __UpperCamelCase =torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __UpperCamelCase =torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __UpperCamelCase =torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(SCREAMING_SNAKE_CASE__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(SCREAMING_SNAKE_CASE__ ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'jozhang97/{model_name}' ) processor.push_to_hub(F'jozhang97/{model_name}' ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
117
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Dict = '''xlnet''' _snake_case : Optional[int] = ['''mems'''] _snake_case : List[str] = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _UpperCamelCase=3_2_0_0_0 , _UpperCamelCase=1_0_2_4 , _UpperCamelCase=2_4 , _UpperCamelCase=1_6 , _UpperCamelCase=4_0_9_6 , _UpperCamelCase="gelu" , _UpperCamelCase=True , _UpperCamelCase="bi" , _UpperCamelCase=0.02 , _UpperCamelCase=1E-12 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=-1 , _UpperCamelCase=False , _UpperCamelCase="last" , _UpperCamelCase=True , _UpperCamelCase="tanh" , _UpperCamelCase=0.1 , _UpperCamelCase=5 , _UpperCamelCase=5 , _UpperCamelCase=5 , _UpperCamelCase=1 , _UpperCamelCase=2 , **_UpperCamelCase , ) -> Any: UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : int = d_model UpperCAmelCase_ : Any = n_layer UpperCAmelCase_ : Tuple = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) UpperCAmelCase_ : Dict = d_model // n_head UpperCAmelCase_ : int = ff_activation UpperCAmelCase_ : Tuple = d_inner UpperCAmelCase_ : Any = untie_r UpperCAmelCase_ : Optional[int] = attn_type UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : int = dropout UpperCAmelCase_ : Optional[int] = mem_len UpperCAmelCase_ : str = reuse_len UpperCAmelCase_ : List[Any] = bi_data UpperCAmelCase_ : Tuple = clamp_len UpperCAmelCase_ : Dict = same_length UpperCAmelCase_ : int = summary_type UpperCAmelCase_ : Optional[Any] = summary_use_proj UpperCAmelCase_ : List[str] = summary_activation UpperCAmelCase_ : Dict = summary_last_dropout UpperCAmelCase_ : str = start_n_top UpperCAmelCase_ : str = end_n_top UpperCAmelCase_ : Any = bos_token_id UpperCAmelCase_ : Tuple = pad_token_id UpperCAmelCase_ : str = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCamelCase , ) UpperCAmelCase_ : Any = kwargs['use_cache'] UpperCAmelCase_ : Union[str, Any] = use_mems_eval UpperCAmelCase_ : Union[str, Any] = use_mems_train super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> Tuple: logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
29
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCAmelCase = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __snake_case : str ): '''simple docstring''' if "://" in dataset_path: UpperCAmelCase_ : int = dataset_path.split('://' )[1] return dataset_path def lowercase__ ( __snake_case : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = not is_remote_filesystem(__snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__snake_case ) , fs._strip_protocol(__snake_case ) ) else: fs.mv(__snake_case , __snake_case , recursive=__snake_case ) def lowercase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = threading.Lock()
29
1
snake_case_ = { '''km/h''': 1.0, '''m/s''': 3.6, '''mph''': 1.60_9344, '''knot''': 1.852, } snake_case_ = { '''km/h''': 1.0, '''m/s''': 0.2_7777_7778, '''mph''': 0.6_2137_1192, '''knot''': 0.5_3995_6803, } def snake_case__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: lowercase__ : Union[str, Any] = ( f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" f"""Valid values are: {", ".join(SCREAMING_SNAKE_CASE_ )}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
369
def snake_case__ ( SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case__ ( SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
216
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __a :Tuple = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowerCamelCase : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowerCamelCase : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __A ( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ): A_ = ZeroShotClassificationPipeline( model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __A ( self : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] ): A_ = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ )]} ) # No kwarg A_ = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ )]} ) A_ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ )]} ) A_ = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) A_ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) A_ = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ )]} ) # https://github.com/huggingface/transformers/issues/13846 A_ = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(1 ) ] , ) A_ = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(2 ) ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier(SCREAMING_SNAKE_CASE_ , candidate_labels="politics" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("Who are you voting for in 2020?" , candidate_labels=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=SCREAMING_SNAKE_CASE_ , ) self.run_entailment_id(SCREAMING_SNAKE_CASE_ ) def __A ( self : Union[str, Any] , UpperCAmelCase : Tuple ): A_ = zero_shot_classifier.model.config A_ = config.labelaid A_ = zero_shot_classifier.entailment_id A_ = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) A_ = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) A_ = original_labelaid self.assertEqual(SCREAMING_SNAKE_CASE_ , zero_shot_classifier.entailment_id ) @require_torch def __A ( self : Optional[Any] ): A_ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def __A ( self : Any ): A_ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], } , ) @require_tf def __A ( self : List[Any] ): A_ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], } , ) @slow @require_torch def __A ( self : Dict ): A_ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], } , ) A_ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def __A ( self : Dict ): A_ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], } , ) A_ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], } , )
312
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : int = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ): a__ = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) a__ = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) a__ = in_proj_weight[ : encoder_config.hidden_size, : ] a__ = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] a__ = in_proj_weight[ -encoder_config.hidden_size :, : ] def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] ): a__ = dct.pop(__lowerCAmelCase ) a__ = val def __lowercase ( __lowerCAmelCase : Optional[Any] ): if "handwritten" in checkpoint_url: a__ = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: a__ = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('RGB' ) return im @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ): a__ = ViTConfig(image_size=3_8_4 , qkv_bias=__lowerCAmelCase ) a__ = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: a__ = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder a__ = 1_0_2_4 a__ = 4_0_9_6 a__ = 2_4 a__ = 1_6 a__ = 1_0_2_4 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: a__ = False a__ = 'relu' a__ = 1_0_2_4 a__ = True a__ = False a__ = False # load HuggingFace model a__ = ViTModel(__lowerCAmelCase , add_pooling_layer=__lowerCAmelCase ) a__ = TrOCRForCausalLM(__lowerCAmelCase ) a__ = VisionEncoderDecoderModel(encoder=__lowerCAmelCase , decoder=__lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys a__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='cpu' , check_hash=__lowerCAmelCase )['model'] a__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): a__ = state_dict.pop(__lowerCAmelCase ) if key.startswith('decoder' ) and "output_projection" not in key: a__ = val else: a__ = val # load state dict model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image a__ = ViTImageProcessor(size=encoder_config.image_size ) a__ = RobertaTokenizer.from_pretrained('roberta-large' ) a__ = TrOCRProcessor(__lowerCAmelCase , __lowerCAmelCase ) a__ = processor(images=prepare_img(__lowerCAmelCase ) , return_tensors='pt' ).pixel_values # verify logits a__ = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) a__ = model(pixel_values=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ) a__ = outputs.logits a__ = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: a__ = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: a__ = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: a__ = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: a__ = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , __lowerCAmelCase , atol=1E-3 ), "First elements of logits not as expected" Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) snake_case : int = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
109
def __lowercase ( __lowerCAmelCase : int ): if num <= 0: raise ValueError('Input must be a positive integer' ) a__ = [True] * (num + 1) a__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowerCAmelCase ): a__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() snake_case : Optional[Any] = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
109
1
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) lowercase : Any = str(_lowerCamelCase ) lowercase : List[Any] = """""".join(sorted(_lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _snake_case( SCREAMING_SNAKE_CASE__ = 99 ) -> int: if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) lowercase : int = 0 lowercase : str = 1 while True: if check_bouncy(_lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
20
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) _a : Any = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = "swinv2" _UpperCamelCase : List[str] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a__=224 , a__=4 , a__=3 , a__=96 , a__=[2, 2, 6, 2] , a__=[3, 6, 12, 24] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.0_2 , a__=1e-5 , a__=32 , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : int = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : List[Any] = embed_dim _lowerCAmelCase : Optional[int] = depths _lowerCAmelCase : List[Any] = len(a__ ) _lowerCAmelCase : Any = num_heads _lowerCAmelCase : Tuple = window_size _lowerCAmelCase : Tuple = mlp_ratio _lowerCAmelCase : Any = qkv_bias _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : str = drop_path_rate _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : List[str] = use_absolute_embeddings _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Any = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Tuple = int(embed_dim * 2 ** (len(a__ ) - 1) ) _lowerCAmelCase : Tuple = (0, 0, 0, 0)
44
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :List[str] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) lowercase :Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase :Optional[int] = tokenizer("Hello there" , return_tensors="tf" ).input_ids lowercase :List[str] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids lowercase :int = model(_lowerCAmelCase , labels=_lowerCAmelCase ).loss lowercase :Dict = -tf.math.reduce_mean(_lowerCAmelCase ).numpy() lowercase :Dict = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
158
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase : str = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _UpperCAmelCase : Dict = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCAmelCase): _a = '''mask2former''' _a = ['''swin'''] _a = {'''hidden_size''': '''hidden_dim'''} def __init__( self: List[str] , _lowerCAmelCase: Optional[Dict] = None , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 2_56 , _lowerCAmelCase: int = 10_24 , _lowerCAmelCase: str = "relu" , _lowerCAmelCase: int = 6 , _lowerCAmelCase: int = 10 , _lowerCAmelCase: int = 8 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 20_48 , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = False , _lowerCAmelCase: int = 4 , _lowerCAmelCase: int = 2_55 , _lowerCAmelCase: int = 1_00 , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: float = 2.0 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: int = 1_25_44 , _lowerCAmelCase: float = 3.0 , _lowerCAmelCase: float = 0.75 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: float = 1.0 , _lowerCAmelCase: bool = True , _lowerCAmelCase: List[int] = [4, 8, 16, 32] , _lowerCAmelCase: bool = None , **_lowerCAmelCase: List[str] , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) lowercase :Optional[int] = CONFIG_MAPPING["swin"]( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCAmelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :List[str] = backbone_config.pop("model_type" ) lowercase :Tuple = CONFIG_MAPPING[backbone_model_type] lowercase :int = config_class.from_dict(_lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported )}" ) lowercase :Optional[Any] = backbone_config lowercase :Union[str, Any] = feature_size lowercase :Any = mask_feature_size lowercase :List[Any] = hidden_dim lowercase :Optional[int] = encoder_feedforward_dim lowercase :Dict = activation_function lowercase :Tuple = encoder_layers lowercase :List[str] = decoder_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[Any] = dropout lowercase :Any = dim_feedforward lowercase :List[Any] = pre_norm lowercase :List[Any] = enforce_input_projection lowercase :Optional[int] = common_stride lowercase :List[Any] = ignore_value lowercase :Optional[int] = num_queries lowercase :List[str] = no_object_weight lowercase :Dict = class_weight lowercase :Union[str, Any] = mask_weight lowercase :List[Any] = dice_weight lowercase :Dict = train_num_points lowercase :Optional[int] = oversample_ratio lowercase :List[Any] = importance_sample_ratio lowercase :Dict = init_std lowercase :Union[str, Any] = init_xavier_std lowercase :Optional[Any] = use_auxiliary_loss lowercase :Any = feature_strides lowercase :int = output_auxiliary_logits lowercase :Dict = decoder_layers super().__init__(**_lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Tuple , _lowerCAmelCase: PretrainedConfig , **_lowerCAmelCase: str ): return cls( backbone_config=_lowerCAmelCase , **_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :str = copy.deepcopy(self.__dict__ ) lowercase :Optional[Any] = self.backbone_config.to_dict() lowercase :Union[str, Any] = self.__class__.model_type return output
158
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : str = """▁""" lowercase : List[str] = {"""vocab_file""": """sentencepiece.bpe.model"""} lowercase : str = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } lowercase : Dict = { """facebook/xglm-564M""": 2048, } class __snake_case ( lowerCAmelCase ): _a : Optional[Any]= VOCAB_FILES_NAMES _a : str= PRETRAINED_VOCAB_FILES_MAP _a : str= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Dict= ["input_ids", "attention_mask"] def __init__( self ,snake_case ,snake_case="<s>" ,snake_case="</s>" ,snake_case="</s>" ,snake_case="<s>" ,snake_case="<unk>" ,snake_case="<pad>" ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : int = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase : Optional[int] = 7 lowercase : Union[str, Any] = [f"<madeupword{i}>" for i in range(self.num_madeup_words )] lowercase : Optional[Any] = kwargs.get("""additional_special_tokens""" ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case ,eos_token=snake_case ,unk_token=snake_case ,sep_token=snake_case ,cls_token=snake_case ,pad_token=snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**snake_case ,) lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case ) ) lowercase : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase : Any = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase : Tuple = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowercase : Optional[Any] = len(self.sp_model ) lowercase : Tuple = {f"<madeupword{i}>": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case ) lowercase : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' lowercase : Optional[Any] = self.__dict__.copy() lowercase : Union[str, Any] = None lowercase : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowercase : List[str] = {} lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase : Any = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case ,token_ids_a=snake_case ,already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.sp_model.encode(snake_case ,out_type=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase : str = self.sp_model.PieceToId(snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = """""".join(snake_case ).replace(snake_case ,""" """ ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase : List[Any] = os.path.join( snake_case ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case ,"""wb""" ) as fi: lowercase : int = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
20
from itertools import permutations def _a ( lowerCamelCase: tuple ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __A = [7, 11, 13, 17] for i, test in enumerate(lowerCamelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _a ( lowerCamelCase: int = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(lowerCamelCase , lowerCamelCase ) ) ) for num in permutations(range(lowerCamelCase ) ) if is_substring_divisible(lowerCamelCase ) ) if __name__ == "__main__": print(f'{solution() = }')
117
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): _snake_case : Any = '''hf-internal-testing/tiny-random-t5''' _snake_case : str = AutoTokenizer.from_pretrained(__A ) _snake_case : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(__A ) _snake_case : List[Any] = tokenizer("This is me" , return_tensors="pt" ) _snake_case : Optional[int] = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _snake_case : List[str] = model.generate(**__A ) _snake_case : Optional[Any] = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) _snake_case : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(__A ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _snake_case : Optional[int] = model_reloaded.generate(**__A ) self.assertTrue(torch.allclose(__A , __A ) ) def UpperCamelCase ( self ): _snake_case : List[Any] = '''hf-internal-testing/tiny-random-t5''' _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(__A ) _snake_case : int = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__A ): model.save_pretrained(__A ) _snake_case : Tuple = model.reverse_bettertransformer() model.save_pretrained(__A )
361
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] __SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} __SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def snake_case (__lowercase , __lowercase ) -> str | None: '''simple docstring''' _snake_case : str = "" _snake_case : int _snake_case : int _snake_case : int for keychar, cipherchar in zip(cycle(__lowercase ) , __lowercase ): _snake_case : str = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__lowercase ) return decoded def snake_case (__lowercase ) -> list[str]: '''simple docstring''' _snake_case : list[str] = [] for key in product(__lowercase , repeat=3 ): _snake_case : Union[str, Any] = try_key(__lowercase , __lowercase ) if encoded is not None: possibles.append(__lowercase ) return possibles def snake_case (__lowercase , __lowercase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def snake_case (__lowercase = "p059_cipher.txt" ) -> int: '''simple docstring''' _snake_case : list[int] _snake_case : list[str] _snake_case : str _snake_case : str _snake_case : str = Path(__lowercase ).parent.joinpath(__lowercase ).read_text(encoding="utf-8" ) _snake_case : Dict = [int(__lowercase ) for number in data.strip().split("," )] _snake_case : Tuple = filter_valid_chars(__lowercase ) for common_word in COMMON_WORDS: _snake_case : Optional[int] = filter_common_word(__lowercase , __lowercase ) if len(__lowercase ) == 1: break _snake_case : int = possibles[0] return sum(ord(__lowercase ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
284
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } UpperCamelCase__ = { '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } UpperCamelCase__ = { '''jukebox''': 5_1_2, } class lowerCamelCase_ ( __lowercase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , _A : Tuple , _A : int , _A : str , _A : int=["v3", "v2", "v2"] , _A : Union[str, Any]=512 , _A : Tuple=5 , _A : int="<|endoftext|>" , **_A : int , ): '''simple docstring''' UpperCAmelCase__ : str = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token super().__init__( unk_token=snake_case_ , n_genres=snake_case_ , version=snake_case_ , max_n_lyric_tokens=snake_case_ , **snake_case_ , ) UpperCAmelCase__ : Any = version UpperCAmelCase__ : Any = max_n_lyric_tokens UpperCAmelCase__ : List[str] = n_genres with open(snake_case_ , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase__ : int = json.load(snake_case_ ) with open(snake_case_ , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase__ : List[str] = json.load(snake_case_ ) with open(snake_case_ , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase__ : Dict = json.load(snake_case_ ) UpperCAmelCase__ : Optional[Any] = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: UpperCAmelCase__ : str = oov.replace(R'''\-\'''' , R'''\-+\'''' ) UpperCAmelCase__ : Dict = regex.compile(snake_case_ ) UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in self.artists_encoder.items()} UpperCAmelCase__ : Optional[int] = {v: k for k, v in self.genres_encoder.items()} UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def lowercase_ ( self : Tuple ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowercase_ ( self : List[str] , _A : Union[str, Any] , _A : Optional[Any] , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [self.artists_encoder.get(snake_case_ , 0 ) for artist in list_artists] for genres in range(len(snake_case_ ) ): UpperCAmelCase__ : List[str] = [self.genres_encoder.get(snake_case_ , 0 ) for genre in list_genres[genres]] UpperCAmelCase__ : str = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) UpperCAmelCase__ : str = [[self.lyrics_encoder.get(snake_case_ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' return list(snake_case_ ) def lowercase_ ( self : Optional[int] , _A : int , _A : Optional[Any] , _A : int , **_A : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_for_tokenization(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase__ : Tuple = self._tokenize(snake_case_ ) return artist, genre, lyrics def lowercase_ ( self : Optional[Any] , _A : str , _A : str , _A : str , _A : bool = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": UpperCAmelCase__ : Union[str, Any] = artists[idx].lower() UpperCAmelCase__ : List[Any] = [genres[idx].lower()] else: UpperCAmelCase__ : Dict = self._normalize(artists[idx] ) + '''.v2''' UpperCAmelCase__ : List[Any] = [ self._normalize(snake_case_ ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": UpperCAmelCase__ : List[Any] = regex.compile(R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) UpperCAmelCase__ : str = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' UpperCAmelCase__ : str = {vocab[index]: index + 1 for index in range(len(snake_case_ ) )} UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : Dict = len(snake_case_ ) + 1 UpperCAmelCase__ : Dict = self.vocab UpperCAmelCase__ : Optional[int] = {v: k for k, v in self.vocab.items()} UpperCAmelCase__ : Tuple = '''''' else: UpperCAmelCase__ : str = regex.compile(R'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) UpperCAmelCase__ : Optional[int] = self._run_strip_accents(snake_case_ ) UpperCAmelCase__ : int = lyrics.replace('''\\''' , '''\n''' ) UpperCAmelCase__ : List[Any] = self.out_of_vocab.sub('''''' , snake_case_ ), [], [] return artists, genres, lyrics def lowercase_ ( self : Tuple , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = unicodedata.normalize('''NFD''' , snake_case_ ) UpperCAmelCase__ : str = [] for char in text: UpperCAmelCase__ : Optional[Any] = unicodedata.category(snake_case_ ) if cat == "Mn": continue output.append(snake_case_ ) return "".join(snake_case_ ) def lowercase_ ( self : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = ( [chr(snake_case_ ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(snake_case_ ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(snake_case_ ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) UpperCAmelCase__ : Any = frozenset(snake_case_ ) UpperCAmelCase__ : Dict = re.compile(R'''_+''' ) UpperCAmelCase__ : Union[str, Any] = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) UpperCAmelCase__ : Optional[int] = pattern.sub('''_''' , snake_case_ ).strip('''_''' ) return text def lowercase_ ( self : Optional[Any] , _A : List[str] ): '''simple docstring''' return " ".join(snake_case_ ) def lowercase_ ( self : Union[str, Any] , _A : Tuple , _A : Optional[Union[str, TensorType]] = None , _A : bool = False ): '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): UpperCAmelCase__ : Optional[Any] = TensorType(snake_case_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf UpperCAmelCase__ : int = tf.constant UpperCAmelCase__ : Union[str, Any] = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch UpperCAmelCase__ : int = torch.tensor UpperCAmelCase__ : Any = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 UpperCAmelCase__ : Tuple = jnp.array UpperCAmelCase__ : Tuple = _is_jax else: UpperCAmelCase__ : int = np.asarray UpperCAmelCase__ : Any = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: UpperCAmelCase__ : int = [inputs] if not is_tensor(snake_case_ ): UpperCAmelCase__ : Tuple = as_tensor(snake_case_ ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Optional[int] , _A : List[Any] , _A : Optional[int] , _A : int="" , _A : List[Any]="pt" ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [0, 0, 0] UpperCAmelCase__ : Any = [artist] * len(self.version ) UpperCAmelCase__ : List[str] = [genres] * len(self.version ) UpperCAmelCase__ : str = self.tokenize(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase__ : List[str] = self._convert_token_to_id(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase__ : Union[str, Any] = [-INFINITY] * len(full_tokens[-1] ) UpperCAmelCase__ : List[str] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=snake_case_ ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def lowercase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : Optional[Any] = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=snake_case_ ) ) UpperCAmelCase__ : int = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=snake_case_ ) ) UpperCAmelCase__ : str = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=snake_case_ ) ) return (artists_file, genres_file, lyrics_file) def lowercase_ ( self : List[str] , _A : Any , _A : List[str] , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.artists_decoder.get(snake_case_ ) UpperCAmelCase__ : List[Any] = [self.genres_decoder.get(snake_case_ ) for genre in genres_index] UpperCAmelCase__ : Union[str, Any] = [self.lyrics_decoder.get(snake_case_ ) for character in lyric_index] return artist, genres, lyrics
181
import colorsys from PIL import Image # type: ignore def __UpperCamelCase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : int ): __a : Any = x __a : List[Any] = y for step in range(lowerCAmelCase__ ): # noqa: B007 __a : List[Any] = a * a - b * b + x __a : Tuple = 2 * a * b + y __a : Optional[int] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __UpperCamelCase ( lowerCAmelCase__ : float ): if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def __UpperCamelCase ( lowerCAmelCase__ : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def __UpperCamelCase ( lowerCAmelCase__ : int = 8_0_0 , lowerCAmelCase__ : int = 6_0_0 , lowerCAmelCase__ : float = -0.6 , lowerCAmelCase__ : float = 0 , lowerCAmelCase__ : float = 3.2 , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : bool = True , ): __a : int = Image.new('''RGB''' , (image_width, image_height) ) __a : Dict = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates __a : Optional[Any] = figure_width / image_width * image_height __a : str = figure_center_x + (image_x / image_width - 0.5) * figure_width __a : str = figure_center_y + (image_y / image_height - 0.5) * figure_height __a : Tuple = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __a : Optional[int] = get_color_coded_rgb(lowerCAmelCase__ ) else: __a : Optional[Any] = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowercase__ =get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
216
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Union[str, Any] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[int]: super().__init__(*__magic_name__ , **__magic_name__ ) self.check_model_type(__magic_name__ ) def __A ( self : Optional[int] , __magic_name__ : str=None , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[Any]=None , **__magic_name__ : List[Any] ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = {}, {} if padding is not None: SCREAMING_SNAKE_CASE_ = padding if truncation is not None: SCREAMING_SNAKE_CASE_ = truncation if top_k is not None: SCREAMING_SNAKE_CASE_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : int , __magic_name__ : Union["Image.Image", str] , __magic_name__ : str = None , **__magic_name__ : List[Any] ) -> List[str]: if isinstance(__magic_name__ , (Image.Image, str) ) and isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = {"image": image, "question": question} else: SCREAMING_SNAKE_CASE_ = image SCREAMING_SNAKE_CASE_ = super().__call__(__magic_name__ , **__magic_name__ ) return results def __A ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Any=False , __magic_name__ : Union[str, Any]=False ) -> Any: SCREAMING_SNAKE_CASE_ = load_image(inputs["image"] ) SCREAMING_SNAKE_CASE_ = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=__magic_name__ , truncation=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.image_processor(images=__magic_name__ , return_tensors=self.framework ) model_inputs.update(__magic_name__ ) return model_inputs def __A ( self : Optional[int] , __magic_name__ : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.model(**__magic_name__ ) return model_outputs def __A ( self : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple=5 ) -> List[str]: if top_k > self.model.config.num_labels: SCREAMING_SNAKE_CASE_ = self.model.config.num_labels if self.framework == "pt": SCREAMING_SNAKE_CASE_ = model_outputs.logits.sigmoid()[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = probs.topk(__magic_name__ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) SCREAMING_SNAKE_CASE_ = scores.tolist() SCREAMING_SNAKE_CASE_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__magic_name__ , __magic_name__ )]
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( __UpperCamelCase ): return x + 2 class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) SCREAMING_SNAKE_CASE_ = "x = y" SCREAMING_SNAKE_CASE_ = {"y": 5} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 5, "y": 5} ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = "y = add_two(x)" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result is None assert "tried to execute add_two" in out.out def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "x = 3\ny = 5" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = "text = f'This is x: {x}.'" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__magic_name__ , {"x": 3, "text": "This is x: 3."} ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = "if x <= 3:\n y = 2\nelse:\n y = 5" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 2} ) SCREAMING_SNAKE_CASE_ = {"x": 8} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 8, "y": 5} ) def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertListEqual(__magic_name__ , [3, 5] ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "y = x" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 3} ) def __A ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]\ntest_list[1]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = "x = 0\nfor i in range(3):\n x = i" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"range": range} , state=__magic_name__ ) assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 2, "i": 2} )
305
1
"""simple docstring""" import numpy as np def _snake_case ( UpperCamelCase : np.array ): return 1 / (1 + np.exp(-vector )) def _snake_case ( UpperCamelCase : np.array ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
109
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging A: str = logging.get_logger(__name__) A: List[Any] = {"vocab_file": "vocab.txt"} A: List[str] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } A: Dict = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def _snake_case ( UpperCamelCase : int ): with open(UpperCamelCase , """r""" ) as f: UpperCAmelCase : int = f.read().splitlines() return [l.strip() for l in lines] class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : str = ['input_ids', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<cls>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="<eos>" , **_SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = load_vocab_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : List[str] = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : Any = unk_token UpperCAmelCase : str = cls_token UpperCAmelCase : int = pad_token UpperCAmelCase : Tuple = mask_token UpperCAmelCase : str = eos_token UpperCAmelCase : List[str] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return self._id_to_token.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return self._token_to_id.get(_SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return text.split() def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: '''simple docstring''' return len(self._id_to_token ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return self._token_to_id.get(_SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return self._id_to_token.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] = [self.cls_token_id] UpperCAmelCase : Tuple = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : str = [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: mask += [0] * len(_SCREAMING_SNAKE_CASE ) + [1] return mask def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> int: '''simple docstring''' return super()._add_tokens(_SCREAMING_SNAKE_CASE , special_tokens=_SCREAMING_SNAKE_CASE )
109
1
"""simple docstring""" _lowerCAmelCase : Optional[Any] = 8.31_44_62 # Unit - J mol-1 K-1 def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : float , snake_case : float )-> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : float , snake_case : float )-> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
357
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 # setable values SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None @classmethod def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ =42 @property def __a ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): '''simple docstring''' UpperCAmelCase__ : Tuple = dtype def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: UpperCAmelCase__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Optional[Any] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = timestep if key is None: UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : int = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : List[str] = 1 - alpha_prod_t UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 ) UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
0
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = parent _lowerCAmelCase = config_class _lowerCAmelCase = has_text_modality _lowerCAmelCase = kwargs _lowerCAmelCase = common_properties def _snake_case ( self ) -> int: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCAmelCase ): try: setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual( getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(_lowerCAmelCase , _lowerCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCAmelCase ): try: _lowerCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(_lowerCAmelCase , _lowerCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(_lowerCAmelCase , "config.json" ) config_first.to_json_file(_lowerCAmelCase ) _lowerCAmelCase = self.config_class.from_json_file(_lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = self.config_class.from_pretrained(_lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = "test" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) config_first.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = self.config_class.from_pretrained(_lowerCAmelCase , subfolder=_lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _lowerCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _snake_case ( self ) -> List[Any]: if self.config_class.is_composition: return _lowerCAmelCase = self.config_class() self.parent.assertIsNotNone(_lowerCAmelCase ) def _snake_case ( self ) -> str: _lowerCAmelCase = copy.deepcopy(_lowerCAmelCase ) _lowerCAmelCase = self.config_class(**_lowerCAmelCase ) _lowerCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCAmelCase , _lowerCAmelCase ) != value: wrong_values.append((key, getattr(_lowerCAmelCase , _lowerCAmelCase ), value) ) if len(_lowerCAmelCase ) > 0: _lowerCAmelCase = "\n".join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def _snake_case ( self ) -> List[str]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
158
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=False ): '''simple docstring''' _lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase = "" else: _lowerCAmelCase = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) _lowerCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = val def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' _lowerCAmelCase = ViTMSNConfig() _lowerCAmelCase = 1000 _lowerCAmelCase = "datasets/huggingface/label-files" _lowerCAmelCase = "imagenet-1k-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _lowerCAmelCase = 384 _lowerCAmelCase = 1536 _lowerCAmelCase = 6 elif "l16" in checkpoint_url: _lowerCAmelCase = 1024 _lowerCAmelCase = 4096 _lowerCAmelCase = 24 _lowerCAmelCase = 16 _lowerCAmelCase = 0.1 elif "b4" in checkpoint_url: _lowerCAmelCase = 4 elif "l7" in checkpoint_url: _lowerCAmelCase = 7 _lowerCAmelCase = 1024 _lowerCAmelCase = 4096 _lowerCAmelCase = 24 _lowerCAmelCase = 16 _lowerCAmelCase = 0.1 _lowerCAmelCase = ViTMSNModel(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["target_encoder"] _lowerCAmelCase = ViTImageProcessor(size=config.image_size ) remove_projection_head(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() _lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) _lowerCAmelCase = ViTImageProcessor( size=config.image_size , image_mean=SCREAMING_SNAKE_CASE_ , image_std=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _lowerCAmelCase = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: _lowerCAmelCase = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _lowerCAmelCase = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _lowerCAmelCase = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: _lowerCAmelCase = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
158
1
def a__ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) def a__ ( SCREAMING_SNAKE_CASE : list[float] ): '''simple docstring''' if point: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE , (int, float) ): lowerCAmelCase : int = ( "Expected a list of numbers as input, found " f"""{type(SCREAMING_SNAKE_CASE ).__name__}""" ) raise TypeError(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Optional[Any] = f"""Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(SCREAMING_SNAKE_CASE ) else: raise ValueError("Missing an input" ) def a__ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] =(DEISMultistepScheduler,) a : str =(("num_inference_steps", 25),) def lowercase__ ( self , **snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**snake_case__ ) return config def lowercase__ ( self , snake_case__=0 , **snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = dict(self.forward_default_kwargs ) lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps" , snake_case__ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : int = 0.1 * sample lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase : Any = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : List[str] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : List[str] = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = sample, sample for t in range(snake_case__ , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase : Any = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : str = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self , snake_case__=0 , **snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps" , snake_case__ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : Optional[int] = 0.1 * sample lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase : int = self.get_scheduler_config() lowerCAmelCase : Any = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : Any = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : int = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self , snake_case__=None , **snake_case__ ): """simple docstring""" if scheduler is None: lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : Any = scheduler_class(**snake_case__ ) lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : List[str] = scheduler_class(**snake_case__ ) lowerCAmelCase : int = 10 lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : Any = model(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : List[Any] = scheduler_class(**snake_case__ ) lowerCAmelCase : int = self.dummy_sample lowerCAmelCase : int = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): lowerCAmelCase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase : int = scheduler.timesteps[5] lowerCAmelCase : str = scheduler.timesteps[6] lowerCAmelCase : str = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase : Dict = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 lowerCAmelCase : List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase : Any = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : str = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : str = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=snake_case__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , algorithm_type="deis" , solver_order=snake_case__ , solver_type=snake_case__ , ) def lowercase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def lowercase__ ( self ): """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) lowerCAmelCase : Any = self.full_loop( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) assert not torch.isnan(snake_case__ ).any(), "Samples have nan numbers" def lowercase__ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=snake_case__ ) self.check_over_configs(lower_order_final=snake_case__ ) def lowercase__ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=snake_case__ , time_step=0 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.full_loop() lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) lowerCAmelCase : List[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : str = self.get_scheduler_config(thresholding=snake_case__ , dynamic_thresholding_ratio=0 ) lowerCAmelCase : Optional[Any] = scheduler_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = 10 lowerCAmelCase : Tuple = self.dummy_model() lowerCAmelCase : List[str] = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : Union[str, Any] = model(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample assert sample.dtype == torch.floataa
133
0
from __future__ import annotations UpperCamelCase__ = 10 def _a ( SCREAMING_SNAKE_CASE_ : list[int] ): __lowerCAmelCase = 1 __lowerCAmelCase = max(SCREAMING_SNAKE_CASE_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCAmelCase = int((i / placement) % RADIX ) buckets[tmp].append(SCREAMING_SNAKE_CASE_ ) # put each buckets' contents into list_of_ints __lowerCAmelCase = 0 for b in range(SCREAMING_SNAKE_CASE_ ): for i in buckets[b]: __lowerCAmelCase = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
92
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = filter(lambda lowerCAmelCase_ : p.requires_grad, model.parameters() ) __lowerCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Optional[int] ): if metric == "rouge2": __lowerCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __lowerCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __lowerCAmelCase = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) __lowerCAmelCase = ModelCheckpoint( dirpath=lowerCAmelCase_, filename=lowerCAmelCase_, monitor=F"""val_{metric}""", mode='max', save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Any ): return EarlyStopping( monitor=F"""val_{metric}""", mode='min' if 'loss' in metric else 'max', patience=lowerCAmelCase_, verbose=lowerCAmelCase_, ) class _UpperCAmelCase ( pl.Callback ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ) -> Any: __lowerCAmelCase = {f"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase_ ) @rank_zero_only def lowercase ( self : Optional[int] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=True ) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __lowerCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __lowerCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowerCAmelCase = od / 'test_results.txt' __lowerCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowerCAmelCase = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" __lowerCAmelCase = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'a+' ) as writer: for key in sorted(lowerCAmelCase_ ): if key in ["log", "progress_bar", "preds"]: continue __lowerCAmelCase = metrics[key] if isinstance(lowerCAmelCase_ , torch.Tensor ): __lowerCAmelCase = val.item() __lowerCAmelCase = f"""{key}: {val:.6f}\n""" writer.write(lowerCAmelCase_ ) if not save_generations: return if "preds" in metrics: __lowerCAmelCase = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(lowerCAmelCase_ ) @rank_zero_only def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> Dict: try: __lowerCAmelCase = pl_module.model.model.num_parameters() except AttributeError: __lowerCAmelCase = pl_module.model.num_parameters() __lowerCAmelCase = count_trainable_parameters(lowerCAmelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def lowercase ( self : int , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule ) -> Any: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase_ , lowerCAmelCase_ , 'test' ) @rank_zero_only def lowercase ( self : List[Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : Any ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
284
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: lowercase : Any = None lowercase : Tuple = logging.get_logger(__name__) lowercase : str = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowercase : Union[str, Any] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } lowercase : Optional[int] = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } lowercase : List[Any] = "▁" class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase = BigBirdTokenizer __lowercase = ["""input_ids""", """attention_mask"""] __lowercase = [] def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_="[CLS]" , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = vocab_file _snake_case = False if not self.vocab_file else True def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) return (out_vocab_file,)
160
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
160
1
import math def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): lowercase__ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__magic_name__ ) if number < 1: lowercase__ = f'''Input value of [number={number}] must be > 0''' raise ValueError(__magic_name__ ) elif number == 1: return 3 elif number == 2: return 5 else: lowercase__ = int(math.log(number // 3 , 2 ) ) + 2 lowercase__ = [3, 5] lowercase__ = 2 lowercase__ = 3 for block in range(1 , __magic_name__ ): for _ in range(__magic_name__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): A : Any = 0 try: A : List[str] = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : Tuple , *__a : List[str] , **__a : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : Any , *__a : List[str] , **__a : List[str] ) -> Any: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : int , *__a : int , **__a : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : Any , *__a : Dict , **__a : List[str] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : int , *__a : int , **__a : List[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *__a : str , **__a : int ) -> str: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : Optional[int] , *__a : List[Any] , **__a : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *__a : Dict , **__a : Dict ) -> int: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : List[Any] , *__a : int , **__a : Optional[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : int , *__a : List[Any] , **__a : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[int] , *__a : str , **__a : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : Tuple , *__a : Optional[int] , **__a : List[str] ) -> Any: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : Dict , *__a : Optional[Any] , **__a : Tuple ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> List[str]: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : List[Any] , *__a : Dict , **__a : str ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A_ ( cls : Tuple , *__a : int , **__a : Any ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
0
'''simple docstring''' import math def a_ ( _UpperCAmelCase : int ) -> list: __snake_case : Optional[Any] = [True] * n __snake_case : Optional[int] = False __snake_case : Dict = False __snake_case : List[Any] = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): __snake_case : Optional[int] = i * 2 while index < n: __snake_case : Union[str, Any] = False __snake_case : int = index + i __snake_case : Dict = [2] for i in range(3 ,_UpperCAmelCase ,2 ): if is_prime[i]: primes.append(_UpperCAmelCase ) return primes def a_ ( _UpperCAmelCase : int = 99_99_66_66_33_33 ) -> int: __snake_case : List[Any] = math.floor(math.sqrt(_UpperCAmelCase ) ) + 1_00 __snake_case : Tuple = prime_sieve(_UpperCAmelCase ) __snake_case : List[Any] = 0 __snake_case : List[Any] = 0 __snake_case : Optional[int] = primes[prime_index] while (last_prime**2) <= limit: __snake_case : Optional[int] = primes[prime_index + 1] __snake_case : Union[str, Any] = last_prime**2 __snake_case : Dict = next_prime**2 # Get numbers divisible by lps(current) __snake_case : Optional[Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __snake_case : Optional[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __snake_case : List[str] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __snake_case : Dict = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
0
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> Optional[int]: debug_launcher(test_script.main ) def __a ( self ) -> Optional[Any]: debug_launcher(test_ops.main )
231
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __lowerCAmelCase ( snake_case__=None ): if subparsers is not None: __UpperCamelCase : Any = subparsers.add_parser("test" ) else: __UpperCamelCase : Dict = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=snake_case__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=snake_case__ ) return parser def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : str = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: __UpperCamelCase : str = script_name else: __UpperCamelCase : Tuple = F"--config_file={args.config_file} {script_name}" __UpperCamelCase : Optional[Any] = ["accelerate-launch"] + test_args.split() __UpperCamelCase : Optional[Any] = execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __lowerCAmelCase ( ): __UpperCamelCase : int = test_command_parser() __UpperCamelCase : Union[str, Any] = parser.parse_args() test_command(snake_case__ ) if __name__ == "__main__": main()
298
0
"""simple docstring""" def a__ ( lowerCAmelCase__ = 10**9 ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 2 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase_ = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
363
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase = 250_004 lowerCamelCase = 250_020 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartTokenizer UpperCamelCase = MBartTokenizerFast UpperCamelCase = True UpperCamelCase = True def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = MBartTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ = MBartTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCAmelCase_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=True UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=False UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''facebook/mbart-large-en-ro''' UpperCamelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] UpperCamelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] UpperCamelCase = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def lowercase__ ( cls : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020 ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250026, 250001] ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = MBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 250004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250001, } , )
241
0
"""simple docstring""" from __future__ import annotations from typing import Any def _lowerCAmelCase ( UpperCamelCase_ ): create_state_space_tree(snake_case_ , [] , 0 ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if index == len(snake_case_ ): print(snake_case_ ) return create_state_space_tree(snake_case_ , snake_case_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(snake_case_ , snake_case_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __magic_name__ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
100
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=True , snake_case_="pt" ): '''simple docstring''' _UpperCAmelCase = {"add_prefix_space": True} if isinstance(snake_case_ , snake_case_ ) and not line.startswith(" " ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=snake_case_ , padding="max_length" if pad_to_max_length else None , truncation=snake_case_ , return_tensors=snake_case_ , add_special_tokens=snake_case_ , **snake_case_ , ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=None , ): '''simple docstring''' _UpperCAmelCase = input_ids.ne(snake_case_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str]="train" , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : List[str]="" , ): """simple docstring""" super().__init__() _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".source" ) _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".target" ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Optional[int] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : Optional[Any] , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("\n" ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("\n" ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_source_length , "right" ) _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_target_length , "right" ) _UpperCAmelCase = source_inputs["input_ids"].squeeze() _UpperCAmelCase = target_inputs["input_ids"].squeeze() _UpperCAmelCase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase ( snake_case__ : Optional[Any] ): """simple docstring""" return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def UpperCamelCase ( self : Any , snake_case__ : List[Any] ): """simple docstring""" _UpperCAmelCase = torch.stack([x["input_ids"] for x in batch] ) _UpperCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) _UpperCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) _UpperCAmelCase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase_ : Dict = getLogger(__name__) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return list(itertools.chain.from_iterable(snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(snake_case_ , os.path.join(snake_case_ , "git_log.json" ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=4 , **snake_case_ ): '''simple docstring''' with open(snake_case_ , "w" ) as f: json.dump(snake_case_ , snake_case_ , indent=snake_case_ , **snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' with open(snake_case_ ) as f: return json.load(snake_case_ ) def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=snake_case_ ) _UpperCAmelCase = { "repo_id": str(snake_case_ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return list(map(snake_case_ , snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' with open(snake_case_ , "wb" ) as f: return pickle.dump(snake_case_ , snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' def remove_articles(snake_case_ ): return re.sub(R"\b(a|an|the)\b" , " " , snake_case_ ) def white_space_fix(snake_case_ ): return " ".join(text.split() ) def remove_punc(snake_case_ ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case_ ) ) ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = Counter(snake_case_ ) & Counter(snake_case_ ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return normalize_answer(snake_case_ ) == normalize_answer(snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' assert len(snake_case_ ) == len(snake_case_ ) _UpperCAmelCase = 0 for hypo, pred in zip(snake_case_ , snake_case_ ): em += exact_match_score(snake_case_ , snake_case_ ) if len(snake_case_ ) > 0: em /= len(snake_case_ ) return {"em": em} def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return model_prefix.startswith("rag" ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = "dropout_rate" for p in extra_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): if not hasattr(snake_case_ , snake_case_ ) and not hasattr(snake_case_ , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(snake_case_ ) ) delattr(snake_case_ , snake_case_ ) continue _UpperCAmelCase = p if hasattr(snake_case_ , snake_case_ ) else equivalent_param[p] setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) delattr(snake_case_ , snake_case_ ) return hparams, config
133
0
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __snake_case : Tuple = """sshleifer/mar_enro_6_3_student""" class __SCREAMING_SNAKE_CASE ( __lowercase): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase__ = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=_UpperCamelCase , ) lowerCAmelCase__ = F"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" MarianMTModel.from_pretrained(_UpperCamelCase ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script lowerCAmelCase__ = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() lowerCAmelCase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase__ = bash_script.replace(_UpperCamelCase , str(_UpperCamelCase ) ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowerCAmelCase__ = F"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowerCAmelCase__ = ['finetune.py'] + bash_script.split() + args with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = pl.Trainer.add_argparse_args(_UpperCamelCase ) lowerCAmelCase__ = SummarizationModule.add_model_specific_args(_UpperCamelCase , os.getcwd() ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = main(_UpperCamelCase ) # Check metrics lowerCAmelCase__ = load_json(model.metrics_save_path ) lowerCAmelCase__ = metrics['val'][0] lowerCAmelCase__ = metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _UpperCamelCase ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase__ = os.listdir(_UpperCamelCase ) lowerCAmelCase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCAmelCase__ = os.path.join(args.output_dir , _UpperCamelCase ) lowerCAmelCase__ = torch.load(_UpperCamelCase , map_location='cpu' ) lowerCAmelCase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase__ = {os.path.basename(_UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class __SCREAMING_SNAKE_CASE ( __lowercase): @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = F"{self.test_file_dir_str}/test_data/wmt_en_ro" lowerCAmelCase__ = { '--fp16_opt_level=O1': '', '$MAX_LEN': 1_28, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script lowerCAmelCase__ = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) lowerCAmelCase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) lowerCAmelCase__ = bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase__ = bash_script.replace(_UpperCamelCase , str(_UpperCamelCase ) ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = bash_script.replace('--fp16' , '' ) lowerCAmelCase__ = 6 lowerCAmelCase__ = ( ['distillation.py'] + bash_script.split() + [ F"--output_dir={output_dir}", '--gpus=1', '--learning_rate=1e-3', F"--num_train_epochs={epochs}", '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = pl.Trainer.add_argparse_args(_UpperCamelCase ) lowerCAmelCase__ = SummarizationDistiller.add_model_specific_args(_UpperCamelCase , os.getcwd() ) lowerCAmelCase__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowerCAmelCase__ = distill_main(_UpperCamelCase ) # Check metrics lowerCAmelCase__ = load_json(model.metrics_save_path ) lowerCAmelCase__ = metrics['val'][0] lowerCAmelCase__ = metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _UpperCamelCase ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase__ = os.listdir(_UpperCamelCase ) lowerCAmelCase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCAmelCase__ = os.path.join(args.output_dir , _UpperCamelCase ) lowerCAmelCase__ = torch.load(_UpperCamelCase , map_location='cpu' ) lowerCAmelCase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase__ = {os.path.basename(_UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
122
import argparse import collections import json import os import re import string import sys import numpy as np __snake_case : Any = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) __snake_case : List[Any] = None def _UpperCamelCase ( ) -> Tuple: """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=UpperCamelCase_ , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=UpperCamelCase_ , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _UpperCamelCase ( UpperCamelCase_ : Dict ) -> List[str]: """simple docstring""" lowerCAmelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase__ = bool(qa['answers']['text'] ) return qid_to_has_ans def _UpperCamelCase ( UpperCamelCase_ : List[Any] ) -> Any: """simple docstring""" def remove_articles(UpperCamelCase_ : Optional[int] ): return ARTICLES_REGEX.sub(' ' , UpperCamelCase_ ) def white_space_fix(UpperCamelCase_ : Any ): return " ".join(text.split() ) def remove_punc(UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase_ : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase_ ) ) ) ) def _UpperCamelCase ( UpperCamelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if not s: return [] return normalize_answer(UpperCamelCase_ ).split() def _UpperCamelCase ( UpperCamelCase_ : int , UpperCamelCase_ : List[str] ) -> Tuple: """simple docstring""" return int(normalize_answer(UpperCamelCase_ ) == normalize_answer(UpperCamelCase_ ) ) def _UpperCamelCase ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = get_tokens(UpperCamelCase_ ) lowerCAmelCase__ = get_tokens(UpperCamelCase_ ) lowerCAmelCase__ = collections.Counter(UpperCamelCase_ ) & collections.Counter(UpperCamelCase_ ) lowerCAmelCase__ = sum(common.values() ) if len(UpperCamelCase_ ) == 0 or len(UpperCamelCase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowerCAmelCase__ = 1.0 * num_same / len(UpperCamelCase_ ) lowerCAmelCase__ = 1.0 * num_same / len(UpperCamelCase_ ) lowerCAmelCase__ = (2 * precision * recall) / (precision + recall) return fa def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase__ = qa['id'] lowerCAmelCase__ = [t for t in qa['answers']['text'] if normalize_answer(UpperCamelCase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase__ = [''] if qid not in preds: print(F"Missing prediction for {qid}" ) continue lowerCAmelCase__ = preds[qid] # Take max over all gold answers lowerCAmelCase__ = max(compute_exact(UpperCamelCase_ , UpperCamelCase_ ) for a in gold_answers ) lowerCAmelCase__ = max(compute_fa(UpperCamelCase_ , UpperCamelCase_ ) for a in gold_answers ) return exact_scores, fa_scores def _UpperCamelCase ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] ) -> str: """simple docstring""" lowerCAmelCase__ = {} for qid, s in scores.items(): lowerCAmelCase__ = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase__ = float(not qid_to_has_ans[qid] ) else: lowerCAmelCase__ = s return new_scores def _UpperCamelCase ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : str=None ) -> Union[str, Any]: """simple docstring""" if not qid_list: lowerCAmelCase__ = len(UpperCamelCase_ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: lowerCAmelCase__ = len(UpperCamelCase_ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def _UpperCamelCase ( UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" for k in new_eval: lowerCAmelCase__ = new_eval[k] def _UpperCamelCase ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] ) -> int: """simple docstring""" plt.step(UpperCamelCase_ , UpperCamelCase_ , color='b' , alpha=0.2 , where='post' ) plt.fill_between(UpperCamelCase_ , UpperCamelCase_ , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(UpperCamelCase_ ) plt.savefig(UpperCamelCase_ ) plt.clf() def _UpperCamelCase ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Any=None ) -> List[str]: """simple docstring""" lowerCAmelCase__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : na_probs[k] ) lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1.0 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = [1.0] lowerCAmelCase__ = [0.0] lowerCAmelCase__ = 0.0 for i, qid in enumerate(UpperCamelCase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase__ = true_pos / float(i + 1 ) lowerCAmelCase__ = true_pos / float(UpperCamelCase_ ) if i == len(UpperCamelCase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(UpperCamelCase_ ) recalls.append(UpperCamelCase_ ) if out_image: plot_pr_curve(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return {"ap": 100.0 * avg_prec} def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" if out_image_dir and not os.path.exists(UpperCamelCase_ ): os.makedirs(UpperCamelCase_ ) lowerCAmelCase__ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowerCAmelCase__ = make_precision_recall_eval( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , out_image=os.path.join(UpperCamelCase_ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) lowerCAmelCase__ = make_precision_recall_eval( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , out_image=os.path.join(UpperCamelCase_ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) lowerCAmelCase__ = {k: float(UpperCamelCase_ ) for k, v in qid_to_has_ans.items()} lowerCAmelCase__ = make_precision_recall_eval( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , out_image=os.path.join(UpperCamelCase_ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(UpperCamelCase_ , UpperCamelCase_ , 'pr_exact' ) merge_eval(UpperCamelCase_ , UpperCamelCase_ , 'pr_f1' ) merge_eval(UpperCamelCase_ , UpperCamelCase_ , 'pr_oracle' ) def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ) -> int: """simple docstring""" if not qid_list: return lowerCAmelCase__ = [na_probs[k] for k in qid_list] lowerCAmelCase__ = np.ones_like(UpperCamelCase_ ) / float(len(UpperCamelCase_ ) ) plt.hist(UpperCamelCase_ , weights=UpperCamelCase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(UpperCamelCase_ , F"na_prob_hist_{name}.png" ) ) plt.clf() def _UpperCamelCase ( UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str ) -> int: """simple docstring""" lowerCAmelCase__ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowerCAmelCase__ = num_no_ans lowerCAmelCase__ = cur_score lowerCAmelCase__ = 0.0 lowerCAmelCase__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : na_probs[k] ) for i, qid in enumerate(UpperCamelCase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase__ = scores[qid] else: if preds[qid]: lowerCAmelCase__ = -1 else: lowerCAmelCase__ = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase__ = cur_score lowerCAmelCase__ = na_probs[qid] return 100.0 * best_score / len(UpperCamelCase_ ), best_thresh def _UpperCamelCase ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = find_best_thresh(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = find_best_thresh(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = best_exact lowerCAmelCase__ = exact_thresh lowerCAmelCase__ = best_fa lowerCAmelCase__ = fa_thresh def _UpperCamelCase ( ) -> Dict: """simple docstring""" with open(OPTS.data_file ) as f: lowerCAmelCase__ = json.load(UpperCamelCase_ ) lowerCAmelCase__ = dataset_json['data'] with open(OPTS.pred_file ) as f: lowerCAmelCase__ = json.load(UpperCamelCase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowerCAmelCase__ = json.load(UpperCamelCase_ ) else: lowerCAmelCase__ = {k: 0.0 for k in preds} lowerCAmelCase__ = make_qid_to_has_ans(UpperCamelCase_ ) # maps qid to True/False lowerCAmelCase__ = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase__ = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase__ , lowerCAmelCase__ = get_raw_scores(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = apply_no_ans_threshold(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , OPTS.na_prob_thresh ) lowerCAmelCase__ = apply_no_ans_threshold(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , OPTS.na_prob_thresh ) lowerCAmelCase__ = make_eval_dict(UpperCamelCase_ , UpperCamelCase_ ) if has_ans_qids: lowerCAmelCase__ = make_eval_dict(UpperCamelCase_ , UpperCamelCase_ , qid_list=UpperCamelCase_ ) merge_eval(UpperCamelCase_ , UpperCamelCase_ , 'HasAns' ) if no_ans_qids: lowerCAmelCase__ = make_eval_dict(UpperCamelCase_ , UpperCamelCase_ , qid_list=UpperCamelCase_ ) merge_eval(UpperCamelCase_ , UpperCamelCase_ , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , OPTS.out_image_dir ) histogram_na_prob(UpperCamelCase_ , UpperCamelCase_ , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(UpperCamelCase_ , UpperCamelCase_ , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) else: print(json.dumps(UpperCamelCase_ , indent=2 ) ) if __name__ == "__main__": __snake_case : int = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
122
1
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="resnet50" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , ): __a : Any = parent __a : Dict = out_indices if out_indices is not None else [4] __a : List[Any] = stage_names __a : str = out_features __a : int = backbone __a : Optional[int] = batch_size __a : Dict = image_size __a : List[Any] = num_channels __a : str = use_pretrained_backbone __a : int = is_training def _lowerCamelCase ( self ): __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : List[Any] = self.get_config() return config, pixel_values def _lowerCamelCase ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = TimmBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __a : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a : int = config_and_inputs __a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class __lowercase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (TimmBackbone,) if is_torch_available() else () __lowerCAmelCase = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : Tuple = TimmBackboneModelTester(self ) __a : Tuple = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self ): __a : Optional[int] = '''resnet18''' __a : Tuple = '''microsoft/resnet-18''' __a : int = AutoBackbone.from_pretrained(_UpperCAmelCase , use_timm_backbone=_UpperCAmelCase ) __a : Union[str, Any] = AutoBackbone.from_pretrained(_UpperCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __a : str = AutoBackbone.from_pretrained(_UpperCAmelCase , use_timm_backbone=_UpperCAmelCase , out_indices=[1, 2, 3] ) __a : str = AutoBackbone.from_pretrained(_UpperCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''Safetensors is not supported by timm.''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : int = model_class(_UpperCAmelCase ) __a : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : List[Any] = [*signature.parameters.keys()] __a : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __a : Tuple = True __a : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __a : Any = self.all_model_classes[0] __a : Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) __a : Union[str, Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __a : int = model(**_UpperCAmelCase ) __a : Any = outputs[0][-1] # Encoder-/Decoder-only models __a : str = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __a : Optional[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _lowerCamelCase ( self ): __a , __a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Optional[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Optional[int] = model(**_UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __a : Union[str, Any] = copy.deepcopy(_UpperCAmelCase ) __a : Optional[Any] = None __a : List[str] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : List[str] = model(**_UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __a : List[str] = copy.deepcopy(_UpperCAmelCase ) __a : List[str] = False __a : int = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Tuple = model(**_UpperCAmelCase )
160
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: A = None A = logging.get_logger(__name__) A = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 A = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = TaTokenizer __lowerCAmelCase = [] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase=100 , _UpperCAmelCase=None , **_UpperCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __a : Dict = [f"""<extra_id_{i}>""" for i in range(_UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __a : Union[str, Any] = len(set(filter(lambda _UpperCAmelCase : bool('''extra_id_''' in str(_UpperCAmelCase ) ) , _UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , extra_ids=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __a : Union[str, Any] = vocab_file __a : int = False if not self.vocab_file else True __a : List[str] = extra_ids @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __a : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCAmelCase , ) return max_model_length def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : Optional[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __a : List[str] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self ): return list( set(filter(lambda _UpperCAmelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self ): return [self.convert_tokens_to_ids(_UpperCAmelCase ) for token in self.get_sentinel_tokens()]
160
1
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=False ) -> Optional[int]: if isinstance(__lowercase , __lowercase ) and isinstance(__lowercase , __lowercase ): A: Union[str, Any] = len(set_a.intersection(__lowercase ) ) if alternative_union: A: List[Any] = len(__lowercase ) + len(__lowercase ) else: A: List[str] = len(set_a.union(__lowercase ) ) return intersection / union if isinstance(__lowercase , (list, tuple) ) and isinstance(__lowercase , (list, tuple) ): A: Dict = [element for element in set_a if element in set_b] if alternative_union: A: Union[str, Any] = len(__lowercase ) + len(__lowercase ) return len(__lowercase ) / union else: A: Dict = set_a + [element for element in set_b if element not in set_a] return len(__lowercase ) / len(__lowercase ) return len(__lowercase ) / len(__lowercase ) return None if __name__ == "__main__": UpperCamelCase = {'''a''', '''b''', '''c''', '''d''', '''e'''} UpperCamelCase = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
334
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' A: Tuple = None A: Dict = None A: Optional[int] = graph self._normalize_graph(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = len(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = None def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' if sources is int: A: Union[str, Any] = [sources] if sinks is int: A: Tuple = [sinks] if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: return A: List[str] = sources[0] A: Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE_ ) > 1 or len(SCREAMING_SNAKE_CASE_ ) > 1: A: Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A: Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A: Optional[Any] = max_input_flow A: Optional[Any] = 0 A: str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A: Optional[Any] = max_input_flow A: str = size - 1 def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A: Optional[Any] = algorithm(self ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = flow_network A: List[str] = flow_network.verticesCount A: Dict = flow_network.sourceIndex A: Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A: str = flow_network.graph A: str = False def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.executed: self._algorithm() A: str = True def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) # use this to save your result A: Any = -1 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] A: Any = [0] * self.verticies_count A: Optional[Any] = [0] * self.verticies_count def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A: str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): A: Any = vertices_list[i] A: str = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = 0 else: i += 1 A: Tuple = sum(self.preflow[self.source_index] ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.relabel(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> int: '''simple docstring''' A: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A: List[Any] = self.heights[to_index] if min_height is not None: A: int = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
334
1
from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=lowercase ): '''simple docstring''' __snake_case = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Tuple ) ->Dict: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any] ) ->Optional[int]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : Any , **__UpperCAmelCase : int ) ->Tuple: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowercase_ ( metaclass=lowercase ): '''simple docstring''' __snake_case = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[str] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : List[Any] ) ->Optional[int]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Optional[int] ) ->Any: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowercase_ ( metaclass=lowercase ): '''simple docstring''' __snake_case = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : str , *__UpperCAmelCase : str , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : int ) ->Tuple: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowercase_ ( metaclass=lowercase ): '''simple docstring''' __snake_case = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Dict ) ->Tuple: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : int , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : int ) ->Dict: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] , *__UpperCAmelCase : Any , **__UpperCAmelCase : List[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowercase_ ( metaclass=lowercase ): '''simple docstring''' __snake_case = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Union[str, Any] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Tuple ) ->Dict: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Any ) ->str: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : str , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowercase_ ( metaclass=lowercase ): '''simple docstring''' __snake_case = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : int , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Any: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Dict ) ->Any: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *__UpperCAmelCase : str , **__UpperCAmelCase : Union[str, Any] ) ->Optional[Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
0
import math def _a ( a :int ) -> list: a = [True] * n a = False a = False a = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): a = i * 2 while index < n: a = False a = index + i a = [2] for i in range(3 , a , 2 ): if is_prime[i]: primes.append(a ) return primes def _a ( a :int = 999_966_663_333 ) -> int: a = math.floor(math.sqrt(a ) ) + 100 a = prime_sieve(a ) a = 0 a = 0 a = primes[prime_index] while (last_prime**2) <= limit: a = primes[prime_index + 1] a = last_prime**2 a = next_prime**2 # Get numbers divisible by lps(current) a = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Optional[Any] ={'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] =[ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __snake_case : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
import string import numpy def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : int): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a ,lowerCamelCase_) class lowerCamelCase__ : '''simple docstring''' snake_case_ =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) snake_case_ =numpy.vectorize(lambda lowerCamelCase__: x % 36) snake_case_ =numpy.vectorize(lowerCamelCase__) def __init__(self ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = self.modulus(__lowerCamelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowerCAmelCase__ : Optional[int] = encrypt_key.shape[0] def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" return self.key_string.index(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str: """simple docstring""" return self.key_string[round(__lowerCamelCase )] def lowerCAmelCase__ (self ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCAmelCase__ : str = det % len(self.key_string ) lowerCAmelCase__ : Optional[Any] = len(self.key_string ) if greatest_common_divisor(__lowerCamelCase ,len(self.key_string ) ) != 1: lowerCAmelCase__ : List[str] = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str: """simple docstring""" lowerCAmelCase__ : Dict = [char for char in text.upper() if char in self.key_string] lowerCAmelCase__ : int = chars[-1] while len(__lowerCamelCase ) % self.break_key != 0: chars.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = self.process_text(text.upper() ) lowerCAmelCase__ : str = '''''' for i in range(0 ,len(__lowerCamelCase ) - self.break_key + 1 ,self.break_key ): lowerCAmelCase__ : Any = text[i : i + self.break_key] lowerCAmelCase__ : Dict = [self.replace_letters(__lowerCamelCase ) for char in batch] lowerCAmelCase__ : int = numpy.array([vec] ).T lowerCAmelCase__ : Union[str, Any] = self.modulus(self.encrypt_key.dot(__lowerCamelCase ) ).T.tolist()[ 0 ] lowerCAmelCase__ : Union[str, Any] = ''''''.join( self.replace_digits(__lowerCamelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase__ (self ) -> numpy.ndarray: """simple docstring""" lowerCAmelCase__ : Tuple = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCAmelCase__ : int = det % len(self.key_string ) lowerCAmelCase__ : Dict = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowerCAmelCase__ : Optional[Any] = i break lowerCAmelCase__ : Optional[Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowerCamelCase ) ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str: """simple docstring""" lowerCAmelCase__ : str = self.make_decrypt_key() lowerCAmelCase__ : List[str] = self.process_text(text.upper() ) lowerCAmelCase__ : Optional[Any] = '''''' for i in range(0 ,len(__lowerCamelCase ) - self.break_key + 1 ,self.break_key ): lowerCAmelCase__ : List[Any] = text[i : i + self.break_key] lowerCAmelCase__ : Tuple = [self.replace_letters(__lowerCamelCase ) for char in batch] lowerCAmelCase__ : Optional[Any] = numpy.array([vec] ).T lowerCAmelCase__ : Tuple = self.modulus(decrypt_key.dot(__lowerCamelCase ) ).T.tolist()[0] lowerCAmelCase__ : Optional[int] = ''''''.join( self.replace_digits(__lowerCamelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Any = int(input('''Enter the order of the encryption key: ''')) lowerCAmelCase__ : Union[str, Any] = [] print('''Enter each row of the encryption key with space separated integers''') for _ in range(lowerCamelCase_): lowerCAmelCase__ : int = [int(lowerCamelCase_) for x in input().split()] hill_matrix.append(lowerCamelCase_) lowerCAmelCase__ : List[str] = HillCipher(numpy.array(lowerCamelCase_)) print('''Would you like to encrypt or decrypt some text? (1 or 2)''') lowerCAmelCase__ : List[Any] = input('''\n1. Encrypt\n2. Decrypt\n''') if option == "1": lowerCAmelCase__ : Optional[int] = input('''What text would you like to encrypt?: ''') print('''Your encrypted text is:''') print(hc.encrypt(lowerCamelCase_)) elif option == "2": lowerCAmelCase__ : Dict = input('''What text would you like to decrypt?: ''') print('''Your decrypted text is:''') print(hc.decrypt(lowerCamelCase_)) if __name__ == "__main__": import doctest doctest.testmod() main()
94
0
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
198
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : int = 3 lowerCAmelCase_ : Dict = (32, 32) lowerCAmelCase_ : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a_ ) return image @property def lowerCamelCase ( self : List[Any] ): torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def lowerCamelCase ( self : Tuple ): torch.manual_seed(0 ) lowerCAmelCase_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowerCamelCase ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(a_ ) @property def lowerCamelCase ( self : Union[str, Any] ): def extract(*a_ : Tuple , **a_ : Tuple ): class __lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = torch.ones([0] ) def lowerCamelCase ( self : str , a_ : Optional[int] ): self.pixel_values.to(a_ ) return self return Out() return extract def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : List[Any] = self.dummy_cond_unet lowerCAmelCase_ : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_one=a_ , ) lowerCAmelCase_ : List[Any] = self.dummy_vae lowerCAmelCase_ : List[str] = self.dummy_text_encoder lowerCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ : Optional[Any] = StableDiffusionPipeline( unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : str = "A painting of a squirrel eating a burger" lowerCAmelCase_ : Any = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = sd_pipe([prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ : str = output.images lowerCAmelCase_ : Dict = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : str = sd_pipe( [prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=a_ , )[0] lowerCAmelCase_ : str = image[0, -3:, -3:, -1] lowerCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Any = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Union[str, Any] = self.dummy_cond_unet lowerCAmelCase_ : Any = PNDMScheduler(skip_prk_steps=a_ ) lowerCAmelCase_ : List[Any] = self.dummy_vae lowerCAmelCase_ : List[str] = self.dummy_text_encoder lowerCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ : List[str] = StableDiffusionPipeline( unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Optional[Any] = "A painting of a squirrel eating a burger" lowerCAmelCase_ : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : Any = sd_pipe([prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ : Union[str, Any] = output.images lowerCAmelCase_ : List[str] = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : Optional[int] = sd_pipe( [prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=a_ , )[0] lowerCAmelCase_ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=a_ ) assert isinstance(a_ , a_ ) assert isinstance(pipe.scheduler , a_ ) assert pipe.safety_checker is None lowerCAmelCase_ : str = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) lowerCAmelCase_ : List[str] = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase_ : Any = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : str = self.dummy_cond_unet lowerCAmelCase_ : str = PNDMScheduler(skip_prk_steps=a_ ) lowerCAmelCase_ : Tuple = self.dummy_vae lowerCAmelCase_ : Dict = self.dummy_text_encoder lowerCAmelCase_ : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 lowerCAmelCase_ : int = unet.half() lowerCAmelCase_ : Dict = vae.half() lowerCAmelCase_ : List[Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ : Optional[int] = StableDiffusionPipeline( unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : List[str] = "A painting of a squirrel eating a burger" lowerCAmelCase_ : Optional[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=a_ ) lowerCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : List[str] = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) lowerCAmelCase_ : Optional[int] = 40_03_66_03_46 lowerCAmelCase_ : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) lowerCAmelCase_ : Union[str, Any] = torch.manual_seed(a_ ) lowerCAmelCase_ : Union[str, Any] = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCAmelCase_ : Union[str, Any] = output.images lowerCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Union[str, Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) lowerCAmelCase_ : List[str] = torch.manual_seed(a_ ) lowerCAmelCase_ : Any = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ : Optional[Any] = output.images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Optional[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : str ): lowerCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=a_ ) lowerCAmelCase_ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Union[str, Any] = "padme amidala taking a bath artwork, safe for work, no nudity" lowerCAmelCase_ : Union[str, Any] = 27_34_97_17_55 lowerCAmelCase_ : Union[str, Any] = 7 lowerCAmelCase_ : str = torch.manual_seed(a_ ) lowerCAmelCase_ : Dict = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCAmelCase_ : Any = output.images lowerCAmelCase_ : int = image[0, -3:, -3:, -1] lowerCAmelCase_ : int = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 lowerCAmelCase_ : Optional[int] = torch.manual_seed(a_ ) lowerCAmelCase_ : Union[str, Any] = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ : Any = output.images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) lowerCAmelCase_ : Any = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Tuple = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) lowerCAmelCase_ : List[Any] = 10_44_35_52_34 lowerCAmelCase_ : Dict = 12 lowerCAmelCase_ : int = torch.manual_seed(a_ ) lowerCAmelCase_ : List[str] = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCAmelCase_ : int = output.images lowerCAmelCase_ : int = image[0, -3:, -3:, -1] lowerCAmelCase_ : int = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 lowerCAmelCase_ : int = torch.manual_seed(a_ ) lowerCAmelCase_ : Any = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ : Optional[Any] = output.images lowerCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : str = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
241
0
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''autoformer''' snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "student_t" , lowerCamelCase__ = "nll" , lowerCamelCase__ = 1 , lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7] , lowerCamelCase__ = True , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 64 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 32 , lowerCamelCase__ = 32 , lowerCamelCase__ = "gelu" , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = True , lowerCamelCase__=True , lowerCamelCase__ = 10 , lowerCamelCase__ = 25 , lowerCamelCase__ = 3 , **lowerCamelCase__ , ) -> List[Any]: '''simple docstring''' # time series specific configuration __lowerCamelCase = prediction_length __lowerCamelCase = context_length if context_length is not None else prediction_length __lowerCamelCase = distribution_output __lowerCamelCase = loss __lowerCamelCase = input_size __lowerCamelCase = num_time_features __lowerCamelCase = lags_sequence __lowerCamelCase = scaling __lowerCamelCase = num_dynamic_real_features __lowerCamelCase = num_static_real_features __lowerCamelCase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowerCamelCase__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase = cardinality else: __lowerCamelCase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowerCamelCase__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase = embedding_dimension else: __lowerCamelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCamelCase = num_parallel_samples # Transformer architecture configuration __lowerCamelCase = input_size * len(self.lags_sequence ) + self._number_of_features __lowerCamelCase = d_model __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_attention_heads __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = use_cache # Autoformer __lowerCamelCase = label_length __lowerCamelCase = moving_average __lowerCamelCase = autocorrelation_factor super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
348
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
1
from __future__ import annotations _A = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class lowercase_ : def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = graph # mapping node to its parent in resulting breadth first tree UpperCamelCase_ = {} UpperCamelCase_ = source_vertex def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = {self.source_vertex} UpperCamelCase_ = None UpperCamelCase_ = [self.source_vertex] # first in first out queue while queue: UpperCamelCase_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__UpperCamelCase ) UpperCamelCase_ = vertex queue.append(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex UpperCamelCase_ = self.parent.get(__UpperCamelCase ) if target_vertex_parent is None: UpperCamelCase_ = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__UpperCamelCase ) return self.shortest_path(__UpperCamelCase ) + f'''->{target_vertex}''' if __name__ == "__main__": _A = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
122
from __future__ import annotations def lowerCamelCase__ ( a__ : int | float | str , a__ : int | float | str ) -> list[str]: if nth_term == "": return [""] UpperCamelCase_ = int(a__ ) UpperCamelCase_ = int(a__ ) UpperCamelCase_ = [] for temp in range(int(a__ ) ): series.append(f'''1 / {pow(temp + 1 , int(a__ ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() _A = int(input('''Enter the last number (nth term) of the P-Series''')) _A = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
122
1
from bisect import bisect from itertools import accumulate def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ) -> Any: '''simple docstring''' _UpperCAmelCase = sorted(zip(snake_case__ , snake_case__ ) , key=lambda _UpperCAmelCase : x[0] / x[1] , reverse=snake_case__ ) _UpperCAmelCase = [i[0] for i in r], [i[1] for i in r] _UpperCAmelCase = list(accumulate(snake_case__ ) ) _UpperCAmelCase = bisect(snake_case__ , snake_case__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
365
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=A , ) assert hasattr(self , 'env') def _lowerCamelCase ( self : Any , A : Tuple=1) -> List[str]: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def _lowerCamelCase ( self : Dict , A : int) -> str: """simple docstring""" TrainingJobAnalytics(A).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" _UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe _UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' , 99_99_99) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , 'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , A)
290
0
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=False ): """simple docstring""" if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =len(set_a.intersection(lowerCAmelCase_ ) ) if alternative_union: SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ ) + len(lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE =len(set_a.union(lowerCAmelCase_ ) ) return intersection / union if isinstance(lowerCAmelCase_, (list, tuple) ) and isinstance(lowerCAmelCase_, (list, tuple) ): SCREAMING_SNAKE_CASE =[element for element in set_a if element in set_b] if alternative_union: SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ ) + len(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) / union else: SCREAMING_SNAKE_CASE =set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) return None if __name__ == "__main__": _lowerCamelCase ={"a", "b", "c", "d", "e"} _lowerCamelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
334
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( _A : Tuple )-> int: """simple docstring""" A__ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: A__ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: A__ = 4 A__ = 48 A__ = "pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: A__ = [6, 6, 6, 6] A__ = 60 A__ = [6, 6, 6, 6] A__ = "pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: A__ = 4 A__ = "nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: A__ = 1 A__ = 1 A__ = 126 A__ = 7 A__ = 255.0 A__ = "" return config def UpperCamelCase ( _A : Optional[int] , _A : Dict )-> Optional[int]: """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: A__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: A__ = name.replace("patch_embed.norm" , "embeddings.patch_embeddings.layernorm" ) if "layers" in name: A__ = name.replace("layers" , "encoder.stages" ) if "residual_group.blocks" in name: A__ = name.replace("residual_group.blocks" , "layers" ) if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: A__ = name.replace("attn" , "attention.self" ) if "norm1" in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: A__ = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: A__ = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: A__ = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: A__ = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if "patch_embed.proj" in name: A__ = name.replace("patch_embed.proj" , "patch_embed.projection" ) if name == "norm.weight": A__ = "layernorm.weight" if name == "norm.bias": A__ = "layernorm.bias" if "conv_first" in name: A__ = name.replace("conv_first" , "first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: A__ = name.replace("conv_last" , "final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: A__ = name.replace("conv_before_upsample.0" , "conv_before_upsample" ) if "upsample.0" in name: A__ = name.replace("upsample.0" , "upsample.convolution_0" ) if "upsample.2" in name: A__ = name.replace("upsample.2" , "upsample.convolution_1" ) A__ = "upsample." + name elif config.upsampler == "pixelshuffledirect": A__ = name.replace("upsample.0.weight" , "upsample.conv.weight" ) A__ = name.replace("upsample.0.bias" , "upsample.conv.bias" ) else: pass else: A__ = "swin2sr." + name return name def UpperCamelCase ( _A : List[str] , _A : List[Any] )-> str: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: A__ = key.split("." ) A__ = int(key_split[1] ) A__ = int(key_split[4] ) A__ = config.embed_dim if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] pass else: A__ = val return orig_state_dict def UpperCamelCase ( _A : Dict , _A : int , _A : Union[str, Any] )-> List[str]: """simple docstring""" A__ = get_config(UpperCamelCase__ ) A__ = SwinaSRForImageSuperResolution(UpperCamelCase__ ) model.eval() A__ = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="cpu" ) A__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) A__ , A__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError("Missing keys when converting: {}".format(UpperCamelCase__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"""Unexpected key {key} in state_dict""" ) # verify values A__ = "https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" A__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("RGB" ) A__ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values A__ = 126 if "Jpeg" in checkpoint_url else 256 A__ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) A__ = transforms(UpperCamelCase__ ).unsqueeze(0 ) if config.num_channels == 1: A__ = pixel_values[:, 0, :, :].unsqueeze(1 ) A__ = model(UpperCamelCase__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: A__ = torch.Size([1, 3, 512, 512] ) A__ = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: A__ = torch.Size([1, 3, 1024, 1024] ) A__ = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here A__ = torch.Size([1, 3, 1024, 1024] ) A__ = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: A__ = torch.Size([1, 3, 512, 512] ) A__ = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: A__ = torch.Size([1, 3, 1024, 1024] ) A__ = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , UpperCamelCase__ , atol=1E-3 ) print("Looks ok!" ) A__ = { "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } A__ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub(f"""caidas/{model_name}""" ) processor.push_to_hub(f"""caidas/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
363
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def UpperCamelCase ( _A : Tuple )-> Dict: """simple docstring""" A__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_A , _A ) def UpperCamelCase ( _A : int )-> Optional[Any]: """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(_A , _A , bias=_A ) A__ = emb.weight.data return lin_layer def UpperCamelCase ( _A : str , _A : Optional[Any]=None )-> str: """simple docstring""" A__ = {} for old_key in state_dict.keys(): A__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: A__ = key.replace("moe_layer.experts.0" , f"""ffn.experts.expert_{expert_idx}""" ) else: A__ = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: A__ = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: A__ = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: A__ = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: A__ = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: A__ = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: A__ = key.replace("final_layer_norm" , "ff_layer_norm" ) A__ = state_dict[old_key] return new_dict def UpperCamelCase ( _A : Tuple , _A : Tuple , _A : int , _A : str , _A : str = WEIGHTS_NAME )-> List[str]: """simple docstring""" A__ = [] A__ = 0 os.makedirs(_A , exist_ok=_A ) for expert in range(_A ): A__ = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(_A ): A__ = torch.load(_A )["model"] remove_ignore_keys_(_A ) A__ = rename_fairseq_keys(_A , _A ) A__ = os.path.join( _A , weights_name.replace(".bin" , f"""-{len(_A )+1:05d}-of-???.bin""" ) ) torch.save(_A , _A ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_A )[0]].dtype ) # Add the last block A__ = os.path.join(_A , weights_name.replace(".bin" , f"""-{len(_A )+1:05d}-of-???.bin""" ) ) A__ = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_A ) A__ = rename_fairseq_keys(_A , _A ) A__ = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_A ) == 1: A__ = os.path.join(_A , _A ) torch.save(_A , _A ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_A , _A ) # Otherwise, let's build the index A__ = {} for idx, shard in enumerate(_A ): A__ = weights_name.replace(".bin" , f"""-{idx+1:05d}-of-{len(_A ):05d}.bin""" ) A__ = os.path.join(_A , weights_name.replace(".bin" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_A , os.path.join(_A , _A ) ) for key in shard: A__ = shard_file # Add the metadata A__ = {"total_size": total_size} A__ = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_A , _A ) , "w" , encoding="utf-8" ) as f: A__ = json.dumps(_A , indent=2 , sort_keys=_A ) + "\n" f.write(_A ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCAmelCase_ : Any = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCAmelCase_ : Tuple = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
198
0
"""simple docstring""" from collections import defaultdict def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = first_str.lower().strip() __SCREAMING_SNAKE_CASE = second_str.lower().strip() # Remove whitespace __SCREAMING_SNAKE_CASE = first_str.replace(""" """ , """""" ) __SCREAMING_SNAKE_CASE = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): return False # Default values for count should be 0 __SCREAMING_SNAKE_CASE = defaultdict(UpperCamelCase_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCamelCase_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __magic_name__ = input("Enter the first string ").strip() __magic_name__ = input("Enter the second string ").strip() __magic_name__ = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
100
def __lowerCamelCase ( UpperCAmelCase_ : int = 100_0000 ): """simple docstring""" a :Any = set(range(3 , UpperCAmelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCAmelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCAmelCase_ , UpperCAmelCase_ ) ) ) a :Union[str, Any] = [float(UpperCAmelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
94
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class SCREAMING_SNAKE_CASE (_SCREAMING_SNAKE_CASE ): _UpperCamelCase : Optional[int] = 'data2vec-text' def __init__( self : Optional[int] , a : Optional[Any]=30_522 , a : Union[str, Any]=768 , a : str=12 , a : Any=12 , a : str=3_072 , a : Any="gelu" , a : Dict=0.1 , a : Tuple=0.1 , a : List[Any]=512 , a : Any=2 , a : Optional[Any]=0.02 , a : Optional[int]=1E-1_2 , a : int=1 , a : int=0 , a : Union[str, Any]=2 , a : Dict="absolute" , a : int=True , a : int=None , **a : str , )-> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout class SCREAMING_SNAKE_CASE (_SCREAMING_SNAKE_CASE ): @property def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
351
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="facebook/mbart-large-en-ro" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> str: lowercase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) lowercase__ = state_dict['encoder.embed_tokens.weight'].shape[0] lowercase__ = MBartConfig.from_pretrained(_SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE ) if mbart_aa and finetuned: lowercase__ = 'relu' lowercase__ = state_dict['decoder.embed_tokens.weight'] lowercase__ = MBartForConditionalGeneration(_SCREAMING_SNAKE_CASE ) model.model.load_state_dict(_SCREAMING_SNAKE_CASE ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") lowercase_ = parser.parse_args() lowercase_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
269
0
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = """autoformer""" __lowerCamelCase : List[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = [1, 2, 3, 4, 5, 6, 7] , snake_case__ = True , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = "gelu" , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__ = True , snake_case__=True , snake_case__ = 10 , snake_case__ = 25 , snake_case__ = 3 , **snake_case__ , ) -> Any: '''simple docstring''' UpperCAmelCase : Dict =prediction_length UpperCAmelCase : Tuple =context_length if context_length is not None else prediction_length UpperCAmelCase : int =distribution_output UpperCAmelCase : Any =loss UpperCAmelCase : List[Any] =input_size UpperCAmelCase : str =num_time_features UpperCAmelCase : int =lags_sequence UpperCAmelCase : str =scaling UpperCAmelCase : Union[str, Any] =num_dynamic_real_features UpperCAmelCase : List[str] =num_static_real_features UpperCAmelCase : Union[str, Any] =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase : int =cardinality else: UpperCAmelCase : Tuple =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase : Any =embedding_dimension else: UpperCAmelCase : Any =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : List[Any] =num_parallel_samples # Transformer architecture configuration UpperCAmelCase : str =input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : Any =d_model UpperCAmelCase : str =encoder_attention_heads UpperCAmelCase : List[str] =decoder_attention_heads UpperCAmelCase : int =encoder_ffn_dim UpperCAmelCase : int =decoder_ffn_dim UpperCAmelCase : Tuple =encoder_layers UpperCAmelCase : Optional[Any] =decoder_layers UpperCAmelCase : List[str] =dropout UpperCAmelCase : Optional[int] =attention_dropout UpperCAmelCase : Union[str, Any] =activation_dropout UpperCAmelCase : int =encoder_layerdrop UpperCAmelCase : Any =decoder_layerdrop UpperCAmelCase : Union[str, Any] =activation_function UpperCAmelCase : Dict =init_std UpperCAmelCase : Any =use_cache # Autoformer UpperCAmelCase : Tuple =label_length UpperCAmelCase : Union[str, Any] =moving_average UpperCAmelCase : int =autocorrelation_factor super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
348
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ ) else: UpperCAmelCase : Union[str, Any] =None UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : VQModel __lowerCamelCase : CLIPTextModel __lowerCamelCase : CLIPTokenizer __lowerCamelCase : TransformeraDModel __lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings __lowerCamelCase : VQDiffusionScheduler def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings UpperCAmelCase : Optional[int] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase : int =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 ) else: UpperCAmelCase : str =[''''''] * batch_size UpperCAmelCase : Tuple =text_input_ids.shape[-1] UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1] UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 ) UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =1 elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Tuple =len(snake_case__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' ) UpperCAmelCase : Tuple =batch_size * num_images_per_prompt UpperCAmelCase : List[str] =guidance_scale > 1.0 UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(snake_case__ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1 UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase : Any =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device ) UpperCAmelCase : Optional[int] =latents for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 ) UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ ) UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase : Optional[Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ ) UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ ) UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ ) UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ ) UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase : int =keep_mask[:, :-1, :] UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase : Dict =log_p_x_0.clone() UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0) return rv
348
1
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _A ( _lowerCAmelCase ): """simple docstring""" return (data["data"], data["target"]) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data __lowercase =xgb.predict(_lowerCAmelCase ) __lowercase =predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def _A ( ): """simple docstring""" __lowercase =fetch_california_housing() __lowercase , __lowercase =data_handling(_lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase =train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.25 , random_state=1 ) __lowercase =xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
48
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """codegen""" lowerCAmelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Union[str, Any] , _lowerCAmelCase : List[Any]=5_0_4_0_0 , _lowerCAmelCase : Tuple=2_0_4_8 , _lowerCAmelCase : Dict=2_0_4_8 , _lowerCAmelCase : Tuple=4_0_9_6 , _lowerCAmelCase : Any=2_8 , _lowerCAmelCase : Optional[int]=1_6 , _lowerCAmelCase : int=6_4 , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Optional[int]=1e-5 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : int=True , _lowerCAmelCase : str=5_0_2_5_6 , _lowerCAmelCase : Any=5_0_2_5_6 , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Dict , ): '''simple docstring''' __lowercase =vocab_size __lowercase =n_ctx __lowercase =n_positions __lowercase =n_embd __lowercase =n_layer __lowercase =n_head __lowercase =n_inner __lowercase =rotary_dim __lowercase =activation_function __lowercase =resid_pdrop __lowercase =embd_pdrop __lowercase =attn_pdrop __lowercase =layer_norm_epsilon __lowercase =initializer_range __lowercase =use_cache __lowercase =bos_token_id __lowercase =eos_token_id super().__init__( bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , **_lowerCAmelCase) class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : PretrainedConfig , _lowerCAmelCase : str = "default" , _lowerCAmelCase : List[PatchingSpec] = None , _lowerCAmelCase : bool = False , ): '''simple docstring''' super().__init__(_lowerCAmelCase , task=_lowerCAmelCase , patching_specs=_lowerCAmelCase , use_past=_lowerCAmelCase) if not getattr(self._config , 'pad_token_id' , _lowerCAmelCase): # TODO: how to do that better? __lowercase =0 @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') __lowercase ={0: 'batch', 1: 'past_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'sequence'} return common_inputs @property def __lowerCamelCase ( self : Dict): '''simple docstring''' return self._config.n_layer @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' return self._config.n_head def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =super(_lowerCAmelCase , self).generate_dummy_inputs( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) # We need to order the input in the way they appears in the forward() __lowercase =OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase =seqlen + 2 __lowercase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowercase =[ (torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase)) for _ in range(self.num_layers) ] __lowercase =common_inputs['attention_mask'] if self.use_past: __lowercase =ordered_inputs['attention_mask'].dtype __lowercase =torch.cat( [ordered_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase)] , dim=1) return ordered_inputs @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return 1_3
48
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """Salesforce/blip-image-captioning-base""" lowerCamelCase__ = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) lowerCamelCase__ = """image_captioner""" lowerCamelCase__ = AutoModelForVisionaSeq lowerCamelCase__ = ["""image"""] lowerCamelCase__ = ["""text"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['vision'] ) super().__init__(*lowercase , **lowercase ) def A_ ( self , lowercase ): return self.pre_processor(images=lowercase , return_tensors='pt' ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.pre_processor.batch_decode(lowercase , skip_special_tokens=lowercase )[0].strip()
96
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union lowercase__ = TypeVar('T') lowercase__ = Union[List[T], Tuple[T, ...]] lowercase__ = Union[T, List[T], Dict[str, T]] lowercase__ = Union[str, bytes, os.PathLike]
290
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : List[Any] , __snake_case : Union[str, Any] )-> Dict: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Union[str, Any] , __snake_case : int = 1 , __snake_case : int = 1_00 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[float] = None , __snake_case : bool = True , )-> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: snake_case = self.unet.config.sample_size / self.unet.config.sample_rate snake_case = audio_length_in_s * self.unet.config.sample_rate snake_case = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) snake_case = int(__snake_case ) if sample_size % down_scale_factor != 0: snake_case = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) snake_case = int(__snake_case ) snake_case = next(iter(self.unet.parameters() ) ).dtype snake_case = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) # set step values self.scheduler.set_timesteps(__snake_case , device=audio.device ) snake_case = self.scheduler.timesteps.to(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case = self.unet(__snake_case , __snake_case ).sample # 2. compute previous image: x_t -> t_t-1 snake_case = self.scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample snake_case = audio.clamp(-1 , 1 ).float().cpu().numpy() snake_case = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__snake_case )
3
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
1
'''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ __SCREAMING_SNAKE_CASE : Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] __SCREAMING_SNAKE_CASE : Union[str, Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
31
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = CTRLTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Optional[Any] = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__ : str = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Tuple = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__ : Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : List[str] = '''adapt react readapt apt''' lowercase__ : Union[str, Any] = '''adapt react readapt apt''' return input_text, output_text def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Union[str, Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Optional[Any] = '''adapt react readapt apt''' lowercase__ : Dict = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__ : Union[str, Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = tokens + [tokenizer.unk_token] lowercase__ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
198
0
"""simple docstring""" from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
354
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCAmelCase__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' lowerCAmelCase__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' lowerCAmelCase__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return float((preds == labels).mean() ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="binary" ): """simple docstring""" UpperCamelCase = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = {} for id_pred, label in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" UpperCamelCase = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase = [(pred, label)] UpperCamelCase , UpperCamelCase = [], [] for question, preds_labels in question_map.items(): UpperCamelCase , UpperCamelCase = zip(*_SCREAMING_SNAKE_CASE ) UpperCamelCase = fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average="macro" ) fas.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = int(sum(pred == label for pred, label in preds_labels ) == len(_SCREAMING_SNAKE_CASE ) ) ems.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = float(sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def snake_case_ (self ) -> Dict: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def snake_case_ (self ) -> Tuple: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def snake_case_ (self , __a , __a ) -> str: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__a , __a )} elif self.config_name == "cb": return acc_and_fa(__a , __a , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(__a , __a )[0] elif self.config_name == "multirc": return evaluate_multirc(__a , __a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__a , __a )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
244
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = FlaxAutoencoderKL @property def snake_case ( self ): """simple docstring""" _lowerCAmelCase = 4 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = jax.random.PRNGKey(0 ) _lowerCAmelCase = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def snake_case ( self ): """simple docstring""" _lowerCAmelCase = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict
82
"""simple docstring""" from ..utils import DummyObject, requires_backends class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'torchsde'] def __init__( self: int , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" requires_backends(self , ["torch", "torchsde"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[Any] , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch", "torchsde"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Dict , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Any) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch", "torchsde"])
269
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
133
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase__ = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Any ="tapas" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1_024 , snake_case__=[3, 256, 256, 2, 256, 256, 10] , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__=10.0 , snake_case__=0 , snake_case__=1.0 , snake_case__=None , snake_case__=1.0 , snake_case__=False , snake_case__=None , snake_case__=1.0 , snake_case__=1.0 , snake_case__=False , snake_case__=False , snake_case__="ratio" , snake_case__=None , snake_case__=None , snake_case__=64 , snake_case__=32 , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : Dict = type_vocab_sizes lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = layer_norm_eps # Fine-tuning task hyperparameters lowerCAmelCase : Dict = positive_label_weight lowerCAmelCase : Union[str, Any] = num_aggregation_labels lowerCAmelCase : Optional[Any] = aggregation_loss_weight lowerCAmelCase : List[Any] = use_answer_as_supervision lowerCAmelCase : Dict = answer_loss_importance lowerCAmelCase : List[Any] = use_normalized_answer_loss lowerCAmelCase : List[str] = huber_loss_delta lowerCAmelCase : Optional[int] = temperature lowerCAmelCase : Optional[int] = aggregation_temperature lowerCAmelCase : Any = use_gumbel_for_cells lowerCAmelCase : Union[str, Any] = use_gumbel_for_aggregation lowerCAmelCase : Union[str, Any] = average_approximation_function lowerCAmelCase : int = cell_selection_preference lowerCAmelCase : Dict = answer_loss_cutoff lowerCAmelCase : Optional[int] = max_num_rows lowerCAmelCase : Union[str, Any] = max_num_columns lowerCAmelCase : Any = average_logits_per_cell lowerCAmelCase : List[Any] = select_one_column lowerCAmelCase : Tuple = allow_empty_column_selection lowerCAmelCase : str = init_cell_selection_weights_to_zero lowerCAmelCase : List[Any] = reset_position_index_per_cell lowerCAmelCase : Optional[Any] = disable_per_token_loss # Aggregation hyperparameters lowerCAmelCase : List[str] = aggregation_labels lowerCAmelCase : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , snake_case__ ): lowerCAmelCase : Union[str, Any] = {int(snake_case__ ): v for k, v in aggregation_labels.items()}
133
1
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=2 , UpperCamelCase__=8 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=16 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=36 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Union[str, Any]: lowerCamelCase : Tuple = parent lowerCamelCase : Optional[Any] = batch_size lowerCamelCase : Dict = seq_length lowerCamelCase : int = is_training lowerCamelCase : Dict = use_input_mask lowerCamelCase : Optional[Any] = use_token_type_ids lowerCamelCase : Optional[int] = use_labels lowerCamelCase : List[Any] = vocab_size lowerCamelCase : List[Any] = hidden_size lowerCamelCase : Dict = num_hidden_layers lowerCamelCase : Tuple = num_attention_heads lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : List[Any] = hidden_act lowerCamelCase : Tuple = hidden_dropout_prob lowerCamelCase : List[str] = attention_probs_dropout_prob lowerCamelCase : List[str] = max_position_embeddings lowerCamelCase : int = type_vocab_size lowerCamelCase : Any = type_sequence_label_size lowerCamelCase : List[str] = initializer_range lowerCamelCase : Dict = num_labels lowerCamelCase : Optional[int] = num_choices lowerCamelCase : Any = scope def _lowercase ( self ) -> Any: lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Optional[Any] = None if self.use_input_mask: lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase : Any = None lowerCamelCase : List[str] = None lowerCamelCase : List[Any] = None if self.use_labels: lowerCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> List[str]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def _lowercase ( self ) -> List[str]: lowerCamelCase : str = self.get_config() lowerCamelCase : Optional[Any] = 300 return config def _lowercase ( self ) -> Optional[int]: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : List[str] = self.prepare_config_and_inputs() lowerCamelCase : List[str] = True lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: lowerCamelCase : Dict = MraModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : List[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = True lowerCamelCase : Dict = MraModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Optional[int] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowerCamelCase : List[Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowerCamelCase : List[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: lowerCamelCase : Tuple = MraForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Union[str, Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: lowerCamelCase : str = MraForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : int = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: lowerCamelCase : str = self.num_labels lowerCamelCase : Union[str, Any] = MraForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: lowerCamelCase : int = self.num_labels lowerCamelCase : str = MraForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : List[str] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: lowerCamelCase : Any = self.num_choices lowerCamelCase : Dict = MraForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase : Optional[int] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Tuple = config_and_inputs lowerCamelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ (lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : List[str] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase_ : int = False lowerCamelCase_ : Dict = False lowerCamelCase_ : str = False lowerCamelCase_ : List[Any] = False lowerCamelCase_ : Optional[int] = () def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = MraModelTester(self ) lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase ( self ) -> Tuple: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase : Optional[Any] = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self ) -> Dict: lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def _lowercase ( self ) -> Tuple: lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def _lowercase ( self ) -> int: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def _lowercase ( self ) -> int: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : int = MraModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason="MRA does not output attentions" ) def _lowercase ( self ) -> Optional[int]: return @require_torch class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> int: lowerCamelCase : Dict = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) lowerCamelCase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCamelCase : Dict = model(UpperCamelCase__ )[0] lowerCamelCase : str = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowerCamelCase : List[str] = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Any = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) lowerCamelCase : List[str] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCamelCase : Optional[int] = model(UpperCamelCase__ )[0] lowerCamelCase : Union[str, Any] = 5_0265 lowerCamelCase : int = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowerCamelCase : List[str] = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def _lowercase ( self ) -> List[str]: lowerCamelCase : List[str] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) lowerCamelCase : Optional[int] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): lowerCamelCase : Any = model(UpperCamelCase__ )[0] lowerCamelCase : int = 5_0265 lowerCamelCase : Optional[Any] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowerCamelCase : Any = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
48
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : List[Any] = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
1
__UpperCAmelCase = 9.8_0665 def __UpperCamelCase ( lowercase__ : float , lowercase__ : float , lowercase__ : float = g ) -> float: '''simple docstring''' if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
28
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 100 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if audio_length_in_s is None: A : Union[str, Any] = self.unet.config.sample_size / self.unet.config.sample_rate A : Dict = audio_length_in_s * self.unet.config.sample_rate A : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' F' {3 * down_scale_factor / self.unet.config.sample_rate}.' ) A : Union[str, Any] = int(SCREAMING_SNAKE_CASE ) if sample_size % down_scale_factor != 0: A : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' F' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' ''' process.''' ) A : Optional[Any] = int(SCREAMING_SNAKE_CASE ) A : List[Any] = next(iter(self.unet.parameters() ) ).dtype A : Any = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) A : str = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=SCREAMING_SNAKE_CASE ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE , device=audio.device ) A : Optional[Any] = self.scheduler.timesteps.to(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A : Any = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. compute previous image: x_t -> t_t-1 A : Any = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample A : str = audio.clamp(-1 , 1 ).float().cpu().numpy() A : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=SCREAMING_SNAKE_CASE )
3
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ = 10 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or n < 0: raise ValueError('''Invalid input''' ) A : List[str] = 10**n A : Tuple = 2_8433 * (pow(2 , 783_0457 , snake_case__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
3
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): A__ = tempfile.mkdtemp() # fmt: off A__ = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on A__ = dict(zip(_lowercase,range(len(_lowercase ) ) ) ) A__ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] A__ = {'''unk_token''': '''<unk>'''} A__ = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['''vocab_file'''] ) A__ = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file,'''w''',encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowercase ) + '''\n''' ) with open(self.merges_file,'''w''',encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowercase ) ) A__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } A__ = os.path.join(self.tmpdirname,_lowercase ) with open(self.image_processor_file,'''w''',encoding='''utf-8''' ) as fp: json.dump(_lowercase,_lowercase ) def UpperCamelCase ( self,**__lowerCamelCase ): return CLIPTokenizer.from_pretrained(self.tmpdirname,pad_token='''!''',**_lowercase ) def UpperCamelCase ( self,**__lowerCamelCase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname,pad_token='''!''',**_lowercase ) def UpperCamelCase ( self,**__lowerCamelCase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname,**_lowercase ) def UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ): A__ = [np.random.randint(255,size=(3, 30, 400),dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(_lowercase,0,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self ): A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = OwlViTProcessor(tokenizer=_lowercase,image_processor=_lowercase ) processor_slow.save_pretrained(self.tmpdirname ) A__ = OwlViTProcessor.from_pretrained(self.tmpdirname,use_fast=_lowercase ) A__ = OwlViTProcessor(tokenizer=_lowercase,image_processor=_lowercase ) processor_fast.save_pretrained(self.tmpdirname ) A__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(),tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(),tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(),tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer,_lowercase ) self.assertIsInstance(processor_fast.tokenizer,_lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string(),image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(),image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor,_lowercase ) self.assertIsInstance(processor_fast.image_processor,_lowercase ) def UpperCamelCase ( self ): A__ = OwlViTProcessor(tokenizer=self.get_tokenizer(),image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='''(BOS)''',eos_token='''(EOS)''' ) A__ = self.get_image_processor(do_normalize=_lowercase ) A__ = OwlViTProcessor.from_pretrained( self.tmpdirname,bos_token='''(BOS)''',eos_token='''(EOS)''',do_normalize=_lowercase ) self.assertEqual(processor.tokenizer.get_vocab(),tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer,_lowercase ) self.assertEqual(processor.image_processor.to_json_string(),image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor,_lowercase ) def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = OwlViTProcessor(tokenizer=_lowercase,image_processor=_lowercase ) A__ = self.prepare_image_inputs() A__ = image_processor(_lowercase,return_tensors='''np''' ) A__ = processor(images=_lowercase,return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(),input_processor[key].sum(),delta=1E-2 ) def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = OwlViTProcessor(tokenizer=_lowercase,image_processor=_lowercase ) A__ = '''lower newer''' A__ = processor(text=_lowercase,return_tensors='''np''' ) A__ = tokenizer(_lowercase,return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist(),encoded_processor[key][0].tolist() ) def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = OwlViTProcessor(tokenizer=_lowercase,image_processor=_lowercase ) A__ = '''lower newer''' A__ = self.prepare_image_inputs() A__ = processor(text=_lowercase,images=_lowercase ) self.assertListEqual(list(inputs.keys() ),['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCamelCase ( self ): A__ = '''google/owlvit-base-patch32''' A__ = OwlViTProcessor.from_pretrained(_lowercase ) A__ = ['''cat''', '''nasa badge'''] A__ = processor(text=_lowercase ) A__ = 16 self.assertListEqual(list(inputs.keys() ),['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape,(2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCamelCase ( self ): A__ = '''google/owlvit-base-patch32''' A__ = OwlViTProcessor.from_pretrained(_lowercase ) A__ = [['''cat''', '''nasa badge'''], ['''person''']] A__ = processor(text=_lowercase ) A__ = 16 A__ = len(_lowercase ) A__ = max([len(_lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ),['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape,(batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCamelCase ( self ): A__ = '''google/owlvit-base-patch32''' A__ = OwlViTProcessor.from_pretrained(_lowercase ) A__ = ['''cat''', '''nasa badge'''] A__ = processor(text=_lowercase ) A__ = 16 A__ = inputs['''input_ids'''] A__ = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ),['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape,(2, seq_length) ) self.assertListEqual(list(input_ids[0] ),predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ),predicted_ids[1] ) def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = OwlViTProcessor(tokenizer=_lowercase,image_processor=_lowercase ) A__ = self.prepare_image_inputs() A__ = self.prepare_image_inputs() A__ = processor(images=_lowercase,query_images=_lowercase ) self.assertListEqual(list(inputs.keys() ),['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = OwlViTProcessor(tokenizer=_lowercase,image_processor=_lowercase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(_lowercase ) A__ = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase,_lowercase )
369
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 42 class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self,__lowerCamelCase = 3,__lowerCamelCase = 3,__lowerCamelCase = ("DownEncoderBlock2D",),__lowerCamelCase = ("UpDecoderBlock2D",),__lowerCamelCase = (64,),__lowerCamelCase = 1,__lowerCamelCase = "silu",__lowerCamelCase = 3,__lowerCamelCase = 32,__lowerCamelCase = 256,__lowerCamelCase = 32,__lowerCamelCase = None,__lowerCamelCase = 0.18215,__lowerCamelCase = "group",): super().__init__() # pass init params to Encoder A__ = Encoder( in_channels=__lowerCamelCase,out_channels=__lowerCamelCase,down_block_types=__lowerCamelCase,block_out_channels=__lowerCamelCase,layers_per_block=__lowerCamelCase,act_fn=__lowerCamelCase,norm_num_groups=__lowerCamelCase,double_z=__lowerCamelCase,) A__ = vq_embed_dim if vq_embed_dim is not None else latent_channels A__ = nn.Convad(__lowerCamelCase,__lowerCamelCase,1 ) A__ = VectorQuantizer(__lowerCamelCase,__lowerCamelCase,beta=0.25,remap=__lowerCamelCase,sane_index_shape=__lowerCamelCase ) A__ = nn.Convad(__lowerCamelCase,__lowerCamelCase,1 ) # pass init params to Decoder A__ = Decoder( in_channels=__lowerCamelCase,out_channels=__lowerCamelCase,up_block_types=__lowerCamelCase,block_out_channels=__lowerCamelCase,layers_per_block=__lowerCamelCase,act_fn=__lowerCamelCase,norm_num_groups=__lowerCamelCase,norm_type=__lowerCamelCase,) @apply_forward_hook def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = True ): A__ = self.encoder(__lowerCamelCase ) A__ = self.quant_conv(__lowerCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__lowerCamelCase ) @apply_forward_hook def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = False,__lowerCamelCase = True ): # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ = self.quantize(__lowerCamelCase ) else: A__ = h A__ = self.post_quant_conv(__lowerCamelCase ) A__ = self.decoder(__lowerCamelCase,quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = True ): A__ = sample A__ = self.encode(__lowerCamelCase ).latents A__ = self.decode(__lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase )
39
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Union[str, Any] = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """vivit""" def __init__( self , lowerCAmelCase_=2_24 , lowerCAmelCase_=32 , lowerCAmelCase_=[2, 16, 16] , lowerCAmelCase_=3 , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=30_72 , lowerCAmelCase_="gelu_fast" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-06 , lowerCAmelCase_=True , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = num_frames _snake_case = tubelet_size _snake_case = num_channels _snake_case = qkv_bias super().__init__(**lowerCAmelCase_ )
42
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """visual_bert""" def __init__(self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = visual_embedding_dim UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = type_vocab_size UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = bypass_transformer UpperCamelCase__ = special_visual_initialize
244
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mra''' def __init__( self , lowerCamelCase__=50_265 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__="absolute" , lowerCamelCase__=4 , lowerCamelCase__="full" , lowerCamelCase__=0 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = type_vocab_size __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = block_per_row __lowerCamelCase = approx_mode __lowerCamelCase = initial_prior_first_n_blocks __lowerCamelCase = initial_prior_diagonal_n_blocks
348
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): snake_case_ : List[Any] = IFImgaImgSuperResolutionPipeline snake_case_ : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} snake_case_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) snake_case_ : Any = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase ( self : Any , snake_case__ : Tuple , snake_case__ : Optional[int]=0 ): """simple docstring""" if str(snake_case__ ).startswith("mps" ): _UpperCAmelCase = torch.manual_seed(snake_case__ ) else: _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _UpperCAmelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _UpperCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase ( self : int ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self._test_save_load_local() def UpperCamelCase ( self : Any ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
133
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ : int = logging.get_logger(__name__) lowercase_ : Optional[Any] = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : int = "roberta" def __init__( self : Dict , snake_case__ : Tuple=50_265 , snake_case__ : str=768 , snake_case__ : Tuple=12 , snake_case__ : Tuple=12 , snake_case__ : Union[str, Any]=3_072 , snake_case__ : Optional[Any]="gelu" , snake_case__ : int=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : str=512 , snake_case__ : List[str]=2 , snake_case__ : str=0.02 , snake_case__ : int=1e-12 , snake_case__ : List[str]=1 , snake_case__ : Any=0 , snake_case__ : int=2 , snake_case__ : List[Any]="absolute" , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=None , **snake_case__ : Dict , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class __lowerCAmelCase ( UpperCAmelCase__ ): @property def UpperCamelCase ( self : List[Any] ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
133
1
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: List[Any] = logging.getLogger(__name__) def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Union[str, Any] = git.Repo(search_parent_directories=UpperCamelCase ) UpperCAmelCase : Dict = { """repo_id""": str(UpperCamelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(UpperCamelCase , """git_log.json""" ) , """w""" ) as f: json.dump(UpperCamelCase , UpperCamelCase , indent=4 ) def _snake_case ( UpperCamelCase : Union[str, Any] ): if params.n_gpu <= 0: UpperCAmelCase : int = 0 UpperCAmelCase : List[Any] = -1 UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCAmelCase : str = int(os.environ["""WORLD_SIZE"""] ) UpperCAmelCase : Tuple = int(os.environ["""N_GPU_NODE"""] ) UpperCAmelCase : Tuple = int(os.environ["""RANK"""] ) # number of nodes / node ID UpperCAmelCase : List[Any] = params.world_size // params.n_gpu_per_node UpperCAmelCase : Optional[Any] = params.global_rank // params.n_gpu_per_node UpperCAmelCase : Any = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : Tuple = 0 UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = 0 UpperCAmelCase : str = 1 UpperCAmelCase : Any = 1 UpperCAmelCase : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCAmelCase : List[Any] = params.node_id == 0 and params.local_rank == 0 UpperCAmelCase : Tuple = params.n_nodes > 1 # summary UpperCAmelCase : Tuple = F"--- Global rank: {params.global_rank} - " logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def _snake_case ( UpperCamelCase : int ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
367
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } UpperCAmelCase : Optional[Any] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , x.transpose() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Dict = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : str = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[str] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.squeeze(_SCREAMING_SNAKE_CASE ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : int = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Dict = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : Dict = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : List[str] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : str = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.asarray(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) )
76
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _lowerCamelCase : Tuple = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Dict: """simple docstring""" UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val def __lowerCamelCase ( A__ ) -> int: """simple docstring""" UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" UpperCamelCase = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCamelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCamelCase = in_proj_weight_cross_attn[:256, :] UpperCamelCase = in_proj_bias_cross_attn[:256] UpperCamelCase = in_proj_weight_cross_attn[256:512, :] UpperCamelCase = in_proj_bias_cross_attn[256:512] UpperCamelCase = in_proj_weight_cross_attn[-256:, :] UpperCamelCase = in_proj_bias_cross_attn[-256:] def __lowerCamelCase ( A__ , A__ ) -> Optional[int]: """simple docstring""" UpperCamelCase , UpperCamelCase = image.size UpperCamelCase = max(A__ , A__ ) UpperCamelCase = 800 if 'detection' in checkpoint_url else 1_000 UpperCamelCase = target_max_size / current_max_size UpperCamelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __lowerCamelCase ( A__ ) -> List[Any]: """simple docstring""" UpperCamelCase = F.to_tensor(A__ ) UpperCamelCase = F.normalize(A__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ ) -> Optional[Any]: """simple docstring""" logger.info('Converting model...' ) # load original state dict UpperCamelCase = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) UpperCamelCase = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val # create HuggingFace model and load state dict UpperCamelCase = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCamelCase = 15 UpperCamelCase = 2 UpperCamelCase = {0: 'table', 1: 'table rotated'} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} else: UpperCamelCase = 125 UpperCamelCase = 6 UpperCamelCase = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1_000 ) UpperCamelCase = TableTransformerForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() # verify our conversion UpperCamelCase = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' UpperCamelCase = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=A__ ) UpperCamelCase = Image.open(A__ ).convert('RGB' ) UpperCamelCase = normalize(resize(A__ , A__ ) ).unsqueeze(0 ) UpperCamelCase = model(A__ ) if "detection" in checkpoint_url: UpperCamelCase = (1, 15, 3) UpperCamelCase = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) UpperCamelCase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: UpperCamelCase = (1, 125, 7) UpperCamelCase = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) UpperCamelCase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , A__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , A__ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) UpperCamelCase = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(A__ ) image_processor.push_to_hub(A__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCamelCase : int = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
28
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _snake_case = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> Dict: for attribute in key.split("." ): __UpperCAmelCase : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) if weight_type is not None: __UpperCAmelCase : int = getattr(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ).shape else: __UpperCAmelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase : Optional[int] = value elif weight_type == "weight_g": __UpperCAmelCase : Optional[int] = value elif weight_type == "weight_v": __UpperCAmelCase : List[str] = value elif weight_type == "bias": __UpperCAmelCase : int = value else: __UpperCAmelCase : Union[str, Any] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[Any] = fairseq_model.state_dict() __UpperCAmelCase : str = hf_model.feature_extractor __UpperCAmelCase : Optional[int] = hf_model.adapter for name, value in fairseq_dict.items(): __UpperCAmelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, hf_model.config.feat_extract_norm == "group", ) __UpperCAmelCase : str = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __UpperCAmelCase : Dict = True if "*" in mapped_key: __UpperCAmelCase : List[Any] = name.split(__SCREAMING_SNAKE_CASE )[0].split("." )[-2] __UpperCAmelCase : List[str] = mapped_key.replace("*", __SCREAMING_SNAKE_CASE ) if "weight_g" in name: __UpperCAmelCase : Optional[Any] = """weight_g""" elif "weight_v" in name: __UpperCAmelCase : Dict = """weight_v""" elif "bias" in name: __UpperCAmelCase : Any = """bias""" elif "weight" in name: __UpperCAmelCase : List[Any] = """weight""" else: __UpperCAmelCase : Any = None set_recursively(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(__SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Optional[Any] = full_name.split("conv_layers." )[-1] __UpperCAmelCase : Any = name.split("." ) __UpperCAmelCase : Optional[int] = int(items[0] ) __UpperCAmelCase : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase : Tuple = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCAmelCase : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase : int = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = full_name.split("adaptor." )[-1] __UpperCAmelCase : Dict = name.split("." ) if items[1].isdigit(): __UpperCAmelCase : int = int(items[1] ) else: __UpperCAmelCase : List[str] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' __UpperCAmelCase : Dict = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' __UpperCAmelCase : Any = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' __UpperCAmelCase : str = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' __UpperCAmelCase : Optional[Any] = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' __UpperCAmelCase : int = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' __UpperCAmelCase : str = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( snake_case__ ) -> List[Any]: __UpperCAmelCase : int = emb.weight.shape __UpperCAmelCase : List[str] = nn.Linear(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, bias=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Tuple = emb.weight.data return lin_layer @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, ) -> Dict: __UpperCAmelCase : Dict = WavaVecaConfig.from_pretrained( __SCREAMING_SNAKE_CASE, add_adapter=__SCREAMING_SNAKE_CASE, adapter_stride=__SCREAMING_SNAKE_CASE, adapter_kernel_size=__SCREAMING_SNAKE_CASE, use_auth_token=__SCREAMING_SNAKE_CASE, output_hidden_size=__SCREAMING_SNAKE_CASE, ) __UpperCAmelCase : Dict = MBartConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) # load model __UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, }, ) __UpperCAmelCase : Dict = model[0].eval() # load feature extractor __UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE, use_auth_token=__SCREAMING_SNAKE_CASE ) # set weights for wav2vec2 encoder __UpperCAmelCase : List[Any] = WavaVecaModel(__SCREAMING_SNAKE_CASE ) recursively_load_weights_wavaveca(model.encoder, __SCREAMING_SNAKE_CASE ) # load decoder weights __UpperCAmelCase : Optional[Any] = MBartForCausalLM(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__SCREAMING_SNAKE_CASE ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __UpperCAmelCase : str = SpeechEncoderDecoderModel(encoder=__SCREAMING_SNAKE_CASE, decoder=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : int = False __UpperCAmelCase : Optional[Any] = MBartaaTokenizer(__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Any = hf_wavavec.config.to_dict() __UpperCAmelCase : Optional[Any] = tokenizer.pad_token_id __UpperCAmelCase : Optional[Any] = tokenizer.bos_token_id __UpperCAmelCase : List[Any] = tokenizer.eos_token_id __UpperCAmelCase : Dict = """mbart50""" __UpperCAmelCase : int = """wav2vec2""" __UpperCAmelCase : Dict = tokenizer.eos_token_id __UpperCAmelCase : List[str] = 25_0004 __UpperCAmelCase : Union[str, Any] = tokenizer.eos_token_id __UpperCAmelCase : Optional[int] = SpeechEncoderDecoderConfig.from_dict(__SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(__SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=250004, type=int, help='''`decoder_start_token_id` of model config''') _snake_case = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _SCREAMING_SNAKE_CASE : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _SCREAMING_SNAKE_CASE : Optional[Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def UpperCamelCase_( snake_case : Vector , snake_case : Vector ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(snake_case ) - np.asarray(snake_case )) ** 2 ) ) def UpperCamelCase_( snake_case : Vector , snake_case : Vector ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(snake_case , snake_case ) ) ** (1 / 2) if __name__ == "__main__": def UpperCamelCase_( ): '''simple docstring''' from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
85
def __A ( __lowerCAmelCase )-> list: """simple docstring""" if len(__lowerCAmelCase ) < 2: return collection def circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: _UpperCAmelCase = False if low == high: return swapped _UpperCAmelCase = low _UpperCAmelCase = high while left < right: if collection[left] > collection[right]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right], collection[left], ) _UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right + 1], collection[left], ) _UpperCAmelCase = True _UpperCAmelCase = low + int((high - low) / 2 ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) return swapped or left_swap or right_swap _UpperCAmelCase = True while is_not_sorted is True: _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": _a = input('''Enter numbers separated by a comma:\n''').strip() _a = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
39
0
from collections.abc import Sequence def a__ ( UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] = False ) -> float: if not arr: return 0 UpperCAmelCase : Any = 0 if allow_empty_subarrays else float('''-inf''' ) UpperCAmelCase : Union[str, Any] = 0.0 for num in arr: UpperCAmelCase : int = max(0 if allow_empty_subarrays else num , curr_sum + num ) UpperCAmelCase : Optional[Any] = max(__snake_case , __snake_case ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
364
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : Any, __A : Optional[int]=1_3, __A : Any=7, __A : Tuple=True, __A : int=True, __A : Dict=True, __A : Union[str, Any]=True, __A : Optional[int]=9_9, __A : Optional[int]=3_2, __A : Union[str, Any]=5, __A : Optional[int]=4, __A : str=3_7, __A : Union[str, Any]="gelu", __A : Optional[int]=0.1, __A : Optional[Any]=0.1, __A : Any=5_1_2, __A : List[str]=1_6, __A : Optional[int]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=False, __A : List[str]=True, __A : int="None", __A : List[str]=3, __A : Any=4, __A : Dict=None, ): UpperCAmelCase : str = parent UpperCAmelCase : int = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Dict = use_input_mask UpperCAmelCase : Optional[Any] = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Dict = num_labels UpperCAmelCase : Optional[Any] = num_choices UpperCAmelCase : str = relative_attention UpperCAmelCase : Any = position_biased_input UpperCAmelCase : str = pos_att_type UpperCAmelCase : Union[str, Any] = scope def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : int = None if self.use_input_mask: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : List[str] = None UpperCAmelCase : str = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Any ): return DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def __magic_name__ ( self : Dict, __A : str ): self.parent.assertListEqual(list(result.loss.size() ), [] ) def __magic_name__ ( self : List[str], __A : Dict, __A : int, __A : str, __A : List[str], __A : Dict, __A : str, __A : int ): UpperCAmelCase : Optional[int] = DebertaVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, attention_mask=__A, token_type_ids=__A )[0] UpperCAmelCase : Optional[int] = model(__A, token_type_ids=__A )[0] UpperCAmelCase : int = model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ), [self.batch_size, self.seq_length, self.hidden_size] ) def __magic_name__ ( self : Dict, __A : Union[str, Any], __A : Optional[Any], __A : Tuple, __A : Optional[int], __A : List[Any], __A : List[Any], __A : Optional[int] ): UpperCAmelCase : int = DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : List[str], __A : str, __A : Optional[Any], __A : List[str], __A : Optional[int], __A : List[Any], __A : int, __A : Optional[int] ): UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertListEqual(list(result.logits.size() ), [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def __magic_name__ ( self : Any, __A : Tuple, __A : Any, __A : str, __A : List[Any], __A : Dict, __A : Optional[Any], __A : List[str] ): UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : int = DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Tuple, __A : List[str], __A : Tuple, __A : Tuple, __A : int, __A : Optional[Any], __A : Tuple, __A : Any ): UpperCAmelCase : Union[str, Any] = DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Any = model( __A, attention_mask=__A, token_type_ids=__A, start_positions=__A, end_positions=__A, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Dict, __A : Optional[int], __A : str, __A : List[str], __A : Dict, __A : Optional[Any], __A : Union[str, Any], __A : int ): UpperCAmelCase : Union[str, Any] = DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : int = model( __A, attention_mask=__A, token_type_ids=__A, labels=__A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : str = DebertaVaModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self, config_class=__A, hidden_size=3_7 ) def __magic_name__ ( self : Any ): self.config_tester.run_common_tests() def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def __magic_name__ ( self : Any ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def __magic_name__ ( self : str ): pass @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : str = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) UpperCAmelCase : Union[str, Any] = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase : List[str] = model(__A, attention_mask=__A )[0] # compare the actual values for a slice. UpperCAmelCase : List[str] = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], __A, atol=1E-4 ), F'''{output[:, 1:4, 1:4]}''' )
99
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = """mra""" def __init__( self , snake_case__=5_0265 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=1 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__="absolute" , snake_case__=4 , snake_case__="full" , snake_case__=0 , snake_case__=0 , snake_case__=1 , snake_case__=0 , snake_case__=2 , **snake_case__ , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : Optional[int] =vocab_size UpperCAmelCase : List[Any] =max_position_embeddings UpperCAmelCase : int =hidden_size UpperCAmelCase : Union[str, Any] =num_hidden_layers UpperCAmelCase : Dict =num_attention_heads UpperCAmelCase : Any =intermediate_size UpperCAmelCase : Dict =hidden_act UpperCAmelCase : str =hidden_dropout_prob UpperCAmelCase : str =attention_probs_dropout_prob UpperCAmelCase : str =initializer_range UpperCAmelCase : Any =type_vocab_size UpperCAmelCase : Optional[Any] =layer_norm_eps UpperCAmelCase : Optional[Any] =position_embedding_type UpperCAmelCase : List[Any] =block_per_row UpperCAmelCase : str =approx_mode UpperCAmelCase : int =initial_prior_first_n_blocks UpperCAmelCase : List[str] =initial_prior_diagonal_n_blocks
348
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:] if shift_amount >= len(__lowerCAmelCase ): return "0b0" UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Optional[Any] =( '''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number ) if shift_amount >= len(__lowerCAmelCase ): return "0b" + binary_number[0] * len(__lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : list[list[int]] = [[0 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCamelCase : Any = 1 for n in range(m + 1 ): for k in range(1 , SCREAMING_SNAKE_CASE_ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __UpperCAmelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: __UpperCAmelCase : List[Any] = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
315
__UpperCAmelCase : str = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __UpperCAmelCase : Dict = [{"type": "code", "content": INSTALL_CONTENT}] __UpperCAmelCase : Union[str, Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
315
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) A_ :List[str] = logging.getLogger(__name__) def A ( a_ ) -> Tuple: __UpperCamelCase : Any =git.Repo(search_parent_directories=_a ) __UpperCamelCase : Optional[int] ={ "repo_id": str(_a ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(_a ,'git_log.json' ) ,'w' ) as f: json.dump(_a ,_a ,indent=4 ) def A ( a_ ) -> Any: if params.n_gpu <= 0: __UpperCamelCase : Optional[Any] =0 __UpperCamelCase : int =-1 __UpperCamelCase : List[Any] =True __UpperCamelCase : str =False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 __UpperCamelCase : Union[str, Any] =int(os.environ['WORLD_SIZE'] ) __UpperCamelCase : Optional[Any] =int(os.environ['N_GPU_NODE'] ) __UpperCamelCase : int =int(os.environ['RANK'] ) # number of nodes / node ID __UpperCamelCase : Any =params.world_size // params.n_gpu_per_node __UpperCamelCase : Any =params.global_rank // params.n_gpu_per_node __UpperCamelCase : List[Any] =True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 __UpperCamelCase : str =1 __UpperCamelCase : List[Any] =0 __UpperCamelCase : Tuple =0 __UpperCamelCase : Optional[Any] =0 __UpperCamelCase : Tuple =1 __UpperCamelCase : List[Any] =1 __UpperCamelCase : Tuple =False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __UpperCamelCase : Tuple =params.node_id == 0 and params.local_rank == 0 __UpperCamelCase : int =params.n_nodes > 1 # summary __UpperCamelCase : str =F'--- Global rank: {params.global_rank} - ' logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' ,backend='nccl' ,) def A ( a_ ) -> Tuple: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
71
import baseaa def lowerCamelCase__ ( _a): return baseaa.aaaencode(string.encode("utf-8")) def lowerCamelCase__ ( _a): return baseaa.aaadecode(_a).decode("utf-8") if __name__ == "__main__": import doctest doctest.testmod()
76
0
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil lowerCAmelCase_ : List[str] = 100 lowerCAmelCase_ : Optional[Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCAmelCase_ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def __A ( lowerCAmelCase_ ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCAmelCase : set[int] = set() _UpperCAmelCase : int _UpperCAmelCase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __A ( lowerCAmelCase_ = 5000 ): for number_to_partition in range(1 , lowerCAmelCase_ ): if len(partition(lowerCAmelCase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
170
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ): if config_name_or_path is None: _UpperCAmelCase : List[Any] = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: _UpperCAmelCase : str = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _UpperCAmelCase : Optional[int] = question_encoder_name_or_path _UpperCAmelCase : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. _UpperCAmelCase : List[Any] = RagConfig.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = AutoConfig.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Dict = gen_config _UpperCAmelCase : int = question_encoder_config _UpperCAmelCase : Optional[Any] = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase_ , lowerCAmelCase_ , config=lowerCAmelCase_ ) rag_model.save_pretrained(lowerCAmelCase_ ) # Sanity check. model_class.from_pretrained(lowerCAmelCase_ ) # Save tokenizers. _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) lowerCAmelCase_ : List[Any] = parser.parse_args() lowerCAmelCase_ : Tuple = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
170
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : int = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py A_ : Optional[int] = """src/transformers""" A_ : List[Any] = """docs/source/en""" A_ : List[str] = """.""" def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _UpperCAmelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCAmelCase : Union[str, Any] = 0 while not lines[start_index].startswith(lowerCAmelCase_ ): start_index += 1 start_index += 1 _UpperCAmelCase : List[Any] = start_index while not lines[end_index].startswith(lowerCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | A_ : Any = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. A_ : Any = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") A_ : Union[str, Any] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. A_ : int = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. A_ : str = direct_transformers_import(TRANSFORMERS_PATH) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Any = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , lowerCAmelCase_ ) return [m.group(0 ) for m in matches] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : int = 2 if text == """✅""" or text == """❌""" else len(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = (width - text_length) // 2 _UpperCAmelCase : int = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def snake_case_ ( )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCAmelCase : Tuple = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCAmelCase : Dict = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCAmelCase : Union[str, Any] = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : int = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : Any = collections.defaultdict(lowerCAmelCase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = None if attr_name.endswith("""Tokenizer""" ): _UpperCAmelCase : Tuple = slow_tokenizers _UpperCAmelCase : Optional[int] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): _UpperCAmelCase : str = fast_tokenizers _UpperCAmelCase : Union[str, Any] = attr_name[:-13] elif _re_tf_models.match(lowerCAmelCase_ ) is not None: _UpperCAmelCase : int = tf_models _UpperCAmelCase : Optional[int] = _re_tf_models.match(lowerCAmelCase_ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase_ ) is not None: _UpperCAmelCase : Optional[Any] = flax_models _UpperCAmelCase : Tuple = _re_flax_models.match(lowerCAmelCase_ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase_ ) is not None: _UpperCAmelCase : str = pt_models _UpperCAmelCase : Dict = _re_pt_models.match(lowerCAmelCase_ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCAmelCase : str = True break # Try again after removing the last word in the name _UpperCAmelCase : str = """""".join(camel_case_split(lowerCAmelCase_ )[:-1] ) # Let's build that table! _UpperCAmelCase : Tuple = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCAmelCase : int = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCAmelCase : int = [len(lowerCAmelCase_ ) + 2 for c in columns] _UpperCAmelCase : Union[str, Any] = max([len(lowerCAmelCase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCAmelCase : Optional[Any] = """|""" + """|""".join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for c, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" _UpperCAmelCase : int = {True: """✅""", False: """❌"""} for name in model_names: _UpperCAmelCase : Any = model_name_to_prefix[name] _UpperCAmelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for l, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + "|\n" return table def snake_case_ ( lowerCAmelCase_=False )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = _find_text_in_file( filename=os.path.join(lowerCAmelCase_ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) _UpperCAmelCase : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase_ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A_ : List[str] = parser.parse_args() check_model_table(args.fix_and_overwrite)
365
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : List[Any] = False class a ( unittest.TestCase ): pass @nightly @require_torch_gpu class a ( unittest.TestCase ): def A_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : int ): snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = '''A painting of a squirrel eating a burger ''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_ ) snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained(lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = generator.manual_seed(0 ) snake_case_ = pipe( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A_ ( self : Tuple ): snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = '''A painting of a squirrel eating a burger ''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images snake_case_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
56
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata lowercase : Tuple = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class A__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowercase = " ") -> Tuple: '''simple docstring''' a__ : Tuple = sentence_delimiter def __lowercase ( self , lowercase) -> Optional[int]: '''simple docstring''' return list(lowercase) def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' a__ : Tuple = [] for sent_idx, sentence in enumerate(lowercase): chars.extend(self.process_string(lowercase)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowercase) - 1: chars.append(self.sentence_delimiter) return chars lowercase : Union[str, Any] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowercase : List[str] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowercase : List[Any] = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowercase : Optional[int] = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowercase : Optional[Any] = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def __lowercase ( self , lowercase , lowercase , lowercase=False) -> Any: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , )["wer"] a__ : Optional[int] = 0 a__ : str = 0 for prediction, reference in zip(lowercase , lowercase): a__ : Optional[int] = jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
99
0
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase :str = logging.get_logger(__name__) lowerCAmelCase :Tuple = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} lowerCAmelCase :Tuple = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } lowerCAmelCase :int = { '''abeja/gpt-neox-japanese-2.7b''': 2_0_4_8, } def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple ): """simple docstring""" with open(lowerCAmelCase , 'r' , encoding='utf-8' ) as f: __magic_name__ : Optional[Any] = json.loads(f.read() ) __magic_name__ : str = collections.OrderedDict() __magic_name__ : Optional[int] = collections.OrderedDict() __magic_name__ : List[Any] = collections.OrderedDict() with open(lowerCAmelCase , 'r' , encoding='utf-8' ) as f: __magic_name__ : Optional[int] = f.readlines() __magic_name__ : str = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCAmelCase ): __magic_name__ : int = b __magic_name__ : Dict = idx for wd in b: __magic_name__ : List[Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : Any = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , _A : str , _A : Tuple , _A : Dict="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|startoftext|>" , _A : List[Any]="<|endoftext|>" , _A : Union[str, Any]=False , **_A : int , ) -> List[str]: super().__init__( unk_token=_A , pad_token=_A , bos_token=_A , eos_token=_A , do_clean_text=_A , **_A , ) if not os.path.isfile(_A ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(_A ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) __magic_name__ : Any = do_clean_text __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : int = load_vocab_and_emoji(_A , _A ) __magic_name__ : Optional[Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __lowerCAmelCase ( self : int ) -> List[Any]: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: return dict(self.raw_vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self : Tuple , _A : Any ) -> Union[str, Any]: return self.subword_tokenizer.tokenize(_A , clean=self.do_clean_text ) def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] ) -> Optional[Any]: return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self : Any , _A : List[str] ) -> Dict: return self.subword_tokenizer.convert_id_to_token(_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Any = ''.join(_A ).strip() return out_string def __lowerCAmelCase ( self : Dict , _A : "Conversation" ) -> List[int]: __magic_name__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: __magic_name__ : Tuple = input_ids[-self.model_max_length :] return input_ids def __lowerCAmelCase ( self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]: __magic_name__ : Optional[Any] = 0 if os.path.isdir(_A ): __magic_name__ : List[Any] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __magic_name__ : List[str] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: __magic_name__ : List[str] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) __magic_name__ : Union[str, Any] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(_A , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) __magic_name__ : List[Any] = token_index writer.write(','.join(_A ) + '\n' ) index += 1 with open(_A , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , _A ) return vocab_file, emoji_file class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[int] , _A : List[str] , _A : Dict , _A : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = vocab # same as swe __magic_name__ : Tuple = ids_to_tokens # same as bpe __magic_name__ : Optional[int] = emoji __magic_name__ : Optional[int] = np.max([len(_A ) for w in self.vocab.keys()] ) __magic_name__ : Tuple = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) __magic_name__ : Union[str, Any] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) __magic_name__ : Optional[int] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) __magic_name__ : List[str] = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) __magic_name__ : Dict = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) __magic_name__ : Optional[int] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) __magic_name__ : Union[str, Any] = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' __magic_name__ : List[Any] = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' __magic_name__ : int = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : int ) -> List[str]: return len(self.ids_to_tokens ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> List[str]: __magic_name__ : List[str] = self.content_repattera.sub('<URL>' , _A ) __magic_name__ : Union[str, Any] = self.content_repattera.sub('<EMAIL>' , _A ) __magic_name__ : Any = self.content_repattera.sub('<TEL>' , _A ) __magic_name__ : Dict = self.content_repattera.sub('<DATE>' , _A ) __magic_name__ : Any = self.content_repattera.sub('<DATE>' , _A ) __magic_name__ : str = self.content_repattera.sub('<PRICE>' , _A ) __magic_name__ : Union[str, Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __magic_name__ : Dict = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def __lowerCAmelCase ( self : Optional[int] , _A : List[str] , _A : Dict=False ) -> List[Any]: __magic_name__ : int = text.replace(' ' , '<SP>' ) __magic_name__ : Any = text.replace(' ' , '<SP>' ) __magic_name__ : str = text.replace('\r\n' , '<BR>' ) __magic_name__ : Tuple = text.replace('\n' , '<BR>' ) __magic_name__ : Optional[int] = text.replace('\r' , '<BR>' ) __magic_name__ : Tuple = text.replace('\t' , '<TAB>' ) __magic_name__ : Tuple = text.replace('—' , 'ー' ) __magic_name__ : Dict = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: __magic_name__ : Union[str, Any] = text.replace(_A , _A ) if clean: __magic_name__ : List[str] = self.clean_text(_A ) def check_simbol(_A : Any ): __magic_name__ : Any = x.encode() if len(_A ) == 1 and len(_A ) == 2: __magic_name__ : int = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(_A : Tuple ): __magic_name__ : Dict = x.encode() if len(_A ) == 1 and len(_A ) == 3: __magic_name__ : str = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False __magic_name__ : List[Any] = 0 __magic_name__ : Union[str, Any] = [] while pos < len(_A ): __magic_name__ : Tuple = min(len(_A ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 __magic_name__ : List[str] = [] # (token_id, token, pos) for e in range(_A , _A , -1 ): __magic_name__ : List[Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_A ) > 2: __magic_name__ : Union[str, Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_A ) > 0: # the smallest token_id is adopted __magic_name__ , __magic_name__ , __magic_name__ : Dict = sorted(_A , key=lambda _A : x[0] )[0] result.append(_A ) __magic_name__ : int = e else: __magic_name__ : List[Any] = pos + 1 __magic_name__ : Optional[Any] = text[pos:end] if check_simbol(_A ): result.append('<KIGOU>' ) elif checkuae(_A ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) __magic_name__ : List[str] = end return result def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[Any] , _A : Optional[int]="\n" ) -> Tuple: __magic_name__ : str = [] __magic_name__ : Tuple = [] __magic_name__ : Any = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_A ) > 0: words.append(bytearray(_A ).decode('utf-8' , errors='replace' ) ) __magic_name__ : Optional[int] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(_A ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(_A ) if len(_A ) > 0: words.append(bytearray(_A ).decode('utf-8' , errors='replace' ) ) __magic_name__ : str = ''.join(_A ) return text
275
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :str = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
275
1