code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
321
1
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=6_4 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1_0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=[1, 1_6, 4, 4] , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :int = parent lowerCAmelCase__ :str = batch_size lowerCAmelCase__ :str = image_size lowerCAmelCase__ :Optional[int] = patch_size lowerCAmelCase__ :Optional[Any] = num_channels lowerCAmelCase__ :Tuple = is_training lowerCAmelCase__ :List[str] = use_labels lowerCAmelCase__ :str = hidden_size lowerCAmelCase__ :Optional[Any] = num_hidden_layers lowerCAmelCase__ :Optional[Any] = num_attention_heads lowerCAmelCase__ :Tuple = intermediate_size lowerCAmelCase__ :List[Any] = hidden_act lowerCAmelCase__ :Tuple = hidden_dropout_prob lowerCAmelCase__ :List[Any] = attention_probs_dropout_prob lowerCAmelCase__ :Dict = type_sequence_label_size lowerCAmelCase__ :Dict = initializer_range lowerCAmelCase__ :str = scope lowerCAmelCase__ :str = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase__ :Dict = (self.image_size // 3_2) ** 2 lowerCAmelCase__ :List[Any] = num_patches + 1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ :List[Any] = None if self.use_labels: lowerCAmelCase__ :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :int = self.get_config() return config, pixel_values, labels def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 1_6, 3_2], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__UpperCAmelCase , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = ViTHybridModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.type_sequence_label_size lowerCAmelCase__ :Union[str, Any] = ViTHybridForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Union[str, Any] = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[str] = config_and_inputs lowerCAmelCase__ :Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __magic_name__ :Optional[Any] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __magic_name__ :int = False __magic_name__ :Dict = False __magic_name__ :List[Any] = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = ViTHybridModelTester(self ) lowerCAmelCase__ :Any = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :int = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ :Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ :int = [*signature.parameters.keys()] lowerCAmelCase__ :Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :Optional[Any] = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase__ :Any = model_class(config=__UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase__ :int = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def snake_case ( self ): '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :Dict = ViTHybridModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A () ->int: """simple docstring""" lowerCAmelCase__ :Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = self.default_image_processor lowerCAmelCase__ :Tuple = prepare_img() lowerCAmelCase__ :Optional[Any] = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ :List[str] = model(**__UpperCAmelCase ) # verify the logits lowerCAmelCase__ :Tuple = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) lowerCAmelCase__ :Dict = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow @require_accelerate def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) lowerCAmelCase__ :List[Any] = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) lowerCAmelCase__ :List[str] = prepare_img() lowerCAmelCase__ :Union[str, Any] = image_processor(images=__UpperCAmelCase , return_tensors='pt' ) lowerCAmelCase__ :Optional[Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase__ :str = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
254
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" lowerCAmelCase__ :int = credit_card_number lowerCAmelCase__ :Tuple = 0 lowerCAmelCase__ :int = len(_SCREAMING_SNAKE_CASE ) - 2 for i in range(_SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit lowerCAmelCase__ :Optional[Any] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowerCAmelCase__ :str = cc_number[:i] + str(_SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" lowerCAmelCase__ :Optional[int] = F"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(F"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(_SCREAMING_SNAKE_CASE ) <= 16: print(F"{error_message} of its length." ) return False if not validate_initial_digits(_SCREAMING_SNAKE_CASE ): print(F"{error_message} of its first two digits." ) return False if not luhn_validation(_SCREAMING_SNAKE_CASE ): print(F"{error_message} it fails the Luhn check." ) return False print(F"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
254
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : List[Any] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase : Union[str, Any] = { "yjernite/retribert-base-uncased": 5_1_2, } _lowerCAmelCase : Tuple = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _UpperCamelCase ( _lowercase ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ = RetriBertTokenizer UpperCAmelCase_ = ["input_ids", "attention_mask"] def __init__( self :List[str] , lowerCamelCase :Tuple=None , lowerCamelCase :Union[str, Any]=None , lowerCamelCase :Any=True , lowerCamelCase :int="[UNK]" , lowerCamelCase :List[str]="[SEP]" , lowerCamelCase :str="[PAD]" , lowerCamelCase :Union[str, Any]="[CLS]" , lowerCamelCase :List[Any]="[MASK]" , lowerCamelCase :Union[str, Any]=True , lowerCamelCase :List[Any]=None , **lowerCamelCase :Any , ) -> Tuple: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) UpperCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __lowerCamelCase ) != tokenize_chinese_chars ): UpperCAmelCase__ = getattr(__lowerCamelCase , normalizer_state.pop("type" ) ) UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = strip_accents UpperCAmelCase__ = tokenize_chinese_chars UpperCAmelCase__ = normalizer_class(**__lowerCamelCase ) UpperCAmelCase__ = do_lower_case def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :Tuple , lowerCamelCase :List[Any]=None ) -> str: UpperCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self :int , lowerCamelCase :List[int] , lowerCamelCase :Optional[List[int]] = None ) -> List[int]: UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :str , lowerCamelCase :Optional[str] = None ) -> Tuple[str]: UpperCAmelCase__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
169
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : list[list[int]] = [[0 for _ in range(snake_case__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __UpperCAmelCase : Optional[int] = 1 for n in range(m + 1 ): for k in range(1, snake_case__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _snake_case = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: _snake_case = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
157
0
'''simple docstring''' from scipy.stats import pearsonr import datasets lowerCAmelCase :List[Any] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' lowerCAmelCase :List[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' lowerCAmelCase :int = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self : int ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def __lowerCAmelCase ( self : Optional[int] , _A : Tuple , _A : Dict , _A : Any=False ) -> Any: if return_pvalue: __magic_name__ : int = pearsonr(lowercase_ , lowercase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase_ , lowercase_ )[0] )}
356
'''simple docstring''' lowerCAmelCase :Union[str, Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase :Tuple = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
275
0
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Tuple , __snake_case : int ): '''simple docstring''' if isinstance(__snake_case , torch.Tensor ): return image elif isinstance(__snake_case , PIL.Image.Image ): lowercase = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] lowercase = np.concatenate(__snake_case , axis=0 ) lowercase = np.array(__snake_case ).astype(np.floataa ) / 255.0 lowercase = image.transpose(0 , 3 , 1 , 2 ) lowercase = 2.0 * image - 1.0 lowercase = torch.from_numpy(__snake_case ) elif isinstance(image[0] , torch.Tensor ): lowercase = torch.cat(__snake_case , dim=0 ) return image def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Any=0.9995 ): '''simple docstring''' if not isinstance(__snake_case , np.ndarray ): lowercase = True lowercase = va.device lowercase = va.cpu().numpy() lowercase = va.cpu().numpy() lowercase = np.sum(va * va / (np.linalg.norm(__snake_case ) * np.linalg.norm(__snake_case )) ) if np.abs(__snake_case ) > DOT_THRESHOLD: lowercase = (1 - t) * va + t * va else: lowercase = np.arccos(__snake_case ) lowercase = np.sin(__snake_case ) lowercase = theta_a * t lowercase = np.sin(__snake_case ) lowercase = np.sin(theta_a - theta_t ) / sin_theta_a lowercase = sin_theta_t / sin_theta_a lowercase = sa * va + sa * va if inputs_are_torch: lowercase = torch.from_numpy(__snake_case ).to(__snake_case ) return va def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : List[Any] ): '''simple docstring''' lowercase = F.normalize(__snake_case , dim=-1 ) lowercase = F.normalize(__snake_case , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' for param in model.parameters(): lowercase = value class a ( a_ ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): super().__init__() self.register_modules( vae=_lowerCamelCase , text_encoder=_lowerCamelCase , clip_model=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , feature_extractor=_lowerCamelCase , coca_model=_lowerCamelCase , coca_tokenizer=_lowerCamelCase , coca_transform=_lowerCamelCase , ) lowercase = ( feature_extractor.size if isinstance(feature_extractor.size , _lowerCamelCase ) else feature_extractor.size['shortest_edge'] ) lowercase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _lowerCamelCase ) set_requires_grad(self.clip_model , _lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def UpperCamelCase_ ( self ): self.enable_attention_slicing(_lowerCamelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.vae , _lowerCamelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.vae , _lowerCamelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.unet , _lowerCamelCase ) def UpperCamelCase_ ( self ): set_requires_grad(self.unet , _lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # get the original timestep using init_timestep lowercase = min(int(num_inference_steps * strength ) , _lowerCamelCase ) lowercase = max(num_inference_steps - init_timestep , 0 ) lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(_lowerCamelCase )}' ) lowercase = image.to(device=_lowerCamelCase , dtype=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowerCamelCase ) ] lowercase = torch.cat(_lowerCamelCase , dim=0 ) else: lowercase = self.vae.encode(_lowerCamelCase ).latent_dist.sample(_lowerCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase = 0.1_8_2_1_5 * init_latents lowercase = init_latents.repeat_interleave(_lowerCamelCase , dim=0 ) lowercase = randn_tensor(init_latents.shape , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) # get latents lowercase = self.scheduler.add_noise(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase = init_latents return latents def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = self.coca_transform(_lowerCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowercase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = self.feature_extractor.preprocess(_lowerCamelCase ) lowercase = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() lowercase = self.clip_model.get_image_features(_lowerCamelCase ) lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_lowerCamelCase ) lowercase = image_embeddings_clip.repeat_interleave(_lowerCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = latents.detach().requires_grad_() lowercase = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) # predict the noise residual lowercase = self.unet(_lowerCamelCase , _lowerCamelCase , encoder_hidden_states=_lowerCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowercase = self.scheduler.alphas_cumprod[timestep] lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowercase = torch.sqrt(_lowerCamelCase ) lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _lowerCamelCase ): lowercase = self.scheduler.sigmas[index] lowercase = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase = 1 / 0.1_8_2_1_5 * sample lowercase = self.vae.decode(_lowerCamelCase ).sample lowercase = (image / 2 + 0.5).clamp(0 , 1 ) lowercase = transforms.Resize(self.feature_extractor_size )(_lowerCamelCase ) lowercase = self.normalize(_lowerCamelCase ).to(latents.dtype ) lowercase = self.clip_model.get_image_features(_lowerCamelCase ) lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_lowerCamelCase ) lowercase = spherical_dist_loss(_lowerCamelCase , _lowerCamelCase ).mean() * clip_guidance_scale lowercase = -torch.autograd.grad(_lowerCamelCase , _lowerCamelCase )[0] if isinstance(self.scheduler , _lowerCamelCase ): lowercase = latents.detach() + grads * (sigma**2) lowercase = noise_pred_original else: lowercase = noise_pred_original - torch.sqrt(_lowerCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 5_1_2 , _lowerCamelCase = 5_1_2 , _lowerCamelCase = 0.6 , _lowerCamelCase = 5_0 , _lowerCamelCase = 7.5 , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = 1_0_0 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = 0.8 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , ): if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(_lowerCamelCase )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(_lowerCamelCase , torch.Generator ) and batch_size > 1: lowercase = [generator] + [None] * (batch_size - 1) lowercase = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] lowercase = [x[0] for x in coca_is_none if x[1]] lowercase = ', '.join(_lowerCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_lowerCamelCase ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) lowercase = self.get_image_description(_lowerCamelCase ) if style_prompt is None: if len(_lowerCamelCase ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) lowercase = self.get_image_description(_lowerCamelCase ) # get prompt text embeddings for content and style lowercase = self.tokenizer( _lowerCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors='pt' , ) lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowercase = self.tokenizer( _lowerCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors='pt' , ) lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowercase = slerp(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # duplicate text embeddings for each generation per prompt lowercase = text_embeddings.repeat_interleave(_lowerCamelCase , dim=0 ) # set timesteps lowercase = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowercase = {} if accepts_offset: lowercase = 1 self.scheduler.set_timesteps(_lowerCamelCase , **_lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowercase , lowercase = self.get_timesteps(_lowerCamelCase , _lowerCamelCase , self.device ) lowercase = timesteps[:1].repeat(_lowerCamelCase ) # Preprocess image lowercase = preprocess(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase = self.prepare_latents( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , text_embeddings.dtype , self.device , _lowerCamelCase ) lowercase = preprocess(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase = self.prepare_latents( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , text_embeddings.dtype , self.device , _lowerCamelCase ) lowercase = slerp(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if clip_guidance_scale > 0: lowercase = self.get_clip_image_embeddings(_lowerCamelCase , _lowerCamelCase ) lowercase = self.get_clip_image_embeddings(_lowerCamelCase , _lowerCamelCase ) lowercase = slerp( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase = content_text_input.input_ids.shape[-1] lowercase = self.tokenizer([''] , padding='max_length' , max_length=_lowerCamelCase , return_tensors='pt' ) lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowercase = uncond_embeddings.repeat_interleave(_lowerCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowercase = torch.randn(_lowerCamelCase , generator=_lowerCamelCase , device='cpu' , dtype=_lowerCamelCase ).to( self.device ) else: lowercase = torch.randn(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=_lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase = {} if accepts_eta: lowercase = eta # check if the scheduler accepts generator lowercase = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowercase = generator with self.progress_bar(total=_lowerCamelCase ): for i, t in enumerate(_lowerCamelCase ): # expand the latents if we are doing classifier free guidance lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) # predict the noise residual lowercase = self.unet(_lowerCamelCase , _lowerCamelCase , encoder_hidden_states=_lowerCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: lowercase , lowercase = noise_pred.chunk(2 ) lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowercase , lowercase = self.cond_fn( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 lowercase = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase = 1 / 0.1_8_2_1_5 * latents lowercase = self.vae.decode(_lowerCamelCase ).sample lowercase = (image / 2 + 0.5).clamp(0 , 1 ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_lowerCamelCase , nsfw_content_detected=_lowerCamelCase )
220
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a ( unittest.TestCase ): def UpperCamelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self ): lowercase , lowercase = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) lowercase = 'A painting of a squirrel eating a burger' lowercase = jax.device_count() lowercase = num_samples * [prompt] lowercase = sd_pipe.prepare_inputs(_lowerCamelCase ) lowercase = replicate(_lowerCamelCase ) lowercase = shard(_lowerCamelCase ) lowercase = jax.random.PRNGKey(0 ) lowercase = jax.random.split(_lowerCamelCase , jax.device_count() ) lowercase = sd_pipe(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_inference_steps=2_5 , jit=_lowerCamelCase )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self ): lowercase = 'stabilityai/stable-diffusion-2' lowercase , lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCamelCase , subfolder='scheduler' ) lowercase , lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCamelCase , scheduler=_lowerCamelCase , revision='bf16' , dtype=jnp.bfloataa , ) lowercase = scheduler_params lowercase = 'A painting of a squirrel eating a burger' lowercase = jax.device_count() lowercase = num_samples * [prompt] lowercase = sd_pipe.prepare_inputs(_lowerCamelCase ) lowercase = replicate(_lowerCamelCase ) lowercase = shard(_lowerCamelCase ) lowercase = jax.random.PRNGKey(0 ) lowercase = jax.random.split(_lowerCamelCase , jax.device_count() ) lowercase = sd_pipe(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_inference_steps=2_5 , jit=_lowerCamelCase )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
220
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: UpperCamelCase__ : Any = 0 UpperCamelCase__ : int = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
196
from ..utils import DummyObject, requires_backends class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : int , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[Any] = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Union[str, Any] = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : str , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[str] = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[Any] = ['''torch'''] def __init__( self : int , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> int: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Dict: requires_backends(__lowerCAmelCase , ["torch"] ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: requires_backends(__lowerCAmelCase , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[str] = ['''torch'''] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : str , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : int = ['''torch'''] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[str] = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : str , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Union[str, Any] = ['''torch'''] def __init__( self : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Any = ['''torch'''] def __init__( self : int , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Union[str, Any] = ['''torch'''] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : int , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[Any] = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[Any] = ['''torch'''] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Union[str, Any] = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : str = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Union[str, Any] = ['''torch'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[Any] = ['''torch'''] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Optional[int] = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : List[str] = ['''torch'''] def __init__( self : int , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Tuple = ['''torch'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __a ( metaclass=A__ ): _lowerCAmelCase : Dict = ['''torch'''] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def __lowercase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] )
196
1
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowercase_ = TypeVar("""KEY""") lowercase_ = TypeVar("""VAL""") @dataclass(frozen=snake_case__ , slots=snake_case__ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 class a_ ( _Item ): '''simple docstring''' def __init__( self ) -> List[str]: super().__init__(_A , _A ) def __bool__( self ) -> Any: return False lowercase_ = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self , A = 8 , A = 0.75 ) -> int: _SCREAMING_SNAKE_CASE = initial_block_size _SCREAMING_SNAKE_CASE = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _SCREAMING_SNAKE_CASE = capacity_factor _SCREAMING_SNAKE_CASE = 0 def snake_case_( self , A ) -> List[Any]: return hash(_A ) % len(self._buckets ) def snake_case_( self , A ) -> Union[str, Any]: return (ind + 1) % len(self._buckets ) def snake_case_( self , A , A , A ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self._buckets[ind] if not stored: _SCREAMING_SNAKE_CASE = _Item(_A , _A ) self._len += 1 return True elif stored.key == key: _SCREAMING_SNAKE_CASE = _Item(_A , _A ) return True else: return False def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_A ) def snake_case_( self ) -> Optional[Any]: if len(self._buckets ) <= self._initial_block_size: return False _SCREAMING_SNAKE_CASE = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def snake_case_( self , A ) -> str: _SCREAMING_SNAKE_CASE = self._buckets _SCREAMING_SNAKE_CASE = [None] * new_size _SCREAMING_SNAKE_CASE = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def snake_case_( self ) -> List[str]: self._resize(len(self._buckets ) * 2 ) def snake_case_( self ) -> str: self._resize(len(self._buckets ) // 2 ) def snake_case_( self , A ) -> Dict: _SCREAMING_SNAKE_CASE = self._get_bucket_index(_A ) for _ in range(len(self._buckets ) ): yield ind _SCREAMING_SNAKE_CASE = self._get_next_ind(_A ) def snake_case_( self , A , A ) -> int: for ind in self._iterate_buckets(_A ): if self._try_set(_A , _A , _A ): break def __setitem__( self , A , A ) -> Tuple: if self._is_full(): self._size_up() self._add_item(_A , _A ) def __delitem__( self , A ) -> List[str]: for ind in self._iterate_buckets(_A ): _SCREAMING_SNAKE_CASE = self._buckets[ind] if item is None: raise KeyError(_A ) if item is _deleted: continue if item.key == key: _SCREAMING_SNAKE_CASE = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , A ) -> Union[str, Any]: for ind in self._iterate_buckets(_A ): _SCREAMING_SNAKE_CASE = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_A ) def __len__( self ) -> int: return self._len def __iter__( self ) -> Tuple: yield from (item.key for item in self._buckets if item) def __repr__( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = ' ,'.join( f'{item.key}: {item.val}' for item in self._buckets if item ) return f'HashMap({val_string})'
58
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> None: __A : int = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(a ) == len(a ), F"""{len(a )} != {len(a )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) UpperCAmelCase : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } UpperCAmelCase : Optional[int] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE ( a , a ) -> Dict: try: __A : int = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(a ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> List[int]: if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(a ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE ( a , a = "student" , a = None , a = None , a=False , a=None , a=None , **a , ) -> Tuple[PreTrainedModel, List[int], List[int]]: __A : List[str] = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(a , a ): AutoTokenizer.from_pretrained(a ).save_pretrained(a ) # purely for convenience __A : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(a ).eval() else: assert isinstance(a , a ), F"""teacher must be a model or string got type {type(a )}""" __A : int = teacher.config.to_diff_dict() try: __A , __A : List[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __A : str = teacher_e if d is None: __A : List[Any] = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): __A , __A : List[Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __A , __A : Optional[int] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __A : int = teacher_e if d is None: __A : Optional[Any] = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(a ) # Copy weights __A : Dict = teacher.config_class(**a ) __A : int = AutoModelForSeqaSeqLM.from_config(a ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __A : Any = student.load_state_dict(teacher.state_dict() , strict=a ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __A , __A : Optional[int] = list(range(a ) ), list(range(a ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(a ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __A : List[int] = pick_layers_to_copy(a , a ) if d_layers_to_copy is None: __A : List[int] = pick_layers_to_copy(a , a ) try: if hasattr( a , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , a ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , a ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , a ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , a ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , a ) copy_layers(teacher.decoder.block , student.decoder.block , a ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) __A : Optional[int] = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(a ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
280
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __A = logging.getLogger(__name__) __A = 50 # max width of layer names __A = 70 # max width of quantizer names def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Tuple: """simple docstring""" __lowerCamelCase = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_lowercase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_lowercase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_lowercase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_lowercase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_lowercase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_lowercase , type=_lowercase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_lowercase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> str: """simple docstring""" if args.calibrator == "max": __lowerCamelCase = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) __lowerCamelCase = "histogram" elif args.calibrator == "mse": __lowerCamelCase = "histogram" else: raise ValueError(F"""Invalid calibrator {args.calibrator}""" ) __lowerCamelCase = QuantDescriptor(num_bits=args.aprec , calib_method=_lowercase ) __lowerCamelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_lowercase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowercase ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Tuple=False ) -> Optional[int]: """simple docstring""" logger.info('Configuring Model for Quantization' ) logger.info(F"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowercase , ['embeddings'] , which='weight' , _disabled=_lowercase ) if args.quant_disable: set_quantizer_by_name(_lowercase , [''] , _disabled=_lowercase ) if args.quant_disable_keyword: set_quantizer_by_name(_lowercase , args.quant_disable_keyword , _disabled=_lowercase ) if args.quant_disable_layer_module: set_quantizer_by_name(_lowercase , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_lowercase ) if args.quant_enable_layer_module: set_quantizer_by_name(_lowercase , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_lowercase ) if args.recalibrate_weights: recalibrate_weights(_lowercase ) if args.fuse_qkv: fuse_qkv(_lowercase , _lowercase ) if args.clip_gelu: clip_gelu(_lowercase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowercase ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"""{name:80}: {module}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : int ) -> Dict: """simple docstring""" logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowercase ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" def fusea(UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_lowercase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return __lowerCamelCase = qq._amax.detach().item() __lowerCamelCase = qk._amax.detach().item() __lowerCamelCase = qv._amax.detach().item() __lowerCamelCase = max(_lowercase , _lowercase , _lowercase ) qq._amax.fill_(_lowercase ) qk._amax.fill_(_lowercase ) qv._amax.fill_(_lowercase ) logger.info(F""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): __lowerCamelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowercase ) __lowerCamelCase = mod._input_quantizer._amax.data.detach().item() logger.info(F"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Optional[int]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowercase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: __lowerCamelCase = mod.weight.shape[0] __lowerCamelCase = mod._weight_quantizer._amax.detach() __lowerCamelCase = torch.ones(_lowercase , dtype=amax.dtype , device=amax.device ) * amax print(F"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowercase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __lowerCamelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __lowerCamelCase = set(range(len(mod.weight.size() ) ) ) - axis_set __lowerCamelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowercase , keepdims=_lowercase ).detach() logger.info(F"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) __lowerCamelCase = amax def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple=25 , UpperCamelCase__ : List[str]=180 , UpperCamelCase__ : List[str]=None ) -> Optional[int]: """simple docstring""" if ignore is None: __lowerCamelCase = [] elif not isinstance(_lowercase , _lowercase ): __lowerCamelCase = [ignore] __lowerCamelCase = 0 for name, mod in model.named_modules(): if not hasattr(_lowercase , 'weight' ): continue __lowerCamelCase = max(_lowercase , len(_lowercase ) ) for name, mod in model.named_modules(): __lowerCamelCase = getattr(_lowercase , '_input_quantizer' , _lowercase ) __lowerCamelCase = getattr(_lowercase , '_weight_quantizer' , _lowercase ) if not hasattr(_lowercase , 'weight' ): continue if type(_lowercase ) in ignore: continue if [True for s in ignore if type(_lowercase ) is str and s in name]: continue __lowerCamelCase = F"""Act:{input_q.extra_repr()}""" __lowerCamelCase = F"""Wgt:{weight_q.extra_repr()}""" __lowerCamelCase = F"""{name:{name_width}} {act_str} {wgt_str}""" if len(_lowercase ) <= line_width: logger.info(_lowercase ) else: logger.info(F"""{name:{name_width}} {act_str}""" ) logger.info(F"""{' ':{name_width}} {wgt_str}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" __lowerCamelCase = 0 for name, mod in model.named_modules(): if isinstance(_lowercase , pytorch_quantization.nn.TensorQuantizer ): print(F"""{name:80} {mod}""" ) count += 1 print(F"""{count} TensorQuantizers found in model""" ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" __lowerCamelCase = getattr(_lowercase , _lowercase , _lowercase ) if quantizer_mod is not None: assert hasattr(_lowercase , _lowercase ) setattr(_lowercase , _lowercase , _lowercase ) else: logger.warning(F"""{name} has no {quantizer}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple="both" , **UpperCamelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = F"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" if which in ["input", "both"]: set_quantizer(_lowercase , _lowercase , '_input_quantizer' , _lowercase , _lowercase ) if which in ["weight", "both"]: set_quantizer(_lowercase , _lowercase , '_weight_quantizer' , _lowercase , _lowercase ) logger.info(_lowercase ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , **UpperCamelCase__ : Tuple ) -> Tuple: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowercase , '_input_quantizer' ) or hasattr(_lowercase , '_weight_quantizer' ): for n in names: if re.search(_lowercase , _lowercase ): set_quantizers(_lowercase , _lowercase , **_lowercase ) elif name.endswith('_quantizer' ): for n in names: if re.search(_lowercase , _lowercase ): __lowerCamelCase = F"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" setattr(_lowercase , _lowercase , _lowercase ) logger.info(_lowercase )
363
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") __A = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = [] __A = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' elif "running_mean" in name: __lowerCamelCase = 'running_mean' elif "running_var" in name: __lowerCamelCase = 'running_var' elif "num_batches_tracked" in name: __lowerCamelCase = 'num_batches_tracked' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple: """simple docstring""" if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __lowerCamelCase = 1876 __lowerCamelCase = 600 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __lowerCamelCase = 1876 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
348
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a_ : List[Any] = get_logger(__name__) class _snake_case ( enum.Enum ): _lowercase : Any = '''all_checks''' _lowercase : str = '''basic_checks''' _lowercase : str = '''no_checks''' class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None): if expected_checksums is None: logger.info('Unable to verify checksums.') return if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise ExpectedMoreDownloadedFiles(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise UnexpectedDownloadedFile(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) SCREAMING_SNAKE_CASE = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE = ' for ' + verification_name if verification_name is not None else '' if len(_UpperCAmelCase) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error') logger.info('All the checksums matched successfully' + for_verification_name) class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if expected_splits is None: logger.info('Unable to verify splits sizes.') return if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise ExpectedMoreSplits(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise UnexpectedSplits(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) SCREAMING_SNAKE_CASE = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_UpperCAmelCase) > 0: raise NonMatchingSplitsSizesError(str(_UpperCAmelCase)) logger.info('All the splits matched successfully.') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = True): if record_checksum: SCREAMING_SNAKE_CASE = shaaaa() with open(_UpperCAmelCase , 'rb') as f: for chunk in iter(lambda: f.read(1 << 20) , B''): m.update(_UpperCAmelCase) SCREAMING_SNAKE_CASE = m.hexdigest() else: SCREAMING_SNAKE_CASE = None return {"num_bytes": os.path.getsize(_UpperCAmelCase), "checksum": checksum} def lowerCamelCase__ (_UpperCAmelCase): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
137
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = ["image_processor", "tokenizer"] __magic_name__ = "CLIPImageProcessor" __magic_name__ = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case__ , ) _lowerCAmelCase : Tuple = kwargs.pop('feature_extractor' ) _lowerCAmelCase : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case__ , snake_case__ ) def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase : Dict = self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: _lowerCAmelCase : Union[str, Any] = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: _lowerCAmelCase : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.tokenizer.model_input_names _lowerCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
25
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
25
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCAmelCase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase_ : Optional[Any] = DisjunctiveConstraint(lowercase_ ) self.assertTrue(isinstance(dc.token_ids , lowercase_ ) ) with self.assertRaises(lowercase_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCamelCase__ ( self ): """simple docstring""" # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCAmelCase_ : Optional[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase_ ): DisjunctiveConstraint(lowercase_ ) # fails here def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase_ : Any = DisjunctiveConstraint(lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = dc.update(1 ) UpperCAmelCase_ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(lowercase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(2 ) UpperCAmelCase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(lowercase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dc.update(3 ) UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False self.assertTrue(lowercase_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase_ : str = DisjunctiveConstraint(lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
61
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return round(float(moles / volume ) * nfactor ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
61
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['LayoutLMv2FeatureExtractor'] SCREAMING_SNAKE_CASE__ = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
183
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
183
1
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase = "bart" UpperCAmelCase = True @st.cache(allow_output_mutation=lowerCAmelCase__ ) def lowercase ( ) -> Union[str, Any]: if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCAmelCase__ ) def lowercase ( ) -> Any: if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) _UpperCamelCase = faiss.IndexFlatIP(128 ) _UpperCamelCase = faiss.index_cpu_to_gpu(lowerCAmelCase__ , 1 , lowerCAmelCase__ ) wikiaab_gpu_index_flat.add(lowerCAmelCase__ ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCAmelCase__ ) def lowercase ( ) -> Dict: _UpperCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) _UpperCamelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCAmelCase__ ) return (elia_train, eli5_train_q_index) UpperCAmelCase = load_indexes() UpperCAmelCase = load_models() UpperCAmelCase = load_train_data() def lowercase ( a__ : List[str] , a__ : Union[str, Any]=10 ) -> Optional[int]: _UpperCamelCase = embed_questions_for_retrieval([question] , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = [elia_train[int(lowerCAmelCase__ )] for i in I[0]] return nn_examples def lowercase ( a__ : Any , a__ : Dict="wiki40b" , a__ : Optional[Any]="dense" , a__ : Dict=10 ) -> Any: if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( lowerCAmelCase__ , lowerCAmelCase__ , index_name='''english_wiki40b_snippets_100w''' , n_results=lowerCAmelCase__ , ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(lowerCAmelCase__ , lowerCAmelCase__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a__ : None), } ) def lowercase ( a__ : int , a__ : int , a__ : Optional[Any] , a__ : List[str]=64 , a__ : int=256 , a__ : List[Any]=False , a__ : int=2 , a__ : Optional[Any]=0.95 , a__ : List[str]=0.8 ) -> Dict: with torch.no_grad(): _UpperCamelCase = qa_sas_generate( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , num_answers=1 , num_beams=lowerCAmelCase__ , min_len=lowerCAmelCase__ , max_len=lowerCAmelCase__ , do_sample=lowerCAmelCase__ , temp=lowerCAmelCase__ , top_p=lowerCAmelCase__ , top_k=lowerCAmelCase__ , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar UpperCAmelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase = st.sidebar.checkbox("""Demo options""") if demo_options: UpperCAmelCase = st.sidebar.selectbox( """""", action_list, index=3, ) UpperCAmelCase = action_list.index(action_st) UpperCAmelCase = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) UpperCAmelCase = show_type == "Show full text of passages" else: UpperCAmelCase = 3 UpperCAmelCase = True UpperCAmelCase = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: UpperCAmelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) UpperCAmelCase = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: UpperCAmelCase = "wiki40b" UpperCAmelCase = "dense" UpperCAmelCase = "beam" UpperCAmelCase = 2 UpperCAmelCase = 64 UpperCAmelCase = 256 UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = st.sidebar.checkbox("""Generation options""") if generate_options: UpperCAmelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) UpperCAmelCase = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase = None # start main text UpperCAmelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase = st.text_input("""Enter your question here:""", """""") else: UpperCAmelCase = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase = make_support(question, source=wiki_source, method="""dense""", n_results=10) UpperCAmelCase = make_support(question, source=wiki_source, method="""sparse""", n_results=10) UpperCAmelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase = support_list[:10] UpperCAmelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): UpperCAmelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(""" """, """_""")) UpperCAmelCase = res[1].strip() if sec_titles == "": UpperCAmelCase = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase = sec_titles.split(""" & """) UpperCAmelCase = " & ".join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase = find_nearest_training(question) UpperCAmelCase = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) UpperCAmelCase = [ "{}. {}".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) UpperCAmelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
256
'''simple docstring''' def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' return int(input_a == input_a == 0 ) def _A () -> None: '''simple docstring''' print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
168
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase_ = logging.get_logger(__name__) def __lowercase ( __lowercase ) -> Optional[int]: '''simple docstring''' _A = R"\w+[.]\d+" _A = re.findall(__lowercase , __lowercase ) for pat in pats: _A = key.replace(__lowercase , "_".join(pat.split("." ) ) ) return key def __lowercase ( __lowercase , __lowercase , __lowercase ) -> List[Any]: '''simple docstring''' _A = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _A = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _A = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _A = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer _A = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _A = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _A = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": _A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _A = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _A = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowercase ( __lowercase , __lowercase , __lowercase=42 ) -> Tuple: '''simple docstring''' _A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _A = flax_model.init_weights(PRNGKey(__lowercase ) ) _A = flatten_dict(__lowercase ) _A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _A = rename_key(__lowercase ) _A = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters _A , _A = rename_key_and_reshape_tensor(__lowercase , __lowercase , __lowercase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown _A = jnp.asarray(__lowercase ) return unflatten_dict(__lowercase )
174
'''simple docstring''' lowerCamelCase_ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCamelCase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCamelCase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
174
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCAmelCase : List[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" for attribute in key.split("." ): a__ : Optional[Any] =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: a__ : Optional[Any] =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: a__ : Optional[Any] =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": a__ : Optional[int] =value elif weight_type == "weight_g": a__ : List[str] =value elif weight_type == "weight_v": a__ : Any =value elif weight_type == "bias": a__ : Optional[int] =value else: a__ : int =value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" a__ : int =[] a__ : Optional[Any] =fairseq_model.state_dict() a__ : Any =hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a__ : List[str] =False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == "group" , ) a__ : Any =True else: for key, mapped_key in MAPPING.items(): a__ : str ="unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue a__ : Tuple =True if "*" in mapped_key: a__ : Union[str, Any] =name.split(SCREAMING_SNAKE_CASE )[0].split("." )[-2] a__ : Any =mapped_key.replace("*" , SCREAMING_SNAKE_CASE ) if "weight_g" in name: a__ : Any ="weight_g" elif "weight_v" in name: a__ : Union[str, Any] ="weight_v" elif "bias" in name: a__ : Tuple ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ : int ="weight" else: a__ : Optional[Any] =None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _A ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" a__ : Optional[Any] =full_name.split("conv_layers." )[-1] a__ : Dict =name.split("." ) a__ : str =int(items[0] ) a__ : Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a__ : Optional[Any] =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a__ : str =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) a__ : int =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a__ : List[str] =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Any=True ): """simple docstring""" if config_path is not None: a__ : Optional[int] =UniSpeechSatConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: a__ : Optional[Any] =UniSpeechSatConfig() a__ : List[Any] ="" if is_finetuned: a__ : Optional[int] =UniSpeechSatForCTC(SCREAMING_SNAKE_CASE ) else: a__ : int =UniSpeechSatForPreTraining(SCREAMING_SNAKE_CASE ) a__ , a__ , a__ : str =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) a__ : Optional[Any] =model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
95
import numpy as np def _A ( SCREAMING_SNAKE_CASE : np.array ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
95
1
'''simple docstring''' import os lowerCamelCase : str = {"I": 1, "V": 5, "X": 1_0, "L": 5_0, "C": 1_0_0, "D": 5_0_0, "M": 1_0_0_0} def _lowerCAmelCase ( _UpperCamelCase : str ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 while index < len(_UpperCamelCase ) - 1: _SCREAMING_SNAKE_CASE =SYMBOLS[numerals[index]] _SCREAMING_SNAKE_CASE =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _lowerCAmelCase ( _UpperCamelCase : int ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE =num // 10_00 numerals += m_count * "M" num %= 10_00 _SCREAMING_SNAKE_CASE =num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 _SCREAMING_SNAKE_CASE =num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _lowerCAmelCase ( _UpperCamelCase : str = "/p089_roman.txt" ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 with open(os.path.dirname(_UpperCamelCase ) + roman_numerals_filename ) as filea: _SCREAMING_SNAKE_CASE =filea.readlines() for line in lines: _SCREAMING_SNAKE_CASE =line.strip() _SCREAMING_SNAKE_CASE =parse_roman_numerals(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =generate_roman_numerals(_UpperCamelCase ) savings += len(_UpperCamelCase ) - len(_UpperCamelCase ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
114
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[int] = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
114
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class _A ( __UpperCAmelCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''hidden_sizes''')) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''num_attention_heads''')) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''num_encoder_blocks''')) class _A : def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=13 , __SCREAMING_SNAKE_CASE : str=64 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Optional[int]=[2, 2, 2, 2] , __SCREAMING_SNAKE_CASE : List[str]=[8, 4, 2, 1] , __SCREAMING_SNAKE_CASE : Any=[16, 32, 64, 128] , __SCREAMING_SNAKE_CASE : List[Any]=[1, 4, 8, 16] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 2, 4, 8] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : int=None , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = num_channels __a = num_encoder_blocks __a = sr_ratios __a = depths __a = hidden_sizes __a = downsampling_rates __a = num_attention_heads __a = is_training __a = use_labels __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = num_labels __a = scope def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __a = None if self.use_labels: __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __a = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = SegformerModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE) __a = __a = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = self.num_labels __a = SegformerForSemanticSegmentation(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) __a = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = 1 __a = SegformerForSemanticSegmentation(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertGreater(result.loss , 0.0) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCamelCase__ : Optional[int] = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase__ : List[Any] = True UpperCamelCase__ : int = False UpperCamelCase__ : Tuple = False UpperCamelCase__ : Optional[int] = False def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = SegformerModelTester(self) __a = SegformerConfigTester(self , config_class=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__SCREAMING_SNAKE_CASE) @unittest.skip('''SegFormer does not use inputs_embeds''') def _lowerCamelCase ( self : int): '''simple docstring''' pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''') def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__SCREAMING_SNAKE_CASE) __a = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True for model_class in self.all_model_classes: __a = True __a = False __a = True __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) __a = outputs.attentions __a = sum(self.model_tester.depths) self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # check that output_attentions also work using config del inputs_dict["output_attentions"] __a = True __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) __a = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # verify the first attentions (first block, first layer) __a = (self.model_tester.image_size // 4) ** 2 __a = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __a = (self.model_tester.image_size // 32) ** 2 __a = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __a = len(__SCREAMING_SNAKE_CASE) # Check attention is always last and order is fine __a = True __a = True __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) self.assertEqual(out_len + 1 , len(__SCREAMING_SNAKE_CASE)) __a = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # verify the first attentions (first block, first layer) __a = (self.model_tester.image_size // 4) ** 2 __a = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _lowerCamelCase ( self : Dict): '''simple docstring''' def check_hidden_states_output(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any]): __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) __a = outputs.hidden_states __a = self.model_tester.num_encoder_blocks self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' if not self.model_tester.is_training: return __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True for model_class in self.all_model_classes: if model_class in get_values(__SCREAMING_SNAKE_CASE): continue __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.train() __a = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE) __a = model(**__SCREAMING_SNAKE_CASE).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def _lowerCamelCase ( self : Dict): '''simple docstring''' pass @slow def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = SegformerModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def __snake_case ( ): __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Any): '''simple docstring''' __a = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__SCREAMING_SNAKE_CASE , align=__SCREAMING_SNAKE_CASE , do_random_crop=__SCREAMING_SNAKE_CASE) __a = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''').to( __SCREAMING_SNAKE_CASE) __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''') __a = encoded_inputs.pixel_values.to(__SCREAMING_SNAKE_CASE) with torch.no_grad(): __a = model(__SCREAMING_SNAKE_CASE) __a = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE) __a = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ]).to(__SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4)) @slow def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__SCREAMING_SNAKE_CASE , align=__SCREAMING_SNAKE_CASE , do_random_crop=__SCREAMING_SNAKE_CASE) __a = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''').to(__SCREAMING_SNAKE_CASE) __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''') __a = encoded_inputs.pixel_values.to(__SCREAMING_SNAKE_CASE) with torch.no_grad(): __a = model(__SCREAMING_SNAKE_CASE) __a = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE) __a = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ]).to(__SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-1)) @slow def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__SCREAMING_SNAKE_CASE , align=__SCREAMING_SNAKE_CASE , do_random_crop=__SCREAMING_SNAKE_CASE) __a = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''').to( __SCREAMING_SNAKE_CASE) __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''') __a = encoded_inputs.pixel_values.to(__SCREAMING_SNAKE_CASE) with torch.no_grad(): __a = model(__SCREAMING_SNAKE_CASE) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE , target_sizes=[(500, 300)]) __a = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE) __a = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE) __a = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE)
131
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : UpperCamelCase__ : int UpperCamelCase__ : TreeNode | None = None UpperCamelCase__ : TreeNode | None = None __snake_case :Optional[Any] = namedtuple('''CoinsDistribResult''', '''moves excess''') def __snake_case ( _UpperCAmelCase ): if root is None: return 0 # Validation def count_nodes(_UpperCAmelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_UpperCAmelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_UpperCAmelCase ) != count_coins(_UpperCAmelCase ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_UpperCAmelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __a , __a = get_distrib(node.left ) __a , __a = get_distrib(node.right ) __a = 1 - left_distrib_excess __a = 1 - right_distrib_excess __a = ( left_distrib_moves + right_distrib_moves + abs(_UpperCAmelCase ) + abs(_UpperCAmelCase ) ) __a = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_UpperCAmelCase , _UpperCAmelCase ) return get_distrib(_UpperCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
131
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _lowercase ( __UpperCAmelCase): """simple docstring""" def __get__( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) lowerCamelCase__ : str = "__cached_" + self.fget.__name__ lowerCamelCase__ : str = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if cached is None: lowerCamelCase__ : int = self.fget(__SCREAMING_SNAKE_CASE ) setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return cached def lowercase_ ( _A : Tuple ): """simple docstring""" lowerCamelCase__ : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def lowercase_ ( _A : Optional[Any] ): """simple docstring""" if is_torch_fx_proxy(_UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(_UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_UpperCAmelCase , np.ndarray ) def lowercase_ ( _A : int ): """simple docstring""" return isinstance(_UpperCAmelCase , np.ndarray ) def lowercase_ ( _A : str ): """simple docstring""" return _is_numpy(_UpperCAmelCase ) def lowercase_ ( _A : Tuple ): """simple docstring""" import torch return isinstance(_UpperCAmelCase , torch.Tensor ) def lowercase_ ( _A : Optional[int] ): """simple docstring""" return False if not is_torch_available() else _is_torch(_UpperCAmelCase ) def lowercase_ ( _A : Optional[Any] ): """simple docstring""" import torch return isinstance(_UpperCAmelCase , torch.device ) def lowercase_ ( _A : Optional[int] ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(_UpperCAmelCase ) def lowercase_ ( _A : Dict ): """simple docstring""" import torch if isinstance(_UpperCAmelCase , _UpperCAmelCase ): if hasattr(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : List[str] = getattr(_UpperCAmelCase , _UpperCAmelCase ) else: return False return isinstance(_UpperCAmelCase , torch.dtype ) def lowercase_ ( _A : Dict ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(_UpperCAmelCase ) def lowercase_ ( _A : Tuple ): """simple docstring""" import tensorflow as tf return isinstance(_UpperCAmelCase , tf.Tensor ) def lowercase_ ( _A : Tuple ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(_UpperCAmelCase ) def lowercase_ ( _A : Tuple ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_UpperCAmelCase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(_UpperCAmelCase ) return type(_UpperCAmelCase ) == tf.Tensor def lowercase_ ( _A : List[str] ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(_UpperCAmelCase ) def lowercase_ ( _A : str ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(_UpperCAmelCase , jnp.ndarray ) def lowercase_ ( _A : str ): """simple docstring""" return False if not is_flax_available() else _is_jax(_UpperCAmelCase ) def lowercase_ ( _A : Union[str, Any] ): """simple docstring""" if isinstance(_UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(_UpperCAmelCase ) for k, v in obj.items()} elif isinstance(_UpperCAmelCase , (list, tuple) ): return [to_py_obj(_UpperCAmelCase ) for o in obj] elif is_tf_tensor(_UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(_UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_UpperCAmelCase ): return np.asarray(_UpperCAmelCase ).tolist() elif isinstance(_UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowercase_ ( _A : Optional[Any] ): """simple docstring""" if isinstance(_UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(_UpperCAmelCase ) for k, v in obj.items()} elif isinstance(_UpperCAmelCase , (list, tuple) ): return np.array(_UpperCAmelCase ) elif is_tf_tensor(_UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(_UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_UpperCAmelCase ): return np.asarray(_UpperCAmelCase ) else: return obj class _lowercase ( __UpperCAmelCase): """simple docstring""" def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Any = fields(self ) # Safety and consistency checks if not len(__SCREAMING_SNAKE_CASE ): raise ValueError(f"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"{self.__class__.__name__} should not have more than one required field." ) lowerCamelCase__ : List[str] = getattr(self , class_fields[0].name ) lowerCamelCase__ : Optional[Any] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Dict = first_field.items() lowerCamelCase__ : Union[str, Any] = True else: try: lowerCamelCase__ : Union[str, Any] = iter(__SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Tuple = True except TypeError: lowerCamelCase__ : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__SCREAMING_SNAKE_CASE ): if ( not isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) or not len(__SCREAMING_SNAKE_CASE ) == 2 or not isinstance(element[0] , __SCREAMING_SNAKE_CASE ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCamelCase__ : Dict = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowerCamelCase__ : Dict = element[1] elif first_field is not None: lowerCamelCase__ : Union[str, Any] = first_field else: for field in class_fields: lowerCamelCase__ : Optional[Any] = getattr(self , field.name ) if v is not None: lowerCamelCase__ : Union[str, Any] = v def __delitem__( self : str , *__lowerCamelCase : Any , **__lowerCamelCase : str ): '''simple docstring''' raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def lowerCAmelCase ( self : Tuple , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Tuple ): '''simple docstring''' raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def lowerCAmelCase ( self : Dict , *__lowerCamelCase : int , **__lowerCamelCase : int ): '''simple docstring''' raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def lowerCAmelCase ( self : str , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self : Tuple , __lowerCamelCase : Dict ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Optional[Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Any , __lowerCamelCase : str , __lowerCamelCase : int ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) super().__setattr__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __setitem__( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__setitem__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class _lowercase ( __UpperCAmelCase , __UpperCAmelCase): """simple docstring""" @classmethod def lowerCAmelCase ( cls : int , __lowerCamelCase : int ): '''simple docstring''' raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class _lowercase ( __UpperCAmelCase): """simple docstring""" A__ = '''longest''' A__ = '''max_length''' A__ = '''do_not_pad''' class _lowercase ( __UpperCAmelCase): """simple docstring""" A__ = '''pt''' A__ = '''tf''' A__ = '''np''' A__ = '''jax''' class _lowercase : """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : List[ContextManager] ): '''simple docstring''' lowerCamelCase__ : List[Any] = context_managers lowerCamelCase__ : str = ExitStack() def __enter__( self : Union[str, Any] ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(__SCREAMING_SNAKE_CASE ) def __exit__( self : Dict , *__lowerCamelCase : str , **__lowerCamelCase : List[str] ): '''simple docstring''' self.stack.__exit__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def lowercase_ ( _A : List[Any] ): """simple docstring""" lowerCamelCase__ : int = infer_framework(_UpperCAmelCase ) if framework == "tf": lowerCamelCase__ : str = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : List[Any] = model_class.__name__ lowerCamelCase__ : List[Any] = infer_framework(_UpperCAmelCase ) if framework == "tf": lowerCamelCase__ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Any = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : List[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowercase_ ( _A : Dict , _A : Optional[int] = "" , _A : str = "." ): """simple docstring""" def _flatten_dict(_A : int , _A : Tuple="" , _A : List[Any]="." ): for k, v in d.items(): lowerCamelCase__ : Optional[int] = str(_UpperCAmelCase ) + delimiter + str(_UpperCAmelCase ) if parent_key else k if v and isinstance(_UpperCAmelCase , _UpperCAmelCase ): yield from flatten_dict(_UpperCAmelCase , _UpperCAmelCase , delimiter=_UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) @contextmanager def lowercase_ ( _A : List[Any] , _A : List[Any] = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowercase_ ( _A : Tuple , _A : Optional[Any]=None ): """simple docstring""" if is_numpy_array(_UpperCAmelCase ): return np.transpose(_UpperCAmelCase , axes=_UpperCAmelCase ) elif is_torch_tensor(_UpperCAmelCase ): return array.T if axes is None else array.permute(*_UpperCAmelCase ) elif is_tf_tensor(_UpperCAmelCase ): import tensorflow as tf return tf.transpose(_UpperCAmelCase , perm=_UpperCAmelCase ) elif is_jax_tensor(_UpperCAmelCase ): return jnp.transpose(_UpperCAmelCase , axes=_UpperCAmelCase ) else: raise ValueError(F"Type not supported for transpose: {type(_UpperCAmelCase )}." ) def lowercase_ ( _A : Tuple , _A : int ): """simple docstring""" if is_numpy_array(_UpperCAmelCase ): return np.reshape(_UpperCAmelCase , _UpperCAmelCase ) elif is_torch_tensor(_UpperCAmelCase ): return array.reshape(*_UpperCAmelCase ) elif is_tf_tensor(_UpperCAmelCase ): import tensorflow as tf return tf.reshape(_UpperCAmelCase , _UpperCAmelCase ) elif is_jax_tensor(_UpperCAmelCase ): return jnp.reshape(_UpperCAmelCase , _UpperCAmelCase ) else: raise ValueError(F"Type not supported for reshape: {type(_UpperCAmelCase )}." ) def lowercase_ ( _A : int , _A : str=None ): """simple docstring""" if is_numpy_array(_UpperCAmelCase ): return np.squeeze(_UpperCAmelCase , axis=_UpperCAmelCase ) elif is_torch_tensor(_UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_UpperCAmelCase ) elif is_tf_tensor(_UpperCAmelCase ): import tensorflow as tf return tf.squeeze(_UpperCAmelCase , axis=_UpperCAmelCase ) elif is_jax_tensor(_UpperCAmelCase ): return jnp.squeeze(_UpperCAmelCase , axis=_UpperCAmelCase ) else: raise ValueError(F"Type not supported for squeeze: {type(_UpperCAmelCase )}." ) def lowercase_ ( _A : List[str] , _A : List[str] ): """simple docstring""" if is_numpy_array(_UpperCAmelCase ): return np.expand_dims(_UpperCAmelCase , _UpperCAmelCase ) elif is_torch_tensor(_UpperCAmelCase ): return array.unsqueeze(dim=_UpperCAmelCase ) elif is_tf_tensor(_UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(_UpperCAmelCase , axis=_UpperCAmelCase ) elif is_jax_tensor(_UpperCAmelCase ): return jnp.expand_dims(_UpperCAmelCase , axis=_UpperCAmelCase ) else: raise ValueError(F"Type not supported for expand_dims: {type(_UpperCAmelCase )}." ) def lowercase_ ( _A : Dict ): """simple docstring""" if is_numpy_array(_UpperCAmelCase ): return np.size(_UpperCAmelCase ) elif is_torch_tensor(_UpperCAmelCase ): return array.numel() elif is_tf_tensor(_UpperCAmelCase ): import tensorflow as tf return tf.size(_UpperCAmelCase ) elif is_jax_tensor(_UpperCAmelCase ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(_UpperCAmelCase )}." ) def lowercase_ ( _A : Tuple , _A : List[Any] ): """simple docstring""" for key, value in auto_map.items(): if isinstance(_UpperCAmelCase , (tuple, list) ): lowerCamelCase__ : str = [F"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: lowerCamelCase__ : Union[str, Any] = F"{repo_id}--{value}" return auto_map def lowercase_ ( _A : Tuple ): """simple docstring""" for base_class in inspect.getmro(_UpperCAmelCase ): lowerCamelCase__ : Any = base_class.__module__ lowerCamelCase__ : Optional[int] = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
184
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _A ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __a = '''fp16''' self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
49
0
snake_case__ = """Alexander Joslin""" import operator as op from .stack import Stack def snake_case__ ( lowerCamelCase__ : str ) -> int: A_ : Tuple = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} A_ : int = Stack() A_ : Any = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 A_ : Tuple = operator_stack.peek() operator_stack.pop() A_ : int = operand_stack.peek() operand_stack.pop() A_ : Dict = operand_stack.peek() operand_stack.pop() A_ : List[str] = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": snake_case__ = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'{equation} = {dijkstras_two_stack_algorithm(equation)}')
353
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''vivit''' def __init__( self , A=224 , A=32 , A=[2, 16, 16] , A=3 , A=768 , A=12 , A=12 , A=3072 , A="gelu_fast" , A=0.0 , A=0.0 , A=0.02 , A=1e-06 , A=True , **A , ) -> int: _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = num_frames _SCREAMING_SNAKE_CASE = tubelet_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = qkv_bias super().__init__(**A )
58
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class a_ : '''simple docstring''' UpperCamelCase = PegasusConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=40 , A=2 , A=1 , A=0 , ) -> Optional[int]: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(A , A , A ) return config, inputs_dict def snake_case_( self , A , A ) -> int: _SCREAMING_SNAKE_CASE = TFPegasusModel(config=A ).get_decoder() _SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""] _SCREAMING_SNAKE_CASE = input_ids[:1, :] _SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""][:1, :] _SCREAMING_SNAKE_CASE = inputs_dict["""head_mask"""] _SCREAMING_SNAKE_CASE = 1 # first forward pass _SCREAMING_SNAKE_CASE = model(A , attention_mask=A , head_mask=A , use_cache=A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE = model(A , attention_mask=A )[0] _SCREAMING_SNAKE_CASE = model(A , attention_mask=A , past_key_values=A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A , A , rtol=1e-3 ) def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : int=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , ) ->int: if attention_mask is None: _SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCamelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = TFPegasusModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A ) def snake_case_( self ) -> List[str]: self.config_tester.run_common_tests() def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCamelCase = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCamelCase = '''google/pegasus-xsum''' @cached_property def snake_case_( self ) -> List[str]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def snake_case_( self , **A ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.translate_src_text(**A ) assert self.expected_text == generated_words def snake_case_( self , **A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **A , padding=A , return_tensors="""tf""" ) _SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A , ) _SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A ) return generated_words @slow def snake_case_( self ) -> Any: self._assert_generated_batch_equal_expected()
58
1
def lowerCAmelCase__ ( _a : int ): snake_case_ : List[str] = abs(_a ) snake_case_ : List[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def lowerCAmelCase__ ( _a : int ): snake_case_ : Optional[Any] = abs(_a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowerCAmelCase__ ( _a : int ): return sum(int(_a ) for c in str(abs(_a ) ) ) def lowerCAmelCase__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(_a : Callable , _a : int ) -> None: snake_case_ : List[str] = F'''{func.__name__}({value})''' snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="import __main__" ) print(F'''{call:56} = {func(_a )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_a , _a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
350
lowercase : Optional[int] = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
36
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = ["image_processor", "tokenizer"] _lowerCamelCase = "LayoutLMv3ImageProcessor" _lowerCamelCase = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self , UpperCamelCase=None , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase , ) lowerCamelCase_ = kwargs.pop("feature_extractor" ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = True , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = 0 , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = False , UpperCamelCase = False , UpperCamelCase = False , UpperCamelCase = True , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor lowerCamelCase_ = self.image_processor(images=UpperCamelCase , return_tensors=UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ = features["words"] lowerCamelCase_ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel values lowerCamelCase_ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCamelCase_ = self.get_overflowing_images(UpperCamelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCamelCase_ = images return encoded_inputs def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCamelCase_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f''' {len(UpperCamelCase )} and {len(UpperCamelCase )}''' ) return images_with_overflow def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def snake_case ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase , ) return self.image_processor_class @property def snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCamelCase , ) return self.image_processor
55
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : float = 1 / 12345 ): lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 3 while True: lowerCamelCase_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(UpperCAmelCase_ ): lowerCamelCase_ = int(UpperCAmelCase_ ) total_partitions += 1 if check_partition_perfect(UpperCAmelCase_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(UpperCAmelCase_ ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
55
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
1
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """EncodecFeatureExtractor""" _lowerCAmelCase = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , __magic_name__ , __magic_name__ ) -> Optional[Any]: super().__init__(__magic_name__ , __magic_name__ ) _a = self.feature_extractor _a = False def __UpperCAmelCase ( self , __magic_name__=None , __magic_name__=None , __magic_name__=True ) -> List[str]: return self.tokenizer.get_decoder_prompt_ids(task=__magic_name__ , language=__magic_name__ , no_timestamps=__magic_name__ ) def __call__( self , *__magic_name__ , **__magic_name__ ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__magic_name__ , **__magic_name__ ) _a = kwargs.pop('audio' , __magic_name__ ) _a = kwargs.pop('sampling_rate' , __magic_name__ ) _a = kwargs.pop('text' , __magic_name__ ) if len(__magic_name__ ) > 0: _a = args[0] _a = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: _a = self.tokenizer(__magic_name__ , **__magic_name__ ) if audio is not None: _a = self.feature_extractor(__magic_name__ , *__magic_name__ , sampling_rate=__magic_name__ , **__magic_name__ ) if audio is None: return inputs elif text is None: return audio_inputs else: _a = audio_inputs['input_values'] if "padding_mask" in audio_inputs: _a = audio_inputs['padding_mask'] return inputs def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[Any]: _a = kwargs.pop('audio' , __magic_name__ ) _a = kwargs.pop('padding_mask' , __magic_name__ ) if len(__magic_name__ ) > 0: _a = args[0] _a = args[1:] if audio_values is not None: return self._decode_audio(__magic_name__ , padding_mask=__magic_name__ ) else: return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> str: return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> List[np.ndarray]: _a = to_numpy(__magic_name__ ) _a , _a , _a = audio_values.shape if padding_mask is None: return list(__magic_name__ ) _a = to_numpy(__magic_name__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _a = seq_len - padding_mask.shape[-1] _a = 1 - self.feature_extractor.padding_value _a = np.pad(__magic_name__ , ((0, 0), (0, difference)) , 'constant' , constant_values=__magic_name__ ) _a = audio_values.tolist() for i in range(__magic_name__ ): _a = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _a = sliced_audio.reshape(__magic_name__ , -1 ) return audio_values
168
'''simple docstring''' def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> float: '''simple docstring''' _a = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _A () -> Tuple: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
168
1
lowercase = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : str, UpperCamelCase__ : Tuple, UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = [False] * len(lowerCAmelCase__ ) UpperCamelCase__ = [s] UpperCamelCase__ = True while queue: UpperCamelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCAmelCase__ ) UpperCamelCase__ = True UpperCamelCase__ = u return visited[t] def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Any, UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = [-1] * (len(lowerCAmelCase__ )) UpperCamelCase__ = 0 UpperCamelCase__ = [] UpperCamelCase__ = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ): UpperCamelCase__ = float('''Inf''' ) UpperCamelCase__ = sink while s != source: # Find the minimum value in select path UpperCamelCase__ = min(lowerCAmelCase__, graph[parent[s]][s] ) UpperCamelCase__ = parent[s] max_flow += path_flow UpperCamelCase__ = sink while v != source: UpperCamelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase__ = parent[v] for i in range(len(lowerCAmelCase__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
365
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase = logging.get_logger(__name__) class __lowercase ( A ): '''simple docstring''' _A : Any = '''maskformer''' _A : Any = {'''hidden_size''': '''mask_feature_size'''} _A : List[str] = ['''resnet''', '''swin'''] _A : Tuple = ['''detr'''] def __init__( self : Optional[Any] , _a : int = 256 , _a : int = 256 , _a : float = 0.1 , _a : bool = False , _a : Optional[Dict] = None , _a : Optional[Dict] = None , _a : float = 0.02 , _a : float = 1.0 , _a : float = 1.0 , _a : float = 1.0 , _a : float = 20.0 , _a : Optional[bool] = None , **_a : List[str] , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCamelCase__ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): UpperCamelCase__ = backbone_config.pop('''model_type''' ) UpperCamelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCamelCase__ = DetrConfig() else: # verify that the decoder is supported UpperCamelCase__ = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {",".join(self.decoders_supported )}""" ) if isinstance(_a , _a ): UpperCamelCase__ = CONFIG_MAPPING[decoder_type] UpperCamelCase__ = config_class.from_dict(_a ) UpperCamelCase__ = backbone_config UpperCamelCase__ = decoder_config # main feature dimension for the model UpperCamelCase__ = fpn_feature_size UpperCamelCase__ = mask_feature_size # initializer UpperCamelCase__ = init_std UpperCamelCase__ = init_xavier_std # Hungarian matcher && loss UpperCamelCase__ = cross_entropy_weight UpperCamelCase__ = dice_weight UpperCamelCase__ = mask_weight UpperCamelCase__ = use_auxiliary_loss UpperCamelCase__ = no_object_weight UpperCamelCase__ = output_auxiliary_logits UpperCamelCase__ = self.decoder_config.encoder_attention_heads UpperCamelCase__ = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def A_ ( cls : Tuple , _a : PretrainedConfig , _a : PretrainedConfig , **_a : str ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def A_ ( self : str ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.backbone_config.to_dict() UpperCamelCase__ = self.decoder_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
35
0
import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase_ = None try: import msvcrt except ImportError: lowerCAmelCase_ = None try: import fcntl except ImportError: lowerCAmelCase_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase_ = OSError # Data # ------------------------------------------------ lowerCAmelCase_ = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] lowerCAmelCase_ = '3.0.12' lowerCAmelCase_ = None def snake_case( ) -> int: '''simple docstring''' global _logger lowercase : Optional[int] = _logger or logging.getLogger(__name__ ) return _logger class _A ( _lowerCamelCase ): def __init__( self : str , _A : Dict ) -> Optional[int]: """simple docstring""" lowercase : int = lock_file return None def __str__( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase : str = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _A : def __init__( self : Union[str, Any] , _A : int ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = lock return None def __enter__( self : Optional[Any] ) -> str: """simple docstring""" return self.lock def __exit__( self : Union[str, Any] , _A : Any , _A : Optional[Any] , _A : int ) -> Any: """simple docstring""" self.lock.release() return None class _A : def __init__( self : Union[str, Any] , _A : Optional[int] , _A : Optional[int]=-1 , _A : int=None ) -> Optional[int]: """simple docstring""" lowercase : List[str] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowercase : Dict = self.hash_filename_if_too_long(_A , _A ) # The path to the lock file. lowercase : Union[str, Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowercase : str = None # The default timeout value. lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. lowercase : List[str] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowercase : Union[str, Any] = 0 return None @property def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" return self._lock_file @property def __a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return self._timeout @timeout.setter def __a ( self : str , _A : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase : List[str] = float(_A ) return None def __a ( self : List[str] ) -> Dict: """simple docstring""" raise NotImplementedError() def __a ( self : Optional[Any] ) -> Tuple: """simple docstring""" raise NotImplementedError() @property def __a ( self : int ) -> Optional[int]: """simple docstring""" return self._lock_file_fd is not None def __a ( self : List[Any] , _A : str=None , _A : int=0.05 ) -> List[str]: """simple docstring""" if timeout is None: lowercase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowercase : Dict = id(self ) lowercase : Dict = self._lock_file lowercase : int = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(_A ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowercase : Tuple = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __a ( self : Optional[Any] , _A : str=False ) -> Union[str, Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowercase : List[str] = id(self ) lowercase : Union[str, Any] = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() lowercase : Union[str, Any] = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : str ) -> Tuple: """simple docstring""" self.acquire() return self def __exit__( self : Any , _A : str , _A : Any , _A : str ) -> int: """simple docstring""" self.release() return None def __del__( self : int ) -> int: """simple docstring""" self.release(force=_A ) return None def __a ( self : int , _A : str , _A : int ) -> str: """simple docstring""" lowercase : Union[str, Any] = os.path.basename(_A ) if len(_A ) > max_length and max_length > 0: lowercase : str = os.path.dirname(_A ) lowercase : List[Any] = str(hash(_A ) ) lowercase : str = filename[: max_length - len(_A ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(_A , _A ) else: return path class _A ( _lowerCamelCase ): def __init__( self : Dict , _A : List[Any] , _A : int=-1 , _A : Optional[Any]=None ) -> Any: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(_A , timeout=_A , max_filename_length=_A ) lowercase : Optional[Any] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowercase : Union[str, Any] = os.open(self._lock_file , _A ) except OSError: pass else: try: msvcrt.locking(_A , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(_A ) else: lowercase : str = fd return None def __a ( self : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[int] = self._lock_file_fd lowercase : Optional[int] = None msvcrt.locking(_A , msvcrt.LK_UNLCK , 1 ) os.close(_A ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : List[Any]=-1 , _A : Optional[int]=None ) -> str: """simple docstring""" lowercase : List[Any] = os.statvfs(os.path.dirname(_A ) ).f_namemax super().__init__(_A , timeout=_A , max_filename_length=_A ) def __a ( self : List[Any] ) -> str: """simple docstring""" lowercase : Dict = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowercase : Dict = os.open(self._lock_file , _A ) try: fcntl.flock(_A , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_A ) else: lowercase : int = fd return None def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase : List[str] = self._lock_file_fd lowercase : Dict = None fcntl.flock(_A , fcntl.LOCK_UN ) os.close(_A ) return None class _A ( _lowerCamelCase ): def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowercase : int = os.open(self._lock_file , _A ) except OSError: pass else: lowercase : Any = fd return None def __a ( self : Optional[int] ) -> Any: """simple docstring""" os.close(self._lock_file_fd ) lowercase : List[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase_ = None if msvcrt: lowerCAmelCase_ = WindowsFileLock elif fcntl: lowerCAmelCase_ = UnixFileLock else: lowerCAmelCase_ = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
308
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = KandinskyVaaImgaImgPipeline lowerCamelCase__ = ["""image_embeds""", """negative_image_embeds""", """image"""] lowerCamelCase__ = [ """image_embeds""", """negative_image_embeds""", """image""", ] lowerCamelCase__ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCamelCase__ = False @property def A_ ( self ): return 32 @property def A_ ( self ): return 32 @property def A_ ( self ): return self.time_input_dim @property def A_ ( self ): return self.time_input_dim * 4 @property def A_ ( self ): return 100 @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : int = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCamelCase : Union[str, Any] = UNetaDConditionModel(**lowercase ) return model @property def A_ ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def A_ ( self ): _lowerCamelCase : str = self.dummy_unet _lowerCamelCase : Union[str, Any] = self.dummy_movq _lowerCamelCase : str = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowerCamelCase : Union[str, Any] = DDIMScheduler(**lowercase ) _lowerCamelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def A_ ( self , lowercase , lowercase=0 ): _lowerCamelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase ) ).to(lowercase ) _lowerCamelCase : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase ) # create init_image _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase ) ).to(lowercase ) _lowerCamelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCamelCase : Any = Image.fromarray(np.uinta(lowercase ) ).convert('RGB' ).resize((256, 256) ) if str(lowercase ).startswith('mps' ): _lowerCamelCase : int = torch.manual_seed(lowercase ) else: _lowerCamelCase : int = torch.Generator(device=lowercase ).manual_seed(lowercase ) _lowerCamelCase : List[str] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def A_ ( self ): _lowerCamelCase : List[Any] = 'cpu' _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : List[Any] = self.pipeline_class(**lowercase ) _lowerCamelCase : Dict = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Any = pipe(**self.get_dummy_inputs(lowercase ) ) _lowerCamelCase : List[Any] = output.images _lowerCamelCase : Dict = pipe( **self.get_dummy_inputs(lowercase ) , return_dict=lowercase , )[0] _lowerCamelCase : int = image[0, -3:, -3:, -1] _lowerCamelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : Union[str, Any] = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) _lowerCamelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCamelCase : List[str] = 'A red cartoon frog, 4k' _lowerCamelCase : str = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase ) _lowerCamelCase : List[str] = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) _lowerCamelCase : Dict = pipeline.to(lowercase ) pipeline.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCamelCase, _lowerCamelCase : List[str] = pipe_prior( lowercase , generator=lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCamelCase : Optional[int] = pipeline( image=lowercase , image_embeds=lowercase , negative_image_embeds=lowercase , generator=lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) _lowerCamelCase : Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase , lowercase )
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : Optional[Any] = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
95
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] =size if size is not None else {"shortest_edge": 2_0} a__ : List[str] =crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} a__ : Tuple =parent a__ : Union[str, Any] =batch_size a__ : List[str] =num_channels a__ : List[Any] =image_size a__ : str =min_resolution a__ : Optional[int] =max_resolution a__ : Tuple =do_resize a__ : Union[str, Any] =size a__ : List[Any] =do_center_crop a__ : List[str] =crop_size a__ : Optional[int] =do_flip_channel_order def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : int = MobileViTImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Tuple =MobileViTImageProcessingTester(self ) @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_flip_channel_order" ) ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : List[Any] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) a__ : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' pass def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input a__ : Tuple =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : List[Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input a__ : Tuple =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : int =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : int =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input a__ : List[str] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : List[str] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
95
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: snake_case : str = [int(UpperCAmelCase_ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(UpperCAmelCase_ ) == 4 and all(0 <= int(UpperCAmelCase_ ) <= 254 for octet in octets ) if __name__ == "__main__": lowerCamelCase : str = input().strip() lowerCamelCase : Dict = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
357
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) lowerCamelCase : Tuple = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class __lowercase (UpperCamelCase__ ): """simple docstring""" @staticmethod def UpperCAmelCase ( A ) -> List[str]: snake_case : Union[str, Any] = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=A , required=A , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=A , required=A , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=A , required=A , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=A , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=A , default=A , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=A ) def __init__( self , A , A , A , A , A , *A , ) -> List[Any]: snake_case : Any = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f"""Loading model {model_type}""" ) snake_case : int = model_type snake_case : Any = tf_checkpoint snake_case : int = pytorch_dump_output snake_case : List[str] = config snake_case : Tuple = finetuning_task_name def UpperCAmelCase ( self ) -> int: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) if "ckpt" in self._tf_checkpoint.lower(): snake_case : List[Any] = self._tf_checkpoint snake_case : Tuple = """""" else: snake_case : Tuple = self._tf_checkpoint snake_case : Tuple = """""" convert_transfo_xl_checkpoint_to_pytorch( A , self._config , self._pytorch_dump_output , A ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
176
0
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCamelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( snake_case__ , padding="longest" , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors="pt" , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["train"] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) UpperCamelCase = DataLoader( tokenized_datasets["validation"] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , snake_case__ ) == "1": UpperCamelCase = 2 # Initialize accelerator UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["lr"] UpperCamelCase = int(config["num_epochs"] ) UpperCamelCase = int(config["seed"] ) UpperCamelCase = int(config["batch_size"] ) UpperCamelCase = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case__ ) def inner_training_loop(_SCREAMING_SNAKE_CASE ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case__ ) UpperCamelCase , UpperCamelCase = get_dataloaders(snake_case__ , snake_case__ ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase = model(**snake_case__ ) UpperCamelCase = outputs.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**snake_case__ ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , snake_case__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=snake_case__ , default=snake_case__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
153
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Tuple = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
355
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowercase : Any = AudioLDMPipeline lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS lowercase : Tuple = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def a_ ( self ): torch.manual_seed(0 ) UpperCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) UpperCamelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase : int = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) UpperCamelCase : Tuple = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def a_ ( self ): UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Any = self.get_dummy_components() UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 256 UpperCamelCase : Tuple = audio[:10] UpperCamelCase : Dict = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a_ ( self ): UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]] # forward UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )] UpperCamelCase : List[str] = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : str = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) UpperCamelCase : Tuple = prompt_embeds # forward UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a_ ( self ): UpperCamelCase : List[str] = self.get_dummy_components() UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""] UpperCamelCase : List[Any] = negative_prompt UpperCamelCase : str = 3 * [inputs["""prompt"""]] # forward UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )] UpperCamelCase : List[Any] = [] for p in [prompt, negative_prompt]: UpperCamelCase : int = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) embeds.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : Tuple = embeds # forward UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Optional[int] = self.get_dummy_components() UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = """egg cracking""" UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 256 UpperCamelCase : Union[str, Any] = audio[:10] UpperCamelCase : Dict = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Union[str, Any] = self.get_dummy_components() UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCamelCase : Dict = 2 UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCamelCase : List[str] = 2 UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCamelCase : Any = 2 UpperCamelCase : str = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016 UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032 def a_ ( self ): UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = ["""hey"""] UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase : str = output.audios.shape assert audio_shape == (1, 256) UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def a_ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) def a_ ( self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a_ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @slow class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ): UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) ) UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def a_ ( self ): UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = 25 UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920 UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240] UpperCamelCase : Optional[Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def a_ ( self ): UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920 UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790] UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
27
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='yolos' def __init__(self , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.0 , a_=0.0 , a_=0.02 , a_=1E-12 , a_=[5_12, 8_64] , a_=16 , a_=3 , a_=True , a_=1_00 , a_=True , a_=False , a_=1 , a_=5 , a_=2 , a_=5 , a_=2 , a_=0.1 , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Union[str, Any] = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : str = intermediate_size __snake_case : List[str] = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = image_size __snake_case : Tuple = patch_size __snake_case : str = num_channels __snake_case : Tuple = qkv_bias __snake_case : Union[str, Any] = num_detection_tokens __snake_case : List[str] = use_mid_position_embeddings __snake_case : Tuple = auxiliary_loss # Hungarian matcher __snake_case : List[str] = class_cost __snake_case : int = bbox_cost __snake_case : int = giou_cost # Loss coefficients __snake_case : Optional[int] = bbox_loss_coefficient __snake_case : List[str] = giou_loss_coefficient __snake_case : List[Any] = eos_coefficient class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 1E-4 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 12
102
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class UpperCamelCase_ (__A ): __magic_name__ = '''rwkv''' __magic_name__ = {'''max_position_embeddings''': '''context_length'''} def __init__( self : str , lowerCAmelCase_ : str=50_277 , lowerCAmelCase_ : Optional[int]=1_024 , lowerCAmelCase_ : Optional[int]=4_096 , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=1e-5 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=True , **lowerCAmelCase_ : List[Any] , ) -> List[str]: UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : List[str] = context_length UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[Any] = rescale_every UpperCAmelCase_ : List[str] = use_cache UpperCAmelCase_ : List[str] = bos_token_id UpperCAmelCase_ : Union[str, Any] = eos_token_id super().__init__( tie_word_embeddings=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
268
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=3 , __lowerCAmelCase=18 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=[0.5, 0.5, 0.5] , __lowerCAmelCase=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: lowercase__ : str = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : Dict = image_size lowercase__ : int = min_resolution lowercase__ : int = max_resolution lowercase__ : str = do_resize lowercase__ : List[Any] = size if size is not None else {'''height''': 18, '''width''': 20} lowercase__ : Tuple = do_thumbnail lowercase__ : Dict = do_align_axis lowercase__ : str = do_pad lowercase__ : str = do_normalize lowercase__ : Any = image_mean lowercase__ : str = image_std def _lowerCAmelCase( self ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = DonutImageProcessor if is_vision_available() else None def _lowerCAmelCase( self ) -> List[str]: lowercase__ : List[Any] = DonutImageProcessingTester(self ) @property def _lowerCAmelCase( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase( self ) -> Dict: lowercase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) def _lowerCAmelCase( self ) -> Any: lowercase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) lowercase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCAmelCase( self ) -> Optional[int]: pass @is_flaky() def _lowerCAmelCase( self ) -> Tuple: # Initialize image_processing lowercase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input lowercase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowercase__ : List[Any] = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCAmelCase( self ) -> Union[str, Any]: # Initialize image_processing lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowercase__ : Dict = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCAmelCase( self ) -> str: # Initialize image_processing lowercase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowercase__ : int = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
214
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __a: Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , **__lowerCAmelCase ) -> int: super().__init__(**__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Optional[Any]: lowercase__ : str = {} if "candidate_labels" in kwargs: lowercase__ : str = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : str = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase="This is a photo of {}." ) -> Any: lowercase__ : Union[str, Any] = load_image(__lowerCAmelCase ) lowercase__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) lowercase__ : Union[str, Any] = candidate_labels lowercase__ : int = [hypothesis_template.format(__lowerCAmelCase ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework , padding=__lowerCAmelCase ) lowercase__ : Any = [text_inputs] return inputs def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Any = model_inputs.pop('''candidate_labels''' ) lowercase__ : int = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __lowerCAmelCase ): lowercase__ : Union[str, Any] = text_inputs[0] else: # Batching case. lowercase__ : Optional[Any] = text_inputs[0][0] lowercase__ : Any = self.model(**__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Any = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : Union[str, Any] = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[int] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Any = probs.tolist() if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Dict = [scores] elif self.framework == "tf": lowercase__ : List[Any] = stable_softmax(__lowerCAmelCase , axis=-1 ) lowercase__ : str = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) lowercase__ : Optional[int] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCAmelCase , __lowerCAmelCase ) , key=lambda __lowerCAmelCase : -x[0] ) ] return result
214
1
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) _a : Optional[int] = str(bin(lowerCAmelCase_ ) ) binary_number += "0" * shift_amount return binary_number def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) _a : Tuple = str(bin(lowerCAmelCase_ ) )[2:] if shift_amount >= len(lowerCAmelCase_ ): return "0b0" _a : Optional[int] = binary_number[: len(lowerCAmelCase_ ) - shift_amount] return "0b" + shifted_binary_number def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: if number >= 0: # Get binary representation of positive number _a : Optional[Any] = '0' + str(bin(lowerCAmelCase_ ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number _a : List[str] = len(bin(lowerCAmelCase_ )[3:] ) # Find 2's complement of number _a : Optional[int] = bin(abs(lowerCAmelCase_ ) - (1 << binary_number_length) )[3:] _a : Dict = ( '1' + '0' * (binary_number_length - len(lowerCAmelCase_ )) + binary_number ) if shift_amount >= len(lowerCAmelCase_ ): return "0b" + binary_number[0] * len(lowerCAmelCase_ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(lowerCAmelCase_ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
1
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( __lowerCamelCase : float ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(__lowerCamelCase ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(__lowerCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(__lowerCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase : Union[str, Any] = 1.0 while num: _lowercase : Optional[int] = float(input("Gamma of: ")) print(f'gamma({num}) = {gamma(num)}') print("\nEnter 0 to exit...")
368
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def snake_case__ ( __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int , __lowerCamelCase : float = 1 , __lowerCamelCase : float = 1 , __lowerCamelCase : float = 1.0e4 , __lowerCamelCase : bool = False , __lowerCamelCase : float = 1.0 , ): """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' lowerCamelCase__ : Any =float(embedding_dim // 2 ) lowerCamelCase__ : List[str] =math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCamelCase__ : int =min_timescale * jnp.exp(jnp.arange(__lowerCamelCase , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCamelCase__ : Tuple =jnp.expand_dims(__lowerCamelCase , 1 ) * jnp.expand_dims(__lowerCamelCase , 0 ) # scale embeddings lowerCamelCase__ : List[str] =scale * emb if flip_sin_to_cos: lowerCamelCase__ : int =jnp.concatenate([jnp.cos(__lowerCamelCase ), jnp.sin(__lowerCamelCase )] , axis=1 ) else: lowerCamelCase__ : List[str] =jnp.concatenate([jnp.sin(__lowerCamelCase ), jnp.cos(__lowerCamelCase )] , axis=1 ) lowerCamelCase__ : str =jnp.reshape(__lowerCamelCase , [jnp.shape(__lowerCamelCase )[0], embedding_dim] ) return signal class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' _a = 3_2 _a = jnp.floataa @nn.compact def __call__( self : Optional[Any], lowerCamelCase : int )-> Any: lowerCamelCase__ : Optional[Any] =nn.Dense(self.time_embed_dim, dtype=self.dtype, name='''linear_1''' )(lowerCamelCase ) lowerCamelCase__ : List[str] =nn.silu(lowerCamelCase ) lowerCamelCase__ : Any =nn.Dense(self.time_embed_dim, dtype=self.dtype, name='''linear_2''' )(lowerCamelCase ) return temb class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' _a = 3_2 _a = False _a = 1 @nn.compact def __call__( self : Any, lowerCamelCase : int )-> int: return get_sinusoidal_embeddings( lowerCamelCase, embedding_dim=self.dim, flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.freq_shift )
272
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) a__ = """\ Text data. Second line of data.""" a__ = """file""" @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __a : Dict ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') _a : Optional[Any] = bytes(__a ,'''utf-8''' ) with zstd.open(__a ,'''wb''' ) as f: f.write(__a ) return path @pytest.fixture def __UpperCAmelCase ( __a : Dict ) -> Union[str, Any]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir ,__a ) ,'''w''' ) as f: f.write(__a ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' ,['''gzip''', '''xz''', '''zstd'''] ) def __UpperCAmelCase ( __a : Tuple ,__a : Any ,__a : Dict ,__a : Optional[int] ,__a : Any ,__a : Tuple ) -> int: """simple docstring""" _a : List[str] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} _a : str = input_paths[compression_format] _a : Tuple = tmp_path / '''cache''' _a : Optional[Any] = DownloadConfig(cache_dir=__a ,extract_compressed_file=__a ) _a : Union[str, Any] = cached_path(__a ,download_config=__a ) with open(__a ) as f: _a : Tuple = f.read() with open(__a ) as f: _a : str = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' ,[True, False] ) @pytest.mark.parametrize('''default_cache_dir''' ,[True, False] ) def __UpperCAmelCase ( __a : List[str] ,__a : Any ,__a : Optional[Any] ,__a : str ,__a : int ) -> Tuple: """simple docstring""" _a : Optional[Any] = '''custom_cache''' _a : Any = '''custom_extracted_dir''' _a : Dict = tmp_path / '''custom_extracted_path''' if default_extracted: _a : Tuple = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' ,__a ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' ,str(__a ) ) _a : Tuple = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a : List[str] = xz_file _a : str = ( DownloadConfig(extract_compressed_file=__a ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir ,extract_compressed_file=__a ) ) _a : Any = cached_path(__a ,download_config=__a ) assert Path(__a ).parent.parts[-2:] == expected def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" _a : List[Any] = str(Path(__a ).resolve() ) assert cached_path(__a ) == text_file # relative path _a : List[Any] = str(Path(__a ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__a ) == text_file def __UpperCAmelCase ( __a : Any ) -> Tuple: """simple docstring""" _a : int = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__a ): cached_path(__a ) # relative path _a : Any = '''./__missing_file__.txt''' with pytest.raises(__a ): cached_path(__a ) def __UpperCAmelCase ( __a : List[str] ) -> str: """simple docstring""" _a : List[str] = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(__a ) as f: _a : Optional[Any] = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' ,__a ) def __UpperCAmelCase ( ) -> Any: """simple docstring""" with pytest.raises(__a ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' ,__a ) def __UpperCAmelCase ( __a : int ) -> str: """simple docstring""" _a : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__a ): http_get('''https://huggingface.co''' ,temp_file=__a ) with pytest.raises(__a ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' ,__a ) def __UpperCAmelCase ( __a : List[str] ) -> Tuple: """simple docstring""" _a : Dict = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__a ): ftp_get('''ftp://huggingface.co''' ,temp_file=__a ) with pytest.raises(__a ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' ,__a ) def __UpperCAmelCase ( __a : Any ) -> List[str]: """simple docstring""" _a : int = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__a ): fsspec_get('''s3://huggingface.co''' ,temp_file=__a ) with pytest.raises(__a ): fsspec_head('''s3://huggingface.co''' )
235
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" while second != 0: a =first & second first ^= second a =c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : Dict = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : List[Any] = int(input("""Enter the second number: """).strip()) print(F'{add(first, second) = }')
81
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Dict: snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on snake_case_ = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) snake_case_ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] snake_case_ = {"""unk_token""": """<unk>"""} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase ) ) snake_case_ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } snake_case_ = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self , **lowerCamelCase ) -> Optional[Any]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCamelCase ) def lowerCAmelCase_ ( self , **lowerCamelCase ) -> Any: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCamelCase ) def lowerCAmelCase_ ( self , **lowerCamelCase ) -> Optional[Any]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ ( self ) -> int: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase ) snake_case_ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Any: snake_case_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ = self.get_image_processor(do_normalize=lowerCamelCase ) snake_case_ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowerCamelCase , return_tensors="""np""" ) snake_case_ = processor(images=lowerCamelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase_ ( self ) -> str: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case_ = """lower newer""" snake_case_ = processor(text=lowerCamelCase , return_tensors="""np""" ) snake_case_ = tokenizer(lowerCamelCase , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case_ = """lower newer""" snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case_ = """google/owlvit-base-patch32""" snake_case_ = OwlViTProcessor.from_pretrained(lowerCamelCase ) snake_case_ = ["""cat""", """nasa badge"""] snake_case_ = processor(text=lowerCamelCase ) snake_case_ = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowerCAmelCase_ ( self ) -> str: snake_case_ = """google/owlvit-base-patch32""" snake_case_ = OwlViTProcessor.from_pretrained(lowerCamelCase ) snake_case_ = [["""cat""", """nasa badge"""], ["""person"""]] snake_case_ = processor(text=lowerCamelCase ) snake_case_ = 16 snake_case_ = len(lowerCamelCase ) snake_case_ = max([len(lowerCamelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowerCAmelCase_ ( self ) -> Any: snake_case_ = """google/owlvit-base-patch32""" snake_case_ = OwlViTProcessor.from_pretrained(lowerCamelCase ) snake_case_ = ["""cat""", """nasa badge"""] snake_case_ = processor(text=lowerCamelCase ) snake_case_ = 16 snake_case_ = inputs["""input_ids"""] snake_case_ = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def lowerCAmelCase_ ( self ) -> str: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case_ = self.prepare_image_inputs() snake_case_ = self.prepare_image_inputs() snake_case_ = processor(images=lowerCamelCase , query_images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowerCAmelCase_ ( self ) -> Any: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(lowerCamelCase ) snake_case_ = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase )
34
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCamelCase_ = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def UpperCamelCase( lowercase_ ) -> Tuple: '''simple docstring''' snake_case_ = EfficientNetConfig() snake_case_ = CONFIG_MAP[model_name]["""hidden_dim"""] snake_case_ = CONFIG_MAP[model_name]["""width_coef"""] snake_case_ = CONFIG_MAP[model_name]["""depth_coef"""] snake_case_ = CONFIG_MAP[model_name]["""image_size"""] snake_case_ = CONFIG_MAP[model_name]["""dropout_rate"""] snake_case_ = CONFIG_MAP[model_name]["""dw_padding"""] snake_case_ = """huggingface/label-files""" snake_case_ = """imagenet-1k-id2label.json""" snake_case_ = 1000 snake_case_ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ = {int(lowercase_ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def UpperCamelCase( ) -> Tuple: '''simple docstring''' snake_case_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im def UpperCamelCase( lowercase_ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = CONFIG_MAP[model_name]["""image_size"""] snake_case_ = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=lowercase_ , ) return preprocessor def UpperCamelCase( lowercase_ ) -> str: '''simple docstring''' snake_case_ = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] snake_case_ = sorted(set(lowercase_ ) ) snake_case_ = len(lowercase_ ) snake_case_ = {b: str(lowercase_ ) for b, i in zip(lowercase_ , range(lowercase_ ) )} snake_case_ = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: snake_case_ = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) snake_case_ = {} for item in rename_keys: if item[0] in original_param_names: snake_case_ = """efficientnet.""" + item[1] snake_case_ = """classifier.weight""" snake_case_ = """classifier.bias""" return key_mapping def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue snake_case_ = key_mapping[key] if "_conv" in key and "kernel" in key: snake_case_ = torch.from_numpy(lowercase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: snake_case_ = torch.from_numpy(lowercase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: snake_case_ = torch.from_numpy(np.transpose(lowercase_ ) ) else: snake_case_ = torch.from_numpy(lowercase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase_ ) @torch.no_grad() def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' snake_case_ = model_classes[model_name]( include_top=lowercase_ , weights="""imagenet""" , input_tensor=lowercase_ , input_shape=lowercase_ , pooling=lowercase_ , classes=1000 , classifier_activation="""softmax""" , ) snake_case_ = original_model.trainable_variables snake_case_ = original_model.non_trainable_variables snake_case_ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: snake_case_ = param.numpy() snake_case_ = list(tf_params.keys() ) # Load HuggingFace model snake_case_ = get_efficientnet_config(lowercase_ ) snake_case_ = EfficientNetForImageClassification(lowercase_ ).eval() snake_case_ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) snake_case_ = rename_keys(lowercase_ ) replace_params(lowercase_ , lowercase_ , lowercase_ ) # Initialize preprocessor and preprocess input image snake_case_ = convert_image_processor(lowercase_ ) snake_case_ = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): snake_case_ = hf_model(**lowercase_ ) snake_case_ = outputs.logits.detach().numpy() # Original model inference snake_case_ = False snake_case_ = CONFIG_MAP[model_name]["""image_size"""] snake_case_ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) snake_case_ = image.img_to_array(lowercase_ ) snake_case_ = np.expand_dims(lowercase_ , axis=0 ) snake_case_ = original_model.predict(lowercase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase_ , lowercase_ , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase_ ): os.mkdir(lowercase_ ) # Save converted model and image processor hf_model.save_pretrained(lowercase_ ) preprocessor.save_pretrained(lowercase_ ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) snake_case_ = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase_ ) hf_model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCamelCase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
34
1
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ = logging.get_logger(__name__) a_ = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """mctct""" def __init__( self , __UpperCAmelCase=8065 , __UpperCAmelCase=1536 , __UpperCAmelCase=36 , __UpperCAmelCase=6144 , __UpperCAmelCase=4 , __UpperCAmelCase=384 , __UpperCAmelCase=920 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.3 , __UpperCAmelCase="relu" , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.3 , __UpperCAmelCase=0.3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0.3 , __UpperCAmelCase=1 , __UpperCAmelCase=(7,) , __UpperCAmelCase=(3,) , __UpperCAmelCase=80 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="sum" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = max_position_embeddings __lowerCamelCase = layer_norm_eps __lowerCamelCase = layerdrop __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = pad_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = eos_token_id __lowerCamelCase = conv_glu_dim __lowerCamelCase = conv_dropout __lowerCamelCase = num_conv_layers __lowerCamelCase = input_feat_per_channel __lowerCamelCase = input_channels __lowerCamelCase = conv_channels __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
330
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowerCamelCase ( self ): '''simple docstring''' ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase ( self ): '''simple docstring''' return @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __lowerCamelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
1
def a_ ( lowerCAmelCase_ : Any = 50 ): __lowerCAmelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2, 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
353
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = DanceDiffusionPipeline a_ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS a_ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } a_ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS a_ = False a_ = False def lowercase ( self : List[Any] ) -> Dict: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowerCAmelCase_ , use_timestep_embedding=lowerCAmelCase_ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) __lowerCAmelCase = IPNDMScheduler() __lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def lowercase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=0 ) -> Any: if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def lowercase ( self : Union[str, Any] ) -> int: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = DanceDiffusionPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __lowerCAmelCase = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase ( self : Union[str, Any] ) -> Tuple: return super().test_save_load_local() @skip_mps def lowercase ( self : List[str] ) -> Dict: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowercase ( self : str ) -> List[str]: return super().test_save_load_optional_components() @skip_mps def lowercase ( self : List[Any] ) -> List[str]: return super().test_attention_slicing_forward_pass() def lowercase ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
207
0
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def snake_case__ ( _A: int , _A: Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase = k_size // 2 lowerCAmelCase , lowerCAmelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCAmelCase = 1 / (2 * pi * sigma) * exp(-(square(_A ) + square(_A )) / (2 * square(_A )) ) return g def snake_case__ ( _A: List[str] , _A: Tuple , _A: Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase , lowerCAmelCase = image.shape[0], image.shape[1] # dst image height and width lowerCAmelCase = height - k_size + 1 lowerCAmelCase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCAmelCase = zeros((dst_height * dst_width, k_size * k_size) ) lowerCAmelCase = 0 for i, j in product(range(_A ) , range(_A ) ): lowerCAmelCase = ravel(image[i : i + k_size, j : j + k_size] ) lowerCAmelCase = window row += 1 # turn the kernel into shape(k*k, 1) lowerCAmelCase = gen_gaussian_kernel(_A , _A ) lowerCAmelCase = ravel(_A ) # reshape and get the dst image lowerCAmelCase = dot(_A , _A ).reshape(_A , _A ).astype(_A ) return dst if __name__ == "__main__": # read original image __lowercase = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value __lowercase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __lowercase = gaussian_filter(gray, 3, sigma=1) __lowercase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
272
'''simple docstring''' from math import sqrt def snake_case__ ( _A: int = 1000000 ) -> int: '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'{solution() = }')
272
1
import datasets lowercase__ : Any = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowercase__ : Any = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowercase__ : int = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def __lowercase ( _a , _a ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _UpperCAmelCase ( datasets.Metric): def _snake_case ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def _snake_case ( self : str , lowercase_ : Dict , lowercase_ : List[str] ): return {"accuracy": simple_accuracy(__UpperCAmelCase , __UpperCAmelCase )}
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase__ : List[Any] = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = ['''CLIPFeatureExtractor'''] lowercase__ : Any = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
155
0
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
171
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _A = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( lowerCAmelCase ) -> Optional[int]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: if args.student_type == "roberta": UpperCAmelCase__ : Optional[Any] = False elif args.student_type == "gpt2": UpperCAmelCase__ : Optional[int] = False def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Any: if args.student_type == "roberta": UpperCAmelCase__ : Tuple = False def a__ ( ) -> int: UpperCAmelCase__ : Dict = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=lowerCAmelCase , choices=["""distilbert""", """roberta""", """gpt2"""] , required=lowerCAmelCase , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=lowerCAmelCase , type=lowerCAmelCase , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=lowerCAmelCase , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=lowerCAmelCase , required=lowerCAmelCase , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=lowerCAmelCase , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=lowerCAmelCase , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=lowerCAmelCase , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=lowerCAmelCase , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=lowerCAmelCase , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=lowerCAmelCase , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=lowerCAmelCase , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=lowerCAmelCase , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=lowerCAmelCase , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=lowerCAmelCase , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=lowerCAmelCase , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=lowerCAmelCase , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCAmelCase , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=lowerCAmelCase , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=lowerCAmelCase , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=lowerCAmelCase , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=lowerCAmelCase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=lowerCAmelCase , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=lowerCAmelCase , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowerCAmelCase , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=lowerCAmelCase , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=lowerCAmelCase , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=lowerCAmelCase , default=5_00 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=lowerCAmelCase , default=40_00 , help="""Checkpoint interval.""" ) UpperCAmelCase__ : List[Any] = parser.parse_args() sanity_checks(lowerCAmelCase ) # ARGS # init_gpu_params(lowerCAmelCase ) set_seed(lowerCAmelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(lowerCAmelCase ) , lowerCAmelCase , indent=4 ) git_log(args.dump_path ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = MODEL_CLASSES[args.student_type] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase__ : List[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase__ : List[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase__ : List[Any] = tokenizer.all_special_tokens.index(lowerCAmelCase ) UpperCAmelCase__ : Tuple = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) UpperCAmelCase__ : Any = special_tok_ids UpperCAmelCase__ : Any = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , """rb""" ) as fp: UpperCAmelCase__ : List[str] = pickle.load(lowerCAmelCase ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , """rb""" ) as fp: UpperCAmelCase__ : List[Any] = pickle.load(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = np.maximum(lowerCAmelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase__ : int = 0.0 # do not predict special tokens UpperCAmelCase__ : str = torch.from_numpy(lowerCAmelCase ) else: UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : str = LmSeqsDataset(params=lowerCAmelCase , data=lowerCAmelCase ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) UpperCAmelCase__ : List[str] = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase__ : List[Any] = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase__ : List[str] = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowerCAmelCase ) else: UpperCAmelCase__ : List[Any] = student_model_class(lowerCAmelCase ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info("""Student loaded.""" ) # TEACHER # UpperCAmelCase__ : str = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowerCAmelCase ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowerCAmelCase , lowerCAmelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowerCAmelCase , lowerCAmelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase__ : Optional[int] = Distiller( params=lowerCAmelCase , dataset=lowerCAmelCase , token_probs=lowerCAmelCase , student=lowerCAmelCase , teacher=lowerCAmelCase ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
171
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : int = {"vocab_file": "spiece.model"} __lowerCAmelCase : Optional[Any] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class __A (_SCREAMING_SNAKE_CASE): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]="<s>" , UpperCAmelCase_ : List[str]="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : List[Any]="<sep>" , UpperCAmelCase_ : Dict="<pad>" , UpperCAmelCase_ : Optional[int]="<cls>" , UpperCAmelCase_ : str="<mask>" , UpperCAmelCase_ : Union[str, Any]=["<eop>", "<eod>"] , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : int , ) ->None: """simple docstring""" snake_case_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) snake_case_ = 3 snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) snake_case_ = jieba snake_case_ = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) ->Optional[Any]: """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Tuple , UpperCAmelCase_ : Dict ) ->int: """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]: """simple docstring""" if self.remove_space: snake_case_ = """ """.join(inputs.strip().split() ) else: snake_case_ = inputs snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ ) snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: snake_case_ = outputs.lower() return outputs def lowerCAmelCase ( self : str , UpperCAmelCase_ : str ) ->List[str]: """simple docstring""" snake_case_ = self.preprocess_text(UpperCAmelCase_ ) snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) snake_case_ = [] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ = cur_pieces[1:] else: snake_case_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" return self.sp_model.PieceToId(UpperCAmelCase_ ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Tuple ) ->Optional[int]: """simple docstring""" return self.sp_model.IdToPiece(UpperCAmelCase_ ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Tuple ) ->int: """simple docstring""" snake_case_ = """""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , """ """ ).strip() return out_string def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] return ([0] * len(UpperCAmelCase_ )) + [1, 1] def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,) def lowerCAmelCase ( self : Optional[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = super()._decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
351
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: snake_case_ , snake_case_ = numbers[j], numbers[i] return numbers if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
233
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 1_6 lowerCAmelCase_ = 3_2 def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 16 ) -> Optional[int]: """simple docstring""" snake_case_ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case_ : str = DatasetDict( { '''train''': dataset['''train'''].select(_UpperCamelCase ), '''validation''': dataset['''train'''].select(_UpperCamelCase ), '''test''': dataset['''validation'''], } ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) snake_case_ : Union[str, Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ : Any = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ : Dict = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": snake_case_ : Union[str, Any] = 8 else: snake_case_ : Optional[Any] = None return tokenizer.pad( _UpperCamelCase , padding='''longest''' , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case_ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) snake_case_ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) snake_case_ : Optional[int] = DataLoader( tokenized_datasets['''test'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" snake_case_ : Union[str, Any] = [] # Download the dataset snake_case_ : int = load_dataset('''glue''' , '''mrpc''' ) # Create our splits snake_case_ : int = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator snake_case_ : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : str = config['''lr'''] snake_case_ : Union[str, Any] = int(config['''num_epochs'''] ) snake_case_ : Any = int(config['''seed'''] ) snake_case_ : Any = int(config['''batch_size'''] ) snake_case_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation snake_case_ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case_ : List[str] = batch_size // MAX_GPU_BATCH_SIZE snake_case_ : str = MAX_GPU_BATCH_SIZE set_seed(_UpperCamelCase ) # New Code # # Create our folds: snake_case_ : List[str] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) snake_case_ : List[str] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_UpperCamelCase ): snake_case_ , snake_case_ , snake_case_ : Tuple = get_fold_dataloaders( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : Dict = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : int = model.to(accelerator.device ) # Instantiate optimizer snake_case_ : Any = AdamW(params=model.parameters() , lr=_UpperCamelCase ) # Instantiate scheduler snake_case_ : List[Any] = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case_ : List[str] = model(**_UpperCamelCase ) snake_case_ : int = outputs.loss snake_case_ : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(_UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : str = model(**_UpperCamelCase ) snake_case_ : List[str] = outputs.logits.argmax(dim=-1 ) snake_case_ , snake_case_ : Dict = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) snake_case_ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _UpperCamelCase ) # New Code # # We also run predictions on the test set at the very end snake_case_ : Optional[int] = [] for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : List[Any] = model(**_UpperCamelCase ) snake_case_ : Tuple = outputs.logits snake_case_ , snake_case_ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_UpperCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: snake_case_ : List[str] = torch.cat(_UpperCamelCase , dim=0 ) snake_case_ : Optional[int] = torch.stack(_UpperCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) snake_case_ : Optional[Any] = metric.compute(predictions=_UpperCamelCase , references=_UpperCamelCase ) accelerator.print('''Average test metrics from all folds:''' , _UpperCamelCase ) def lowerCamelCase_ ( ) -> str: """simple docstring""" snake_case_ : List[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_UpperCamelCase , default=_UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=_UpperCamelCase , default=3 , help='''The number of splits to perform across the dataset''' ) snake_case_ : Optional[Any] = parser.parse_args() snake_case_ : Dict = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
279
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ = 1 lowerCamelCase_ = 3 lowerCamelCase_ = (32, 32) lowerCamelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def a__ ( self : Any ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=A_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(A_ ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.dummy_cond_unet_upscale lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = DDIMScheduler(prediction_type='v_prediction' ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=350 , ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCamelCase_ = output.images lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=A_ , )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] lowerCamelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCamelCase_ = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.dummy_cond_unet_upscale lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = DDIMScheduler(prediction_type='v_prediction' ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=350 , ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCamelCase_ = output.images assert image.shape[0] == 2 lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=A_ , generator=A_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCamelCase_ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def a__ ( self : List[Any] ) -> str: """simple docstring""" lowerCamelCase_ = self.dummy_cond_unet_upscale lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = DDIMScheduler(prediction_type='v_prediction' ) lowerCamelCase_ = self.dummy_vae lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCamelCase_ = unet.half() lowerCamelCase_ = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=350 , ) lowerCamelCase_ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sd_pipe( [prompt] , image=A_ , generator=A_ , num_inference_steps=2 , output_type='np' , ).images lowerCamelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Tuple ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) lowerCamelCase_ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCamelCase_ = StableDiffusionUpscalePipeline.from_pretrained(A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() lowerCamelCase_ = 'a cat sitting on a park bench' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , image=A_ , generator=A_ , output_type='np' , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def a__ ( self : Dict ) -> List[str]: """simple docstring""" lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) lowerCamelCase_ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCamelCase_ = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() lowerCamelCase_ = 'a cat sitting on a park bench' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , image=A_ , generator=A_ , output_type='np' , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCamelCase_ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCamelCase_ = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase_ = 'a cat sitting on a park bench' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , image=A_ , generator=A_ , num_inference_steps=5 , output_type='np' , ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
204
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ (lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = StableDiffusionInpaintPipeline _lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCAmelCase = frozenset([] ) def _a ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) A_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) A_ : Optional[Any] = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) A_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) A_ : Union[str, Any] = CLIPTextModel(a__ ) A_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=0 ): """simple docstring""" A_ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) A_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : int = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) A_ : Dict = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(a__ ).startswith('''mps''' ): A_ : Union[str, Any] = torch.manual_seed(a__ ) else: A_ : Optional[int] = torch.Generator(device=a__ ).manual_seed(a__ ) A_ : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ : Any = self.get_dummy_components() A_ : Tuple = StableDiffusionInpaintPipeline(**a__ ) A_ : List[str] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) A_ : List[Any] = self.get_dummy_inputs(a__ ) A_ : List[Any] = sd_pipe(**a__ ).images A_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : int = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self : Tuple ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : str ): """simple docstring""" A_ : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A_ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) A_ : str = '''stabilityai/stable-diffusion-2-inpainting''' A_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained(a__ , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A_ : Union[str, Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' A_ : List[Any] = torch.manual_seed(0 ) A_ : Union[str, Any] = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) A_ : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def _a ( self : Optional[int] ): """simple docstring""" A_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A_ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A_ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) A_ : Union[str, Any] = '''stabilityai/stable-diffusion-2-inpainting''' A_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained( a__ , torch_dtype=torch.floataa , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A_ : List[str] = '''Face of a yellow cat, high resolution, sitting on a park bench''' A_ : List[str] = torch.manual_seed(0 ) A_ : Union[str, Any] = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) A_ : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _a ( self : str ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A_ : Dict = '''stabilityai/stable-diffusion-2-inpainting''' A_ : Any = PNDMScheduler.from_pretrained(a__ , subfolder='''scheduler''' ) A_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( a__ , safety_checker=a__ , scheduler=a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A_ : List[Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' A_ : Optional[Any] = torch.manual_seed(0 ) A_ : Dict = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , num_inference_steps=2 , output_type='''np''' , ) A_ : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
363
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'speech_to_text_2' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , _lowerCamelCase : Optional[Any]=10000 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : int=2048 , _lowerCamelCase : Dict=4 , _lowerCamelCase : str=0.0 , _lowerCamelCase : int=True , _lowerCamelCase : int="relu" , _lowerCamelCase : Any=256 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : str=1 , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Tuple=1024 , **_lowerCamelCase : int , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : Tuple = d_model A_ : List[str] = decoder_ffn_dim A_ : str = decoder_layers A_ : Any = decoder_attention_heads A_ : int = dropout A_ : str = attention_dropout A_ : Optional[int] = activation_dropout A_ : str = activation_function A_ : List[Any] = init_std A_ : Union[str, Any] = decoder_layerdrop A_ : Any = use_cache A_ : Optional[Any] = decoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Optional[Any] = max_target_positions super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
4
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel A__ = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } A__ = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _UpperCAmelCase ( snake_case , snake_case=False ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = create_model( """HTSAT-tiny""" , """roberta""" , snake_case , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=snake_case , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = {} _lowerCAmelCase = R""".*sequential.(\d+).*""" _lowerCAmelCase = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowerCAmelCase = key.replace(snake_case , snake_case ) if re.match(snake_case , snake_case ): # replace sequential layers with list _lowerCAmelCase = re.match(snake_case , snake_case ).group(1 ) _lowerCAmelCase = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case )//3}.linear.' ) elif re.match(snake_case , snake_case ): _lowerCAmelCase = int(re.match(snake_case , snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _lowerCAmelCase = 1 if projecton_layer == 0 else 2 _lowerCAmelCase = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value _lowerCAmelCase = value _lowerCAmelCase = mixed_qkv.size(0 ) // 3 _lowerCAmelCase = mixed_qkv[:qkv_dim] _lowerCAmelCase = mixed_qkv[qkv_dim : qkv_dim * 2] _lowerCAmelCase = mixed_qkv[qkv_dim * 2 :] _lowerCAmelCase = query_layer _lowerCAmelCase = key_layer _lowerCAmelCase = value_layer else: _lowerCAmelCase = value return model_state_dict def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case=False ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = init_clap(snake_case , enable_fusion=snake_case ) clap_model.eval() _lowerCAmelCase = clap_model.state_dict() _lowerCAmelCase = rename_state_dict(snake_case ) _lowerCAmelCase = ClapConfig() _lowerCAmelCase = enable_fusion _lowerCAmelCase = ClapModel(snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(snake_case , strict=snake_case ) model.save_pretrained(snake_case ) transformers_config.save_pretrained(snake_case ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") A__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
82
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _snake_case ( unittest.TestCase , lowercase_ ): def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = load_tool("text-classification" ) self.tool.setup() snake_case_ = load_tool("text-classification" , remote=a__ ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" )
85
0
from copy import deepcopy class lowerCamelCase : def __init__(self : Any , _A : list[int] | None = None , _A : int | None = None ) -> None: if arr is None and size is not None: snake_case = size snake_case = [0] * size elif arr is not None: self.init(_A ) else: raise ValueError("Either arr or size must be specified" ) def UpperCAmelCase(self : str , _A : list[int] ) -> None: snake_case = len(_A ) snake_case = deepcopy(_A ) for i in range(1 , self.size ): snake_case = self.next_(_A ) if j < self.size: self.tree[j] += self.tree[i] def UpperCAmelCase(self : Optional[int] ) -> list[int]: snake_case = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case = self.next_(_A ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCAmelCase(_A : int ) -> int: return index + (index & (-index)) @staticmethod def UpperCAmelCase(_A : int ) -> int: return index - (index & (-index)) def UpperCAmelCase(self : Optional[int] , _A : int , _A : int ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case = self.next_(_A ) def UpperCAmelCase(self : Union[str, Any] , _A : int , _A : int ) -> None: self.add(_A , value - self.get(_A ) ) def UpperCAmelCase(self : Optional[Any] , _A : int ) -> int: if right == 0: return 0 snake_case = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case = self.prev(_A ) return result def UpperCAmelCase(self : List[Any] , _A : int , _A : int ) -> int: return self.prefix(_A ) - self.prefix(_A ) def UpperCAmelCase(self : Tuple , _A : int ) -> int: return self.query(_A , index + 1 ) def UpperCAmelCase(self : Optional[Any] , _A : int ) -> int: value -= self.tree[0] if value < 0: return -1 snake_case = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
137
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase_ ( A__ ) -> str: """simple docstring""" return getitem, k def lowercase_ ( A__ , A__ ) -> str: """simple docstring""" return setitem, k, v def lowercase_ ( A__ ) -> List[Any]: """simple docstring""" return delitem, k def lowercase_ ( A__ , A__ , *A__ ) -> str: """simple docstring""" try: return fun(A__ , *A__ ), None except Exception as e: return None, e _A = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) _A = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] _A = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] _A = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] _A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def lowercase_ ( A__ ) -> List[Any]: """simple docstring""" snake_case = HashMap(initial_block_size=4 ) snake_case = {} for _, (fun, *args) in enumerate(A__ ): snake_case , snake_case = _run_operation(A__ , A__ , *A__ ) snake_case , snake_case = _run_operation(A__ , A__ , *A__ ) assert my_res == py_res assert str(A__ ) == str(A__ ) assert set(A__ ) == set(A__ ) assert len(A__ ) == len(A__ ) assert set(my.items() ) == set(py.items() ) def lowercase_ ( ) -> Optional[int]: """simple docstring""" def is_public(A__ ) -> bool: return not name.startswith("_" ) snake_case = {name for name in dir({} ) if is_public(A__ )} snake_case = {name for name in dir(HashMap() ) if is_public(A__ )} assert dict_public_names > hash_public_names
137
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowercase__( __SCREAMING_SNAKE_CASE : str ): if is_torch_version('<' , '2.0.0' ) or not hasattr(__SCREAMING_SNAKE_CASE , '_dynamo' ): return False return isinstance(__SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool = True ): lowercase_ : Union[str, Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase_ : Optional[int] = is_compiled_module(__SCREAMING_SNAKE_CASE ) if is_compiled: lowercase_ : Optional[Any] = model lowercase_ : Tuple = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = model.module if not keep_fpaa_wrapper: lowercase_ : str = getattr(__SCREAMING_SNAKE_CASE , 'forward' ) lowercase_ : int = model.__dict__.pop('_original_forward' , __SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(__SCREAMING_SNAKE_CASE , '__wrapped__' ): lowercase_ : Optional[int] = forward.__wrapped__ if forward == original_forward: break lowercase_ : int = forward if getattr(__SCREAMING_SNAKE_CASE , '_converted_to_transformer_engine' , __SCREAMING_SNAKE_CASE ): convert_model(__SCREAMING_SNAKE_CASE , to_transformer_engine=__SCREAMING_SNAKE_CASE ) if is_compiled: lowercase_ : List[Any] = model lowercase_ : Optional[Any] = compiled_model return model def lowercase__( ): PartialState().wait_for_everyone() def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @contextmanager def lowercase__( **__SCREAMING_SNAKE_CASE : Optional[Any] ): for key, value in kwargs.items(): lowercase_ : List[Any] = str(__SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowercase__( __SCREAMING_SNAKE_CASE : int ): if not hasattr(__SCREAMING_SNAKE_CASE , '__qualname__' ) and not hasattr(__SCREAMING_SNAKE_CASE , '__name__' ): lowercase_ : List[str] = getattr(__SCREAMING_SNAKE_CASE , '__class__' , __SCREAMING_SNAKE_CASE ) if hasattr(__SCREAMING_SNAKE_CASE , '__qualname__' ): return obj.__qualname__ if hasattr(__SCREAMING_SNAKE_CASE , '__name__' ): return obj.__name__ return str(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ): for key, value in source.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : str = destination.setdefault(__SCREAMING_SNAKE_CASE , {} ) merge_dicts(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: lowercase_ : List[str] = value return destination def lowercase__( __SCREAMING_SNAKE_CASE : int = None ): if port is None: lowercase_ : Optional[int] = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
213
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __SCREAMING_SNAKE_CASE =None __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __SCREAMING_SNAKE_CASE ={ "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __SCREAMING_SNAKE_CASE ={ "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __SCREAMING_SNAKE_CASE =["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ['input_ids', 'attention_mask'] lowercase = MBartTokenizer lowercase = [] lowercase = [] def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> List[str]: '''simple docstring''' lowercase_ : str = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else mask_token super().__init__( vocab_file=__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,src_lang=__UpperCamelCase ,tgt_lang=__UpperCamelCase ,additional_special_tokens=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : str = vocab_file lowercase_ : Optional[Any] = False if not self.vocab_file else True lowercase_ : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowercase_ : List[Any] = { lang_code: self.convert_tokens_to_ids(__UpperCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase_ : Dict = src_lang if src_lang is not None else 'en_XX' lowercase_ : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang ) lowercase_ : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : List[Any] = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase_ : Dict = src_lang lowercase_ : List[Any] = self(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,return_tensors=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : Optional[Any] = self.convert_tokens_to_ids(__UpperCamelCase ) lowercase_ : Dict = tgt_lang_id return inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = "en_XX" ,__UpperCamelCase = None ,__UpperCamelCase = "ro_RO" ,**__UpperCamelCase ,) -> BatchEncoding: '''simple docstring''' lowercase_ : Union[str, Any] = src_lang lowercase_ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Any = self.convert_tokens_to_ids(__UpperCamelCase ) lowercase_ : Optional[Any] = [] lowercase_ : int = [self.eos_token_id, self.cur_lang_code] lowercase_ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Optional[int] = self.convert_tokens_to_ids(__UpperCamelCase ) lowercase_ : str = [] lowercase_ : Dict = [self.eos_token_id, self.cur_lang_code] lowercase_ : str = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowercase_ : Tuple = os.path.join( __UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file ,__UpperCamelCase ) return (out_vocab_file,)
213
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : int = {"""vocab_file""": """spiece.model"""} lowercase : Optional[int] = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } lowercase : Union[str, Any] = {"""bert_for_seq_generation""": 5_1_2} class A__ ( UpperCamelCase__ ): """simple docstring""" __A : List[str] = VOCAB_FILES_NAMES __A : Dict = PRETRAINED_VOCAB_FILES_MAP __A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[int] = [] __A : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase , lowercase="<s>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<::::>" , lowercase = None , **lowercase , ) -> None: '''simple docstring''' a__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) a__ : str = vocab_file a__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCamelCase_) @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return self.sp_model.get_piece_size() def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Dict = {self.convert_ids_to_tokens(UpperCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Dict: '''simple docstring''' a__ : Any = self.__dict__.copy() a__ : Tuple = None return state def __setstate__( self , lowercase) -> str: '''simple docstring''' a__ : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): a__ : Union[str, Any] = {} a__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __lowercase ( self , lowercase) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_) def __lowercase ( self , lowercase) -> List[str]: '''simple docstring''' return self.sp_model.piece_to_id(UpperCamelCase_) def __lowercase ( self , lowercase) -> List[Any]: '''simple docstring''' a__ : Dict = self.sp_model.IdToPiece(UpperCamelCase_) return token def __lowercase ( self , lowercase) -> int: '''simple docstring''' a__ : List[Any] = [] a__ : Union[str, Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase_) + token a__ : Optional[int] = [] else: current_sub_tokens.append(UpperCamelCase_) out_string += self.sp_model.decode(UpperCamelCase_) return out_string.strip() def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return a__ : Dict = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCamelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCamelCase_ , 'wb') as fi: a__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_) return (out_vocab_file,)
355
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : str = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
0
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowerCAmelCase : '''simple docstring''' def __init__(self : Any , UpperCamelCase : Tuple ): '''simple docstring''' lowercase__ = data lowercase__ = [0x6_7_4_5_2_3_0_1, 0xE_F_C_D_A_B_8_9, 0x9_8_B_A_D_C_F_E, 0x1_0_3_2_5_4_7_6, 0xC_3_D_2_E_1_F_0] @staticmethod def UpperCamelCase__ (UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xF_F_F_F_F_F_F_F def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) lowercase__ = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase__ (self : Tuple , UpperCamelCase : str ): '''simple docstring''' lowercase__ = list(struct.unpack('''>16L''' , UpperCamelCase ) ) + [0] * 64 for i in range(16 , 80 ): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(UpperCamelCase ) lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0x5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0x6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0x8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0xC_A_6_2_C_1_D_6 lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = ( self.rotate(UpperCamelCase , 5 ) + f + e + k + expanded_block[i] & 0xF_F_F_F_F_F_F_F, a, self.rotate(UpperCamelCase , 30 ), c, d, ) lowercase__ = ( self.h[0] + a & 0xF_F_F_F_F_F_F_F, self.h[1] + b & 0xF_F_F_F_F_F_F_F, self.h[2] + c & 0xF_F_F_F_F_F_F_F, self.h[3] + d & 0xF_F_F_F_F_F_F_F, self.h[4] + e & 0xF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h ) def _SCREAMING_SNAKE_CASE () -> Optional[Any]: """simple docstring""" lowercase__ = b'''Test String''' assert SHAaHash(A ).final_hash() == hashlib.shaa(A ).hexdigest() # noqa: S324 def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A , '''utf-8''' ) print(SHAaHash(A ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
2
'''simple docstring''' import numpy as np def UpperCamelCase( UpperCAmelCase_ ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
151
0
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def UpperCamelCase_ ( A__ : Sequence[float] , A__ : int , A__ : int ): '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] lowerCAmelCase_ : Any = (low + high) // 2 lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = max_subarray(A__ , A__ , A__ ) lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = max_subarray(A__ , mid + 1 , A__ ) lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : int = max_cross_sum(A__ , A__ , A__ , A__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def UpperCamelCase_ ( A__ : Sequence[float] , A__ : int , A__ : int , A__ : int ): '''simple docstring''' lowerCAmelCase_, lowerCAmelCase_ : Any = float("""-inf""" ), -1 lowerCAmelCase_, lowerCAmelCase_ : Any = float("""-inf""" ), -1 lowerCAmelCase_ : int | float = 0 for i in range(A__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: lowerCAmelCase_ : Any = summ lowerCAmelCase_ : str = i lowerCAmelCase_ : List[str] = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: lowerCAmelCase_ : List[Any] = summ lowerCAmelCase_ : Tuple = i return max_left, max_right, (left_sum + right_sum) def UpperCamelCase_ ( A__ : int ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = [randint(1 , A__ ) for _ in range(A__ )] lowerCAmelCase_ : List[str] = time.time() max_subarray(A__ , 0 , input_size - 1 ) lowerCAmelCase_ : str = time.time() return end - start def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : str = [10, 1_00, 10_00, 1_00_00, 5_00_00, 10_00_00, 20_00_00, 30_00_00, 40_00_00, 50_00_00] lowerCAmelCase_ : Tuple = [time_max_subarray(A__ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(A__ , A__ ): print(A__ , """\t\t""" , A__ ) plt.plot(A__ , A__ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
89
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __A : List[str] = logging.get_logger(__name__) def UpperCamelCase_ ( A__ : List[str] ): '''simple docstring''' print("""Loading config file...""" ) def flatten_yaml_as_dict(A__ : int , A__ : str="" , A__ : Dict="." ): lowerCAmelCase_ : int = [] for k, v in d.items(): lowerCAmelCase_ : Any = parent_key + sep + k if parent_key else k if isinstance(A__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(A__ , A__ , sep=A__ ).items() ) else: items.append((new_key, v) ) return dict(A__ ) lowerCAmelCase_ : Optional[int] = argparse.Namespace() with open(A__ , """r""" ) as yaml_file: try: lowerCAmelCase_ : Any = yaml.load(A__ , Loader=yaml.FullLoader ) lowerCAmelCase_ : Any = flatten_yaml_as_dict(A__ ) for k, v in flat_cfg.items(): setattr(A__ , A__ , A__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(A__ , str(A__ ) ) ) return config def UpperCamelCase_ ( A__ : Optional[int] , A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : List[str] = MobileViTVaConfig() lowerCAmelCase_ : Any = False # dataset if task_name.startswith("""imagenet1k_""" ): lowerCAmelCase_ : Tuple = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: lowerCAmelCase_ : List[str] = 3_84 else: lowerCAmelCase_ : Optional[int] = 2_56 lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): lowerCAmelCase_ : int = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: lowerCAmelCase_ : int = 3_84 else: lowerCAmelCase_ : int = 2_56 lowerCAmelCase_ : Optional[Any] = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): lowerCAmelCase_ : Dict = 1_51 lowerCAmelCase_ : Any = 5_12 lowerCAmelCase_ : int = """ade20k-id2label.json""" lowerCAmelCase_ : Union[str, Any] = True elif task_name.startswith("""voc_""" ): lowerCAmelCase_ : Any = 21 lowerCAmelCase_ : List[str] = 5_12 lowerCAmelCase_ : Union[str, Any] = """pascal-voc-id2label.json""" lowerCAmelCase_ : int = True # orig_config lowerCAmelCase_ : Optional[int] = load_orig_config_file(A__ ) assert getattr(A__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" lowerCAmelCase_ : Union[str, Any] = getattr(A__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(A__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowerCAmelCase_ : List[Any] = getattr(A__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowerCAmelCase_ : List[str] = getattr(A__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: lowerCAmelCase_ : Optional[int] = getattr(A__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) lowerCAmelCase_ : Optional[Any] = getattr(A__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) lowerCAmelCase_ : Optional[int] = getattr(A__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label lowerCAmelCase_ : Any = """huggingface/label-files""" lowerCAmelCase_ : Any = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Any = {int(A__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = idalabel lowerCAmelCase_ : Tuple = {v: k for k, v in idalabel.items()} return config def UpperCamelCase_ ( A__ : int , A__ : Dict , A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : List[Any] = dct.pop(A__ ) lowerCAmelCase_ : Optional[int] = val def UpperCamelCase_ ( A__ : int , A__ : int=False ): '''simple docstring''' if base_model: lowerCAmelCase_ : List[Any] = """""" else: lowerCAmelCase_ : Any = """mobilevitv2.""" lowerCAmelCase_ : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowerCAmelCase_ : List[Any] = k[8:] else: lowerCAmelCase_ : Optional[Any] = k if ".block." in k: lowerCAmelCase_ : Dict = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: lowerCAmelCase_ : Any = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: lowerCAmelCase_ : List[Any] = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: lowerCAmelCase_ : Any = k_new.replace("""conv_1.""" , f'{model_prefix}conv_stem.' ) for i in [1, 2]: if f'layer_{i}.' in k: lowerCAmelCase_ : Optional[Any] = k_new.replace(f'layer_{i}.' , f'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: lowerCAmelCase_ : Optional[int] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: lowerCAmelCase_ : List[str] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if f'layer_{i}.0.' in k: lowerCAmelCase_ : Optional[int] = k_new.replace(f'layer_{i}.0.' , f'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if f'layer_{i}.1.local_rep.0.' in k: lowerCAmelCase_ : str = k_new.replace(f'layer_{i}.1.local_rep.0.' , f'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if f'layer_{i}.1.local_rep.1.' in k: lowerCAmelCase_ : Optional[Any] = k_new.replace(f'layer_{i}.1.local_rep.1.' , f'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: lowerCAmelCase_ : Optional[Any] = [0, 1] elif i == 4: lowerCAmelCase_ : Any = [0, 1, 2, 3] elif i == 5: lowerCAmelCase_ : Any = [0, 1, 2] for j in j_in: if f'layer_{i}.1.global_rep.{j}.' in k: lowerCAmelCase_ : Optional[int] = k_new.replace( f'layer_{i}.1.global_rep.{j}.' , f'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if f'layer_{i}.1.global_rep.{j+1}.' in k: lowerCAmelCase_ : Optional[Any] = k_new.replace( f'layer_{i}.1.global_rep.{j+1}.' , f'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if f'layer_{i}.1.conv_proj.' in k: lowerCAmelCase_ : str = k_new.replace(f'layer_{i}.1.conv_proj.' , f'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: lowerCAmelCase_ : Dict = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: lowerCAmelCase_ : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: lowerCAmelCase_ : Any = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: lowerCAmelCase_ : int = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: lowerCAmelCase_ : List[Any] = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: lowerCAmelCase_ : Optional[int] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: lowerCAmelCase_ : Optional[Any] = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: lowerCAmelCase_ : Dict = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: lowerCAmelCase_ : List[Any] = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCamelCase_ ( A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : Tuple = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(A__ ) for k in keys_to_ignore: state_dict.pop(A__ , A__ ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowerCAmelCase_ : Optional[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( A__ : Dict , A__ : Union[str, Any] , A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : int = get_mobilevitva_config(A__ , A__ ) # load original state_dict lowerCAmelCase_ : int = torch.load(A__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): lowerCAmelCase_ : Union[str, Any] = MobileViTVaForSemanticSegmentation(A__ ).eval() lowerCAmelCase_ : Union[str, Any] = False else: lowerCAmelCase_ : List[Any] = MobileViTVaForImageClassification(A__ ).eval() lowerCAmelCase_ : Optional[int] = False # remove and rename some keys of load the original model lowerCAmelCase_ : Tuple = checkpoint remove_unused_keys(A__ ) lowerCAmelCase_ : List[Any] = create_rename_keys(A__ , base_model=A__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A__ , A__ , A__ ) # load modified state_dict model.load_state_dict(A__ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCAmelCase_ : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCAmelCase_ : Dict = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : int = model(**A__ ) # verify classification model if task_name.startswith("""imagenet""" ): lowerCAmelCase_ : Optional[Any] = outputs.logits lowerCAmelCase_ : Tuple = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant lowerCAmelCase_ : int = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ) assert torch.allclose(logits[0, :3] , A__ , atol=1E-4 ) Path(A__ ).mkdir(exist_ok=A__ ) print(f'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) __A : Union[str, Any] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
89
1
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __UpperCamelCase : Any = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.1_5}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names __UpperCamelCase : List[Any] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __UpperCamelCase : Dict = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __UpperCamelCase : List[str] = '''allenai''' def __SCREAMING_SNAKE_CASE ( A_ ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCAmelCase__ : int = dict((re.sub(r'''@@$''' , '''''' , A_ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , A_ ), v) for k, v in d.items() ) lowerCAmelCase__ : List[str] = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] lowerCAmelCase__ : int = d[k] # restore return da def __SCREAMING_SNAKE_CASE ( A_ , A_ ): # prep assert os.path.exists(A_ ) os.makedirs(A_ , exist_ok=A_ ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowerCAmelCase__ : int = basename(A_ ) lowerCAmelCase__ : Tuple = dirname(A_ ) lowerCAmelCase__ : Optional[int] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCAmelCase__ : Tuple = cls.hub_models() lowerCAmelCase__ : Any = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} lowerCAmelCase__ : Optional[Any] = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'using checkpoint {checkpoint_file}' ) lowerCAmelCase__ : str = hub_utils.from_pretrained( A_ , A_ , A_ , archive_map=A_ , **A_ ) lowerCAmelCase__ : Optional[int] = vars(chkpt['''args''']['''model'''] ) lowerCAmelCase__ : Any = args['''source_lang'''] lowerCAmelCase__ : int = args['''target_lang'''] lowerCAmelCase__ : Optional[Any] = dirname(A_ ) lowerCAmelCase__ : Tuple = basename(A_ ) # dicts lowerCAmelCase__ : Tuple = os.path.join(A_ , f'dict.{src_lang}.txt' ) lowerCAmelCase__ : int = os.path.join(A_ , f'dict.{tgt_lang}.txt' ) lowerCAmelCase__ : str = Dictionary.load(A_ ) lowerCAmelCase__ : Any = rewrite_dict_keys(src_dict.indices ) lowerCAmelCase__ : Optional[Any] = len(A_ ) lowerCAmelCase__ : Tuple = os.path.join(A_ , '''vocab-src.json''' ) print(f'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(A_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A_ , ensure_ascii=A_ , indent=A_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCAmelCase__ : Union[str, Any] = True for k in src_vocab.keys(): if not k.islower(): lowerCAmelCase__ : Union[str, Any] = False break lowerCAmelCase__ : Optional[int] = Dictionary.load(A_ ) lowerCAmelCase__ : List[str] = rewrite_dict_keys(tgt_dict.indices ) lowerCAmelCase__ : str = len(A_ ) lowerCAmelCase__ : Optional[int] = os.path.join(A_ , '''vocab-tgt.json''' ) print(f'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(A_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A_ , ensure_ascii=A_ , indent=A_ ) ) # merges_file (bpecodes) lowerCAmelCase__ : int = os.path.join(A_ , VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCAmelCase__ : Union[str, Any] = os.path.join(A_ , A_ ) if os.path.exists(A_ ): break with open(A_ , encoding='''utf-8''' ) as fin: lowerCAmelCase__ : Optional[Any] = fin.read() lowerCAmelCase__ : Optional[Any] = re.sub(r''' \d+$''' , '''''' , A_ , 0 , re.M ) # remove frequency number print(f'Generating {merges_file}' ) with open(A_ , '''w''' , encoding='''utf-8''' ) as fout: fout.write(A_ ) # model config lowerCAmelCase__ : List[str] = os.path.join(A_ , '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", f'need to extend tokenizer to support bpe={args["tokenizer"]}' lowerCAmelCase__ : List[str] = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.02, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with lowerCAmelCase__ : List[str] = 5 lowerCAmelCase__ : List[str] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCAmelCase__ : Tuple = best_score_hparams[model_dir]['''length_penalty'''] else: lowerCAmelCase__ : int = 1.0 print(f'Generating {fsmt_model_config_file}' ) with open(A_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A_ , ensure_ascii=A_ , indent=A_ ) ) # tokenizer config lowerCAmelCase__ : Union[str, Any] = os.path.join(A_ , A_ ) lowerCAmelCase__ : List[Any] = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 10_24, '''do_lower_case''': do_lower_case, } print(f'Generating {fsmt_tokenizer_config_file}' ) with open(A_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A_ , ensure_ascii=A_ , indent=A_ ) ) # model lowerCAmelCase__ : Optional[int] = chkpt['''models'''][0] lowerCAmelCase__ : List[str] = model.state_dict() # rename keys to start with 'model.' lowerCAmelCase__ : Any = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCAmelCase__ : str = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(A_ , A_ ) lowerCAmelCase__ : Optional[int] = FSMTConfig.from_pretrained(A_ ) lowerCAmelCase__ : Any = FSMTForConditionalGeneration(A_ ) # check that it loads ok model_new.load_state_dict(A_ , strict=A_ ) # save lowerCAmelCase__ : str = os.path.join(A_ , A_ ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(A_ , A_ ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(f'cd {data_root}' ) print(f'transformers-cli upload {model_dir}' ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
106
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : list ): if not nums: raise ValueError('List is empty' ) return sum(__SCREAMING_SNAKE_CASE ) / len(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
213
0
def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : int = len(__a ) + 1 lowerCAmelCase__ : List[str] = len(__a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowerCAmelCase__ : Optional[int] = [[0 for i in range(__a )] for j in range(__a )] # since string of zero length match pattern of zero length lowerCAmelCase__ : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __a ): lowerCAmelCase__ : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __a ): lowerCAmelCase__ : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __a ): for j in range(1 , __a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowerCAmelCase__ : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowerCAmelCase__ : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowerCAmelCase__ : int = dp[i - 1][j] else: lowerCAmelCase__ : Any = 0 else: lowerCAmelCase__ : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowerCamelCase = '''aab''' lowerCamelCase = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
355
from math import isqrt def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Dict = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _a , _a ): lowerCAmelCase__ : int = False return [i for i in range(2 , _a ) if is_prime[i]] def lowerCamelCase_ ( _a = 10**8 ): """simple docstring""" lowerCAmelCase__ : Any = calculate_prime_numbers(max_number // 2 ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Optional[int] = len(_a ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
211
0
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument _a = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = list(s_dict.keys() ) for key in keys: _UpperCamelCase = r'''.*/layers_(\d+)''' _UpperCamelCase = key if re.match(__snake_case, __snake_case ): _UpperCamelCase = re.sub(r'''layers_(\d+)''', r'''block/\1/layer''', __snake_case ) _UpperCamelCase = r'''(encoder|decoder)\/''' if re.match(__snake_case, __snake_case ): _UpperCamelCase = re.match(__snake_case, __snake_case ).groups() if groups[0] == "encoder": _UpperCamelCase = re.sub(r'''/mlp/''', r'''/1/mlp/''', __snake_case ) _UpperCamelCase = re.sub(r'''/pre_mlp_layer_norm/''', r'''/1/layer_norm/''', __snake_case ) elif groups[0] == "decoder": _UpperCamelCase = re.sub(r'''/mlp/''', r'''/2/mlp/''', __snake_case ) _UpperCamelCase = re.sub(r'''/pre_mlp_layer_norm/''', r'''/2/layer_norm/''', __snake_case ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _UpperCamelCase = new_key.replace(__snake_case, __snake_case ) print(F'''{key} -> {new_key}''' ) _UpperCamelCase = s_dict.pop(__snake_case ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCamelCase = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCamelCase = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _UpperCamelCase = s_dict[key].shape[0] _UpperCamelCase = s_dict[key] for idx in range(__snake_case ): _UpperCamelCase = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(__snake_case ) return s_dict _a = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" import regex as re with open(__snake_case, '''r''' ) as f: _UpperCamelCase = f.read() _UpperCamelCase = re.findall(r'''(.*) = ([0-9.]*)''', __snake_case ) _UpperCamelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _UpperCamelCase = float(__snake_case ) if '''.''' in value else int(__snake_case ) _UpperCamelCase = re.findall(r'''(.*activations) = \(\'(.*)\',\)''', __snake_case )[0] _UpperCamelCase = str(activation[1] ) _UpperCamelCase = num_experts _UpperCamelCase = SwitchTransformersConfig(**__snake_case ) return config def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, __snake_case="./", __snake_case=8 ) -> List[Any]: """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) _UpperCamelCase = checkpoints.load_tax_checkpoint(__snake_case ) if gin_file is not None: _UpperCamelCase = convert_gin_to_config(__snake_case, __snake_case ) else: _UpperCamelCase = SwitchTransformersConfig.from_pretrained(__snake_case ) _UpperCamelCase = SwitchTransformersForConditionalGeneration(__snake_case ) _UpperCamelCase = flax_params['''target'''] _UpperCamelCase = flatten_dict(__snake_case, sep='''/''' ) _UpperCamelCase = rename_keys(__snake_case ) _UpperCamelCase = unflatten_dict(__snake_case, sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__snake_case, __snake_case ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") _a = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
194
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: _UpperCamelCase = ksize + 1 _UpperCamelCase = np.zeros((ksize, ksize), dtype=np.floataa ) # each value for y in range(__snake_case ): for x in range(__snake_case ): # distance from center _UpperCamelCase = x - ksize // 2 _UpperCamelCase = y - ksize // 2 # degree to radiant _UpperCamelCase = theta / 1_80 * np.pi _UpperCamelCase = np.cos(_theta ) _UpperCamelCase = np.sin(_theta ) # get kernel x _UpperCamelCase = cos_theta * px + sin_theta * py # get kernel y _UpperCamelCase = -sin_theta * px + cos_theta * py # fill kernel _UpperCamelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _a = imread("""../image_data/lena.jpg""") # turn image in gray scale value _a = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _a = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _a = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _a = out / out.max() * 255 _a = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
194
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase ( _a , unittest.TestCase): """simple docstring""" a__ : str = DiTPipeline a__ : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS a__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } a__ : Tuple = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS a__ : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase_= TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=__lowerCamelCase , ) UpperCAmelCase_= AutoencoderKL() UpperCAmelCase_= DDIMScheduler() UpperCAmelCase_= {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple=0 ) -> List[Any]: if str(__lowerCamelCase ).startswith("""mps""" ): UpperCAmelCase_= torch.manual_seed(__lowerCamelCase ) else: UpperCAmelCase_= torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCAmelCase_= { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: UpperCAmelCase_= """cpu""" UpperCAmelCase_= self.get_dummy_components() UpperCAmelCase_= self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase_= self.get_dummy_inputs(__lowerCamelCase ) UpperCAmelCase_= pipe(**__lowerCamelCase ).images UpperCAmelCase_= image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCAmelCase_= np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) UpperCAmelCase_= np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: self._test_inference_batch_single_identical(relax_max_difference=__lowerCamelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: UpperCAmelCase_= torch.manual_seed(0 ) UpperCAmelCase_= DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) UpperCAmelCase_= ["""vase""", """umbrella""", """white shark""", """white wolf"""] UpperCAmelCase_= pipe.get_label_ids(__lowerCamelCase ) UpperCAmelCase_= pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): UpperCAmelCase_= load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_= DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) UpperCAmelCase_= DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) UpperCAmelCase_= ["""vase""", """umbrella"""] UpperCAmelCase_= pipe.get_label_ids(__lowerCamelCase ) UpperCAmelCase_= torch.manual_seed(0 ) UpperCAmelCase_= pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): UpperCAmelCase_= load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
368
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = '''https://openaipublic.azureedge.net/jukebox/models/''' __A = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def __a ( lowerCAmelCase_ : List[Any] ) -> Tuple: '''simple docstring''' if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase_= key.replace(""".model.1.bias""" ,""".conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase_= key.replace(""".model.1.weight""" ,""".conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase_= key.replace(""".model.3.bias""" ,""".conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase_= key.replace(""".model.3.weight""" ,""".conv1d_2.weight""" ) if "conditioner_blocks.0." in key: UpperCAmelCase_= key.replace("""conditioner_blocks.0""" ,"""conditioner_blocks""" ) if "prime_prior" in key: UpperCAmelCase_= key.replace("""prime_prior""" ,"""encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCAmelCase_= key.replace(""".emb.""" ,""".""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" ,""".codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" ,"""metadata_embedding.""" ) if "x_emb.emb." in key: UpperCAmelCase_= key.replace("""0.x_emb.emb""" ,"""embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" ,"""encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" ,""".layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" ,"""_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" ,"""encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" ,"""encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" ,"""fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" ,"""embed_tokens""" ) return key def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : str ,lowerCAmelCase_ : Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= {} import re UpperCAmelCase_= re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) UpperCAmelCase_= re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase_= re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase_= re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) UpperCAmelCase_= re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase_= re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase_= re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) UpperCAmelCase_= re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase_= re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_encoder_block_conv_in.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase_= F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase_= re_encoder_block_conv_in.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_encoder_block_resnet.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_encoder_block_resnet.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase_= {"""1""": 1, """3""": 2}[groups[-2]] UpperCAmelCase_= F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" UpperCAmelCase_= F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase_= prefix + resnet_block UpperCAmelCase_= re_encoder_block_resnet.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_encoder_block_proj_out.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_encoder_block_proj_out.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= F"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" UpperCAmelCase_= re_encoder_block_proj_out.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_decoder_block_conv_out.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase_= F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase_= re_decoder_block_conv_out.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_decoder_block_resnet.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_decoder_block_resnet.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase_= {"""1""": 1, """3""": 2}[groups[-2]] UpperCAmelCase_= F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" UpperCAmelCase_= F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase_= prefix + resnet_block UpperCAmelCase_= re_decoder_block_resnet.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_decoder_block_proj_in.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_decoder_block_proj_in.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= F"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" UpperCAmelCase_= re_decoder_block_proj_in.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_prior_cond_conv_out.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase_= F"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase_= re_prior_cond_conv_out.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_prior_cond_resnet.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_prior_cond_resnet.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase_= {"""1""": 1, """3""": 2}[groups[-2]] UpperCAmelCase_= F"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" UpperCAmelCase_= F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase_= prefix + resnet_block UpperCAmelCase_= re_prior_cond_resnet.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_prior_cond_proj_in.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_prior_cond_proj_in.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= F"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" UpperCAmelCase_= re_prior_cond_proj_in.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) # keep original key else: UpperCAmelCase_= original_key UpperCAmelCase_= replace_key(lowerCAmelCase_ ) if F"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(F"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[F"""{key_prefix}.{key}"""].shape: UpperCAmelCase_= model_state_dict[F"""{key_prefix}.{key}"""] print(F"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) UpperCAmelCase_= original_key UpperCAmelCase_= original_key UpperCAmelCase_= value return new_dict @torch.no_grad() def __a ( lowerCAmelCase_ : List[Any]=None ,lowerCAmelCase_ : str=None ) -> List[str]: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): UpperCAmelCase_= requests.get(F"""{PREFIX}{file}""" ,allow_redirects=lowerCAmelCase_ ) os.makedirs(F"""{pytorch_dump_folder_path}/""" ,exist_ok=lowerCAmelCase_ ) open(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ,"""wb""" ).write(r.content ) UpperCAmelCase_= MODEL_MAPPING[model_name.split("""/""" )[-1]] UpperCAmelCase_= JukeboxConfig.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_= JukeboxModel(lowerCAmelCase_ ) UpperCAmelCase_= [] UpperCAmelCase_= {} for i, dict_name in enumerate(lowerCAmelCase_ ): UpperCAmelCase_= torch.load(F"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""] UpperCAmelCase_= {} for k in old_dic.keys(): if k.endswith(""".b""" ): UpperCAmelCase_= old_dic[k] elif k.endswith(""".w""" ): UpperCAmelCase_= old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCAmelCase_= old_dic[k] else: UpperCAmelCase_= old_dic[k] UpperCAmelCase_= """vqvae""" if i == 0 else F"""priors.{3 - i}""" UpperCAmelCase_= fix_jukebox_keys(lowerCAmelCase_ ,model.state_dict() ,lowerCAmelCase_ ,lowerCAmelCase_ ) weight_dict.append(lowerCAmelCase_ ) UpperCAmelCase_= weight_dict.pop(0 ) model.vqvae.load_state_dict(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) with open(F"""{pytorch_dump_folder_path}/mapping.json""" ,"""w""" ) as txtfile: json.dump(lowerCAmelCase_ ,lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) return weight_dict if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) __A = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
277
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase : List[str] = imread(R'digital_image_processing/image_data/lena_small.jpg') lowercase : str = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase_ ( ): '''simple docstring''' A : List[str] = cn.convert_to_negative(a_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase_ ( ): '''simple docstring''' with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[int] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase_ ( ): '''simple docstring''' A : int = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() A : Optional[Any] = canny.canny(a_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase_ ( ): '''simple docstring''' assert gg.gaussian_filter(a_ , 5 , sigma=0.9 ).all() def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[int] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A : int = conv.img_convolve(a_ , a_ ).astype(a_ ) assert res.any() def lowerCAmelCase_ ( ): '''simple docstring''' assert med.median_filter(a_ , 3 ).any() def lowerCAmelCase_ ( ): '''simple docstring''' A : List[str] = sob.sobel_filter(a_ ) assert grad.any() and theta.any() def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[Any] = sp.make_sepia(a_ , 20 ) assert sepia.all() def lowerCAmelCase_ ( snake_case__ = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' A : Union[str, Any] = bs.Burkes(imread(a_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase_ ( snake_case__ = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' A : str = rs.NearestNeighbour(imread(a_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[Any] = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A : Dict = imread(a_ , 0 ) # Test for get_neighbors_pixel function() return not None A : Union[str, Any] = 0 A : List[str] = 0 A : Optional[int] = image[x_coordinate][y_coordinate] A : Union[str, Any] = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A : List[Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A : int = lbp.local_binary_value(a_ , a_ , a_ ) assert lbp_image.any()
3
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
1
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Optional[Any] , a : UNetaDModel , a : UNetaDModel , a : DDPMScheduler , a : Dict , ) -> List[str]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = value_function SCREAMING_SNAKE_CASE : List[str] = unet SCREAMING_SNAKE_CASE : Dict = scheduler SCREAMING_SNAKE_CASE : Any = env SCREAMING_SNAKE_CASE : Dict = env.get_dataset() SCREAMING_SNAKE_CASE : List[str] = {} for key in self.data.keys(): try: SCREAMING_SNAKE_CASE : Dict = self.data[key].mean() except: # noqa: E722 pass SCREAMING_SNAKE_CASE : Dict = {} for key in self.data.keys(): try: SCREAMING_SNAKE_CASE : Optional[Any] = self.data[key].std() except: # noqa: E722 pass SCREAMING_SNAKE_CASE : List[str] = env.observation_space.shape[0] SCREAMING_SNAKE_CASE : List[Any] = env.action_space.shape[0] def __UpperCamelCase ( self : Dict , a : Any , a : Optional[int] ) -> int: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __UpperCamelCase ( self : Any , a : List[str] , a : Optional[int] ) -> List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __UpperCamelCase ( self : Union[str, Any] , a : int ) -> List[str]: """simple docstring""" if type(a ) is dict: return {k: self.to_torch(a ) for k, v in x_in.items()} elif torch.is_tensor(a ): return x_in.to(self.unet.device ) return torch.tensor(a , device=self.unet.device ) def __UpperCamelCase ( self : List[Any] , a : Optional[Any] , a : List[Any] , a : List[str] ) -> Dict: """simple docstring""" for key, val in cond.items(): SCREAMING_SNAKE_CASE : List[Any] = val.clone() return x_in def __UpperCamelCase ( self : Optional[int] , a : str , a : List[str] , a : Any , a : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = x.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model SCREAMING_SNAKE_CASE : Tuple = torch.full((batch_size,) , a , device=self.unet.device , dtype=torch.long ) for _ in range(a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models SCREAMING_SNAKE_CASE : List[str] = self.value_function(x.permute(0 , 2 , 1 ) , a ).sample SCREAMING_SNAKE_CASE : List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] SCREAMING_SNAKE_CASE : Dict = self.scheduler._get_variance(a ) SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * posterior_variance ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_std * grad SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : List[str] = x.detach() SCREAMING_SNAKE_CASE : Any = x + scale * grad SCREAMING_SNAKE_CASE : Dict = self.reset_xa(a , a , self.action_dim ) SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(x.permute(0 , 2 , 1 ) , a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(a , a , a , predict_epsilon=a )["prev_sample"] # apply conditions to the trajectory (set the initial state) SCREAMING_SNAKE_CASE : Dict = self.reset_xa(a , a , self.action_dim ) SCREAMING_SNAKE_CASE : Tuple = self.to_torch(a ) return x, y def __call__( self : Dict , a : int , a : int=64 , a : Union[str, Any]=32 , a : str=2 , a : Tuple=0.1 ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.normalize(a , "observations" ) SCREAMING_SNAKE_CASE : List[Any] = obs[None].repeat(a , axis=0 ) SCREAMING_SNAKE_CASE : str = {0: self.to_torch(a )} SCREAMING_SNAKE_CASE : Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) SCREAMING_SNAKE_CASE : str = randn_tensor(a , device=self.unet.device ) SCREAMING_SNAKE_CASE : List[Any] = self.reset_xa(a , a , self.action_dim ) SCREAMING_SNAKE_CASE : Dict = self.to_torch(a ) # run the diffusion process SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = self.run_diffusion(a , a , a , a ) # sort output trajectories by value SCREAMING_SNAKE_CASE : int = y.argsort(0 , descending=a ).squeeze() SCREAMING_SNAKE_CASE : Union[str, Any] = x[sorted_idx] SCREAMING_SNAKE_CASE : List[Any] = sorted_values[:, :, : self.action_dim] SCREAMING_SNAKE_CASE : Dict = actions.detach().cpu().numpy() SCREAMING_SNAKE_CASE : Tuple = self.de_normalize(a , key="actions" ) # select the action with the highest value if y is not None: SCREAMING_SNAKE_CASE : Tuple = 0 else: # if we didn't run value guiding, select a random action SCREAMING_SNAKE_CASE : Optional[int] = np.random.randint(0 , a ) SCREAMING_SNAKE_CASE : Optional[Any] = denorm_actions[selected_index, 0] return denorm_actions
76
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A__ ( UpperCamelCase ): A = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def A__ ( UpperCamelCase ): A = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A = s_dict.pop(UpperCamelCase ) elif "subsample" in key: A = s_dict.pop(UpperCamelCase ) def A__ ( UpperCamelCase ): A, A = emb.weight.shape A = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) A = emb.weight.data return lin_layer def A__ ( UpperCamelCase , UpperCamelCase ): A = torch.load(UpperCamelCase , map_location="cpu" ) A = mam_aaa["args"] A = mam_aaa["model"] A = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(UpperCamelCase ) rename_keys(UpperCamelCase ) A = state_dict["decoder.embed_tokens.weight"].shape[0] A = args.share_decoder_input_output_embed A = [int(UpperCamelCase ) for i in args.conv_kernel_sizes.split("," )] A = SpeechaTextConfig( vocab_size=UpperCamelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(UpperCamelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCamelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCamelCase , num_beams=5 , max_length=200 , use_cache=UpperCamelCase , decoder_start_token_id=2 , early_stopping=UpperCamelCase , ) A = SpeechaTextForConditionalGeneration(UpperCamelCase ) A, A = model.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) if len(UpperCamelCase ) > 0 and not set(UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F" but all the following weights are missing {missing}" ) if tie_embeds: A = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A = lm_head_weights model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _snake_case : str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
292
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _lowerCAmelCase ( __snake_case : str ) -> List[str]: return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _lowerCAmelCase ( ) -> Optional[int]: __A : Dict = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=__snake_case ) __A : str = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__snake_case ) EnvironmentCommand.register_subcommand(__snake_case ) TestCommand.register_subcommand(__snake_case ) RunBeamCommand.register_subcommand(__snake_case ) DummyDataCommand.register_subcommand(__snake_case ) # Parse args __A ,__A : List[Any] = parser.parse_known_args() if not hasattr(__snake_case , 'func' ): parser.print_help() exit(1 ) __A : int = parse_unknown_args(__snake_case ) # Run __A : Any = args.func(__snake_case , **__snake_case ) service.run() if __name__ == "__main__": main()
190
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 0 @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __A : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(_UpperCAmelCase) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(_UpperCAmelCase) , 0) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 20) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = AutoConfig.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) # Check that tokenizer_type ≠ model_type __A : Optional[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_UpperCAmelCase , 'vocab.txt')) __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='bert' , use_fast=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_UpperCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_UpperCAmelCase , 'merges.txt')) __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='gpt2' , use_fast=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_UpperCAmelCase , 'vocab.txt')) __A : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='bert') self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_UpperCAmelCase , 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_UpperCAmelCase , 'merges.txt')) __A : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type='gpt2') self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with pytest.raises(_UpperCAmelCase): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx') @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __A : List[Any] = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased') self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) if isinstance(_UpperCAmelCase , _UpperCAmelCase): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _UpperCAmelCase) else: self.assertEqual(tokenizer.do_lower_case , _UpperCAmelCase) self.assertEqual(tokenizer.model_max_length , 512) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _UpperCAmelCase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): __A : str = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = TOKENIZER_MAPPING.values() __A : Union[str, Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_UpperCAmelCase) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_UpperCAmelCase) , _UpperCAmelCase) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased') , _UpperCAmelCase) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=_UpperCAmelCase) __A : str = 'Hello, world. How are you?' __A : List[str] = tokenizer.tokenize(_UpperCAmelCase) self.assertEqual('[UNK]' , tokens[0]) __A : Dict = AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=_UpperCAmelCase) __A : List[Any] = tokenizer.tokenize(_UpperCAmelCase) self.assertEqual('[UNK]' , tokens[0]) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config') self.assertEqual(type(_UpperCAmelCase) , _UpperCAmelCase) self.assertEqual(tokenizer.model_max_length , 512) self.assertEqual(tokenizer.vocab_size , 3_0000) self.assertEqual(tokenizer.unk_token , '[UNK]') self.assertEqual(tokenizer.padding_side , 'right') self.assertEqual(tokenizer.truncation_side , 'right') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 12) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = AutoTokenizer.from_pretrained('ctrl') # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = get_tokenizer_config('bert-base-cased') __A : Optional[int] = config.pop('_commit_hash' , _UpperCAmelCase) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_UpperCAmelCase , {'do_lower_case': False}) # This model does not have a tokenizer_config so we get back an empty dict. __A : Dict = get_tokenizer_config(_UpperCAmelCase) self.assertDictEqual(_UpperCAmelCase , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Any = get_tokenizer_config(_UpperCAmelCase) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' try: AutoConfig.register('custom' , _UpperCAmelCase) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase): AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) __A : Optional[Any] = CustomTokenizer.from_pretrained(_UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : int = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' try: AutoConfig.register('custom' , _UpperCAmelCase) # Can register in two steps AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase): AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __A : Optional[int] = BertTokenizerFast.from_pretrained(_UpperCAmelCase) bert_tokenizer.save_pretrained(_UpperCAmelCase) __A : Dict = CustomTokenizerFast.from_pretrained(_UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) __A : Any = AutoTokenizer.from_pretrained(_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaises(_UpperCAmelCase): __A : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase): __A : Dict = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) __A : str = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Dict = AutoTokenizer.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __A : Union[str, Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase) __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer') @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = False class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = NewTokenizer lowerCAmelCase = False try: AutoConfig.register('custom' , _UpperCAmelCase) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase) AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase) # If remote code is not set, the default is to use local __A : List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __A : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. __A : Optional[Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) __A : Any = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub __A : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') self.assertTrue(tokenizer.special_attribute_present) __A : Optional[Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast') # Test we can also load the slow version __A : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , 'bert-base is not a local folder and is not a valid model identifier'): __A : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , revision='aaaaaa') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: __A : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
190
1
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=17 , _SCREAMING_SNAKE_CASE=23 , _SCREAMING_SNAKE_CASE=11 , _SCREAMING_SNAKE_CASE=True , ) -> Dict: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = act_dim UpperCamelCase = state_dim UpperCamelCase = hidden_size UpperCamelCase = max_length UpperCamelCase = is_training def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) UpperCamelCase = random_attention_mask((self.batch_size, self.seq_length) ) UpperCamelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Any: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = DecisionTransformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCamelCase = model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) ,( UpperCamelCase ) ,( UpperCamelCase ) ,( UpperCamelCase ) ,( UpperCamelCase ) ,( UpperCamelCase ) ,( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class a_ ( __a , __a , __a , unittest.TestCase ): lowercase = (DecisionTransformerModel,) if is_torch_available() else () lowercase = () lowercase = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowercase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = DecisionTransformerModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def A__ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @slow def A__ ( self ) -> List[str]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = DecisionTransformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCAmelCase__ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(lowerCAmelCase__ )] , lowerCAmelCase__ ) @require_torch class a_ ( unittest.TestCase ): @slow def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = 2 # number of steps of autoregressive prediction we will perform UpperCamelCase = 10 # defined by the RL environment, may be normalized UpperCamelCase = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) UpperCamelCase = model.to(lowerCAmelCase__ ) UpperCamelCase = model.config torch.manual_seed(0 ) UpperCamelCase = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ) # env.reset() UpperCamelCase = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=lowerCAmelCase__ ) UpperCamelCase = torch.tensor(lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCamelCase = state UpperCamelCase = torch.zeros(1 , 0 , config.act_dim , device=lowerCAmelCase__ , dtype=torch.floataa ) UpperCamelCase = torch.zeros(1 , 0 , device=lowerCAmelCase__ , dtype=torch.floataa ) UpperCamelCase = torch.tensor(0 , device=lowerCAmelCase__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCAmelCase__ ): UpperCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCAmelCase__ )] , dim=1 ) UpperCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCAmelCase__ )] , dim=1 ) UpperCamelCase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCamelCase ,UpperCamelCase ,UpperCamelCase = model( states=lowerCAmelCase__ , actions=lowerCAmelCase__ , rewards=lowerCAmelCase__ , returns_to_go=lowerCAmelCase__ , timesteps=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCamelCase = action_pred[0, -1] UpperCamelCase = torch.cat([states, state] , dim=1 ) UpperCamelCase = returns_to_go[0, -1] - reward UpperCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCamelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCAmelCase__ , dtype=torch.long ) * (step + 1)] , dim=1 )
321
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Tuple = ['''keras_nlp'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""keras_nlp"""])
100
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase_ ( _lowercase): snake_case__ = ['''pixel_values'''] def __init__( self : Union[str, Any] , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 255 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : bool = True , **__UpperCamelCase : Any , ) -> None: super().__init__(**__UpperCamelCase ) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} _UpperCamelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCamelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase , param_name='''crop_size''' ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCamelCase = do_convert_rgb def _UpperCamelCase ( self : List[str] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , ) -> np.ndarray: _UpperCamelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _UpperCamelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Any , ) -> np.ndarray: _UpperCamelCase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[int, float] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[Any] , ) -> Union[str, Any]: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Any , ) -> np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : int = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : Optional[Any] , ) -> PIL.Image.Image: _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__UpperCamelCase , param_name='''size''' , default_to_square=__UpperCamelCase ) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' , default_to_square=__UpperCamelCase ) _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCamelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCamelCase = [convert_to_rgb(__UpperCamelCase ) for image in images] # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCamelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
54
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): snake_case__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ) -> int: _UpperCamelCase = TextaTextGenerationPipeline(model=__UpperCamelCase , tokenizer=__UpperCamelCase ) return generator, ["Something to write", "Something else"] def _UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) -> Union[str, Any]: _UpperCamelCase = generator('''Something there''' ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ANY(__UpperCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) _UpperCamelCase = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], ] , ) _UpperCamelCase = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], [{'''generated_text''': ANY(__UpperCamelCase )}, {'''generated_text''': ANY(__UpperCamelCase )}], ] , ) with self.assertRaises(__UpperCamelCase ): generator(4 ) @require_torch def _UpperCamelCase ( self : List[str] ) -> List[str]: _UpperCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility _UpperCamelCase = generator('''Something there''' , do_sample=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ''''''}] ) _UpperCamelCase = 3 _UpperCamelCase = generator( '''Something there''' , num_return_sequences=__UpperCamelCase , num_beams=__UpperCamelCase , ) _UpperCamelCase = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = generator('''This is a test''' , do_sample=__UpperCamelCase , num_return_sequences=2 , return_tensors=__UpperCamelCase ) self.assertEqual( __UpperCamelCase , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) _UpperCamelCase = generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = generator( ['''This is a test''', '''This is a second test'''] , do_sample=__UpperCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__UpperCamelCase , ) self.assertEqual( __UpperCamelCase , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility _UpperCamelCase = generator('''Something there''' , do_sample=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [{'''generated_text''': ''''''}] )
54
1
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
206
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): A_ : str = parent A_ : int = batch_size A_ : Dict = seq_length A_ : Any = is_training A_ : List[str] = use_input_mask A_ : Any = use_token_type_ids A_ : int = use_labels A_ : str = vocab_size A_ : Any = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : Dict = num_attention_heads A_ : Dict = intermediate_size A_ : Optional[int] = hidden_act A_ : int = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Tuple = initializer_range A_ : int = num_labels A_ : Optional[int] = num_choices A_ : Optional[int] = scope def _a (self ): A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : List[str] = None if self.use_input_mask: A_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A_ : int = None if self.use_token_type_ids: A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Tuple = None A_ : List[str] = None A_ : List[str] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a (self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : List[Any] = BioGptModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : List[Any] = model(lowercase , attention_mask=lowercase ) A_ : str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): A_ : List[Any] = BioGptForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() A_ : Dict = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): A_ : Optional[Any] = BioGptModel(config=lowercase ) model.to(lowercase ) model.eval() # create attention mask A_ : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase ) A_ : Optional[Any] = self.seq_length // 2 A_ : List[Any] = 0 # first forward pass A_, A_ : List[str] = model(lowercase , attention_mask=lowercase ).to_tuple() # create hypothetical next token and extent to next_input_ids A_ : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids A_ : Union[str, Any] = ids_tensor((1,) , lowercase ).item() + 1 A_ : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) A_ : Optional[int] = random_other_next_tokens # append to next input_ids and attn_mask A_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : Any = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase )] , dim=1 , ) # get two different outputs A_ : List[Any] = model(lowercase , attention_mask=lowercase )["""last_hidden_state"""] A_ : Optional[int] = model(lowercase , past_key_values=lowercase , attention_mask=lowercase )["""last_hidden_state"""] # select random slice A_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : int = output_from_no_past[:, -1, random_slice_idx].detach() A_ : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1E-3 ) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): A_ : Optional[int] = BioGptModel(config=lowercase ).to(lowercase ).eval() A_ : Union[str, Any] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase ) # first forward pass A_ : int = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) A_, A_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A_ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : str = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and A_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : int = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) A_ : List[str] = model(lowercase , attention_mask=lowercase )["""last_hidden_state"""] A_ : Tuple = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[ """last_hidden_state""" ] # select random slice A_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() A_ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1E-3 ) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase , lowercase=False ): A_ : Union[str, Any] = BioGptForCausalLM(lowercase ) model.to(lowercase ) if gradient_checkpointing: model.gradient_checkpointing_enable() A_ : Dict = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _a (self , lowercase , *lowercase ): A_ : Union[str, Any] = BioGptModel(lowercase ) A_ : str = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): A_ : Union[str, Any] = self.num_labels A_ : Optional[int] = BioGptForTokenClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Dict = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a (self ): A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : Dict = config_and_inputs A_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : int = (BioGptForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[str] = False def _a (self ): A_ : Tuple = BioGptModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def _a (self ): self.config_tester.run_common_tests() def _a (self ): A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : int = type self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase ) def _a (self ): A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase , gradient_checkpointing=lowercase ) def _a (self ): A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase ) def _a (self ): A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase ) def _a (self ): A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase ) @slow def _a (self ): A_ : str = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(lowercase ) A_ : List[str] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A_ : List[str] = """left""" # Define PAD Token = EOS Token = 50256 A_ : Any = tokenizer.eos_token A_ : Dict = model.config.eos_token_id # use different length sentences to test batching A_ : List[Any] = [ """Hello, my dog is a little""", """Today, I""", ] A_ : List[str] = tokenizer(lowercase , return_tensors="""pt""" , padding=lowercase ) A_ : List[str] = inputs["""input_ids"""].to(lowercase ) A_ : List[Any] = model.generate( input_ids=lowercase , attention_mask=inputs["""attention_mask"""].to(lowercase ) , ) A_ : List[str] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(lowercase ) A_ : List[Any] = model.generate(input_ids=lowercase ) A_ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() A_ : Union[str, Any] = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(lowercase ) A_ : Any = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) A_ : List[str] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) A_ : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) A_ : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) A_ : Union[str, Any] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) @slow def _a (self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = BioGptModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[Any] = 3 A_ : Union[str, Any] = input_dict["""input_ids"""] A_ : List[Any] = input_ids.ne(1 ).to(lowercase ) A_ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A_ : Union[str, Any] = BioGptForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Tuple = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a (self ): A_, A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = 3 A_ : Dict = """multi_label_classification""" A_ : List[Any] = input_dict["""input_ids"""] A_ : Tuple = input_ids.ne(1 ).to(lowercase ) A_ : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A_ : Dict = BioGptForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A_ : int = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def _a (self ): A_ : Dict = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) A_ : Optional[Any] = torch.tensor([[2, 4805, 9, 656, 21]] ) A_ : Dict = model(lowercase )[0] A_ : Any = 42384 A_ : Union[str, Any] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowercase ) A_ : Union[str, Any] = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) @slow def _a (self ): A_ : Union[str, Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A_ : Dict = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(lowercase ) torch.manual_seed(0 ) A_ : Dict = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(lowercase ) A_ : Optional[int] = model.generate( **lowercase , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=lowercase , ) A_ : Union[str, Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase ) A_ : Any = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(lowercase , lowercase )
206
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = StableDiffusionPanoramaPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=1, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) _lowerCAmelCase : str = DDIMScheduler() torch.manual_seed(0) _lowerCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) _lowerCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) _lowerCAmelCase : List[str] = CLIPTextModel(__a) _lowerCAmelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") _lowerCAmelCase : Optional[int] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case__ ( self, __a, __a=0): '''simple docstring''' _lowerCAmelCase : int = torch.manual_seed(__a) _lowerCAmelCase : Dict = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : Any = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : str = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(__a) _lowerCAmelCase : Dict = sd_pipe(**__a).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Any = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2]) def snake_case__ ( self): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=3.25E-3) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : Union[str, Any] = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Optional[Any] = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(__a) _lowerCAmelCase : Any = "french fries" _lowerCAmelCase : Union[str, Any] = sd_pipe(**__a, negative_prompt=__a) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Union[str, Any] = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(__a) _lowerCAmelCase : Any = sd_pipe(**__a, view_batch_size=2) _lowerCAmelCase : Tuple = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Union[str, Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : Any = EulerAncestralDiscreteScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear") _lowerCAmelCase : Optional[int] = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Any = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : str = self.get_dummy_inputs(__a) _lowerCAmelCase : Union[str, Any] = sd_pipe(**__a).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Optional[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : int = PNDMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=__a) _lowerCAmelCase : Any = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Dict = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : int = self.get_dummy_inputs(__a) _lowerCAmelCase : str = sd_pipe(**__a).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Optional[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self, __a=0): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(__a) _lowerCAmelCase : Union[str, Any] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "stabilityai/stable-diffusion-2-base" _lowerCAmelCase : List[Any] = DDIMScheduler.from_pretrained(__a, subfolder="scheduler") _lowerCAmelCase : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__a, scheduler=__a, safety_checker=__a) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _lowerCAmelCase : Dict = self.get_inputs() _lowerCAmelCase : Union[str, Any] = pipe(**__a).images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _lowerCAmelCase : int = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ]) assert np.abs(expected_slice - image_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", safety_checker=__a) _lowerCAmelCase : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _lowerCAmelCase : Union[str, Any] = self.get_inputs() _lowerCAmelCase : Optional[int] = pipe(**__a).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _lowerCAmelCase : Tuple = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ]) assert np.abs(expected_slice - image_slice).max() < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = 0 def callback_fn(__a, __a, __a) -> None: _lowerCAmelCase : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowerCAmelCase : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _lowerCAmelCase : Dict = latents[0, -3:, -3:, -1] _lowerCAmelCase : str = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 elif step == 2: _lowerCAmelCase : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _lowerCAmelCase : Any = latents[0, -3:, -3:, -1] _lowerCAmelCase : Dict = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 _lowerCAmelCase : str = False _lowerCAmelCase : List[Any] = "stabilityai/stable-diffusion-2-base" _lowerCAmelCase : Any = DDIMScheduler.from_pretrained(__a, subfolder="scheduler") _lowerCAmelCase : Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained(__a, scheduler=__a, safety_checker=__a) _lowerCAmelCase : Dict = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _lowerCAmelCase : List[str] = self.get_inputs() pipe(**__a, callback=__a, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def snake_case__ ( self): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase : str = "stabilityai/stable-diffusion-2-base" _lowerCAmelCase : Optional[Any] = DDIMScheduler.from_pretrained(__a, subfolder="scheduler") _lowerCAmelCase : Any = StableDiffusionPanoramaPipeline.from_pretrained(__a, scheduler=__a, safety_checker=__a) _lowerCAmelCase : Optional[int] = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() _lowerCAmelCase : int = self.get_inputs() _lowerCAmelCase : int = pipe(**__a) _lowerCAmelCase : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
300
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Dict = LEDTokenizer lowerCAmelCase : List[str] = LEDTokenizerFast lowerCAmelCase : List[Any] = True def __lowercase ( self : List[str] ): super().setUp() _a : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _a : Tuple = dict(zip(_UpperCAmelCase ,range(len(_UpperCAmelCase ) ) ) ) _a : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _a : Tuple = {'unk_token': '<unk>'} _a : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def __lowercase ( self : List[Any] ,**_UpperCAmelCase : List[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def __lowercase ( self : Dict ,**_UpperCAmelCase : str ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def __lowercase ( self : Any ,_UpperCAmelCase : Any ): return "lower newer", "lower newer" @cached_property def __lowercase ( self : str ): return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def __lowercase ( self : Optional[Any] ): return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def __lowercase ( self : List[str] ): _a : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _a : Optional[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : List[Any] = tokenizer(_UpperCAmelCase ,max_length=len(_UpperCAmelCase ) ,padding=_UpperCAmelCase ,return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _a : int = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) @require_torch def __lowercase ( self : Union[str, Any] ): _a : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : int = tokenizer(_UpperCAmelCase ,padding=_UpperCAmelCase ,return_tensors='pt' ) self.assertIn('input_ids' ,_UpperCAmelCase ) self.assertIn('attention_mask' ,_UpperCAmelCase ) self.assertNotIn('labels' ,_UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' ,_UpperCAmelCase ) @require_torch def __lowercase ( self : str ): _a : List[Any] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Dict = tokenizer(text_target=_UpperCAmelCase ,max_length=32 ,padding='max_length' ,return_tensors='pt' ) self.assertEqual(32 ,targets['input_ids'].shape[1] ) @require_torch def __lowercase ( self : int ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Any = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase ) self.assertEqual(batch.input_ids.shape ,(2, 5122) ) @require_torch def __lowercase ( self : List[str] ): _a : int = ['A long paragraph for summarization.'] _a : int = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Dict = tokenizer(_UpperCAmelCase ,return_tensors='pt' ) _a : List[str] = tokenizer(text_target=_UpperCAmelCase ,return_tensors='pt' ) _a : List[Any] = inputs['input_ids'] _a : Tuple = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __lowercase ( self : Union[str, Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Optional[Any] = ['Summary of the text.', 'Another summary.'] _a : int = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _a : List[Any] = tokenizer(_UpperCAmelCase ,padding=_UpperCAmelCase ) _a : int = [[0] * len(_UpperCAmelCase ) for x in encoded_output['input_ids']] _a : List[Any] = tokenizer.pad(_UpperCAmelCase ) self.assertSequenceEqual(outputs['global_attention_mask'] ,_UpperCAmelCase ) def __lowercase ( self : List[str] ): pass def __lowercase ( self : int ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : Dict = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : int = self.tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Optional[Any] = 'A, <mask> AllenNLP sentence.' _a : int = tokenizer_r.encode_plus(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,return_token_type_ids=_UpperCAmelCase ) _a : List[Any] = tokenizer_p.encode_plus(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,return_token_type_ids=_UpperCAmelCase ) self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) _a : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _a : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCAmelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
89
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
370
from __future__ import annotations import math def lowerCAmelCase_ ( _lowercase : int) -> list[int]: """simple docstring""" if num <= 0: a__ : Tuple = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(_lowercase) a__ : List[Any] = [True] * (num + 1) a__ : List[str] = [] a__ : List[Any] = 2 a__ : Optional[int] = int(math.sqrt(_lowercase)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_lowercase) # Set multiples of start be False for i in range(start * start , num + 1 , _lowercase): if sieve[i] is True: a__ : Optional[int] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(_lowercase) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
266
0
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase ): if len(__lowercase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) __lowerCAmelCase = list(__lowercase ) __lowerCAmelCase = degree def __add__(self , __lowercase ): if self.degree > polynomial_a.degree: __lowerCAmelCase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __lowercase ) else: __lowerCAmelCase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __lowercase ) def __sub__(self , __lowercase ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__(self ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__(self , __lowercase ): __lowerCAmelCase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__(self ): __lowerCAmelCase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__lowercase ) return polynomial def __repr__(self ): return self.__str__() def _snake_case (self ): __lowerCAmelCase = [0] * self.degree for i in range(self.degree ): __lowerCAmelCase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __lowercase ) def _snake_case (self , __lowercase = 0 ): __lowerCAmelCase = [0] * (self.degree + 2) __lowerCAmelCase = constant for i in range(self.degree + 1 ): __lowerCAmelCase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __lowercase ) def __eq__(self , __lowercase ): if not isinstance(__lowercase , __lowercase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__(self , __lowercase ): return not self.__eq__(__lowercase )
174
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
1
"""simple docstring""" from __future__ import annotations lowercase_ = 10 def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = 1 lowercase__ = max(SCREAMING_SNAKE_CASE_ ) while placement <= max_digit: # declare and initialize empty buckets lowercase__ = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] # split list_of_ints between the buckets for i in list_of_ints: lowercase__ = int((i / placement) % RADIX ) buckets[tmp].append(SCREAMING_SNAKE_CASE_ ) # put each buckets' contents into list_of_ints lowercase__ = 0 for b in range(SCREAMING_SNAKE_CASE_ ): for i in buckets[b]: lowercase__ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
366
from pathlib import Path import fire def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) for path in src_dir.iterdir(): lowercase__ = [x.rstrip() for x in list(path.open().readlines() )][:n] lowercase__ = dest_dir.joinpath(path.name ) print(SCREAMING_SNAKE_CASE_ ) dest_path.open("w" ).write("\n".join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": fire.Fire(minify)
224
0
'''simple docstring''' from math import factorial def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(lowerCAmelCase ) // (factorial(lowerCAmelCase ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', F"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', F"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', F"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
70
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A__ : Optional[Any] =[num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _lowerCAmelCase = [] for num in range(len(lowerCAmelCase ) ): _lowerCAmelCase = 0 while 2 * i * i <= odd_composites[num]: _lowerCAmelCase = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase ) == n: return list_nums return [] def UpperCamelCase__ ( ): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
70
1
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __lowerCAmelCase : int =["""small""", """medium""", """large"""] __lowerCAmelCase : List[str] ="""lm_head.decoder.weight""" __lowerCAmelCase : int ="""lm_head.weight""" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> List[str]: '''simple docstring''' lowercase = torch.load(__a ) lowercase = d.pop(__a ) os.makedirs(__a , exist_ok=__a ) torch.save(__a , os.path.join(__a , __a ) ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) __lowerCAmelCase : int =parser.parse_args() for MODEL in DIALOGPT_MODELS: __lowerCAmelCase : Optional[Any] =os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") __lowerCAmelCase : Optional[Any] =F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
365
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __lowerCAmelCase ( A ): UpperCamelCase = '''sew''' def __init__( self : Optional[int] , A : Tuple=32 , A : Union[str, Any]=7_68 , A : Optional[Any]=12 , A : Dict=12 , A : List[Any]=30_72 , A : Optional[int]=2 , A : Optional[int]="gelu" , A : List[Any]=0.1 , A : List[Any]=0.1 , A : Optional[Any]=0.1 , A : Optional[Any]=0.0 , A : Tuple=0.1 , A : Union[str, Any]=0.1 , A : List[Any]=0.0_2 , A : str=1E-5 , A : Tuple="group" , A : Tuple="gelu" , A : int=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , A : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A : Optional[int]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A : List[str]=False , A : Dict=1_28 , A : List[str]=16 , A : List[Any]=True , A : int=0.0_5 , A : Optional[Any]=10 , A : str=2 , A : Optional[Any]=0.0 , A : Union[str, Any]=10 , A : List[Any]=0 , A : Optional[int]="mean" , A : Tuple=False , A : str=False , A : Tuple=2_56 , A : Tuple=0 , A : Optional[int]=1 , A : Optional[int]=2 , **A : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A) _UpperCAmelCase = hidden_size _UpperCAmelCase = feat_extract_norm _UpperCAmelCase = feat_extract_activation _UpperCAmelCase = list(A) _UpperCAmelCase = list(A) _UpperCAmelCase = list(A) _UpperCAmelCase = conv_bias _UpperCAmelCase = num_conv_pos_embeddings _UpperCAmelCase = num_conv_pos_embedding_groups _UpperCAmelCase = len(self.conv_dim) _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = intermediate_size _UpperCAmelCase = squeeze_factor _UpperCAmelCase = hidden_act _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = feat_proj_dropout _UpperCAmelCase = final_dropout _UpperCAmelCase = layerdrop _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase = apply_spec_augment _UpperCAmelCase = mask_time_prob _UpperCAmelCase = mask_time_length _UpperCAmelCase = mask_time_min_masks _UpperCAmelCase = mask_feature_prob _UpperCAmelCase = mask_feature_length _UpperCAmelCase = mask_feature_min_masks # ctc loss _UpperCAmelCase = ctc_loss_reduction _UpperCAmelCase = ctc_zero_infinity # sequence classification _UpperCAmelCase = use_weighted_layer_sum _UpperCAmelCase = classifier_proj_size @property def _lowerCamelCase ( self : int) -> Union[str, Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1)
339
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def A ( _UpperCAmelCase : Matrix , _UpperCAmelCase : Matrix ) -> Matrix: '''simple docstring''' _UpperCAmelCase = len(_UpperCAmelCase ) _UpperCAmelCase = [[0 for _ in range(size + 1 )] for _ in range(_UpperCAmelCase )] _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 for row in range(_UpperCAmelCase ): for col in range(_UpperCAmelCase ): _UpperCAmelCase = matrix[row][col] _UpperCAmelCase = vector[row][0] _UpperCAmelCase = 0 _UpperCAmelCase = 0 while row < size and col < size: # pivoting _UpperCAmelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_UpperCAmelCase , _UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _UpperCAmelCase ): _UpperCAmelCase = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _UpperCAmelCase ): for row in range(_UpperCAmelCase ): _UpperCAmelCase = augmented[row][col] / augmented[col][col] for cola in range(_UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_UpperCAmelCase ) ] def A ( _UpperCAmelCase : list[int] ) -> Callable[[int], int]: '''simple docstring''' _UpperCAmelCase = len(_UpperCAmelCase ) _UpperCAmelCase = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] _UpperCAmelCase = [[0] for _ in range(_UpperCAmelCase )] _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 for x_val, y_val in enumerate(_UpperCAmelCase ): for col in range(_UpperCAmelCase ): _UpperCAmelCase = (x_val + 1) ** (size - col - 1) _UpperCAmelCase = y_val _UpperCAmelCase = solve(_UpperCAmelCase , _UpperCAmelCase ) def interpolated_func(_UpperCAmelCase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_UpperCAmelCase ) ) return interpolated_func def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A ( _UpperCAmelCase : Callable[[int], int] = question_function , _UpperCAmelCase : int = 10 ) -> int: '''simple docstring''' _UpperCAmelCase = [func(_UpperCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase = 0 _UpperCAmelCase = 42 _UpperCAmelCase = 42 for poly in polynomials: _UpperCAmelCase = 1 while func(_UpperCAmelCase ) == poly(_UpperCAmelCase ): x_val += 1 ret += poly(_UpperCAmelCase ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
339
1
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int = 200 ) -> int: _UpperCAmelCase : Dict = [1, 2, 5, 10, 20, 50, 100, 200] _UpperCAmelCase : Union[str, Any] = [0] * (pence + 1) _UpperCAmelCase : Tuple = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
350
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a ( UpperCAmelCase ): _lowercase = (PNDMScheduler,) _lowercase = (("num_inference_steps", 5_0),) def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**A_ ) return config def _UpperCAmelCase ( self , A_=0 , **A_ ): '''simple docstring''' _UpperCAmelCase : int = dict(self.forward_default_kwargs ) _UpperCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , A_ ) _UpperCAmelCase : int = self.dummy_sample _UpperCAmelCase : Dict = 0.1 * sample _UpperCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Dict = self.get_scheduler_config(**A_ ) _UpperCAmelCase : Any = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals _UpperCAmelCase : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) _UpperCAmelCase : str = scheduler_class.from_pretrained(A_ ) new_scheduler.set_timesteps(A_ ) # copy over dummy past residuals _UpperCAmelCase : Union[str, Any] = dummy_past_residuals[:] _UpperCAmelCase : Tuple = scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : Any = new_scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCAmelCase : Union[str, Any] = scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : Optional[Any] = new_scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self ): '''simple docstring''' pass def _UpperCAmelCase ( self , A_=0 , **A_ ): '''simple docstring''' _UpperCAmelCase : Any = dict(self.forward_default_kwargs ) _UpperCAmelCase : int = kwargs.pop("num_inference_steps" , A_ ) _UpperCAmelCase : int = self.dummy_sample _UpperCAmelCase : Any = 0.1 * sample _UpperCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : Dict = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase : Any = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) _UpperCAmelCase : str = scheduler_class.from_pretrained(A_ ) # copy over dummy past residuals new_scheduler.set_timesteps(A_ ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase : List[Any] = dummy_past_residuals[:] _UpperCAmelCase : Tuple = scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : Union[str, Any] = new_scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCAmelCase : Optional[Any] = scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : List[str] = new_scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(**A_ ) _UpperCAmelCase : List[str] = scheduler_class(**A_ ) _UpperCAmelCase : List[str] = 10 _UpperCAmelCase : Optional[int] = self.dummy_model() _UpperCAmelCase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(A_ ) for i, t in enumerate(scheduler.prk_timesteps ): _UpperCAmelCase : Dict = model(A_ , A_ ) _UpperCAmelCase : int = scheduler.step_prk(A_ , A_ , A_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _UpperCAmelCase : Any = model(A_ , A_ ) _UpperCAmelCase : Any = scheduler.step_plms(A_ , A_ , A_ ).prev_sample return sample def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _UpperCAmelCase : str = kwargs.pop("num_inference_steps" , A_ ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**A_ ) _UpperCAmelCase : int = self.dummy_sample _UpperCAmelCase : str = 0.1 * sample if num_inference_steps is not None and hasattr(A_ , "set_timesteps" ): scheduler.set_timesteps(A_ ) elif num_inference_steps is not None and not hasattr(A_ , "set_timesteps" ): _UpperCAmelCase : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _UpperCAmelCase : Any = dummy_past_residuals[:] _UpperCAmelCase : Any = scheduler.step_prk(A_ , 0 , A_ , **A_ ).prev_sample _UpperCAmelCase : Optional[Any] = scheduler.step_prk(A_ , 1 , A_ , **A_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _UpperCAmelCase : Optional[int] = scheduler.step_plms(A_ , 0 , A_ , **A_ ).prev_sample _UpperCAmelCase : Optional[Any] = scheduler.step_plms(A_ , 1 , A_ , **A_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCAmelCase ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=A_ ) _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config(steps_offset=1 ) _UpperCAmelCase : str = scheduler_class(**A_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def _UpperCAmelCase ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = 27 for scheduler_class in self.scheduler_classes: _UpperCAmelCase : str = self.dummy_sample _UpperCAmelCase : str = 0.1 * sample _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _UpperCAmelCase : Dict = scheduler.step_prk(A_ , A_ , A_ ).prev_sample def _UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(A_ ): _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Dict = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**A_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = self.full_loop() _UpperCAmelCase : int = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1e-2 assert abs(result_mean.item() - 0.25_80 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase : Union[str, Any] = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : List[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1e-2 assert abs(result_mean.item() - 0.08_78 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) _UpperCAmelCase : Dict = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1e-2 assert abs(result_mean.item() - 0.29_95 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Dict = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1e-2 assert abs(result_mean.item() - 0.24_34 ) < 1e-3
189
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Tuple = KandinskyImgaImgPipeline _lowerCAmelCase : Dict = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] _lowerCAmelCase : Optional[Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] _lowerCAmelCase : Union[str, Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCAmelCase : Optional[int] = False @property def _snake_case ( self : List[str] ): return 32 @property def _snake_case ( self : Dict ): return 32 @property def _snake_case ( self : Any ): return self.time_input_dim @property def _snake_case ( self : Any ): return self.time_input_dim * 4 @property def _snake_case ( self : Any ): return 100 @property def _snake_case ( self : Union[str, Any] ): snake_case_ : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def _snake_case ( self : int ): torch.manual_seed(0 ) snake_case_ : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) snake_case_ : List[str] = MultilingualCLIP(lowercase_ ) snake_case_ : Union[str, Any] = text_encoder.eval() return text_encoder @property def _snake_case ( self : int ): torch.manual_seed(0 ) snake_case_ : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case_ : Tuple = UNetaDConditionModel(**lowercase_ ) return model @property def _snake_case ( self : Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self : Any ): torch.manual_seed(0 ) snake_case_ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self : str ): snake_case_ : str = self.dummy_text_encoder snake_case_ : Union[str, Any] = self.dummy_tokenizer snake_case_ : str = self.dummy_unet snake_case_ : Dict = self.dummy_movq snake_case_ : Any = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } snake_case_ : str = DDIMScheduler(**lowercase_ ) snake_case_ : Any = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _snake_case ( self : int , lowercase_ : str , lowercase_ : Any=0 ): snake_case_ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) snake_case_ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowercase_ ) # create init_image snake_case_ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) snake_case_ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : Union[str, Any] = Image.fromarray(np.uinta(lowercase_ ) ).convert('''RGB''' ).resize((256, 256) ) if str(lowercase_ ).startswith('''mps''' ): snake_case_ : Tuple = torch.manual_seed(lowercase_ ) else: snake_case_ : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) snake_case_ : List[Any] = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _snake_case ( self : List[str] ): snake_case_ : str = '''cpu''' snake_case_ : Dict = self.get_dummy_components() snake_case_ : int = self.pipeline_class(**lowercase_ ) snake_case_ : List[Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : int = pipe(**self.get_dummy_inputs(lowercase_ ) ) snake_case_ : List[Any] = output.images snake_case_ : Union[str, Any] = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Optional[Any] = np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : str ): snake_case_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) snake_case_ : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) snake_case_ : List[str] = '''A red cartoon frog, 4k''' snake_case_ : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) snake_case_ : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) snake_case_ : Dict = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) snake_case_ : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case_, snake_case_ : Optional[Any] = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case_ : Union[str, Any] = pipeline( lowercase_ , image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) snake_case_ : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
264
"""simple docstring""" import numpy as np def __lowercase ( _a ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
264
1
"""simple docstring""" import mpmath # for roots of unity import numpy as np class __magic_name__ : '''simple docstring''' def __init__( self , _a=None , _a=None ): """simple docstring""" lowerCamelCase = list(poly_a or [0] )[:] lowerCamelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowerCamelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowerCamelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowerCamelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowerCamelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowerCamelCase = self.__multiply() def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(_a ) <= 1: return dft[0] # lowerCamelCase = self.c_max_length // 2 while next_ncol > 0: lowerCamelCase = [[] for i in range(_a )] lowerCamelCase = self.root**next_ncol # First half of next step lowerCamelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_a ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowerCamelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_a ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowerCamelCase = new_dft lowerCamelCase = next_ncol // 2 return dft[0] def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.__dft("""A""" ) lowerCamelCase = self.__dft("""B""" ) lowerCamelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowerCamelCase = 2 while next_ncol <= self.c_max_length: lowerCamelCase = [[] for i in range(_a )] lowerCamelCase = self.root ** (next_ncol // 2) lowerCamelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowerCamelCase = new_inverse_c next_ncol *= 2 # Unpack lowerCamelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): """simple docstring""" lowerCamelCase = """A = """ + """ + """.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowerCamelCase = """B = """ + """ + """.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowerCamelCase = """A*B = """ + """ + """.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCamelCase = ksize + 1 lowerCamelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(snake_case__ ): for x in range(snake_case__ ): # distance from center lowerCamelCase = x - ksize // 2 lowerCamelCase = y - ksize // 2 # degree to radiant lowerCamelCase = theta / 1_80 * np.pi lowerCamelCase = np.cos(_theta ) lowerCamelCase = np.sin(_theta ) # get kernel x lowerCamelCase = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCAmelCase : Optional[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value lowerCAmelCase : Any = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCAmelCase : Optional[Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCAmelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCAmelCase : Optional[int] = out / out.max() * 255 lowerCAmelCase : Tuple = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
168
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __A : def __init__(self : str , __a : Optional[Any] , __a : Union[str, Any]=14 , __a : List[str]=7 , __a : Union[str, Any]=True , __a : int=True , __a : List[str]=True , __a : str=True , __a : str=True , __a : List[str]=99 , __a : Union[str, Any]=32 , __a : Optional[Any]=5 , __a : int=4 , __a : List[Any]=37 , __a : Optional[Any]="gelu" , __a : Tuple=0.1 , __a : Any=0.1 , __a : int=512 , __a : int=16 , __a : Optional[int]=2 , __a : Any=0.02 , __a : str=3 , __a : Optional[Any]=4 , __a : Optional[Any]=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_labels UpperCAmelCase_ = use_mc_token_ids UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope UpperCAmelCase_ = self.vocab_size - 1 def _lowercase (self : Optional[int] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ = None if self.use_mc_token_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase (self : Optional[int] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _lowercase (self : Dict , __a : List[str] , __a : int , __a : Tuple , __a : int , __a : Union[str, Any] , *__a : List[Any] ): UpperCAmelCase_ = CTRLModel(config=__a ) model.to(__a ) model.eval() model(__a , token_type_ids=__a , head_mask=__a ) model(__a , token_type_ids=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _lowercase (self : List[Any] , __a : Tuple , __a : Any , __a : Tuple , __a : str , __a : Tuple , *__a : str ): UpperCAmelCase_ = CTRLLMHeadModel(__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase (self : List[str] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def _lowercase (self : Tuple , __a : str , __a : Union[str, Any] , __a : List[str] , __a : Optional[Any] , *__a : Optional[int] ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = CTRLForSequenceClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : Dict = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () a__ : Union[str, Any] = (CTRLLMHeadModel,) if is_torch_available() else () a__ : List[Any] = ( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) a__ : Any = True a__ : Union[str, Any] = False a__ : Dict = False def _lowercase (self : List[Any] , __a : int , __a : Optional[int] , __a : Dict , __a : int , __a : List[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _lowercase (self : Any ): UpperCAmelCase_ = CTRLModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , n_embd=37 ) def _lowercase (self : Union[str, Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _lowercase (self : Optional[int] ): self.config_tester.run_common_tests() def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__a ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase (self : Optional[int] ): pass @slow def _lowercase (self : Union[str, Any] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = CTRLModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _lowercase (self : List[str] ): pass @require_torch class __A ( unittest.TestCase ): def _lowercase (self : Optional[Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _lowercase (self : Optional[int] ): UpperCAmelCase_ = CTRLLMHeadModel.from_pretrained("ctrl" ) model.to(__a ) UpperCAmelCase_ = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=__a ) # Legal the president is UpperCAmelCase_ = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a UpperCAmelCase_ = model.generate(__a , do_sample=__a ) self.assertListEqual(output_ids[0].tolist() , __a )
1
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE_: Optional[int] =3_00 # TEMPERATURE (unit = K) def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
1
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = ["""pixel_values"""] def __init__( self : Union[str, Any] , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[int, float] = 1 / 255 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : bool = True , **lowerCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = size if size is not None else {"""shortest_edge""": 224} UpperCamelCase = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) UpperCamelCase = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} UpperCamelCase = get_size_dict(lowerCamelCase_ , param_name="""crop_size""" ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_flip_channel_order def lowerCamelCase_ ( self : int , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : PILImageResampling = PIL.Image.BILINEAR , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" UpperCamelCase = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCamelCase = get_resize_output_image_size(lowerCamelCase_ , size=size["""shortest_edge"""] , default_to_square=lowerCamelCase_ ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Union[str, Any] , ): """simple docstring""" UpperCamelCase = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCamelCase_ , size=(size["""height"""], size["""width"""]) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Union[int, float] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : List[str] , ): """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None ): """simple docstring""" return flip_channel_order(lowerCamelCase_ , data_format=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : ImageInput , lowerCamelCase_ : bool = None , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : PILImageResampling = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : float = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase_ : Union[str, Any] , ): """simple docstring""" UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) UpperCamelCase = crop_size if crop_size is not None else self.crop_size UpperCamelCase = get_size_dict(lowerCamelCase_ , param_name="""crop_size""" ) UpperCamelCase = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: UpperCamelCase = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase = [self.flip_channel_order(image=lowerCamelCase_ ) for image in images] UpperCamelCase = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] UpperCamelCase = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[Tuple] = None ): """simple docstring""" UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowerCamelCase_ ): UpperCamelCase = target_sizes.numpy() UpperCamelCase = [] for idx in range(len(lowerCamelCase_ ) ): UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCamelCase_ ) UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase_ ) else: UpperCamelCase = logits.argmax(dim=1 ) UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
165
import argparse _SCREAMING_SNAKE_CASE = """docs/source/_static/js/custom.js""" def lowercase( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' with open(UpperCamelCase_ , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 UpperCamelCase = f"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f""" \"v{version}\": \"v{version}\",\n""" with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") _SCREAMING_SNAKE_CASE = parser.parse_args() update_custom_js(args.version)
165
1
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets _a : str = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' _a : Union[str, Any] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' _a : List[str] = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def __A ( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def __A ( self , a__ , a__ , a__=None , a__="uniform_average" , a__=True ): _lowerCAmelCase : int = mean_squared_error( a__ , a__ , sample_weight=a__ , multioutput=a__ , squared=a__ ) return {"mse": mse}
44
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: Optional[int] = logging.get_logger(__name__) A: Optional[int] = torch.device("cpu") def _snake_case ( ): UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im def _snake_case ( UpperCamelCase : int ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : str ): UpperCAmelCase : int = dct.pop(UpperCamelCase ) UpperCAmelCase : Any = val def _snake_case ( UpperCamelCase : Union[str, Any] ): UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): UpperCAmelCase : Optional[Any] = k if ".pwconv" in k: UpperCAmelCase : int = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: UpperCAmelCase : Tuple = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: UpperCAmelCase : List[Any] = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: UpperCAmelCase : Any = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: UpperCAmelCase : int = k_new.split(""".""" ) if ls[2].isdigit(): UpperCAmelCase : List[Any] = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: UpperCAmelCase : Any = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _snake_case ( UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Optional[int] ): UpperCAmelCase : List[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase : Optional[Any] = 1000 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[str] = """imagenet-1k-id2label.json""" UpperCAmelCase : Dict = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase : Any = [3, 3, 6, 4] UpperCAmelCase : List[str] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCAmelCase : Dict = [3, 3, 9, 6] UpperCAmelCase : Union[str, Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase : int = [4, 3, 10, 5] UpperCAmelCase : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase : Union[str, Any] = [4, 4, 12, 6] UpperCAmelCase : List[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" , check_hash=UpperCamelCase ) else: UpperCAmelCase : Any = torch.load(UpperCamelCase , map_location="""cpu""" ) UpperCAmelCase : Optional[Any] = checkpoint UpperCAmelCase : Dict = create_rename_keys(UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # load HuggingFace model UpperCAmelCase : List[Any] = SwiftFormerForImageClassification(UpperCamelCase ).eval() hf_model.load_state_dict(UpperCamelCase ) # prepare test inputs UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) UpperCAmelCase : Optional[int] = processor(images=UpperCamelCase , return_tensors="""pt""" ) # compare outputs from both models UpperCAmelCase : Optional[int] = get_expected_output(UpperCamelCase ) UpperCAmelCase : List[str] = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , UpperCamelCase , atol=1e-3 ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") A: str = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
109
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCamelCase__ =[ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for attribute in key.split("." ): _SCREAMING_SNAKE_CASE : List[str] = getattr(__lowerCamelCase, __lowerCamelCase ) if weight_type is not None: _SCREAMING_SNAKE_CASE : str = getattr(__lowerCamelCase, __lowerCamelCase ).shape else: _SCREAMING_SNAKE_CASE : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _SCREAMING_SNAKE_CASE : Optional[Any] = value elif weight_type == "weight_g": _SCREAMING_SNAKE_CASE : Union[str, Any] = value elif weight_type == "weight_v": _SCREAMING_SNAKE_CASE : Union[str, Any] = value elif weight_type == "bias": _SCREAMING_SNAKE_CASE : Dict = value else: _SCREAMING_SNAKE_CASE : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : List[Any] = fairseq_model.state_dict() _SCREAMING_SNAKE_CASE : Optional[int] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _SCREAMING_SNAKE_CASE : List[str] = None for name, value in fairseq_dict.items(): _SCREAMING_SNAKE_CASE : Any = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, hf_model.config.feat_extract_norm == "group", ) _SCREAMING_SNAKE_CASE : Optional[Any] = True elif name.split("." )[0] == "proj": _SCREAMING_SNAKE_CASE : Optional[int] = fairseq_model.proj _SCREAMING_SNAKE_CASE : Optional[int] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _SCREAMING_SNAKE_CASE : List[Any] = True if "*" in mapped_key: _SCREAMING_SNAKE_CASE : int = name.split(__lowerCamelCase )[0].split("." )[-2] _SCREAMING_SNAKE_CASE : str = mapped_key.replace("*", __lowerCamelCase ) if "weight_g" in name: _SCREAMING_SNAKE_CASE : List[Any] = "weight_g" elif "weight_v" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = "weight_v" elif "bias" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = "bias" elif "weight" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = "weight" else: _SCREAMING_SNAKE_CASE : List[Any] = None set_recursively(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = full_name.split("conv_layers." )[-1] _SCREAMING_SNAKE_CASE : Optional[int] = name.split("." ) _SCREAMING_SNAKE_CASE : str = int(items[0] ) _SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _SCREAMING_SNAKE_CASE : str = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _SCREAMING_SNAKE_CASE : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _SCREAMING_SNAKE_CASE : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _SCREAMING_SNAKE_CASE : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = emb.weight.shape _SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase, __lowerCamelCase, bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = emb.weight.data return lin_layer def lowerCamelCase__ (__lowerCamelCase ): with open(__lowerCamelCase, "r", encoding="utf-8" ) as f: _SCREAMING_SNAKE_CASE : List[Any] = f.readlines() _SCREAMING_SNAKE_CASE : List[str] = [line.split(" " )[0] for line in lines] _SCREAMING_SNAKE_CASE : Optional[Any] = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(__lowerCamelCase, range(4, num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): _SCREAMING_SNAKE_CASE : List[Any] = WavaVecaConfig.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = SpeechaTextaConfig.from_pretrained( __lowerCamelCase, vocab_size=__lowerCamelCase, decoder_layers=__lowerCamelCase, do_stable_layer_norm=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=__lowerCamelCase, return_attention_mask=__lowerCamelCase, ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) _SCREAMING_SNAKE_CASE : str = model[0].eval() # set weights for wav2vec2 encoder _SCREAMING_SNAKE_CASE : Dict = WavaVecaModel(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = recursively_load_weights_wavaveca(model.encoder, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = SpeechaTextaForCausalLM(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__lowerCamelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) _SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) _SCREAMING_SNAKE_CASE : Dict = SpeechEncoderDecoderModel(encoder=__lowerCamelCase, decoder=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = False # add projection layer _SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(projection_layer.weight ) _SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(projection_layer.bias ) _SCREAMING_SNAKE_CASE : List[Any] = create_vocab_dict(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase, "vocab.json" ), "w" ) as fp: json.dump(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = SpeechaTextaTokenizer(os.path.join(__lowerCamelCase, "vocab.json" ) ) tokenizer.save_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = hf_wavavec.config.to_dict() _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.pad_token_id _SCREAMING_SNAKE_CASE : str = tokenizer.bos_token_id _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.eos_token_id _SCREAMING_SNAKE_CASE : List[str] = "speech_to_text_2" _SCREAMING_SNAKE_CASE : Tuple = "wav2vec2" _SCREAMING_SNAKE_CASE : List[Any] = SpeechEncoderDecoderConfig.from_dict(__lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0224, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') UpperCamelCase__ =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
325
from math import factorial def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(__lowerCamelCase ) // (factorial(__lowerCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( 'If a class of 40 students must be arranged into groups of', f"4 for group projects, there are {combinations(40, 4)} ways", 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f"are {combinations(10, 3)} ways that first, second and", 'third place can be awarded.', )
325
1
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: # Initialise PyTorch model snake_case_ = LxmertConfig.from_json_file(UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) snake_case_ = LxmertForPreTraining(UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
69
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __UpperCamelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for attribute in key.split('.' ): snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value elif weight_type == "running_mean": snake_case_ = value elif weight_type == "running_var": snake_case_ = value elif weight_type == "num_batches_tracked": snake_case_ = value elif weight_type == "inv_freq": snake_case_ = value else: snake_case_ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): snake_case_ = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(UpperCAmelCase )[0].split('.' )[-2] snake_case_ = mapped_key.replace('*' , UpperCAmelCase ) if "pos_bias_u" in name: snake_case_ = None elif "pos_bias_v" in name: snake_case_ = None elif "weight_g" in name: snake_case_ = 'weight_g' elif "weight_v" in name: snake_case_ = 'weight_v' elif "bias" in name: snake_case_ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ = 'weight' elif "running_mean" in name: snake_case_ = 'running_mean' elif "inv_freq" in name: snake_case_ = 'inv_freq' elif "running_var" in name: snake_case_ = 'running_var' elif "num_batches_tracked" in name: snake_case_ = 'num_batches_tracked' else: snake_case_ = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = full_name.split('conv_layers.' )[-1] snake_case_ = name.split('.' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True ) -> str: if config_path is not None: snake_case_ = WavaVecaConformerConfig.from_pretrained(UpperCAmelCase , hidden_act='swish' ) else: snake_case_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: snake_case_ = 'rotary' if is_finetuned: if dict_path: snake_case_ = Dictionary.load(UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ = target_dict.pad_index snake_case_ = target_dict.bos_index snake_case_ = target_dict.eos_index snake_case_ = len(target_dict.symbols ) snake_case_ = os.path.join(UpperCAmelCase , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase ) ) return os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) snake_case_ = target_dict.indices # fairseq has the <pad> and <s> switched snake_case_ = 0 snake_case_ = 1 with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCAmelCase , UpperCAmelCase ) snake_case_ = WavaVecaCTCTokenizer( UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase , ) snake_case_ = True if config.feat_extract_norm == 'layer' else False snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) snake_case_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) snake_case_ = WavaVecaConformerForCTC(UpperCAmelCase ) else: snake_case_ = WavaVecaConformerForPreTraining(UpperCAmelCase ) if is_finetuned: snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: snake_case_ = argparse.Namespace(task='audio_pretraining' ) snake_case_ = fairseq.tasks.setup_task(UpperCAmelCase ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase ) snake_case_ = model[0].eval() recursively_load_weights(UpperCAmelCase , UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __UpperCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
69
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _lowerCamelCase = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _lowerCamelCase = 'UperNetConfig' class a ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : Union[int, Tuple[int, int]] , __snake_case : Union[int, Tuple[int, int], str] = 0 , __snake_case : bool = False , __snake_case : Union[int, Tuple[int, int]] = 1 , ): super().__init__() UpperCAmelCase_ = nn.Convad( in_channels=__snake_case , out_channels=__snake_case , kernel_size=__snake_case , padding=__snake_case , bias=__snake_case , dilation=__snake_case , ) UpperCAmelCase_ = nn.BatchNormad(__snake_case ) UpperCAmelCase_ = nn.ReLU() def lowerCamelCase_ ( self : int , __snake_case : torch.Tensor ): UpperCAmelCase_ = self.conv(__snake_case ) UpperCAmelCase_ = self.batch_norm(__snake_case ) UpperCAmelCase_ = self.activation(__snake_case ) return output class a ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : int ): super().__init__() UpperCAmelCase_ = [ nn.AdaptiveAvgPoolad(__snake_case ), UperNetConvModule(__snake_case , __snake_case , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__snake_case ) , __snake_case ) def lowerCamelCase_ ( self : List[Any] , __snake_case : torch.Tensor ): UpperCAmelCase_ = input for layer in self.layers: UpperCAmelCase_ = layer(__snake_case ) return hidden_state class a ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : Tuple[int, ...] , __snake_case : int , __snake_case : int , __snake_case : bool ): super().__init__() UpperCAmelCase_ = pool_scales UpperCAmelCase_ = align_corners UpperCAmelCase_ = in_channels UpperCAmelCase_ = channels UpperCAmelCase_ = [] for i, pool_scale in enumerate(__snake_case ): UpperCAmelCase_ = UperNetPyramidPoolingBlock(pool_scale=__snake_case , in_channels=__snake_case , channels=__snake_case ) self.blocks.append(__snake_case ) self.add_module(str(__snake_case ) , __snake_case ) def lowerCamelCase_ ( self : List[str] , __snake_case : torch.Tensor ): UpperCAmelCase_ = [] for ppm in self.blocks: UpperCAmelCase_ = ppm(__snake_case ) UpperCAmelCase_ = nn.functional.interpolate( __snake_case , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__snake_case ) return ppm_outs class a ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : Dict , __snake_case : List[str] ): super().__init__() UpperCAmelCase_ = config UpperCAmelCase_ = config.pool_scales # e.g. (1, 2, 3, 6) UpperCAmelCase_ = in_channels UpperCAmelCase_ = config.hidden_size UpperCAmelCase_ = False UpperCAmelCase_ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCAmelCase_ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCAmelCase_ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCAmelCase_ = nn.ModuleList() UpperCAmelCase_ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCAmelCase_ = UperNetConvModule(__snake_case , self.channels , kernel_size=1 ) UpperCAmelCase_ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__snake_case ) self.fpn_convs.append(__snake_case ) UpperCAmelCase_ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowerCamelCase_ ( self : Tuple ): self.apply(self._init_weights ) def lowerCamelCase_ ( self : List[Any] , __snake_case : List[Any] ): if isinstance(__snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCamelCase_ ( self : List[Any] , __snake_case : int ): UpperCAmelCase_ = inputs[-1] UpperCAmelCase_ = [x] psp_outs.extend(self.psp_modules(__snake_case ) ) UpperCAmelCase_ = torch.cat(__snake_case , dim=1 ) UpperCAmelCase_ = self.bottleneck(__snake_case ) return output def lowerCamelCase_ ( self : str , __snake_case : torch.Tensor ): # build laterals UpperCAmelCase_ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__snake_case ) ) # build top-down path UpperCAmelCase_ = len(__snake_case ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase_ = laterals[i - 1].shape[2:] UpperCAmelCase_ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__snake_case , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCAmelCase_ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase_ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCAmelCase_ = torch.cat(__snake_case , dim=1 ) UpperCAmelCase_ = self.fpn_bottleneck(__snake_case ) UpperCAmelCase_ = self.classifier(__snake_case ) return output class a ( nn.Module ): '''simple docstring''' def __init__( self : Any , __snake_case : int , __snake_case : int = 2 , __snake_case : int = 3 , __snake_case : Union[int, Tuple[int, int]] = 1 ): super().__init__() UpperCAmelCase_ = config UpperCAmelCase_ = config.auxiliary_in_channels UpperCAmelCase_ = config.auxiliary_channels UpperCAmelCase_ = config.auxiliary_num_convs UpperCAmelCase_ = config.auxiliary_concat_input UpperCAmelCase_ = in_index UpperCAmelCase_ = (kernel_size // 2) * dilation UpperCAmelCase_ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__snake_case , padding=__snake_case , dilation=__snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__snake_case , padding=__snake_case , dilation=__snake_case ) ) if self.num_convs == 0: UpperCAmelCase_ = nn.Identity() else: UpperCAmelCase_ = nn.Sequential(*__snake_case ) if self.concat_input: UpperCAmelCase_ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__snake_case , padding=kernel_size // 2 ) UpperCAmelCase_ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowerCamelCase_ ( self : Tuple ): self.apply(self._init_weights ) def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : Tuple ): if isinstance(__snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCamelCase_ ( self : List[str] , __snake_case : torch.Tensor ): # just take the relevant feature maps UpperCAmelCase_ = encoder_hidden_states[self.in_index] UpperCAmelCase_ = self.convs(__snake_case ) if self.concat_input: UpperCAmelCase_ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCAmelCase_ = self.classifier(__snake_case ) return output class a ( _A ): '''simple docstring''' lowerCAmelCase : Tuple = UperNetConfig lowerCAmelCase : Tuple = 'pixel_values' lowerCAmelCase : Tuple = True def lowerCamelCase_ ( self : List[str] , __snake_case : int ): if isinstance(__snake_case , __snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowerCamelCase_ ( self : List[str] ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : Dict , __snake_case : int=False ): if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ = value _lowerCamelCase = r'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , _A , ) class a ( _A ): '''simple docstring''' def __init__( self : Dict , __snake_case : Any ): super().__init__(__snake_case ) UpperCAmelCase_ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCAmelCase_ = UperNetHead(__snake_case , in_channels=self.backbone.channels ) UpperCAmelCase_ = UperNetFCNHead(__snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__snake_case , config_class=_CONFIG_FOR_DOC ) def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[bool] = None , ): UpperCAmelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ = output_attentions if output_attentions is not None else self.config.output_attentions UpperCAmelCase_ = self.backbone.forward_with_filtered_kwargs( __snake_case , output_hidden_states=__snake_case , output_attentions=__snake_case ) UpperCAmelCase_ = outputs.feature_maps UpperCAmelCase_ = self.decode_head(__snake_case ) UpperCAmelCase_ = nn.functional.interpolate(__snake_case , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__snake_case ) UpperCAmelCase_ = None if self.auxiliary_head is not None: UpperCAmelCase_ = self.auxiliary_head(__snake_case ) UpperCAmelCase_ = nn.functional.interpolate( __snake_case , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__snake_case ) UpperCAmelCase_ = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCAmelCase_ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCAmelCase_ = loss_fct(__snake_case , __snake_case ) UpperCAmelCase_ = loss_fct(__snake_case , __snake_case ) UpperCAmelCase_ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCAmelCase_ = (logits,) + outputs[1:] else: UpperCAmelCase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['ConditionalDetrFeatureExtractor'] _lowerCamelCase = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
177
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class a__ ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE : str = ["pixel_values"] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) _lowercase : Optional[int] = size if size is not None else {'''shortest_edge''': 256} _lowercase : Any = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _lowercase : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _lowercase : str = get_size_dict(_UpperCAmelCase ) _lowercase : int = do_resize _lowercase : str = size _lowercase : Dict = resample _lowercase : Dict = do_center_crop _lowercase : List[Any] = crop_size _lowercase : str = do_rescale _lowercase : str = rescale_factor _lowercase : List[str] = do_normalize _lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : str = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowercase : List[str] = get_resize_output_image_size(_UpperCAmelCase , size=size["shortest_edge"] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : List[Any] = get_size_dict(_UpperCAmelCase ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): """simple docstring""" _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : Optional[Any] = size if size is not None else self.size _lowercase : Tuple = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _lowercase : Any = resample if resample is not None else self.resample _lowercase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : int = crop_size if crop_size is not None else self.crop_size _lowercase : Optional[int] = get_size_dict(_UpperCAmelCase ) _lowercase : str = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Dict = image_mean if image_mean is not None else self.image_mean _lowercase : List[Any] = image_std if image_std is not None else self.image_std _lowercase : Dict = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowercase : List[Any] = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: _lowercase : int = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: _lowercase : Optional[Any] = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: _lowercase : Dict = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: _lowercase : List[str] = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] _lowercase : int = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] _lowercase : List[Any] = {'''pixel_values''': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
250
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if n == 1 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return 0 elif n == 2: return 1 else: lowercase__: List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: lowercase__: Union[str, Any] = 0 lowercase__: List[Any] = 2 while digits < n: index += 1 lowercase__: Dict = len(str(fibonacci(__UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 1_0_0_0 ) -> int: return fibonacci_digits_index(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
177
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =state_dict.pop(_lowerCAmelCase ) __lowercase =val def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowercase =key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) __lowercase =value else: __lowercase =value return new_state_dict def _A ( _lowerCAmelCase , _lowerCAmelCase=False ): """simple docstring""" __lowercase ='' if is_panoptic: __lowercase ='conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowercase =state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __lowercase =state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase =in_proj_weight[:256, :] __lowercase =in_proj_bias[:256] __lowercase =in_proj_weight[256:512, :] __lowercase =in_proj_bias[256:512] __lowercase =in_proj_weight[-256:, :] __lowercase =in_proj_bias[-256:] def _A ( ): """simple docstring""" __lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase =Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __lowercase ='resnet101' if "dc5" in model_name: __lowercase =True __lowercase ='panoptic' in model_name if is_panoptic: __lowercase =250 else: __lowercase =91 __lowercase ='huggingface/label-files' __lowercase ='coco-detection-id2label.json' __lowercase =json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __lowercase ={int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase =idalabel __lowercase ={v: k for k, v in idalabel.items()} # load image processor __lowercase ='coco_panoptic' if is_panoptic else 'coco_detection' __lowercase =ConditionalDetrImageProcessor(format=_lowerCAmelCase ) # prepare image __lowercase =prepare_img() __lowercase =image_processor(images=_lowerCAmelCase , return_tensors='pt' ) __lowercase =encoding['pixel_values'] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub __lowercase =torch.hub.load('DeppMeng/ConditionalDETR' , _lowerCAmelCase , pretrained=_lowerCAmelCase ).eval() __lowercase =conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __lowercase ='conditional_detr.' + src rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase =rename_backbone_keys(_lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCAmelCase , is_panoptic=_lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowercase ='conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): __lowercase =state_dict.pop(_lowerCAmelCase ) __lowercase =val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowercase =state_dict.pop(_lowerCAmelCase ) __lowercase =val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: __lowercase =state_dict.pop(_lowerCAmelCase ) __lowercase =val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __lowercase =state_dict.pop(_lowerCAmelCase ) __lowercase =val # finally, create HuggingFace model and load state dict __lowercase =ConditionalDetrForSegmentation(_lowerCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() model.push_to_hub(repo_id=_lowerCAmelCase , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion __lowercase =conditional_detr(_lowerCAmelCase ) __lowercase =model(_lowerCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
48
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class _UpperCamelCase ( A , A ): '''simple docstring''' lowerCAmelCase__ = """resnet""" lowerCAmelCase__ = ["""basic""", """bottleneck"""] def __init__( self : Any , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Optional[int]=6_4 , _lowerCAmelCase : str=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , _lowerCAmelCase : Any=[3, 4, 6, 3] , _lowerCAmelCase : List[Any]="bottleneck" , _lowerCAmelCase : List[str]="relu" , _lowerCAmelCase : int=False , _lowerCAmelCase : int=None , _lowerCAmelCase : Any=None , **_lowerCAmelCase : Any , ): '''simple docstring''' super().__init__(**_lowerCAmelCase) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types)}""") __lowercase =num_channels __lowercase =embedding_size __lowercase =hidden_sizes __lowercase =depths __lowercase =layer_type __lowercase =hidden_act __lowercase =downsample_in_first_stage __lowercase =['stem'] + [f"""stage{idx}""" for idx in range(1 , len(_lowerCAmelCase) + 1)] __lowercase , __lowercase =get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names) class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return 1e-3
48
1
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE__ ( __A , __A = "cpu" , __A = None ) -> None: _snake_case = torch.load(_snake_case , map_location=_snake_case ) for k, v in tqdm(state_dict.items() ): if not isinstance(_snake_case , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) _snake_case = v.half() if save_path is None: # overwrite src_path _snake_case = src_path torch.save(_snake_case , _snake_case ) if __name__ == "__main__": fire.Fire(convert)
42
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =ShapEPipeline lowerCamelCase__ =['prompt'] lowerCamelCase__ =['prompt'] lowerCamelCase__ =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowerCamelCase__ =False @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 8 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __snake_case : Optional[int] = PriorTransformer(**a_ ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __snake_case : List[Any] = ShapERenderer(**a_ ) return model def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.dummy_prior __snake_case : str = self.dummy_text_encoder __snake_case : str = self.dummy_tokenizer __snake_case : Tuple = self.dummy_renderer __snake_case : int = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=a_ , clip_sample=a_ , clip_sample_range=1.0 , ) __snake_case : Union[str, Any] = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ): '''simple docstring''' if str(a_ ).startswith('''mps''' ): __snake_case : Tuple = torch.manual_seed(a_ ) else: __snake_case : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case : Optional[int] = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''cpu''' __snake_case : str = self.get_dummy_components() __snake_case : List[Any] = self.pipeline_class(**a_ ) __snake_case : str = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(a_ ) ) __snake_case : List[str] = output.images[0] __snake_case : List[str] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : List[Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = torch_device == '''cpu''' __snake_case : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a_ , relax_max_difference=a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.get_dummy_components() __snake_case : int = self.pipeline_class(**a_ ) __snake_case : int = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = 1 __snake_case : List[Any] = 2 __snake_case : int = self.get_dummy_inputs(a_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Dict = batch_size * [inputs[key]] __snake_case : Union[str, Any] = pipe(**a_ , num_images_per_prompt=a_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) __snake_case : Optional[Any] = ShapEPipeline.from_pretrained('''openai/shap-e''' ) __snake_case : Optional[int] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case : str = pipe( '''a shark''' , generator=a_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a_ , a_ )
102
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Dict = "Salesforce/blip-image-captioning-base" __lowerCamelCase : Any = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) __lowerCamelCase : List[str] = "image_captioner" __lowerCamelCase : Optional[int] = AutoModelForVisionaSeq __lowerCamelCase : Any = ["image"] __lowerCamelCase : Union[str, Any] = ["text"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""vision"""] ) super().__init__(*lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.pre_processor(images=lowerCamelCase__, return_tensors="""pt""" ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.model.generate(**lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.pre_processor.batch_decode(lowerCamelCase__, skip_special_tokens=lowerCamelCase__ )[0].strip()
115
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Union[str, Any] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Dict = "conditional_detr" __lowerCamelCase : str = ["past_key_values"] __lowerCamelCase : str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self, lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=3, lowerCamelCase__=300, lowerCamelCase__=6, lowerCamelCase__=2048, lowerCamelCase__=8, lowerCamelCase__=6, lowerCamelCase__=2048, lowerCamelCase__=8, lowerCamelCase__=0.0, lowerCamelCase__=0.0, lowerCamelCase__=True, lowerCamelCase__="relu", lowerCamelCase__=256, lowerCamelCase__=0.1, lowerCamelCase__=0.0, lowerCamelCase__=0.0, lowerCamelCase__=0.02, lowerCamelCase__=1.0, lowerCamelCase__=False, lowerCamelCase__="sine", lowerCamelCase__="resnet50", lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=2, lowerCamelCase__=5, lowerCamelCase__=2, lowerCamelCase__=1, lowerCamelCase__=1, lowerCamelCase__=2, lowerCamelCase__=5, lowerCamelCase__=2, lowerCamelCase__=0.25, **lowerCamelCase__, ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase__, lowerCamelCase__ ): A : Any = backbone_config.get("""model_type""" ) A : Optional[Any] = CONFIG_MAPPING[backbone_model_type] A : Tuple = config_class.from_dict(lowerCamelCase__ ) A : Dict = use_timm_backbone A : int = backbone_config A : Union[str, Any] = num_channels A : Optional[Any] = num_queries A : Union[str, Any] = d_model A : str = encoder_ffn_dim A : List[Any] = encoder_layers A : Tuple = encoder_attention_heads A : Union[str, Any] = decoder_ffn_dim A : Tuple = decoder_layers A : int = decoder_attention_heads A : Union[str, Any] = dropout A : List[str] = attention_dropout A : Optional[int] = activation_dropout A : Optional[Any] = activation_function A : Any = init_std A : List[Any] = init_xavier_std A : Any = encoder_layerdrop A : List[str] = decoder_layerdrop A : int = encoder_layers A : Union[str, Any] = auxiliary_loss A : Union[str, Any] = position_embedding_type A : Tuple = backbone A : Dict = use_pretrained_backbone A : int = dilation # Hungarian matcher A : List[Any] = class_cost A : List[Any] = bbox_cost A : int = giou_cost # Loss coefficients A : List[Any] = mask_loss_coefficient A : Any = dice_loss_coefficient A : int = cls_loss_coefficient A : Tuple = bbox_loss_coefficient A : List[Any] = giou_loss_coefficient A : int = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase__, **lowerCamelCase__ ) @property def _lowerCAmelCase ( self ): return self.encoder_attention_heads @property def _lowerCAmelCase ( self ): return self.d_model def _lowerCAmelCase ( self ): A : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A : List[Any] = self.backbone_config.to_dict() A : List[str] = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Tuple = version.parse("1.11" ) @property def _lowerCAmelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowerCAmelCase ( self ): return 1e-5 @property def _lowerCAmelCase ( self ): return 12
115
1
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] = 10**12 ): lowercase_ :Tuple = 1 lowercase_ :List[str] = 0 lowercase_ :List[str] = 1 lowercase_ :List[Any] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
223
import math class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__=0 ): # a graph with Node 0,1,...,N-1 lowercase : List[Any] = n lowercase : List[Any] = [ [math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ ) ] # adjacency matrix for weight lowercase : Union[str, Any] = [ [math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ ) ] # dp[i][j] stores minimum distance from i to j def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = w def __lowerCamelCase ( self ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowercase : Any = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return self.dp[u][v] if __name__ == "__main__": __a = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
337
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = ['''model.decoder.embed_positions.weights'''] def __UpperCamelCase ( _A ): if "emb" in name: lowerCAmelCase_ = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: lowerCAmelCase_ = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: lowerCAmelCase_ = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: lowerCAmelCase_ = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: lowerCAmelCase_ = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: lowerCAmelCase_ = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: lowerCAmelCase_ = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: lowerCAmelCase_ = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: lowerCAmelCase_ = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: lowerCAmelCase_ = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: lowerCAmelCase_ = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = list(state_dict.keys() ) lowerCAmelCase_ = {} for key in keys: lowerCAmelCase_ = state_dict.pop(_A ) lowerCAmelCase_ = rename_keys(_A ) if "in_proj_weight" in key: # split fused qkv proj lowerCAmelCase_ = val[:hidden_size, :] lowerCAmelCase_ = val[hidden_size : 2 * hidden_size, :] lowerCAmelCase_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowerCAmelCase_ = val else: lowerCAmelCase_ = val return state_dict, enc_dec_proj_state_dict def __UpperCamelCase ( _A ): if checkpoint == "small": # default config values lowerCAmelCase_ = 1024 lowerCAmelCase_ = 24 lowerCAmelCase_ = 16 elif checkpoint == "medium": lowerCAmelCase_ = 1536 lowerCAmelCase_ = 48 lowerCAmelCase_ = 24 elif checkpoint == "large": lowerCAmelCase_ = 2048 lowerCAmelCase_ = 48 lowerCAmelCase_ = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) lowerCAmelCase_ = MusicgenDecoderConfig( hidden_size=_A , ffn_dim=hidden_size * 4 , num_hidden_layers=_A , num_attention_heads=_A , ) return config @torch.no_grad() def __UpperCamelCase ( _A , _A=None , _A=None , _A="cpu" ): lowerCAmelCase_ = MusicGen.get_pretrained(_A , device=_A ) lowerCAmelCase_ = decoder_config_from_checkpoint(_A ) lowerCAmelCase_ = fairseq_model.lm.state_dict() lowerCAmelCase_ , lowerCAmelCase_ = rename_state_dict( _A , hidden_size=decoder_config.hidden_size ) lowerCAmelCase_ = TaEncoderModel.from_pretrained('''t5-base''' ) lowerCAmelCase_ = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) lowerCAmelCase_ = MusicgenForCausalLM(_A ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowerCAmelCase_ , lowerCAmelCase_ = decoder.load_state_dict(_A , strict=_A ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_A ) if len(_A ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(_A ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model lowerCAmelCase_ = MusicgenForConditionalGeneration(text_encoder=_A , audio_encoder=_A , decoder=_A ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_A ) # check we can do a forward pass lowerCAmelCase_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowerCAmelCase_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowerCAmelCase_ = model(input_ids=_A , decoder_input_ids=_A ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor lowerCAmelCase_ = AutoTokenizer.from_pretrained('''t5-base''' ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) lowerCAmelCase_ = MusicgenProcessor(feature_extractor=_A , tokenizer=_A ) # set the appropriate bos/pad token ids lowerCAmelCase_ = 2048 lowerCAmelCase_ = 2048 # set other default generation config params lowerCAmelCase_ = int(30 * audio_encoder.config.frame_rate ) lowerCAmelCase_ = True lowerCAmelCase_ = 3.0 if pytorch_dump_folder is not None: Path(_A ).mkdir(exist_ok=_A ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(_A ) processor.push_to_hub(_A ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) _A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
167
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _A = logging.get_logger(__name__) _A = TypeVar('''DatasetType''', Dataset, IterableDataset) def __UpperCamelCase ( _A , _A = None , _A = None , _A = None , _A = None , _A = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_A ): if not isinstance(_A , (Dataset, IterableDataset) ): if isinstance(_A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(_A )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_A ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_A ).__name__}." ) if i == 0: lowerCAmelCase_ , lowerCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(_A , _A ) else (IterableDataset, Dataset) ) elif not isinstance(_A , _A ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( _A , _A , _A , info=_A , split=_A , stopping_strategy=_A ) else: return _interleave_iterable_datasets( _A , _A , _A , info=_A , split=_A , stopping_strategy=_A ) def __UpperCamelCase ( _A , _A = None , _A = None , _A = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_A ): if not isinstance(_A , (Dataset, IterableDataset) ): if isinstance(_A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(_A )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_A ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_A ).__name__}." ) if i == 0: lowerCAmelCase_ , lowerCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(_A , _A ) else (IterableDataset, Dataset) ) elif not isinstance(_A , _A ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_A , info=_A , split=_A , axis=_A ) else: return _concatenate_iterable_datasets(_A , info=_A , split=_A , axis=_A )
167
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=lowercase ): """simple docstring""" __UpperCAmelCase : int = ["keras_nlp"] def __init__( self : str, *UpperCAmelCase__ : Dict, **UpperCAmelCase__ : Union[str, Any] ): requires_backends(self, ["keras_nlp"] )
17
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class SCREAMING_SNAKE_CASE_ : def __init__( self : Union[str, Any] , _A : List[Any]=None , **_A : Optional[int] ) -> Union[str, Any]: """simple docstring""" logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) snake_case_ : List[Any] = model snake_case_ : Tuple = kwargs.get('model_save_dir' , _lowerCAmelCase ) snake_case_ : Optional[Any] = kwargs.get('latest_model_name' , _lowerCAmelCase ) def __call__( self : List[Any] , **_A : Optional[int] ) -> Dict: """simple docstring""" snake_case_ : Any = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def UpperCAmelCase_ ( _A : Union[str, Path] , _A : List[Any]=None , _A : Any=None ) -> Any: """simple docstring""" if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) snake_case_ : Union[str, Any] = """CPUExecutionProvider""" return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def UpperCAmelCase_ ( self : Dict , _A : Union[str, Path] , _A : Optional[str] = None , **_A : Union[str, Any] ) -> List[str]: """simple docstring""" snake_case_ : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME snake_case_ : List[Any] = self.model_save_dir.joinpath(self.latest_model_name ) snake_case_ : Any = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) snake_case_ : List[str] = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): snake_case_ : List[str] = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, os.PathLike] , **_A : Union[str, Any] , ) -> Tuple: """simple docstring""" if os.path.isfile(_lowerCAmelCase ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , _A : Union[str, Path] , _A : Optional[Union[bool, str, None]] = None , _A : Optional[Union[str, None]] = None , _A : bool = False , _A : Optional[str] = None , _A : Optional[str] = None , _A : Optional[str] = None , _A : Optional["ort.SessionOptions"] = None , **_A : int , ) -> Union[str, Any]: """simple docstring""" snake_case_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): snake_case_ : str = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) snake_case_ : Dict = Path(_lowerCAmelCase ) # load model from hub else: # download model snake_case_ : List[Any] = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) snake_case_ : int = Path(_lowerCAmelCase ).parent snake_case_ : Union[str, Any] = Path(_lowerCAmelCase ).name snake_case_ : str = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def UpperCAmelCase_ ( cls : Optional[int] , _A : Union[str, Path] , _A : bool = True , _A : Optional[str] = None , _A : Optional[str] = None , **_A : int , ) -> Optional[Any]: """simple docstring""" snake_case_ : List[Any] = None if len(str(_lowerCAmelCase ).split('@' ) ) == 2: snake_case_ : List[Any] = model_id.split('@' ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
370
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ ): @register_to_config def __init__( self : Optional[Any] , *, _A : int = 4 , _A : int = 768 , _A : int , _A : Tuple , ) -> Dict: """simple docstring""" super().__init__() snake_case_ : int = nn.Parameter(torch.zeros(_A ) ) # parameters for additional clip time embeddings snake_case_ : Tuple = nn.Linear(_A , _A ) snake_case_ : List[Any] = nn.Linear(_A , _A ) # parameters for encoder hidden states snake_case_ : Union[str, Any] = clip_extra_context_tokens snake_case_ : str = nn.Linear( _A , self.clip_extra_context_tokens * cross_attention_dim ) snake_case_ : Any = nn.Linear(_A , _A ) snake_case_ : Tuple = nn.LayerNorm(_A ) def UpperCAmelCase_ ( self : List[str] , *, _A : Tuple , _A : List[Any] , _A : str , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings snake_case_ : Optional[int] = image_embeddings.shape[0] snake_case_ : Optional[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) snake_case_ : Optional[Any] = classifier_free_guidance_embeddings.expand( _A , -1 ) snake_case_ : Any = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] snake_case_ : str = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... snake_case_ : str = self.embedding_proj(_A ) snake_case_ : Dict = self.clip_image_embeddings_project_to_time_embeddings(_A ) snake_case_ : Tuple = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" snake_case_ : List[str] = self.clip_extra_context_tokens_proj(_A ) snake_case_ : Optional[Any] = clip_extra_context_tokens.reshape(_A , -1 , self.clip_extra_context_tokens ) snake_case_ : int = clip_extra_context_tokens.permute(0 , 2 , 1 ) snake_case_ : Optional[int] = self.encoder_hidden_states_proj(_A ) snake_case_ : Any = self.text_encoder_hidden_states_norm(_A ) snake_case_ : Dict = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
88
0
'''simple docstring''' from __future__ import annotations from random import random class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase = None ) -> str: lowercase__ : Any = value lowercase__ : Union[str, Any] = random() lowercase__ : Node | None = None lowercase__ : Node | None = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: lowercase__ : Any = str(self.value ) + ''' ''' lowercase__ : str = str(self.left or '''''' ) lowercase__ : List[str] = str(self.right or '''''' ) return value + left + right def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase__ , lowercase__ : int = split(root.left , UpperCAmelCase ) return left, root else: lowercase__ , lowercase__ : Optional[Any] = split(root.right , UpperCAmelCase ) return root, right def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase__ : Any = merge(left.right , UpperCAmelCase ) return left else: lowercase__ : Dict = merge(UpperCAmelCase , right.left ) return right def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = Node(UpperCAmelCase ) lowercase__ , lowercase__ : Tuple = split(UpperCAmelCase , UpperCAmelCase ) return merge(merge(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ , lowercase__ : Dict = split(UpperCAmelCase , value - 1 ) lowercase__ , lowercase__ : int = split(UpperCAmelCase , UpperCAmelCase ) return merge(UpperCAmelCase , UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): for arg in args.split(): if arg[0] == "+": lowercase__ : Tuple = insert(UpperCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": lowercase__ : Union[str, Any] = erase(UpperCAmelCase , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def __UpperCamelCase ( ): lowercase__ : Tuple = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) lowercase__ : Dict = input() while args != "q": lowercase__ : Any = interact_treap(UpperCAmelCase , UpperCAmelCase ) print(UpperCAmelCase ) lowercase__ : List[Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
198
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="""%(message)s""") def __UpperCamelCase ( UpperCAmelCase ): return input_array.reshape((input_array.size, 1) ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = np.nan for i in range(UpperCAmelCase ): lowercase__ : Optional[Any] = features[:, labels == i] lowercase__ : Optional[Any] = data.mean(1 ) # Centralize the data of class i lowercase__ : Dict = data - column_reshape(UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase__ : List[str] = np.dot(UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Tuple = features.mean(1 ) lowercase__ : Dict = np.nan for i in range(UpperCAmelCase ): lowercase__ : List[str] = features[:, labels == i] lowercase__ : int = data.shape[1] lowercase__ : Optional[int] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase__ : Optional[int] = device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): # Check if the features have been loaded if features.any(): lowercase__ : Optional[Any] = features.mean(1 ) # Center the dataset lowercase__ : List[str] = features - np.reshape(UpperCAmelCase , (data_mean.size, 1) ) lowercase__ : Optional[Any] = np.dot(UpperCAmelCase , centered_data.T ) / features.shape[1] lowercase__ , lowercase__ : Tuple = np.linalg.eigh(UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first lowercase__ : str = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowercase__ : Tuple = np.dot(filtered_eigenvectors.T , UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): assert classes > dimensions # Check if features have been already loaded if features.any: lowercase__ , lowercase__ : Any = eigh( covariance_between_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , covariance_within_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) lowercase__ : Optional[int] = eigenvectors[:, ::-1][:, :dimensions] lowercase__ , lowercase__ , lowercase__ : Optional[int] = np.linalg.svd(UpperCAmelCase ) lowercase__ : List[str] = svd_matrix[:, 0:dimensions] lowercase__ : str = np.dot(filtered_svd_matrix.T , UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __UpperCamelCase ( ): # Create dummy dataset with 2 classes and 3 features lowercase__ : List[str] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowercase__ : Optional[Any] = np.array([0, 0, 0, 1, 1] ) lowercase__ : str = 2 lowercase__ : Dict = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCAmelCase ) as error_info: lowercase__ : int = linear_discriminant_analysis( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if isinstance(UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __UpperCamelCase ( ): lowercase__ : Optional[int] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowercase__ : int = 2 lowercase__ : Any = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCAmelCase ) as error_info: lowercase__ : Dict = principal_component_analysis(UpperCAmelCase , UpperCAmelCase ) if not np.allclose(UpperCAmelCase , UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
198
1
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> list[int]: return [ord(lowerCamelCase_ ) - 96 for elem in plain] def UpperCamelCase_( lowerCamelCase_ ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCamelCase_( ) -> None: _lowercase : Dict = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , lowerCamelCase_ ) print('Decoded:' , decode(lowerCamelCase_ ) ) if __name__ == "__main__": main()
84
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : Union[str, Any] = len(lowerCamelCase_ ) // 2 # choose the middle 3 elements _lowercase : Any = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
84
1
'''simple docstring''' from collections import defaultdict def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): lowerCamelCase_ = first_str.lower().strip() lowerCamelCase_ = second_str.lower().strip() # Remove whitespace lowerCamelCase_ = first_str.replace(" " , "" ) lowerCamelCase_ = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): return False # Default values for count should be 0 lowerCamelCase_ = defaultdict(UpperCAmelCase_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCAmelCase_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() a_ : str = input("""Enter the first string """).strip() a_ : Dict = input("""Enter the second string """).strip() a_ : Dict = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
55
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: snake_case_ : List[Any] = None snake_case_ : str = logging.get_logger(__name__) snake_case_ : Dict = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} snake_case_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } snake_case_ : List[str] = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } snake_case_ : List[str] = '▁' class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = AlbertTokenizer def __init__( self : Tuple ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Any=False ,lowerCamelCase__ : Optional[int]="[CLS]" ,lowerCamelCase__ : Union[str, Any]="[SEP]" ,lowerCamelCase__ : Optional[int]="<unk>" ,lowerCamelCase__ : str="[SEP]" ,lowerCamelCase__ : List[Any]="<pad>" ,lowerCamelCase__ : Dict="[CLS]" ,lowerCamelCase__ : int="[MASK]" ,**lowerCamelCase__ : Any ,): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCamelCase : Dict = ( AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ,normalized=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token ) super().__init__( lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,remove_space=lowerCamelCase__ ,keep_accents=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,**lowerCamelCase__ ,) _UpperCamelCase : Tuple = do_lower_case _UpperCamelCase : str = remove_space _UpperCamelCase : Optional[Any] = keep_accents _UpperCamelCase : Dict = vocab_file _UpperCamelCase : Dict = False if not self.vocab_file else True def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : List[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : int = [self.sep_token_id] _UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCamelCase : Dict = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file ,lowerCamelCase__ ) return (out_vocab_file,)
83
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() A : Optional[int] = logging.get_logger(__name__) A : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } A : Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : Dict ) -> Any: """simple docstring""" for attribute in key.split(""".""" ): lowercase__ = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: lowercase__ = getattr(__magic_name__ , __magic_name__ ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase__ = None for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase__ = True elif name.split(""".""" )[0] == "proj": lowercase__ = fairseq_model.proj lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(__magic_name__ )[0].split(""".""" )[-2] lowercase__ = mapped_key.replace("""*""" , __magic_name__ ) if "weight_g" in name: lowercase__ = """weight_g""" elif "weight_v" in name: lowercase__ = """weight_v""" elif "bias" in name: lowercase__ = """bias""" elif "weight" in name: lowercase__ = """weight""" else: lowercase__ = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = full_name.split("""conv_layers.""" )[-1] lowercase__ = name.split(""".""" ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" with open(__magic_name__ , """r""" , encoding="""utf-8""" ) as f: lowercase__ = f.readlines() lowercase__ = [line.split(""" """ )[0] for line in lines] lowercase__ = len(__magic_name__ ) lowercase__ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(__magic_name__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , ) -> Optional[int]: """simple docstring""" lowercase__ = WavaVecaConfig.from_pretrained(__magic_name__ ) lowercase__ = SpeechaTextaConfig.from_pretrained( __magic_name__ , vocab_size=__magic_name__ , decoder_layers=__magic_name__ , do_stable_layer_norm=__magic_name__ ) lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__magic_name__ , return_attention_mask=__magic_name__ , ) lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase__ = model[0].eval() # set weights for wav2vec2 encoder lowercase__ = WavaVecaModel(__magic_name__ ) lowercase__ = recursively_load_weights_wavaveca(model.encoder , __magic_name__ ) lowercase__ = SpeechaTextaForCausalLM(__magic_name__ ) lowercase__ , lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__magic_name__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowercase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase__ = SpeechEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) lowercase__ = False # add projection layer lowercase__ = nn.Parameter(projection_layer.weight ) lowercase__ = nn.Parameter(projection_layer.bias ) lowercase__ = create_vocab_dict(__magic_name__ ) with open(os.path.join(__magic_name__ , """vocab.json""" ) , """w""" ) as fp: json.dump(__magic_name__ , __magic_name__ ) lowercase__ = SpeechaTextaTokenizer(os.path.join(__magic_name__ , """vocab.json""" ) ) tokenizer.save_pretrained(__magic_name__ ) lowercase__ = hf_wavavec.config.to_dict() lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer.eos_token_id lowercase__ = """speech_to_text_2""" lowercase__ = """wav2vec2""" lowercase__ = SpeechEncoderDecoderConfig.from_dict(__magic_name__ ) hf_wavavec.save_pretrained(__magic_name__ ) feature_extractor.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') A : Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
146
from __future__ import annotations from collections import deque class A : '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : list[str] ) -> Optional[int]: """simple docstring""" lowercase__ = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(_UpperCAmelCase ) self.set_fail_transitions() def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str ) -> None: """simple docstring""" lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(_UpperCAmelCase , _UpperCAmelCase ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(_UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> None: """simple docstring""" lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(_UpperCAmelCase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_UpperCAmelCase ) lowercase__ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(_UpperCAmelCase , self.adlist[child]["""value"""] ) is None and state != 0 ): lowercase__ = self.adlist[state]["""fail_state"""] lowercase__ = self.find_next_state( _UpperCAmelCase , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : str ) -> dict[str, list[int]]: """simple docstring""" lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(_UpperCAmelCase ) ): while ( self.find_next_state(_UpperCAmelCase , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]["""fail_state"""] lowercase__ = self.find_next_state(_UpperCAmelCase , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(_UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
146
1
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class _lowercase : def __init__( self : Optional[Any] , snake_case : set[int] , snake_case : Mapping[EdgeT, int] ) -> int: """simple docstring""" UpperCamelCase_ : List[Any] = vertices UpperCamelCase_ : Union[str, Any] = { (min(_lowerCamelCase ), max(_lowerCamelCase )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : EdgeT , snake_case : int ) -> Union[str, Any]: """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCamelCase_ : List[str] = weight def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = Graph({min(self.vertices )} , {} ) UpperCamelCase_ : int = 4_2 UpperCamelCase_ : Any = 4_2 UpperCamelCase_ : Tuple = 4_2 UpperCamelCase_ : Optional[int] = 4_2 while len(subgraph.vertices ) < len(self.vertices ): UpperCamelCase_ : List[str] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCamelCase_ : List[str] = edge UpperCamelCase_ : Tuple = weight subgraph.add_edge(_lowerCamelCase , _lowerCamelCase ) return subgraph def __lowercase ( lowerCamelCase : Union[str, Any] = "p107_network.txt" ): UpperCamelCase_ : Optional[int] = os.path.abspath(os.path.dirname(__UpperCamelCase ) ) UpperCamelCase_ : Optional[Any] = os.path.join(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : str = {} UpperCamelCase_ : Tuple = 42 UpperCamelCase_ : Optional[Any] = 42 UpperCamelCase_ : Tuple = 42 with open(__UpperCamelCase ) as f: UpperCamelCase_ : str = f.read().strip().split('\n' ) UpperCamelCase_ : List[str] = [line.split(',' ) for line in data] for edgea in range(1 , len(__UpperCamelCase ) ): for edgea in range(__UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": UpperCamelCase_ : List[Any] = int(adjaceny_matrix[edgea][edgea] ) UpperCamelCase_ : int = Graph(set(range(len(__UpperCamelCase ) ) ) , __UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = graph.prims_algorithm() UpperCamelCase_ : List[str] = sum(graph.edges.values() ) UpperCamelCase_ : Optional[Any] = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
175
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ = logging.get_logger(__name__) class snake_case ( _lowerCAmelCase ): '''simple docstring''' A_ : int = ["input_features", "attention_mask"] def __init__( self : Optional[Any], _lowerCamelCase : Union[str, Any]=80, _lowerCamelCase : int=1_60_00, _lowerCamelCase : Any=80, _lowerCamelCase : List[str]=0.0, _lowerCamelCase : int=True, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : Optional[int]=True, **_lowerCamelCase : List[str], ): '''simple docstring''' super().__init__(feature_size=_lowerCamelCase, sampling_rate=_lowerCamelCase, padding_value=_lowerCamelCase, **_lowerCamelCase ) __A = num_mel_bins __A = do_ceptral_normalize __A = normalize_means __A = normalize_vars __A = True def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : np.ndarray, ): '''simple docstring''' __A = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __A = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) __A = ta_kaldi.fbank(_lowerCamelCase, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray, _lowerCamelCase : int, _lowerCamelCase : Optional[bool] = True, _lowerCamelCase : Optional[bool] = True, _lowerCamelCase : float = 0.0, ): '''simple docstring''' # make sure we normalize float32 arrays if normalize_means: __A = x[:input_length].mean(axis=0 ) __A = np.subtract(_lowerCamelCase, _lowerCamelCase ) if normalize_vars: __A = x[:input_length].std(axis=0 ) __A = np.divide(_lowerCamelCase, _lowerCamelCase ) if input_length < x.shape[0]: __A = padding_value # make sure array is in float32 __A = x.astype(np.floataa ) return x def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[np.ndarray], _lowerCamelCase : Optional[np.ndarray] = None ): '''simple docstring''' __A = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_lowerCamelCase, _lowerCamelCase, self.normalize_means, self.normalize_vars, self.padding_value ) for x, n in zip(_lowerCamelCase, _lowerCamelCase ) ] def __call__( self : Optional[Any], _lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], _lowerCamelCase : Union[bool, str, PaddingStrategy] = False, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : bool = False, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : Optional[Union[str, TensorType]] = None, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : Optional[bool] = None, **_lowerCamelCase : Optional[Any], ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __A = isinstance(_lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __A = is_batched_numpy or ( isinstance(_lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: __A = [np.asarray(_lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCamelCase, np.ndarray ): __A = np.asarray(_lowerCamelCase, dtype=np.floataa ) elif isinstance(_lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __A = [raw_speech] # extract fbank features __A = [self._extract_fbank_features(_lowerCamelCase ) for waveform in raw_speech] # convert into correct format for padding __A = BatchFeature({'''input_features''': features} ) __A = self.pad( _lowerCamelCase, padding=_lowerCamelCase, max_length=_lowerCamelCase, truncation=_lowerCamelCase, pad_to_multiple_of=_lowerCamelCase, return_attention_mask=_lowerCamelCase, **_lowerCamelCase, ) # make sure list is in array format __A = padded_inputs.get('''input_features''' ) if isinstance(input_features[0], _lowerCamelCase ): __A = [np.asarray(_lowerCamelCase, dtype=np.floataa ) for feature in input_features] __A = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __A = [np.asarray(_lowerCamelCase, dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __A = ( np.array(_lowerCamelCase, dtype=np.intaa ) if self._get_padding_strategies(_lowerCamelCase, max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __A = self.normalize( padded_inputs['''input_features'''], attention_mask=_lowerCamelCase ) if return_tensors is not None: __A = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs
266
0
"""simple docstring""" def a__ ( __lowercase , __lowercase ) -> float: _validate_point(__lowercase ) _validate_point(__lowercase ) if len(__lowercase ) != len(__lowercase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(__lowercase , __lowercase ) ) ) def a__ ( __lowercase ) -> None: if point: if isinstance(__lowercase , __lowercase ): for item in point: if not isinstance(__lowercase , (int, float) ): _A = ( "Expected a list of numbers as input, found " f"""{type(__lowercase ).__name__}""" ) raise TypeError(__lowercase ) else: _A = f"""Expected a list of numbers as input, found {type(__lowercase ).__name__}""" raise TypeError(__lowercase ) else: raise ValueError("Missing an input" ) def a__ ( __lowercase , __lowercase ) -> float: _validate_point(__lowercase ) _validate_point(__lowercase ) if len(__lowercase ) != len(__lowercase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(__lowercase , __lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
163
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) a_ = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def a__ ( __lowercase , __lowercase , __lowercase ) -> Optional[Any]: _A = SavedModel() _A = [] with open(os.path.join(__lowercase , "utils" , "tf_ops" , "onnx.json" ) ) as f: _A = json.load(__lowercase )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__lowercase )] ) with open(__lowercase , "rb" ) as f: saved_model.ParseFromString(f.read() ) _A = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A = sorted(__lowercase ) _A = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__lowercase ) if strict and len(__lowercase ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(__lowercase ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*__lowercase , sep="\n" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) a_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
163
1
from __future__ import annotations a_ :Tuple = [True] * 1_000_001 a_ :Union[str, Any] = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): a_ :str = False i += 1 def lowercase_ (A : int ): return seive[n] def lowercase_ (A : int ): return any(digit in '02468' for digit in str(A ) ) def lowercase_ (A : int = 1_0_0_0_0_0_0 ): snake_case__ : Optional[Any] = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(A ) and not contains_an_even_digit(A ): snake_case__ : List[Any] = str(A ) snake_case__ : Dict = [int(str_num[j:] + str_num[:j] ) for j in range(len(A ) )] if all(is_prime(A ) for i in list_nums ): result.append(A ) return result def lowercase_ (): return len(find_circular_primes() ) if __name__ == "__main__": print(F"""{len(find_circular_primes()) = }""")
277
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a_ :str = logging.get_logger(__name__) def lowercase_ (A : str ): snake_case__ : Tuple = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) snake_case__ : List[Any] = MaskFormerConfig(backbone_config=A ) snake_case__ : Union[str, Any] = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok snake_case__ : Dict = 8_4_7 snake_case__ : List[str] = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok snake_case__ : Union[str, Any] = 1_5_0 snake_case__ : Any = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok snake_case__ : List[str] = 1_7_1 snake_case__ : Union[str, Any] = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO snake_case__ : Dict = 1_3_3 snake_case__ : str = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok snake_case__ : List[str] = 1_9 snake_case__ : Union[str, Any] = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok snake_case__ : Tuple = 6_5 snake_case__ : List[str] = 'mapillary-vistas-id2label.json' snake_case__ : Dict = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) snake_case__ : List[str] = {int(A ): v for k, v in idalabel.items()} return config def lowercase_ (A : Any ): snake_case__ : Optional[int] = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def lowercase_ (A : Tuple , A : Tuple , A : Optional[Any] ): snake_case__ : Optional[int] = dct.pop(A ) snake_case__ : Union[str, Any] = val def lowercase_ (A : Optional[Any] , A : Tuple ): snake_case__ : Optional[int] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case__ : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case__ : int = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) snake_case__ : Tuple = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : str = in_proj_weight[:dim, :] snake_case__ : int = in_proj_bias[: dim] snake_case__ : List[Any] = in_proj_weight[ dim : dim * 2, : ] snake_case__ : List[str] = in_proj_bias[ dim : dim * 2 ] snake_case__ : List[Any] = in_proj_weight[ -dim :, : ] snake_case__ : Dict = in_proj_bias[-dim :] # fmt: on def lowercase_ (A : List[str] , A : List[Any] ): # fmt: off snake_case__ : str = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case__ : List[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) snake_case__ : int = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[: hidden_size, :] snake_case__ : Tuple = in_proj_bias[:config.hidden_size] snake_case__ : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case__ : Dict = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ : Any = in_proj_weight[-hidden_size :, :] snake_case__ : int = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case__ : List[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) snake_case__ : List[str] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Optional[int] = in_proj_weight[: hidden_size, :] snake_case__ : Optional[Any] = in_proj_bias[:config.hidden_size] snake_case__ : int = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case__ : List[str] = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ : List[str] = in_proj_weight[-hidden_size :, :] snake_case__ : str = in_proj_bias[-hidden_size :] # fmt: on def lowercase_ (): snake_case__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : int = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def lowercase_ (A : str , A : str , A : str , A : bool = False ): snake_case__ : Optional[int] = get_maskformer_config(A ) # load original state_dict with open(A , 'rb' ) as f: snake_case__ : List[Any] = pickle.load(A ) snake_case__ : Optional[int] = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys snake_case__ : List[str] = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_swin_q_k_v(A , config.backbone_config ) read_in_decoder_q_k_v(A , A ) # update to torch tensors for key, value in state_dict.items(): snake_case__ : int = torch.from_numpy(A ) # load 🤗 model snake_case__ : str = MaskFormerForInstanceSegmentation(A ) model.eval() for name, param in model.named_parameters(): print(A , param.shape ) snake_case__ , snake_case__ : Union[str, Any] = model.load_state_dict(A , strict=A ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(A ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results snake_case__ : Optional[Any] = prepare_img() if "vistas" in model_name: snake_case__ : int = 6_5 elif "cityscapes" in model_name: snake_case__ : Dict = 6_5_5_3_5 else: snake_case__ : Tuple = 2_5_5 snake_case__ : Optional[int] = True if 'ade' in model_name else False snake_case__ : Dict = MaskFormerImageProcessor(ignore_index=A , reduce_labels=A ) snake_case__ : Any = image_processor(A , return_tensors='pt' ) snake_case__ : Any = model(**A ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": snake_case__ : Tuple = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , A , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a_ :Dict = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
277
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __lowerCamelCase ( __a :Tuple , __a :Optional[Any] ) -> List[str]: """simple docstring""" A__ = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" A__ = Image.open(requests.get(__a , stream=__a ).raw ).convert("""RGB""" ) A__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) A__ = transform(__a ).unsqueeze(0 ).to(__a ) return image def __lowerCamelCase ( __a :Optional[Any] ) -> Optional[Any]: """simple docstring""" if "visual_encoder" in key: A__ = re.sub("""visual_encoder*""" , """vision_model.encoder""" , __a ) if "blocks" in key: A__ = re.sub(R"""blocks""" , """layers""" , __a ) if "attn" in key: A__ = re.sub(R"""attn""" , """self_attn""" , __a ) if "norm1" in key: A__ = re.sub(R"""norm1""" , """layer_norm1""" , __a ) if "norm2" in key: A__ = re.sub(R"""norm2""" , """layer_norm2""" , __a ) if "encoder.norm" in key: A__ = re.sub(R"""encoder.norm""" , """post_layernorm""" , __a ) if "encoder.patch_embed.proj" in key: A__ = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , __a ) if "encoder.pos_embed" in key: A__ = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , __a ) if "encoder.cls_token" in key: A__ = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , __a ) if "self_attn" in key: A__ = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , __a ) return key @torch.no_grad() def __lowerCamelCase ( __a :Optional[int] , __a :Dict=None ) -> Union[str, Any]: """simple docstring""" if config_path is not None: A__ = BlipConfig.from_pretrained(__a ) else: A__ = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) A__ = BlipForConditionalGeneration(__a ).eval() A__ = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" A__ = blip_decoder(pretrained=__a , image_size=3_8_4 , vit="""base""" ) A__ = pt_model.eval() A__ = pt_model.state_dict() for key in modified_state_dict.copy(): A__ = modified_state_dict.pop(__a ) A__ = rename_key(__a ) A__ = value hf_model.load_state_dict(__a ) A__ = 3_8_4 A__ = load_demo_image(image_size=__a , device="""cpu""" ) A__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) A__ = tokenizer(["""a picture of"""] ).input_ids A__ = hf_model.generate(__a , __a ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] A__ = hf_model.generate(__a ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__a ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' A__ = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) A__ = blip_vqa(pretrained=__a , image_size=__a , vit="""base""" ) vqa_model.eval() A__ = vqa_model.state_dict() for key in modified_state_dict.copy(): A__ = modified_state_dict.pop(__a ) A__ = rename_key(__a ) A__ = value A__ = BlipForQuestionAnswering(__a ) hf_vqa_model.load_state_dict(__a ) A__ = ["""How many dogs are in this image?"""] A__ = tokenizer(__a , return_tensors="""pt""" ).input_ids A__ = hf_vqa_model.generate(__a , __a ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) A__ = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" A__ = blip_itm(pretrained=__a , image_size=__a , vit="""base""" ) itm_model.eval() A__ = itm_model.state_dict() for key in modified_state_dict.copy(): A__ = modified_state_dict.pop(__a ) A__ = rename_key(__a ) A__ = value A__ = BlipForImageTextRetrieval(__a ) A__ = ["""A picture of a woman with a dog sitting in a beach"""] A__ = tokenizer( __a , return_tensors="""pt""" , padding="""max_length""" , truncation=__a , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(__a ) hf_itm_model.eval() A__ = hf_itm_model(__a , __a , use_itm_head=__a ) A__ = hf_itm_model(__a , __a , use_itm_head=__a ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') A : Union[str, Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
276
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __a :int ) -> int: """simple docstring""" A__ = prime_factors(__a ) if is_square_free(__a ): return -1 if len(__a ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
276
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase__ : Optional[int] = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
112
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} SCREAMING_SNAKE_CASE :Tuple = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } SCREAMING_SNAKE_CASE :List[Any] = { 'camembert-base': 512, } SCREAMING_SNAKE_CASE :List[str] = '▁' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] ,A : List[str] ,A : List[Any]="<s>" ,A : Tuple="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : Tuple="<unk>" ,A : str="<pad>" ,A : int="<mask>" ,A : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] ,A : Optional[Dict[str, Any]] = None ,**A : Optional[Any] ,): # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) __A = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __A = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __A = len(self.fairseq_tokens_to_ids ) __A = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self : Dict ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self : int ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : List[str] ,A : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(A ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self : Dict ,A : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string.strip() def __getstate__( self : Dict ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Union[str, Any] ,A : Any ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
15
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCamelCase : str = logging.get_logger(__name__) # General docstring __lowerCamelCase : Union[str, Any] = 'ResNetConfig' # Base docstring __lowerCamelCase : Tuple = 'microsoft/resnet-50' __lowerCamelCase : str = [1, 2048, 7, 7] # Image classification docstring __lowerCamelCase : Any = 'microsoft/resnet-50' __lowerCamelCase : Tuple = 'tiger cat' __lowerCamelCase : str = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : int , __A : int , __A : int , __A : int = 3 , __A : int = 1 , __A : str = "relu" ): super().__init__() snake_case__ : List[Any] = nn.Convad( _lowercase , _lowercase , kernel_size=_lowercase , stride=_lowercase , padding=kernel_size // 2 , bias=_lowercase ) snake_case__ : Dict = nn.BatchNormad(_lowercase ) snake_case__ : Dict = ACTaFN[activation] if activation is not None else nn.Identity() def _lowercase ( self : str , __A : Tensor ): snake_case__ : Optional[int] = self.convolution(_lowercase ) snake_case__ : str = self.normalization(_lowercase ) snake_case__ : Optional[Any] = self.activation(_lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , __A : ResNetConfig ): super().__init__() snake_case__ : str = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) snake_case__ : List[Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) snake_case__ : str = config.num_channels def _lowercase ( self : Optional[int] , __A : Tensor ): snake_case__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) snake_case__ : List[str] = self.embedder(_lowercase ) snake_case__ : Dict = self.pooler(_lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __A : int , __A : int , __A : int = 2 ): super().__init__() snake_case__ : List[str] = nn.Convad(_lowercase , _lowercase , kernel_size=1 , stride=_lowercase , bias=_lowercase ) snake_case__ : Dict = nn.BatchNormad(_lowercase ) def _lowercase ( self : Union[str, Any] , __A : Tensor ): snake_case__ : Optional[int] = self.convolution(_lowercase ) snake_case__ : Dict = self.normalization(_lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Any , __A : int , __A : int , __A : int = 1 , __A : str = "relu" ): super().__init__() snake_case__ : str = in_channels != out_channels or stride != 1 snake_case__ : List[str] = ( ResNetShortCut(_lowercase , _lowercase , stride=_lowercase ) if should_apply_shortcut else nn.Identity() ) snake_case__ : Dict = nn.Sequential( ResNetConvLayer(_lowercase , _lowercase , stride=_lowercase ) , ResNetConvLayer(_lowercase , _lowercase , activation=_lowercase ) , ) snake_case__ : Tuple = ACTaFN[activation] def _lowercase ( self : str , __A : Optional[int] ): snake_case__ : List[Any] = hidden_state snake_case__ : int = self.layer(_lowercase ) snake_case__ : Optional[int] = self.shortcut(_lowercase ) hidden_state += residual snake_case__ : Any = self.activation(_lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : str , __A : int , __A : int , __A : int = 1 , __A : str = "relu" , __A : int = 4 ): super().__init__() snake_case__ : Any = in_channels != out_channels or stride != 1 snake_case__ : Tuple = out_channels // reduction snake_case__ : Optional[Any] = ( ResNetShortCut(_lowercase , _lowercase , stride=_lowercase ) if should_apply_shortcut else nn.Identity() ) snake_case__ : List[Any] = nn.Sequential( ResNetConvLayer(_lowercase , _lowercase , kernel_size=1 ) , ResNetConvLayer(_lowercase , _lowercase , stride=_lowercase ) , ResNetConvLayer(_lowercase , _lowercase , kernel_size=1 , activation=_lowercase ) , ) snake_case__ : Optional[Any] = ACTaFN[activation] def _lowercase ( self : Dict , __A : Union[str, Any] ): snake_case__ : Dict = hidden_state snake_case__ : List[str] = self.layer(_lowercase ) snake_case__ : Dict = self.shortcut(_lowercase ) hidden_state += residual snake_case__ : Optional[int] = self.activation(_lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __A : ResNetConfig , __A : int , __A : int , __A : int = 2 , __A : int = 2 , ): super().__init__() snake_case__ : str = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer snake_case__ : Tuple = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_lowercase , _lowercase , stride=_lowercase , activation=config.hidden_act ) , *[layer(_lowercase , _lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _lowercase ( self : List[str] , __A : Tensor ): snake_case__ : Any = input for layer in self.layers: snake_case__ : int = layer(_lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Any , __A : ResNetConfig ): super().__init__() snake_case__ : Dict = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) snake_case__ : Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowercase , config.depths[1:] ): self.stages.append(ResNetStage(_lowercase , _lowercase , _lowercase , depth=_lowercase ) ) def _lowercase ( self : Optional[Any] , __A : Tensor , __A : bool = False , __A : bool = True ): snake_case__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case__ : List[Any] = hidden_states + (hidden_state,) snake_case__ : str = stage_module(_lowercase ) if output_hidden_states: snake_case__ : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_lowercase , hidden_states=_lowercase , ) class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase ): """simple docstring""" a_ = ResNetConfig a_ = "resnet" a_ = "pixel_values" a_ = True def _lowercase ( self : Any , __A : Optional[int] ): if isinstance(_lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(_lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowercase ( self : Optional[Any] , __A : Dict , __A : int=False ): if isinstance(_lowercase , _lowercase ): snake_case__ : List[Any] = value __lowerCamelCase : List[Any] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCamelCase : List[Any] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , _lowerCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self : str , __A : Dict ): super().__init__(_lowercase ) snake_case__ : Any = config snake_case__ : int = ResNetEmbeddings(_lowercase ) snake_case__ : Any = ResNetEncoder(_lowercase ) snake_case__ : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase ( self : str , __A : Tensor , __A : Optional[bool] = None , __A : Optional[bool] = None ): snake_case__ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : int = self.embedder(_lowercase ) snake_case__ : Union[str, Any] = self.encoder( _lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) snake_case__ : List[Any] = encoder_outputs[0] snake_case__ : Optional[int] = self.pooler(_lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowercase , pooler_output=_lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _lowerCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , __A : Tuple ): super().__init__(_lowercase ) snake_case__ : List[str] = config.num_labels snake_case__ : Optional[int] = ResNetModel(_lowercase ) # classification head snake_case__ : Any = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase ( self : int , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.LongTensor] = None , __A : Optional[bool] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : Optional[int] = self.resnet(_lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) snake_case__ : Any = outputs.pooler_output if return_dict else outputs[1] snake_case__ : Union[str, Any] = self.classifier(_lowercase ) snake_case__ : Union[str, Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case__ : Union[str, Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case__ : Tuple = "single_label_classification" else: snake_case__ : Dict = "multi_label_classification" if self.config.problem_type == "regression": snake_case__ : Optional[int] = MSELoss() if self.num_labels == 1: snake_case__ : Union[str, Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case__ : Optional[Any] = loss_fct(_lowercase , _lowercase ) elif self.config.problem_type == "single_label_classification": snake_case__ : Optional[Any] = CrossEntropyLoss() snake_case__ : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case__ : int = BCEWithLogitsLoss() snake_case__ : Dict = loss_fct(_lowercase , _lowercase ) if not return_dict: snake_case__ : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowercase , logits=_lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , _lowerCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , __A : int ): super().__init__(_lowercase ) super()._init_backbone(_lowercase ) snake_case__ : Dict = [config.embedding_size] + config.hidden_sizes snake_case__ : Optional[Any] = ResNetEmbeddings(_lowercase ) snake_case__ : Any = ResNetEncoder(_lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @replace_return_docstrings(output_type=_lowercase , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self : int , __A : Tensor , __A : Optional[bool] = None , __A : Optional[bool] = None ): snake_case__ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : int = self.embedder(_lowercase ) snake_case__ : Dict = self.encoder(_lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) snake_case__ : Dict = outputs.hidden_states snake_case__ : List[str] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: snake_case__ : Dict = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_lowercase , )
370
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[Any] = SMALL_MODEL_IDENTIFIER snake_case__ : Any = "pt" snake_case__ : Any = "tf" def _lowercase ( self : Union[str, Any] , __A : List[Any] ): snake_case__ : int = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__A ) def _lowercase ( self : Optional[int] , __A : Tuple ): snake_case__ : List[Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=__A ) model_tf.save_pretrained(__A ) def _lowercase ( self : str ): snake_case__ : Optional[Any] = "mock_framework" # Framework provided - return whatever the user provides snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model , __A ) self.assertEqual(__A , __A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__A ) snake_case__ : Optional[int] = FeaturesManager.determine_framework(__A , __A ) self.assertEqual(__A , __A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__A ) snake_case__ : int = FeaturesManager.determine_framework(__A , __A ) self.assertEqual(__A , __A ) def _lowercase ( self : Dict ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__A ) snake_case__ : List[str] = FeaturesManager.determine_framework(__A ) self.assertEqual(__A , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__A ) snake_case__ : Tuple = FeaturesManager.determine_framework(__A ) self.assertEqual(__A , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__A ): snake_case__ : int = FeaturesManager.determine_framework(__A ) def _lowercase ( self : Dict ): snake_case__ : Dict = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ): snake_case__ : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_pt ) # PyTorch not in environment -> use TensorFlow snake_case__ : Tuple = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_torch_available" , __A ): snake_case__ : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_tf ) # Both in environment -> use PyTorch snake_case__ : Dict = MagicMock(return_value=__A ) snake_case__ : Optional[int] = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ), patch( "transformers.onnx.features.is_torch_available" , __A ): snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_pt ) # Both not in environment -> raise error snake_case__ : List[str] = MagicMock(return_value=__A ) snake_case__ : Optional[Any] = MagicMock(return_value=__A ) with patch("transformers.onnx.features.is_tf_available" , __A ), patch( "transformers.onnx.features.is_torch_available" , __A ): with self.assertRaises(__A ): snake_case__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model )
286
0
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> bool: """simple docstring""" UpperCamelCase :Union[str, Any] = [int(__magic_name__ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(__magic_name__ ) == 4 and all(0 <= int(__magic_name__ ) <= 254 for octet in octets ) if __name__ == "__main__": UpperCAmelCase_ : int = input().strip() UpperCAmelCase_ : Any = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
38
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __UpperCAmelCase : Any = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } __UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False) -> Union[str, Any]: __snake_case , __snake_case: int = create_model( """HTSAT-tiny""" , """roberta""" , SCREAMING_SNAKE_CASE__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=SCREAMING_SNAKE_CASE__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def A__ ( SCREAMING_SNAKE_CASE__) -> Any: __snake_case: Optional[Any] = {} __snake_case: int = r""".*sequential.(\d+).*""" __snake_case: List[str] = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case: Tuple = key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): # replace sequential layers with list __snake_case: Optional[int] = re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__).group(1) __snake_case: str = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(SCREAMING_SNAKE_CASE__)//3}.linear.''') elif re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): __snake_case: Any = int(re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__).group(1)) # Because in CLAP they use `nn.Sequential`... __snake_case: Dict = 1 if projecton_layer == 0 else 2 __snake_case: Any = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''') if "audio" and "qkv" in key: # split qkv into query key and value __snake_case: List[str] = value __snake_case: Optional[Any] = mixed_qkv.size(0) // 3 __snake_case: Union[str, Any] = mixed_qkv[:qkv_dim] __snake_case: Dict = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case: int = mixed_qkv[qkv_dim * 2 :] __snake_case: Optional[Any] = query_layer __snake_case: str = key_layer __snake_case: int = value_layer else: __snake_case: Dict = value return model_state_dict def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False) -> Optional[Any]: __snake_case , __snake_case: List[str] = init_clap(SCREAMING_SNAKE_CASE__ , enable_fusion=SCREAMING_SNAKE_CASE__) clap_model.eval() __snake_case: List[str] = clap_model.state_dict() __snake_case: Optional[int] = rename_state_dict(SCREAMING_SNAKE_CASE__) __snake_case: Any = ClapConfig() __snake_case: Dict = enable_fusion __snake_case: List[str] = ClapModel(SCREAMING_SNAKE_CASE__) # ignore the spectrogram embedding layer model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__) model.save_pretrained(SCREAMING_SNAKE_CASE__) transformers_config.save_pretrained(SCREAMING_SNAKE_CASE__) if __name__ == "__main__": __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") __UpperCAmelCase : Tuple = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
111
0
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __lowercase : Any = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : tuple , _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int]=False , ): output_path.parent.mkdir(parents=lowerCamelCase__ , exist_ok=lowerCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCamelCase__ , lowerCamelCase__ , f=output_path.as_posix() , input_names=lowerCamelCase__ , output_names=lowerCamelCase__ , dynamic_axes=lowerCamelCase__ , do_constant_folding=lowerCamelCase__ , use_external_data_format=lowerCamelCase__ , enable_onnx_checker=lowerCamelCase__ , opset_version=lowerCamelCase__ , ) else: export( lowerCamelCase__ , lowerCamelCase__ , f=output_path.as_posix() , input_names=lowerCamelCase__ , output_names=lowerCamelCase__ , dynamic_axes=lowerCamelCase__ , do_constant_folding=lowerCamelCase__ , opset_version=lowerCamelCase__ , ) @torch.no_grad() def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = False ): __a : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __a : Tuple = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __a : str = '''cpu''' __a : Dict = Path(lowerCamelCase__ ) # VAE DECODER __a : Optional[int] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __a : Tuple = vae_decoder.config.latent_channels # forward only through the decoder part __a : Any = vae_decoder.decode onnx_export( lowerCamelCase__ , model_args=( torch.randn(1 , lowerCamelCase__ , 25 , 25 ).to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowerCamelCase__ , ) del vae_decoder if __name__ == "__main__": __lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') __lowercase : Optional[int] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
354
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __lowercase : str = logging.get_logger(__name__) # General docstring __lowercase : List[str] = 'MobileNetV1Config' # Base docstring __lowercase : Tuple = 'google/mobilenet_v1_1.0_224' __lowercase : List[Any] = [1, 10_24, 7, 7] # Image classification docstring __lowercase : int = 'google/mobilenet_v1_1.0_224' __lowercase : Any = 'tabby, tabby cat' __lowercase : Dict = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any]=None ): __a : Dict = {} if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : Optional[Any] = model.mobilenet_va else: __a : List[Any] = model __a : Dict = 'MobilenetV1/Conv2d_0/' __a : Dict = backbone.conv_stem.convolution.weight __a : Optional[Any] = backbone.conv_stem.normalization.bias __a : int = backbone.conv_stem.normalization.weight __a : int = backbone.conv_stem.normalization.running_mean __a : Tuple = backbone.conv_stem.normalization.running_var for i in range(13 ): __a : int = i + 1 __a : Dict = i * 2 __a : Dict = backbone.layer[pt_index] __a : Dict = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" __a : Union[str, Any] = pointer.convolution.weight __a : Optional[Any] = pointer.normalization.bias __a : Union[str, Any] = pointer.normalization.weight __a : List[Any] = pointer.normalization.running_mean __a : Tuple = pointer.normalization.running_var __a : List[str] = backbone.layer[pt_index + 1] __a : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" __a : Optional[int] = pointer.convolution.weight __a : List[str] = pointer.normalization.bias __a : Dict = pointer.normalization.weight __a : Dict = pointer.normalization.running_mean __a : Optional[int] = pointer.normalization.running_var if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : Any = 'MobilenetV1/Logits/Conv2d_1c_1x1/' __a : Optional[int] = model.classifier.weight __a : List[Any] = model.classifier.bias return tf_to_pt_map def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model __a : Union[str, Any] = tf.train.list_variables(_SCREAMING_SNAKE_CASE ) __a : Optional[int] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) __a : List[str] = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Optional[Any] = array # Build TF to PyTorch weights loading map __a : Optional[int] = _build_tf_to_pytorch_map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue __a : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) __a : Optional[Any] = np.transpose(_SCREAMING_SNAKE_CASE , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer __a : Union[str, Any] = array.squeeze().transpose() else: __a : Dict = np.transpose(_SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) __a : List[str] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) tf_weights.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '/RMSProp' , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '/RMSProp_1' , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '/ExponentialMovingAverage' , _SCREAMING_SNAKE_CASE ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def lowerCamelCase (_SCREAMING_SNAKE_CASE : torch.Tensor , _SCREAMING_SNAKE_CASE : nn.Convad ): __a , __a : Any = features.shape[-2:] __a , __a : int = conv_layer.stride __a , __a : Any = conv_layer.kernel_size if in_height % stride_height == 0: __a : int = max(kernel_height - stride_height , 0 ) else: __a : int = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __a : Any = max(kernel_width - stride_width , 0 ) else: __a : str = max(kernel_width - (in_width % stride_width) , 0 ) __a : int = pad_along_width // 2 __a : Dict = pad_along_width - pad_left __a : List[str] = pad_along_height // 2 __a : Union[str, Any] = pad_along_height - pad_top __a : str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'constant' , 0.0 ) class __UpperCamelCase ( nn.Module ): def __init__( self , __a , __a , __a , __a , __a = 1 , __a = 1 , __a = False , __a = True , __a = True , ): '''simple docstring''' super().__init__() __a : Optional[int] = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) __a : Dict = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __a : Union[str, Any] = nn.Convad( in_channels=__a , out_channels=__a , kernel_size=__a , stride=__a , padding=__a , groups=__a , bias=__a , padding_mode='zeros' , ) if use_normalization: __a : List[str] = nn.BatchNormad( num_features=__a , eps=config.layer_norm_eps , momentum=0.9997 , affine=__a , track_running_stats=__a , ) else: __a : Tuple = None if use_activation: if isinstance(__a , __a ): __a : Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act , __a ): __a : Union[str, Any] = ACTaFN[config.hidden_act] else: __a : Dict = config.hidden_act else: __a : List[Any] = None def __UpperCAmelCase ( self , __a ): '''simple docstring''' if self.config.tf_padding: __a : Union[str, Any] = apply_tf_padding(__a , self.convolution ) __a : Union[str, Any] = self.convolution(__a ) if self.normalization is not None: __a : str = self.normalization(__a ) if self.activation is not None: __a : Optional[int] = self.activation(__a ) return features class __UpperCamelCase ( lowerCAmelCase_ ): A_ = MobileNetVaConfig A_ = load_tf_weights_in_mobilenet_va A_ = "mobilenet_v1" A_ = "pixel_values" A_ = False def __UpperCAmelCase ( self , __a ): '''simple docstring''' if isinstance(__a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__a , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __lowercase : Any = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowercase : Optional[int] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , lowerCAmelCase_ , ) class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a , __a = True ): '''simple docstring''' super().__init__(__a ) __a : Optional[int] = config __a : str = 32 __a : Dict = max(int(depth * config.depth_multiplier ) , config.min_depth ) __a : Union[str, Any] = MobileNetVaConvLayer( __a , in_channels=config.num_channels , out_channels=__a , kernel_size=3 , stride=2 , ) __a : Tuple = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __a : Any = nn.ModuleList() for i in range(13 ): __a : Union[str, Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 __a : List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __a , in_channels=__a , out_channels=__a , kernel_size=3 , stride=strides[i] , groups=__a , ) ) self.layer.append( MobileNetVaConvLayer( __a , in_channels=__a , out_channels=__a , kernel_size=1 , ) ) __a : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __UpperCAmelCase ( self , __a ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCAmelCase ( self , __a = None , __a = None , __a = None , ): '''simple docstring''' __a : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a : int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) __a : Union[str, Any] = self.conv_stem(__a ) __a : Any = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __a : List[str] = layer_module(__a ) if output_hidden_states: __a : List[Any] = all_hidden_states + (hidden_states,) __a : str = hidden_states if self.pooler is not None: __a : Union[str, Any] = torch.flatten(self.pooler(__a ) , start_dim=1 ) else: __a : int = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__a , pooler_output=__a , hidden_states=__a , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase_ , ) class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a ): '''simple docstring''' super().__init__(__a ) __a : Tuple = config.num_labels __a : Tuple = MobileNetVaModel(__a ) __a : Optional[int] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __a : Any = nn.Dropout(config.classifier_dropout_prob , inplace=__a ) __a : Any = nn.Linear(__a , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCAmelCase ( self , __a = None , __a = None , __a = None , __a = None , ): '''simple docstring''' __a : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict __a : Dict = self.mobilenet_va(__a , output_hidden_states=__a , return_dict=__a ) __a : List[str] = outputs.pooler_output if return_dict else outputs[1] __a : int = self.classifier(self.dropout(__a ) ) __a : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __a : str = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __a : int = 'single_label_classification' else: __a : Optional[Any] = 'multi_label_classification' if self.config.problem_type == "regression": __a : Optional[Any] = MSELoss() if self.num_labels == 1: __a : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __a : Any = loss_fct(__a , __a ) elif self.config.problem_type == "single_label_classification": __a : List[str] = CrossEntropyLoss() __a : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __a : Tuple = BCEWithLogitsLoss() __a : Optional[int] = loss_fct(__a , __a ) if not return_dict: __a : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__a , logits=__a , hidden_states=outputs.hidden_states , )
294
0