code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" @staticmethod @abstractmethod def lowercase_ ( _snake_case : ArgumentParser ) ->Optional[Any]: raise NotImplementedError() @abstractmethod def lowercase_ ( self : Optional[int] ) ->Optional[Any]: raise NotImplementedError()
478
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class snake_case__ : """simple docstring""" _SCREAMING_SNAKE_CASE = None def lowercase_ ( self : Optional[int] ) ->Optional[int]: snake_case__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ : str = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key], _snake_case ) def lowercase_ ( self : Optional[Any] ) ->Optional[int]: snake_case__ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Any = os.path.join(_snake_case, 'feat_extract.json' ) feat_extract_first.to_json_file(_snake_case ) snake_case__ : str = self.feature_extraction_class.from_json_file(_snake_case ) self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict() ) def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Union[str, Any] = feat_extract_first.save_pretrained(_snake_case )[0] check_json_file_has_correct_format(_snake_case ) snake_case__ : Optional[int] = self.feature_extraction_class.from_pretrained(_snake_case ) self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict() ) def lowercase_ ( self : Tuple ) ->Any: snake_case__ : str = self.feature_extraction_class() self.assertIsNotNone(_snake_case )
478
1
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _lowerCamelCase = float('nan') class lowerCamelCase_ : """simple docstring""" def __init__( self , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = sys.stdout SCREAMING_SNAKE_CASE__ = open(UpperCAmelCase__ , "a" ) def __getattr__( self , UpperCAmelCase__ ): return getattr(self.stdout , UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__ ): self.stdout.write(UpperCAmelCase__ ) # strip tqdm codes self.file.write(re.sub(R"^.*\r" , "" , UpperCAmelCase__ , 0 , re.M ) ) def __lowercase ( lowerCamelCase_ : str=80 , lowerCamelCase_ : List[str]=False ): SCREAMING_SNAKE_CASE__ = [] # deal with critical env vars SCREAMING_SNAKE_CASE__ = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: SCREAMING_SNAKE_CASE__ = os.environ.get(lowerCamelCase_ , lowerCamelCase_ ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) SCREAMING_SNAKE_CASE__ = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(lowerCamelCase_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = "" while len(lowerCamelCase_ ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(lowerCamelCase_ ) == 0 or len(lowerCamelCase_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = "" return "\\\n".join(lowerCamelCase_ ) def __lowercase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] ): # unwrap multi-line input SCREAMING_SNAKE_CASE__ = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own SCREAMING_SNAKE_CASE__ = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir SCREAMING_SNAKE_CASE__ = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __lowercase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) SCREAMING_SNAKE_CASE__ = subprocess.run(lowerCamelCase_ , capture_output=lowerCamelCase_ , text=lowerCamelCase_ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams SCREAMING_SNAKE_CASE__ = variation.replace(" " , "-" ) with open(Path(lowerCamelCase_ ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(lowerCamelCase_ ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE__ = json.load(lowerCamelCase_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __lowercase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] , ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = F'''{id}: {variation:<{longest_variation_len}}''' SCREAMING_SNAKE_CASE__ = F'''{preamble}: ''' SCREAMING_SNAKE_CASE__ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowerCamelCase_ ) , desc=lowerCamelCase_ , leave=lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ = process_run_single( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = single_run_metrics[target_metric_key] if not math.isnan(lowerCamelCase_ ): metrics.append(lowerCamelCase_ ) results.append(lowerCamelCase_ ) outcome += "✓" else: outcome += "✘" SCREAMING_SNAKE_CASE__ = F'''\33[2K\r{outcome}''' if len(lowerCamelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} SCREAMING_SNAKE_CASE__ = round(mean_metrics[target_metric_key] , 2 ) SCREAMING_SNAKE_CASE__ = F'''{outcome} {mean_target}''' if len(lowerCamelCase_ ) > 1: results_str += F''' {tuple(round(lowerCamelCase_ , 2 ) for x in results )}''' print(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = variation return mean_metrics else: print(lowerCamelCase_ ) return {variation_key: variation, target_metric_key: nan} def __lowercase ( ): SCREAMING_SNAKE_CASE__ = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __lowercase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Dict ): SCREAMING_SNAKE_CASE__ = pd.DataFrame(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = "variation" SCREAMING_SNAKE_CASE__ = "diff_%" SCREAMING_SNAKE_CASE__ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan SCREAMING_SNAKE_CASE__ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowerCamelCase_ ): # as a fallback, use the minimal value as the sentinel SCREAMING_SNAKE_CASE__ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ = df.apply( lambda lowerCamelCase_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns SCREAMING_SNAKE_CASE__ = [variation_key, target_metric_key, diff_key, *report_metric_keys] SCREAMING_SNAKE_CASE__ = df.reindex(lowerCamelCase_ , axis="columns" ) # reorder cols # capitalize SCREAMING_SNAKE_CASE__ = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible SCREAMING_SNAKE_CASE__ = df.rename(lambda lowerCamelCase_ : c.replace("_" , "<br>" ) , axis="columns" ) SCREAMING_SNAKE_CASE__ = df.rename(lambda lowerCamelCase_ : c.replace("_" , "\n" ) , axis="columns" ) SCREAMING_SNAKE_CASE__ = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowerCamelCase_ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowerCamelCase_ , floatfmt=".2f" )] print("\n\n".join(lowerCamelCase_ ) ) def __lowercase ( ): SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help="Base cmd" , ) parser.add_argument( "--variations" , default=lowerCamelCase_ , type=lowerCamelCase_ , nargs="+" , required=lowerCamelCase_ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=lowerCamelCase_ , type=lowerCamelCase_ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=lowerCamelCase_ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=lowerCamelCase_ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=lowerCamelCase_ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=lowerCamelCase_ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.output_dir Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = get_base_command(lowerCamelCase_ , lowerCamelCase_ ) # split each dimension into its --foo variations SCREAMING_SNAKE_CASE__ = [list(map(str.strip , re.split(R"\|" , lowerCamelCase_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty SCREAMING_SNAKE_CASE__ = list(map(str.strip , map(" ".join , itertools.product(*lowerCamelCase_ ) ) ) ) SCREAMING_SNAKE_CASE__ = max(len(lowerCamelCase_ ) for x in variations ) # split wanted keys SCREAMING_SNAKE_CASE__ = args.report_metric_keys.split() # capture prints into a log file for convenience SCREAMING_SNAKE_CASE__ = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) SCREAMING_SNAKE_CASE__ = Tee(lowerCamelCase_ ) print(F'''\n*** Running {len(lowerCamelCase_ )} benchmarks:''' ) print(F'''Base command: {" ".join(lowerCamelCase_ )}''' ) SCREAMING_SNAKE_CASE__ = "variation" SCREAMING_SNAKE_CASE__ = [] for id, variation in enumerate(tqdm(lowerCamelCase_ , desc="Total completion: " , leave=lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE__ = base_cmd + variation.split() results.append( process_run( id + 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , args.target_metric_key , lowerCamelCase_ , args.repeat_times , lowerCamelCase_ , args.verbose , ) ) process_results(lowerCamelCase_ , args.target_metric_key , lowerCamelCase_ , args.base_variation , lowerCamelCase_ ) if __name__ == "__main__": main()
112
"""simple docstring""" def __lowercase ( lowerCamelCase_ : Tuple ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator SCREAMING_SNAKE_CASE__ = len(lowerCamelCase_ ) if (len(lowerCamelCase_ ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(lowerCamelCase_ ) , "Postfix".center(lowerCamelCase_ ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCamelCase_ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCamelCase_ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCamelCase_ ) == 0: stack.append(lowerCamelCase_ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCamelCase_ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCamelCase_ ) # push x to stack print( x.center(8 ) , ("".join(lowerCamelCase_ )).ljust(lowerCamelCase_ ) , ("".join(lowerCamelCase_ )).ljust(lowerCamelCase_ ) , sep=" | " , ) # Output in tabular format while len(lowerCamelCase_ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(lowerCamelCase_ )).ljust(lowerCamelCase_ ) , ("".join(lowerCamelCase_ )).ljust(lowerCamelCase_ ) , sep=" | " , ) # Output in tabular format return "".join(lowerCamelCase_ ) # return Postfix as str def __lowercase ( lowerCamelCase_ : str ): SCREAMING_SNAKE_CASE__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCamelCase_ ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE__ = ")" # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE__ = "(" # change ")" to "(" return (infix_2_postfix("".join(lowerCamelCase_ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowerCamelCase = input('\nEnter an Infix Equation = ') # Input an Infix equation _lowerCamelCase = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
112
1
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class A__ ( unittest.TestCase): """simple docstring""" snake_case__ : List[str] =inspect.getfile(accelerate.test_utils) snake_case__ : List[str] =os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''test_cli.py''']) snake_case__ : Optional[Any] =["""accelerate""", """launch"""] snake_case__ : str =Path.home() / """.cache/huggingface/accelerate""" snake_case__ : Any ="""default_config.yaml""" snake_case__ : Any =config_folder / config_file snake_case__ : str =config_folder / """_default_config.yaml""" snake_case__ : Optional[int] =Path('''tests/test_configs''') @classmethod def a__ ( cls: Optional[Any] )-> Dict: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def a__ ( cls: Tuple )-> Union[str, Any]: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def a__ ( self: List[str] )-> List[str]: lowerCamelCase : str = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def a__ ( self: Dict )-> Tuple: for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=__SCREAMING_SNAKE_CASE ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(__SCREAMING_SNAKE_CASE ), self.test_file_path] , env=os.environ.copy() ) def a__ ( self: Union[str, Any] )-> str: execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() ) class A__ ( unittest.TestCase): """simple docstring""" snake_case__ : List[str] ="""test-tpu""" snake_case__ : Any ="""us-central1-a""" snake_case__ : Tuple ="""ls""" snake_case__ : Optional[Any] =["""accelerate""", """tpu-config"""] snake_case__ : List[str] ="""cd /usr/share""" snake_case__ : str ="""tests/test_samples/test_command_file.sh""" snake_case__ : Any ="""Running gcloud compute tpus tpu-vm ssh""" def a__ ( self: str )-> List[str]: lowerCamelCase : Optional[int] = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=__SCREAMING_SNAKE_CASE , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __SCREAMING_SNAKE_CASE , ) def a__ ( self: Any )-> List[str]: lowerCamelCase : Union[str, Any] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=__SCREAMING_SNAKE_CASE , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __SCREAMING_SNAKE_CASE , ) def a__ ( self: Union[str, Any] )-> int: lowerCamelCase : List[str] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=__SCREAMING_SNAKE_CASE ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __SCREAMING_SNAKE_CASE , ) def a__ ( self: Optional[Any] )-> int: lowerCamelCase : List[str] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=__SCREAMING_SNAKE_CASE , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __SCREAMING_SNAKE_CASE , ) def a__ ( self: List[Any] )-> List[str]: lowerCamelCase : Tuple = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] , return_stdout=__SCREAMING_SNAKE_CASE , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , __SCREAMING_SNAKE_CASE , ) def a__ ( self: Optional[int] )-> Dict: lowerCamelCase : str = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=__SCREAMING_SNAKE_CASE , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __SCREAMING_SNAKE_CASE , ) def a__ ( self: Tuple )-> Tuple: lowerCamelCase : List[str] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=__SCREAMING_SNAKE_CASE , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __SCREAMING_SNAKE_CASE , ) def a__ ( self: Optional[Any] )-> Union[str, Any]: lowerCamelCase : Optional[Any] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=__SCREAMING_SNAKE_CASE , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , __SCREAMING_SNAKE_CASE , ) def a__ ( self: str )-> List[Any]: lowerCamelCase : List[Any] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] , return_stdout=__SCREAMING_SNAKE_CASE , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , __SCREAMING_SNAKE_CASE , )
222
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class a ( __snake_case ): SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertTokenizer SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertTokenizerFast SCREAMING_SNAKE_CASE : int = True @slow def UpperCamelCase ( self : Optional[int] ) -> int: lowerCamelCase_ = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
549
0
"""simple docstring""" class lowerCAmelCase : def __init__( self , a__ ): _UpperCAmelCase = len(a__ ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , a__ ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def __A ( self , a__ , a__ ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __A ( self , a__ ): _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(a__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
494
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
494
1
"""simple docstring""" import sys __A = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def UpperCamelCase__ ( lowercase__ : str = N ): snake_case : str = -sys.maxsize - 1 for i in range(len(lowercase__ ) - 12 ): snake_case : Dict = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case : Optional[Any] = product return largest_product if __name__ == "__main__": print(f'{solution() = }')
134
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = tempfile.mkdtemp() snake_case : List[str] = SamImageProcessor() snake_case : List[Any] = SamProcessor(SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self , **SCREAMING_SNAKE_CASE ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).image_processor def lowerCamelCase_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case : Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case : int = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) snake_case : List[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = self.get_image_processor() snake_case : Tuple = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : List[str] = self.prepare_image_inputs() snake_case : Optional[int] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="np" ) snake_case : Union[str, Any] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = self.get_image_processor() snake_case : int = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : Dict = [torch.ones((1, 3, 5, 5) )] snake_case : Optional[Any] = [[1_764, 2_646]] snake_case : List[Any] = [[683, 1_024]] snake_case : int = processor.post_process_masks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case : Tuple = processor.post_process_masks( SCREAMING_SNAKE_CASE , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np snake_case : Any = [np.ones((1, 3, 5, 5) )] snake_case : Optional[int] = processor.post_process_masks(SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case : Union[str, Any] = [[1, 0], [0, 1]] with self.assertRaises(SCREAMING_SNAKE_CASE ): snake_case : Tuple = processor.post_process_masks(SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) ) @require_vision @require_tf class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[Any] = tempfile.mkdtemp() snake_case : Any = SamImageProcessor() snake_case : List[str] = SamProcessor(SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self , **SCREAMING_SNAKE_CASE ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).image_processor def lowerCamelCase_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case : Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case : List[str] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) snake_case : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = self.get_image_processor() snake_case : Union[str, Any] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : str = self.prepare_image_inputs() snake_case : List[Any] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="np" ) snake_case : List[str] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = self.get_image_processor() snake_case : List[str] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : Any = [tf.ones((1, 3, 5, 5) )] snake_case : Dict = [[1_764, 2_646]] snake_case : Optional[Any] = [[683, 1_024]] snake_case : int = processor.post_process_masks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case : str = processor.post_process_masks( SCREAMING_SNAKE_CASE , tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np snake_case : str = [np.ones((1, 3, 5, 5) )] snake_case : Any = processor.post_process_masks( SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case : List[str] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): snake_case : Optional[Any] = processor.post_process_masks( SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) , return_tensors="tf" ) @require_vision @require_torchvision class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = tempfile.mkdtemp() snake_case : str = SamImageProcessor() snake_case : Dict = SamProcessor(SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self , **SCREAMING_SNAKE_CASE ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).image_processor def lowerCamelCase_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case : Dict = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = self.get_image_processor() snake_case : List[str] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) snake_case : str = [tf.convert_to_tensor(SCREAMING_SNAKE_CASE )] snake_case : str = [torch.tensor(SCREAMING_SNAKE_CASE )] snake_case : int = [[1_764, 2_646]] snake_case : List[Any] = [[683, 1_024]] snake_case : Any = processor.post_process_masks( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors="tf" ) snake_case : Optional[int] = processor.post_process_masks( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.get_image_processor() snake_case : Optional[int] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : Any = self.prepare_image_inputs() snake_case : Dict = image_processor(SCREAMING_SNAKE_CASE , return_tensors="pt" )["pixel_values"].numpy() snake_case : Dict = processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" )["pixel_values"].numpy() snake_case : List[str] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="tf" )["pixel_values"].numpy() snake_case : List[str] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
134
1
from math import factorial def __A(lowerCAmelCase = 1_0_0 ) -> int: """simple docstring""" return sum(map(lowerCAmelCase , str(factorial(lowerCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
202
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : List[Any] = StableDiffusionInpaintPipeline UpperCamelCase_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCamelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : int = frozenset([] ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) _UpperCamelCase = PNDMScheduler(skip_prk_steps=a ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) _UpperCamelCase = CLIPTextModel(a ) _UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A_ ( self , a , a=0 ) -> List[Any]: '''simple docstring''' _UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(a ) ).convert("""RGB""" ).resize((64, 64) ) _UpperCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(a ).startswith("""mps""" ): _UpperCamelCase = torch.manual_seed(a ) else: _UpperCamelCase = torch.Generator(device=a ).manual_seed(a ) _UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionInpaintPipeline(**a ) _UpperCamelCase = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) _UpperCamelCase = self.get_dummy_inputs(a ) _UpperCamelCase = sd_pipe(**a ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , torch_dtype=torch.floataa , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A_ ( self ) -> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = PNDMScheduler.from_pretrained(a , subfolder="""scheduler""" ) _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , safety_checker=a , scheduler=a , torch_dtype=torch.floataa , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , num_inference_steps=2 , output_type="""np""" , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
202
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _UpperCAmelCase ( _A , _A , unittest.TestCase ): """simple docstring""" A = IFPipeline A = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} A = TEXT_TO_IMAGE_BATCH_PARAMS A = PipelineTesterMixin.required_optional_params - {'''latents'''} def snake_case_ ( self ): '''simple docstring''' return self._get_dummy_components() def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): '''simple docstring''' if str(_lowerCAmelCase ).startswith("mps" ): lowerCAmelCase__ :int = torch.manual_seed(_lowerCAmelCase ) else: lowerCAmelCase__ :List[str] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowerCAmelCase__ :List[str] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def snake_case_ ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def snake_case_ ( self ): '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ): '''simple docstring''' self._test_save_load_local() def snake_case_ ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def snake_case_ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): '''simple docstring''' # if lowerCAmelCase__ :List[str] = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) lowerCAmelCase__ :str = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) lowerCAmelCase__ ,lowerCAmelCase__ :List[Any] = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowerCAmelCase__ :Optional[int] = None lowerCAmelCase__ :Optional[int] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowerCAmelCase__ :Union[str, Any] = IFImgaImgPipeline(**pipe_a.components ) lowerCAmelCase__ :List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowerCAmelCase__ :List[str] = IFInpaintingPipeline(**pipe_a.components ) lowerCAmelCase__ :int = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase__ :int = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ :Optional[int] = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , num_inference_steps=2 , generator=_lowerCAmelCase , output_type="np" , ) lowerCAmelCase__ :Optional[Any] = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase__ :int = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowerCAmelCase__ :Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase__ :Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ :Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :int = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase__ :Optional[int] = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase__ :str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase__ :int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase__ :Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ :Any = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=2 , generator=_lowerCAmelCase , output_type="np" , ) lowerCAmelCase__ :Dict = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase__ :List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowerCAmelCase__ :List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase__ :Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ :str = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :Union[str, Any] = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , image=_lowerCAmelCase , original_image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase__ :List[Any] = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase__ :int = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase__ :List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase__ :str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ :List[Any] = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , num_inference_steps=2 , generator=_lowerCAmelCase , output_type="np" , ) lowerCAmelCase__ :int = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase__ :Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowerCAmelCase__ :Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase__ :Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ :Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :Dict = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :Optional[Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(_lowerCAmelCase ) lowerCAmelCase__ :int = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , original_image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase__ :Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase__ :Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase__ :int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
145
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a : Optional[int] = 16 _a : List[Any] = 32 def snake_case__ ( UpperCAmelCase : Accelerator , UpperCAmelCase : int = 1_6 ): lowerCAmelCase__ :Optional[int] = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ :Dict = load_dataset("glue" , "mrpc" ) def tokenize_function(UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ :Dict = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ :str = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ :Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ :int = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase__ :List[str] = 8 else: lowerCAmelCase__ :Dict = None return tokenizer.pad( UpperCAmelCase , padding="longest" , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase__ :int = DataLoader( tokenized_datasets["train"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) lowerCAmelCase__ :List[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a : List[str] = mocked_dataloaders # noqa: F811 def snake_case__ ( UpperCAmelCase : str , UpperCAmelCase : Dict ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , UpperCAmelCase ) == "1": lowerCAmelCase__ :Union[str, Any] = 2 # New Code # lowerCAmelCase__ :List[str] = int(args.gradient_accumulation_steps ) # Initialize accelerator lowerCAmelCase__ :List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ :Union[str, Any] = config["lr"] lowerCAmelCase__ :Dict = int(config["num_epochs"] ) lowerCAmelCase__ :str = int(config["seed"] ) lowerCAmelCase__ :int = int(config["batch_size"] ) lowerCAmelCase__ :Any = evaluate.load("glue" , "mrpc" ) set_seed(UpperCAmelCase ) lowerCAmelCase__ ,lowerCAmelCase__ :Dict = get_dataloaders(UpperCAmelCase , UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ :Any = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ :str = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ :Tuple = AdamW(params=model.parameters() , lr=UpperCAmelCase ) # Instantiate scheduler lowerCAmelCase__ :Optional[int] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :List[Any] = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCAmelCase ): lowerCAmelCase__ :Optional[int] = model(**UpperCAmelCase ) lowerCAmelCase__ :Any = output.loss accelerator.backward(UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ :Optional[int] = model(**UpperCAmelCase ) lowerCAmelCase__ :int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ ,lowerCAmelCase__ :Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) lowerCAmelCase__ :List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase ) def snake_case__ ( ): lowerCAmelCase__ :str = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=UpperCAmelCase , default=UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=UpperCAmelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowerCAmelCase__ :int = parser.parse_args() lowerCAmelCase__ :Union[str, Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
145
1
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : Union[str, Any] = git.Repo(search_parent_directories=__UpperCAmelCase ) _lowercase : List[Any] = { 'repo_id': str(__UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(__UpperCAmelCase ,'git_log.json' ) ,'w' ) as f: json.dump(__UpperCAmelCase ,__UpperCAmelCase ,indent=4 ) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" if params.n_gpu <= 0: _lowercase : List[str] = 0 _lowercase : Any = -1 _lowercase : List[Any] = True _lowercase : Union[str, Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 _lowercase : Optional[int] = int(os.environ['WORLD_SIZE'] ) _lowercase : str = int(os.environ['N_GPU_NODE'] ) _lowercase : str = int(os.environ['RANK'] ) # number of nodes / node ID _lowercase : str = params.world_size // params.n_gpu_per_node _lowercase : int = params.global_rank // params.n_gpu_per_node _lowercase : List[str] = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 _lowercase : Any = 1 _lowercase : int = 0 _lowercase : Optional[int] = 0 _lowercase : str = 0 _lowercase : Optional[int] = 1 _lowercase : Any = 1 _lowercase : int = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode _lowercase : List[str] = params.node_id == 0 and params.local_rank == 0 _lowercase : List[str] = params.n_nodes > 1 # summary _lowercase : List[Any] = F'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' ,backend='nccl' ,) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
283
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration SCREAMING_SNAKE_CASE = pytest.mark.integration SCREAMING_SNAKE_CASE = {'comet'} SCREAMING_SNAKE_CASE = importlib.util.find_spec('fairseq') is not None SCREAMING_SNAKE_CASE = {'code_eval'} SCREAMING_SNAKE_CASE = os.name == 'nt' SCREAMING_SNAKE_CASE = {'bertscore', 'frugalscore', 'perplexity'} SCREAMING_SNAKE_CASE = importlib.util.find_spec('transformers') is not None def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" @wraps(__UpperCAmelCase ) def wrapper(self ,__UpperCAmelCase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self ,__UpperCAmelCase ) return wrapper def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" @wraps(__UpperCAmelCase ) def wrapper(self ,__UpperCAmelCase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self ,__UpperCAmelCase ) return wrapper def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" @wraps(__UpperCAmelCase ) def wrapper(self ,__UpperCAmelCase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self ,__UpperCAmelCase ) return wrapper def __lowerCAmelCase( ): """simple docstring""" _lowercase : int = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @local class _lowerCamelCase (parameterized.TestCase ): _snake_case = {} _snake_case = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : List[str] ): """simple docstring""" _lowercase : Optional[Any] = '[...]' _lowercase : str = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , lowerCamelCase_ ) ).module_path ) _lowercase : Dict = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCamelCase_ ) # check parameters _lowercase : Optional[int] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCamelCase_ , metric_module.__name__ ): with self.use_local_metrics(): try: _lowercase : Optional[Any] = doctest.testmod(lowerCamelCase_ , verbose=lowerCamelCase_ , raise_on_error=lowerCamelCase_ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Dict ): """simple docstring""" _lowercase : Optional[Any] = '[...]' _lowercase : Dict = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , lowerCamelCase_ ) ).module_path ) # run doctest with self.use_local_metrics(): _lowercase : str = doctest.testmod(lowerCamelCase_ , verbose=lowerCamelCase_ , raise_on_error=lowerCamelCase_ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCamelCase_ ): yield else: yield @contextmanager def __UpperCAmelCase ( self : Dict ): """simple docstring""" def load_local_metric(lowerCamelCase_ : Optional[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[int] ): return load_metric(os.path.join('metrics' , lowerCamelCase_ ) , *lowerCamelCase_ , **lowerCamelCase_ ) with patch('datasets.load_metric' ) as mock_load_metric: _lowercase : str = load_local_metric yield @classmethod def __UpperCAmelCase ( cls : Tuple , lowerCamelCase_ : Tuple ): """simple docstring""" def wrapper(lowerCamelCase_ : int ): _lowercase : Any = contextmanager(lowerCamelCase_ ) _lowercase : Any = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' ,'' ,'' ) # handle pytest cli flags class _lowerCamelCase (__lowerCamelCase ): def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: _lowercase : Dict = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" import torch def bert_cos_score_idf(__UpperCAmelCase ,__UpperCAmelCase ,*__UpperCAmelCase ,**__UpperCAmelCase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__UpperCAmelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: _lowercase : Tuple = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" def load_from_checkpoint(__UpperCAmelCase ): class _lowerCamelCase : def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[str] ): """simple docstring""" assert len(lowerCamelCase_ ) == 2 _lowercase : Union[str, Any] = [0.19, 0.92] return scores, sum(lowerCamelCase_ ) / len(lowerCamelCase_ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: _lowercase : Dict = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: _lowercase : str = load_from_checkpoint yield def __lowerCAmelCase( ): """simple docstring""" _lowercase : Tuple = load_metric(os.path.join('metrics' ,'seqeval' ) ) _lowercase : int = 'ERROR' _lowercase : Union[str, Any] = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(__UpperCAmelCase ,match=re.escape(__UpperCAmelCase ) ): metric.compute(predictions=[] ,references=[] ,scheme=__UpperCAmelCase )
283
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __a : Union[str, Any] = logging.get_logger(__name__) # TODO: upload to AWS __a : Dict = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class __lowercase ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE = "retribert" def __init__( self : str , UpperCamelCase_ : Tuple=30_522 , UpperCamelCase_ : Dict=768 , UpperCamelCase_ : Optional[int]=8 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : Union[str, Any]=3_072 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : str=512 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : List[str]=1e-12 , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Optional[Any]=128 , UpperCamelCase_ : Optional[Any]=0 , **UpperCamelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = share_encoders __A = projection_dim
637
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _UpperCAmelCase = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": _UpperCAmelCase = """hopper-medium-v2""" _UpperCAmelCase = gym.make(env_name) _UpperCAmelCase = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) _UpperCAmelCase = env.reset() _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1000 _UpperCAmelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _UpperCAmelCase = pipeline(obs, planning_horizon=32) # execute action in environment _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = env.step(denorm_actions) _UpperCAmelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) _UpperCAmelCase = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
558
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[str]: _A : Any = 1 _A : int = 3 _A : List[str] = (3_2, 3_2) _A : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase__ ) return image @property def _lowerCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) _A : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=UpperCAmelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def _lowerCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) _A : Optional[Any] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _A : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) return CLIPTextModel(UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Optional[Any]: _A : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A : List[Any] = self.dummy_cond_unet_upscale _A : List[Any] = DDPMScheduler() _A : Optional[int] = DDIMScheduler(prediction_type='''v_prediction''' ) _A : Any = self.dummy_vae _A : Optional[int] = self.dummy_text_encoder _A : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _A : Any = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Dict = Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _A : Optional[Any] = StableDiffusionUpscalePipeline( unet=UpperCAmelCase__ , low_res_scheduler=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , max_noise_level=3_5_0 , ) _A : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _A : Optional[int] = '''A painting of a squirrel eating a burger''' _A : List[Any] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) _A : List[Any] = sd_pipe( [prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , ) _A : List[str] = output.images _A : Union[str, Any] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) _A : Dict = sd_pipe( [prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCAmelCase__ , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Optional[int] = image_from_tuple[0, -3:, -3:, -1] _A : Tuple = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _A : int = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ) -> Any: _A : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A : Any = self.dummy_cond_unet_upscale _A : Dict = DDPMScheduler() _A : List[Any] = DDIMScheduler(prediction_type='''v_prediction''' ) _A : Union[str, Any] = self.dummy_vae _A : List[Any] = self.dummy_text_encoder _A : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _A : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Any = Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _A : Tuple = StableDiffusionUpscalePipeline( unet=UpperCAmelCase__ , low_res_scheduler=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , max_noise_level=3_5_0 , ) _A : Tuple = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _A : int = '''A painting of a squirrel eating a burger''' _A : Optional[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , ) _A : Tuple = output.images assert image.shape[0] == 2 _A : Any = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) _A : List[str] = sd_pipe( [prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , ) _A : Dict = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _lowerCamelCase ( self ) -> Union[str, Any]: _A : List[Any] = self.dummy_cond_unet_upscale _A : int = DDPMScheduler() _A : Dict = DDIMScheduler(prediction_type='''v_prediction''' ) _A : Dict = self.dummy_vae _A : Union[str, Any] = self.dummy_text_encoder _A : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _A : int = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Dict = Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 _A : Any = unet.half() _A : Dict = text_encoder.half() # make sure here that pndm scheduler skips prk _A : Any = StableDiffusionUpscalePipeline( unet=UpperCAmelCase__ , low_res_scheduler=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , max_noise_level=3_5_0 , ) _A : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _A : int = '''A painting of a squirrel eating a burger''' _A : Any = torch.manual_seed(0 ) _A : Tuple = sd_pipe( [prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=2 , output_type='''np''' , ).images _A : Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> Optional[Any]: _A : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _A : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) _A : Tuple = '''stabilityai/stable-diffusion-x4-upscaler''' _A : Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() _A : int = '''a cat sitting on a park bench''' _A : List[Any] = torch.manual_seed(0 ) _A : str = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , ) _A : int = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCamelCase ( self ) -> Any: _A : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _A : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) _A : Dict = '''stabilityai/stable-diffusion-x4-upscaler''' _A : Any = StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() _A : List[Any] = '''a cat sitting on a park bench''' _A : Union[str, Any] = torch.manual_seed(0 ) _A : List[Any] = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , ) _A : List[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCamelCase ( self ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _A : Any = '''stabilityai/stable-diffusion-x4-upscaler''' _A : Dict = StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A : Optional[int] = '''a cat sitting on a park bench''' _A : Optional[Any] = torch.manual_seed(0 ) _A : Optional[Any] = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=5 , output_type='''np''' , ) _A : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
720
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCamelCase : Union[str, Any] = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowercase ( lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : List[str]=None , ): """simple docstring""" if attention_mask is None: _A : Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0) if decoder_attention_mask is None: _A : List[str] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0) if head_mask is None: _A : Tuple = np.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: _A : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: _A : Dict = np.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase__ : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=1_3 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=False , UpperCAmelCase__=9_9 , UpperCAmelCase__=1_6 , UpperCAmelCase__=2 , UpperCAmelCase__=4 , UpperCAmelCase__=4 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=3_2 , UpperCAmelCase__=2 , UpperCAmelCase__=1 , UpperCAmelCase__=0 , UpperCAmelCase__=0.0_2 , ) -> Tuple: _A : List[Any] = parent _A : Optional[Any] = batch_size _A : int = seq_length _A : Optional[int] = is_training _A : List[Any] = use_labels _A : Optional[Any] = vocab_size _A : Tuple = hidden_size _A : str = num_hidden_layers _A : Tuple = num_attention_heads _A : Optional[Any] = intermediate_size _A : Tuple = hidden_act _A : int = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Tuple = max_position_embeddings _A : Optional[int] = eos_token_id _A : Optional[Any] = pad_token_id _A : str = bos_token_id _A : Optional[Any] = initializer_range def _lowerCamelCase ( self ) -> Tuple: _A : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _A : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _A : Optional[Any] = shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) _A : Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , ) _A : Dict = prepare_blenderbot_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def _lowerCamelCase ( self ) -> Optional[Any]: _A , _A : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: _A : Tuple = 2_0 _A : Tuple = model_class_name(UpperCAmelCase__ ) _A : Any = model.encode(inputs_dict['''input_ids'''] ) _A , _A : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _A : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) _A : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _A : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A : Any = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _A : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _A : List[Any] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , ) _A : List[str] = model.decode(UpperCAmelCase__ , UpperCAmelCase__ ) _A : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: _A : Optional[Any] = 2_0 _A : Optional[int] = model_class_name(UpperCAmelCase__ ) _A : Any = model.encode(inputs_dict['''input_ids'''] ) _A , _A : Tuple = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _A : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _A : Any = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) _A : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A : int = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _A : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _A : str = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _A : int = model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ ) _A : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = 9_9 def _lowerCamelCase ( self ) -> List[str]: _A : str = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _A : Optional[int] = input_ids.shape[0] _A : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowerCamelCase ( self ) -> Any: _A , _A , _A : Dict = self._get_config_and_data() _A : Dict = FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__ ) _A : int = lm_model(input_ids=UpperCAmelCase__ ) _A : Dict = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> str: _A : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _A : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__ ) _A : List[str] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _A : Any = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _A : Tuple = lm_model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ) _A : List[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Optional[int]: _A : List[str] = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _A : str = shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) _A : Optional[int] = np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() _A : Optional[int] = np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase__ ( snake_case_ , unittest.TestCase , snake_case_ ): """simple docstring""" __magic_name__ = True __magic_name__ = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __magic_name__ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _lowerCamelCase ( self ) -> int: _A : Optional[int] = FlaxBlenderbotSmallModelTester(self ) def _lowerCamelCase ( self ) -> Union[str, Any]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Any: _A , _A : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Optional[int]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A : List[str] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) _A : Any = model_class(UpperCAmelCase__ ) @jax.jit def encode_jitted(UpperCAmelCase__ , UpperCAmelCase__=None , **UpperCAmelCase__ ): return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) with self.subTest('''JIT Enabled''' ): _A : Optional[int] = encode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A : int = encode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( self ) -> Union[str, Any]: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A : Any = model_class(UpperCAmelCase__ ) _A : Dict = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _A : str = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): return model.decode( decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , ) with self.subTest('''JIT Enabled''' ): _A : int = decode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A : Any = decode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCamelCase ( self ) -> List[str]: for model_class_name in self.all_model_classes: _A : Any = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _A : Union[str, Any] = np.ones((1, 1) ) * model.config.eos_token_id _A : Optional[Any] = model(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ )
417
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : int = LongformerTokenizer _UpperCamelCase : List[str] = True _UpperCamelCase : int = LongformerTokenizerFast _UpperCamelCase : Optional[Any] = True def __a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : Optional[int] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowercase : List[str] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowercase : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase : Optional[int] = {'unk_token': '<unk>'} _lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCAmelCase ) ) def __a ( self , **_lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , **_lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Dict = 'lower newer' _lowercase : Union[str, Any] = 'lower newer' return input_text, output_text def __a ( self ): _lowercase : List[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowercase : str = 'lower newer' _lowercase : List[Any] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase : Optional[int] = tokenizer.tokenize(_lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Dict = tokens + [tokenizer.unk_token] _lowercase : Optional[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def __a ( self ): _lowercase : Any = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) _lowercase : Optional[Any] = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCAmelCase ) _lowercase : str = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCAmelCase ) _lowercase : Any = tokenizer.encode( 'sequence builders' , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) _lowercase : List[str] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) _lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __a ( self ): _lowercase : List[str] = self.get_tokenizer() _lowercase : Tuple = 'Encode this sequence.' _lowercase : List[Any] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _lowercase : int = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) _lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) _lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _lowercase : Optional[Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_lowerCAmelCase , _lowerCAmelCase ) # Testing spaces after special tokens _lowercase : int = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase )} ) # mask token has a left space _lowercase : int = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) _lowercase : List[Any] = 'Encode <mask> sequence' _lowercase : List[Any] = 'Encode <mask>sequence' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase ) _lowercase : int = encoded.index(_lowerCAmelCase ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase ) _lowercase : Optional[Any] = encoded.index(_lowerCAmelCase ) _lowercase : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): pass def __a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : Dict = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Dict = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : List[str] = 'A, <mask> AllenNLP sentence.' _lowercase : Any = tokenizer_r.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) _lowercase : Any = tokenizer_p.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowercase : Any = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( _lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __a ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _lowercase : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) _lowercase : str = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowercase : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _lowerCAmelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _lowerCAmelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _lowerCAmelCase ) def __a ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowercase : str = F"""{text_of_1_token} {text_of_1_token}""" _lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) _lowercase : Optional[int] = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) _lowercase : str = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) _lowercase : Union[str, Any] = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) _lowercase : Dict = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ), len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) _lowercase : int = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) _lowercase : int = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ), len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) _lowercase : Optional[int] = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) _lowercase : Optional[Any] = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ) + 1, 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) _lowercase : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) _lowercase : List[Any] = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ), 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) _lowercase : Tuple = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) _lowercase : Union[str, Any] = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ), 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , )
66
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConvNextFeatureExtractor"] UpperCamelCase = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
66
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float(moles / volume ) * nfactor ) def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __lowerCAmelCase : list ) -> list: if len(__lowerCAmelCase ) == 0: return [] snake_case , snake_case = min(__lowerCAmelCase ), max(__lowerCAmelCase ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(__lowerCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(__lowerCAmelCase ) return [v for bucket in buckets for v in sorted(__lowerCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
517
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase_ : str = get_tests_dir('fixtures') class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ): # A mock response for an HTTP head request to emulate server down _a = mock.Mock() _a = 5_00 _a = {} _a = HTTPError _a = {} # Download this model to make sure it's in the cache. _a = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__a ) as mock_head: _a = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self : Any ): # This test is for deprecated behavior and can be removed in v5 _a = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def UpperCamelCase__ ( self : Any ): with self.assertRaises(__a ): # config is in subfolder, the following should not work without specifying the subfolder _a = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) _a = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(__a ) @is_staging_test class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @classmethod def UpperCamelCase__ ( cls : Optional[int] ): _a = TOKEN HfFolder.save_token(__a ) @classmethod def UpperCamelCase__ ( cls : Any ): try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def UpperCamelCase__ ( self : Dict ): _a = ViTImageProcessor.from_pretrained(__a ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __a , repo_id="test-image-processor" , push_to_hub=__a , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__a , getattr(__a , __a ) ) def UpperCamelCase__ ( self : Dict ): _a = ViTImageProcessor.from_pretrained(__a ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __a , repo_id="valid_org/test-image-processor-org" , push_to_hub=__a , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__a , getattr(__a , __a ) ) def UpperCamelCase__ ( self : List[str] ): CustomImageProcessor.register_for_auto_class() _a = CustomImageProcessor.from_pretrained(__a ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) _a = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=__a ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
692
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
1
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def UpperCamelCase ( _lowerCAmelCase : List[Any] ): __a = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : int ): __a , __a = emb.weight.shape __a = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) __a = emb.weight.data return lin_layer def UpperCamelCase ( _lowerCAmelCase : List[str] ): __a = torch.load(_lowerCAmelCase , map_location="""cpu""" ) __a = Namespace(**checkpoint["""cfg"""]["""model"""] ) __a = checkpoint["""model"""] remove_ignore_keys_(_lowerCAmelCase ) __a = state_dict["""decoder.embed_tokens.weight"""].shape[0] __a = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} __a = XGLMConfig( vocab_size=_lowerCAmelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __a = XGLMForCausalLM(_lowerCAmelCase ) __a = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) print(_lowerCAmelCase ) __a = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __A = parser.parse_args() __A = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
706
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class a ( A_ ): A_ : Optional[Any] = '''instructblip_vision_model''' def __init__( self : Dict , lowerCamelCase_ : Union[str, Any]=14_08 , lowerCamelCase_ : List[str]=61_44 , lowerCamelCase_ : int=39 , lowerCamelCase_ : Optional[int]=16 , lowerCamelCase_ : Any=2_24 , lowerCamelCase_ : str=14 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : str=1E-6 , lowerCamelCase_ : str=0.0 , lowerCamelCase_ : int=1E-10 , lowerCamelCase_ : Dict=True , **lowerCamelCase_ : str , ) -> Optional[Any]: super().__init__(**lowerCamelCase_ ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def lowerCAmelCase_ ( cls : Tuple , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCamelCase_ ) __a , __a = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __a = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class a ( A_ ): A_ : str = '''instructblip_qformer''' def __init__( self : Dict , lowerCamelCase_ : Union[str, Any]=3_05_22 , lowerCamelCase_ : Tuple=7_68 , lowerCamelCase_ : Any=12 , lowerCamelCase_ : Union[str, Any]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Optional[Any]=0.02 , lowerCamelCase_ : int=1E-12 , lowerCamelCase_ : List[Any]=0 , lowerCamelCase_ : Union[str, Any]="absolute" , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Union[str, Any]=14_08 , **lowerCamelCase_ : Any , ) -> Optional[int]: super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def lowerCAmelCase_ ( cls : str , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCamelCase_ ) __a , __a = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __a = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class a ( A_ ): A_ : Any = '''instructblip''' A_ : Union[str, Any] = True def __init__( self : List[Any] , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[str]=32 , **lowerCamelCase_ : Optional[int] ) -> List[Any]: super().__init__(**lowerCamelCase_ ) if vision_config is None: __a = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: __a = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: __a = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __a = InstructBlipVisionConfig(**lowerCamelCase_ ) __a = InstructBlipQFormerConfig(**lowerCamelCase_ ) __a = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __a = CONFIG_MAPPING[text_model_type](**lowerCamelCase_ ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def lowerCAmelCase_ ( cls : Optional[int] , lowerCamelCase_ : InstructBlipVisionConfig , lowerCamelCase_ : InstructBlipQFormerConfig , lowerCamelCase_ : PretrainedConfig , **lowerCamelCase_ : Optional[Any] , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCamelCase_ , ) def lowerCAmelCase_ ( self : Tuple ) -> Union[str, Any]: __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
173
0
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return int((input_a, input_a).count(0 ) == 0 ) def lowerCAmelCase_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
81
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase ={ "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
333
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : List[Any] = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCAmelCase ( snake_case__ ): '''simple docstring''' A = 'vit_mae' def __init__( self :Optional[int] , lowerCamelCase_ :List[Any]=7_6_8 , lowerCamelCase_ :Optional[Any]=1_2 , lowerCamelCase_ :str=1_2 , lowerCamelCase_ :List[Any]=3_0_7_2 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.0 , lowerCamelCase_ :Dict=0.0 , lowerCamelCase_ :Optional[Any]=0.02 , lowerCamelCase_ :List[Any]=1e-12 , lowerCamelCase_ :Optional[int]=2_2_4 , lowerCamelCase_ :Dict=1_6 , lowerCamelCase_ :Optional[Any]=3 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Dict=1_6 , lowerCamelCase_ :Union[str, Any]=5_1_2 , lowerCamelCase_ :List[Any]=8 , lowerCamelCase_ :Dict=2_0_4_8 , lowerCamelCase_ :Dict=0.75 , lowerCamelCase_ :List[Any]=False , **lowerCamelCase_ :List[str] , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = decoder_num_attention_heads UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = decoder_num_hidden_layers UpperCamelCase__ = decoder_intermediate_size UpperCamelCase__ = mask_ratio UpperCamelCase__ = norm_pix_loss
700
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A : List[str] = logging.get_logger(__name__) class lowerCAmelCase ( snake_case__ ): '''simple docstring''' A = ['pixel_values'] def __init__( self :str , lowerCamelCase_ :bool = True , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :PILImageResampling = PIL.Image.BICUBIC , lowerCamelCase_ :bool = True , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :Union[int, float] = 1 / 2_5_5 , lowerCamelCase_ :bool = True , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , **lowerCamelCase_ :int , ) -> None: """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase__ = size if size is not None else {"height": 2_5_6, "width": 2_5_6} UpperCamelCase__ = get_size_dict(lowerCamelCase_ ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} UpperCamelCase__ = get_size_dict(lowerCamelCase_ , param_name="crop_size" ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self :List[Any] , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Dict[str, int] , lowerCamelCase_ :PILImageResampling = PIL.Image.BICUBIC , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :Dict , ) -> np.ndarray: """simple docstring""" UpperCamelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( lowerCamelCase_ , size=(size["height"], size["width"]) , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase__ ( self :int , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Dict[str, int] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :List[Any] , ) -> np.ndarray: """simple docstring""" UpperCamelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase_ , size=(size["height"], size["width"]) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase__ ( self :Dict , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Union[int, float] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :int , ) -> str: """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase__ ( self :Any , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Union[float, List[float]] , lowerCamelCase_ :Union[float, List[float]] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :Any , ) -> np.ndarray: """simple docstring""" return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase__ ( self :str , lowerCamelCase_ :ImageInput , lowerCamelCase_ :bool = None , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :bool = None , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :float = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase_ :Optional[Any] , ) -> PIL.Image.Image: """simple docstring""" UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(lowerCamelCase_ ) UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(lowerCamelCase_ , param_name="crop_size" ) UpperCamelCase__ = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
304
0
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" UpperCAmelCase = model.config UpperCAmelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) UpperCAmelCase = MBartConfig( is_decoder=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=SCREAMING_SNAKE_CASE_ , add_final_layer_norm=SCREAMING_SNAKE_CASE_ , ) return encoder_config, decoder_config def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]: """simple docstring""" if "encoder.model" in name: UpperCAmelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: UpperCAmelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCAmelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: UpperCAmelCase = '''encoder.''' + name if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": UpperCAmelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": UpperCAmelCase = '''encoder.layernorm.bias''' return name def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[3] ) UpperCAmelCase = int(key_split[5] ) UpperCAmelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: UpperCAmelCase = val return orig_state_dict def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: """simple docstring""" UpperCAmelCase = DonutModel.from_pretrained(SCREAMING_SNAKE_CASE_ ).eval() # load HuggingFace model UpperCAmelCase, UpperCAmelCase = get_configs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = DonutSwinModel(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = MBartForCausalLM(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = VisionEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = original_model.state_dict() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify results on scanned document UpperCAmelCase = load_dataset('''hf-internal-testing/example-documents''' ) UpperCAmelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE_ , from_slow=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) UpperCAmelCase = DonutProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": UpperCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' UpperCAmelCase = '''When is the coffee break?''' UpperCAmelCase = task_prompt.replace('''{user_input}''' , SCREAMING_SNAKE_CASE_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": UpperCAmelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: UpperCAmelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": UpperCAmelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": UpperCAmelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt UpperCAmelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) UpperCAmelCase = original_model.decoder.tokenizer(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' )[ '''input_ids''' ] UpperCAmelCase = original_model.encoder.model.patch_embed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = model.encoder.embeddings(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) # verify encoder hidden states UpperCAmelCase = original_model.encoder(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = model.encoder(SCREAMING_SNAKE_CASE_ ).last_hidden_state assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) # verify decoder hidden states UpperCAmelCase = original_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).logits UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) a__ : Optional[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
51
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """yjernite/retribert-base-uncased""": 512, } lowercase_ = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Optional[Any] = RetriBertTokenizer _UpperCamelCase : Dict = ['input_ids', 'attention_mask'] def __init__( self : str , a : Any=None , a : Optional[Any]=None , a : Dict=True , a : Union[str, Any]="[UNK]" , a : int="[SEP]" , a : Union[str, Any]="[PAD]" , a : str="[CLS]" , a : List[Any]="[MASK]" , a : Dict=True , a : Optional[Any]=None , **a : Any , )-> Optional[int]: """simple docstring""" super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , a ) != do_lower_case or normalizer_state.get('strip_accents' , a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , a ) != tokenize_chinese_chars ): lowercase__ = getattr(a , normalizer_state.pop('type' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**a ) lowercase__ = do_lower_case def SCREAMING_SNAKE_CASE_ ( self : Dict , a : List[Any] , a : int=None )-> Optional[Any]: """simple docstring""" lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_ ( self : Any , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(a , name=a ) return tuple(a )
235
0
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( a_ , a_ , a_ , a_="attention" ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] SCREAMING_SNAKE_CASE : Dict = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] SCREAMING_SNAKE_CASE : Optional[Any] = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] SCREAMING_SNAKE_CASE : List[Any] = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def __lowerCAmelCase ( a_ , a_ , a_ , a_=False ) -> Any: '''simple docstring''' if split_mlp_wi: SCREAMING_SNAKE_CASE : Union[str, Any] = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] SCREAMING_SNAKE_CASE : int = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] SCREAMING_SNAKE_CASE : Tuple = (wi_a, wi_a) else: SCREAMING_SNAKE_CASE : Dict = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""] SCREAMING_SNAKE_CASE : Optional[int] = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def __lowerCAmelCase ( a_ , a_ , a_ , a_ ) -> List[Any]: '''simple docstring''' return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""] def __lowerCAmelCase ( a_ , *, a_ , a_ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = traverse_util.flatten_dict(variables['target'] ) SCREAMING_SNAKE_CASE : Optional[int] = {'/'.join(a_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE : Tuple = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , a_ ) SCREAMING_SNAKE_CASE : int = collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE : Dict = old['token_embedder/embedding'] # Encoder. for i in range(a_ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE : List[Any] = tax_layer_norm_lookup(a_ , a_ , 'encoder' , 'pre_attention_layer_norm' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = tax_attention_lookup(a_ , a_ , 'encoder' , 'attention' ) SCREAMING_SNAKE_CASE : Tuple = layer_norm SCREAMING_SNAKE_CASE : Any = k.T SCREAMING_SNAKE_CASE : Optional[Any] = o.T SCREAMING_SNAKE_CASE : Optional[Any] = q.T SCREAMING_SNAKE_CASE : Any = v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE : int = tax_layer_norm_lookup(a_ , a_ , 'encoder' , 'pre_mlp_layer_norm' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = tax_mlp_lookup(a_ , a_ , 'encoder' , a_ ) SCREAMING_SNAKE_CASE : Any = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE : Dict = wi[0].T SCREAMING_SNAKE_CASE : List[Any] = wi[1].T else: SCREAMING_SNAKE_CASE : List[str] = wi.T SCREAMING_SNAKE_CASE : Dict = wo.T SCREAMING_SNAKE_CASE : Tuple = old[ 'encoder/relpos_bias/rel_embedding' ].T SCREAMING_SNAKE_CASE : Any = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(a_ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE : Optional[Any] = tax_layer_norm_lookup(a_ , a_ , 'decoder' , 'pre_self_attention_layer_norm' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = tax_attention_lookup(a_ , a_ , 'decoder' , 'self_attention' ) SCREAMING_SNAKE_CASE : List[Any] = layer_norm SCREAMING_SNAKE_CASE : Optional[Any] = k.T SCREAMING_SNAKE_CASE : Optional[int] = o.T SCREAMING_SNAKE_CASE : Optional[Any] = q.T SCREAMING_SNAKE_CASE : Any = v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE : Optional[Any] = tax_layer_norm_lookup(a_ , a_ , 'decoder' , 'pre_cross_attention_layer_norm' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = tax_attention_lookup(a_ , a_ , 'decoder' , 'encoder_decoder_attention' ) SCREAMING_SNAKE_CASE : int = layer_norm SCREAMING_SNAKE_CASE : Union[str, Any] = k.T SCREAMING_SNAKE_CASE : str = o.T SCREAMING_SNAKE_CASE : Dict = q.T SCREAMING_SNAKE_CASE : Optional[Any] = v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE : Any = tax_layer_norm_lookup(a_ , a_ , 'decoder' , 'pre_mlp_layer_norm' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = tax_mlp_lookup(a_ , a_ , 'decoder' , a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE : int = wi[0].T SCREAMING_SNAKE_CASE : List[Any] = wi[1].T else: SCREAMING_SNAKE_CASE : List[str] = wi.T SCREAMING_SNAKE_CASE : Optional[int] = wo.T SCREAMING_SNAKE_CASE : Optional[int] = old['decoder/decoder_norm/scale'] SCREAMING_SNAKE_CASE : str = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE : Tuple = old['decoder/logits_dense/kernel'].T return new def __lowerCAmelCase ( a_ , a_ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE : Dict = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE : Dict = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) SCREAMING_SNAKE_CASE : Tuple = state_dict['shared.weight'] return state_dict def __lowerCAmelCase ( a_ , a_ , a_ , a_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = checkpoints.load_tax_checkpoint(a_ ) SCREAMING_SNAKE_CASE : Any = convert_tax_to_pytorch(a_ , num_layers=config.num_layers , is_encoder_only=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = make_state_dict(a_ , a_ ) model.load_state_dict(a_ , strict=a_ ) def __lowerCAmelCase ( a_ , a_ , a_ , a_ = False ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TaConfig.from_json_file(a_ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE : Optional[int] = TaEncoderModel(a_ ) else: SCREAMING_SNAKE_CASE : str = TaForConditionalGeneration(a_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(a_ , a_ , a_ , a_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(a_ ) # Verify that we can load the checkpoint. model.from_pretrained(a_ ) print('Done' ) if __name__ == "__main__": _lowerCAmelCase :str = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) _lowerCAmelCase :Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
179
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=99 , lowercase__=64 , lowercase__=5 , lowercase__=4 , lowercase__=64 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> int: SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Any = use_input_mask SCREAMING_SNAKE_CASE : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def _UpperCamelCase ( self ) -> Union[str, Any]: return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ) -> Tuple: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = MPNetModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = MPNetForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model( lowercase__ , attention_mask=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MPNetForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE : Any = MPNetForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = model( lowercase__ , attention_mask=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = MPNetForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : str = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Optional[int] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) snake_case__ : Optional[int] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : int = True def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : int = MPNetModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def _UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase__ ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Tuple = MPNetModel.from_pretrained('microsoft/mpnet-base' ) SCREAMING_SNAKE_CASE : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowercase__ )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase__ ) SCREAMING_SNAKE_CASE : str = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1E-4 ) )
179
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : BigBirdConfig _lowerCamelCase : jnp.dtype = jnp.floataa _lowerCamelCase : bool = True def __A ( self : Optional[Any] ): super().setup() A_ = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Union[str, Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ): A_ = super().__call__(*UpperCAmelCase , **UpperCAmelCase ) A_ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = FlaxBigBirdForNaturalQuestionsModule def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : str ,__UpperCamelCase : int ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" def cross_entropy(__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : int=None ): A_ = logits.shape[-1] A_ = (labels[..., None] == jnp.arange(__UpperCamelCase )[None]).astype("f4" ) A_ = jax.nn.log_softmax(__UpperCamelCase ,axis=-1 ) A_ = -jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: A_ = reduction(__UpperCamelCase ) return loss A_ = partial(__UpperCamelCase ,reduction=jnp.mean ) A_ = cross_entropy(__UpperCamelCase ,__UpperCamelCase ) A_ = cross_entropy(__UpperCamelCase ,__UpperCamelCase ) A_ = cross_entropy(__UpperCamelCase ,__UpperCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _a : """simple docstring""" _lowerCamelCase : str = "google/bigbird-roberta-base" _lowerCamelCase : int = 3_0_0_0 _lowerCamelCase : int = 1_0_5_0_0 _lowerCamelCase : int = 1_2_8 _lowerCamelCase : int = 3 _lowerCamelCase : int = 1 _lowerCamelCase : int = 5 # tx_args _lowerCamelCase : float = 3e-5 _lowerCamelCase : float = 0.0 _lowerCamelCase : int = 2_0_0_0_0 _lowerCamelCase : float = 0.0_0_9_5 _lowerCamelCase : str = "bigbird-roberta-natural-questions" _lowerCamelCase : str = "training-expt" _lowerCamelCase : str = "data/nq-training.jsonl" _lowerCamelCase : str = "data/nq-validation.jsonl" def __A ( self : Optional[int] ): os.makedirs(self.base_dir , exist_ok=UpperCAmelCase ) A_ = os.path.join(self.base_dir , self.save_dir ) A_ = self.batch_size_per_device * jax.device_count() @dataclass class _a : """simple docstring""" _lowerCamelCase : int _lowerCamelCase : int = 4_0_9_6 # no dynamic padding on TPUs def __call__( self : Dict , UpperCAmelCase : Dict ): A_ = self.collate_fn(UpperCAmelCase ) A_ = jax.tree_util.tree_map(UpperCAmelCase , UpperCAmelCase ) return batch def __A ( self : List[Any] , UpperCAmelCase : Optional[int] ): A_ , A_ = self.fetch_inputs(features["input_ids"] ) A_ = { "input_ids": jnp.array(UpperCAmelCase , dtype=jnp.intaa ), "attention_mask": jnp.array(UpperCAmelCase , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def __A ( self : Optional[Any] , UpperCAmelCase : list ): A_ = [self._fetch_inputs(UpperCAmelCase ) for ids in input_ids] return zip(*UpperCAmelCase ) def __A ( self : List[str] , UpperCAmelCase : list ): A_ = [1 for _ in range(len(UpperCAmelCase ) )] while len(UpperCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : str=None ): """simple docstring""" if seed is not None: A_ = dataset.shuffle(seed=__UpperCamelCase ) for i in range(len(__UpperCamelCase ) // batch_size ): A_ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__UpperCamelCase ) @partial(jax.pmap ,axis_name="batch" ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : int ,**__UpperCamelCase : List[Any] ): """simple docstring""" def loss_fn(__UpperCamelCase : Optional[Any] ): A_ = model_inputs.pop("start_labels" ) A_ = model_inputs.pop("end_labels" ) A_ = model_inputs.pop("pooled_labels" ) A_ = state.apply_fn(**__UpperCamelCase ,params=__UpperCamelCase ,dropout_rng=__UpperCamelCase ,train=__UpperCamelCase ) A_ , A_ , A_ = outputs return state.loss_fn( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) A_ , A_ = jax.random.split(__UpperCamelCase ) A_ = jax.value_and_grad(__UpperCamelCase ) A_ , A_ = grad_fn(state.params ) A_ = jax.lax.pmean({"loss": loss} ,axis_name="batch" ) A_ = jax.lax.pmean(__UpperCamelCase ,"batch" ) A_ = state.apply_gradients(grads=__UpperCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name="batch" ) def __snake_case ( __UpperCamelCase : Tuple ,**__UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = model_inputs.pop("start_labels" ) A_ = model_inputs.pop("end_labels" ) A_ = model_inputs.pop("pooled_labels" ) A_ = state.apply_fn(**__UpperCamelCase ,params=state.params ,train=__UpperCamelCase ) A_ , A_ , A_ = outputs A_ = state.loss_fn(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) A_ = jax.lax.pmean({"loss": loss} ,axis_name="batch" ) return metrics class _a ( train_state.TrainState ): """simple docstring""" _lowerCamelCase : Callable = struct.field(pytree_node=snake_case_ ) @dataclass class _a : """simple docstring""" _lowerCamelCase : Args _lowerCamelCase : Callable _lowerCamelCase : Callable _lowerCamelCase : Callable _lowerCamelCase : Callable _lowerCamelCase : wandb _lowerCamelCase : Callable = None def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Any=None ): A_ = model.params A_ = TrainState.create( apply_fn=model.__call__ , params=UpperCAmelCase , tx=UpperCAmelCase , loss_fn=UpperCAmelCase , ) if ckpt_dir is not None: A_ , A_ , A_ , A_ , A_ = restore_checkpoint(UpperCAmelCase , UpperCAmelCase ) A_ = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } A_ , A_ = build_tx(**UpperCAmelCase ) A_ = train_state.TrainState( step=UpperCAmelCase , apply_fn=model.__call__ , params=UpperCAmelCase , tx=UpperCAmelCase , opt_state=UpperCAmelCase , ) A_ = args A_ = data_collator A_ = lr A_ = params A_ = jax_utils.replicate(UpperCAmelCase ) return state def __A ( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ): A_ = self.args A_ = len(UpperCAmelCase ) // args.batch_size A_ = jax.random.PRNGKey(0 ) A_ = jax.random.split(UpperCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): A_ = jnp.array(0 , dtype=jnp.floataa ) A_ = get_batched_dataset(UpperCAmelCase , args.batch_size , seed=UpperCAmelCase ) A_ = 0 for batch in tqdm(UpperCAmelCase , total=UpperCAmelCase , desc=f'''Running EPOCH-{epoch}''' ): A_ = self.data_collator(UpperCAmelCase ) A_ , A_ , A_ = self.train_step_fn(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: A_ = jax_utils.unreplicate(state.step ) A_ = running_loss.item() / i A_ = self.scheduler_fn(state_step - 1 ) A_ = self.evaluate(UpperCAmelCase , UpperCAmelCase ) A_ = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(UpperCAmelCase ) ) self.logger.log(UpperCAmelCase , commit=UpperCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=UpperCAmelCase ) def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] ): A_ = get_batched_dataset(UpperCAmelCase , self.args.batch_size ) A_ = len(UpperCAmelCase ) // self.args.batch_size A_ = jnp.array(0 , dtype=jnp.floataa ) A_ = 0 for batch in tqdm(UpperCAmelCase , total=UpperCAmelCase , desc="Evaluating ... " ): A_ = self.data_collator(UpperCAmelCase ) A_ = self.val_step_fn(UpperCAmelCase , **UpperCAmelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : int ): A_ = jax_utils.unreplicate(UpperCAmelCase ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=" ... " ) self.model_save_fn(UpperCAmelCase , params=state.params ) with open(os.path.join(UpperCAmelCase , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(UpperCAmelCase , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(UpperCAmelCase , "data_collator.joblib" ) ) with open(os.path.join(UpperCAmelCase , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , UpperCAmelCase ) print("DONE" ) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : Any ): """simple docstring""" print(f'''RESTORING CHECKPOINT FROM {save_dir}''' ,end=" ... " ) with open(os.path.join(__UpperCamelCase ,"flax_model.msgpack" ) ,"rb" ) as f: A_ = from_bytes(state.params ,f.read() ) with open(os.path.join(__UpperCamelCase ,"opt_state.msgpack" ) ,"rb" ) as f: A_ = from_bytes(state.opt_state ,f.read() ) A_ = joblib.load(os.path.join(__UpperCamelCase ,"args.joblib" ) ) A_ = joblib.load(os.path.join(__UpperCamelCase ,"data_collator.joblib" ) ) with open(os.path.join(__UpperCamelCase ,"training_state.json" ) ,"r" ) as f: A_ = json.load(__UpperCamelCase ) A_ = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any ,__UpperCamelCase : int ,__UpperCamelCase : Dict ): """simple docstring""" A_ = num_train_steps - warmup_steps A_ = optax.linear_schedule(init_value=__UpperCamelCase ,end_value=__UpperCamelCase ,transition_steps=__UpperCamelCase ) A_ = optax.linear_schedule(init_value=__UpperCamelCase ,end_value=1E-7 ,transition_steps=__UpperCamelCase ) A_ = optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[str] ,__UpperCamelCase : str ,__UpperCamelCase : Dict ): """simple docstring""" def weight_decay_mask(__UpperCamelCase : int ): A_ = traverse_util.flatten_dict(__UpperCamelCase ) A_ = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(__UpperCamelCase ) A_ = scheduler_fn(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) A_ = optax.adamw(learning_rate=__UpperCamelCase ,weight_decay=__UpperCamelCase ,mask=__UpperCamelCase ) return tx, lr
86
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } A_ = f'''{src_lang}-{tgt_lang}''' A_ = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = os.path.join(__UpperCamelCase ,"README.md" ) print(f'''Generating {path}''' ) with open(__UpperCamelCase ,"w" ,encoding="utf-8" ) as f: f.write(__UpperCamelCase ) # make sure we are under the root of the project __a :Optional[Any] = Path(__file__).resolve().parent.parent.parent __a :Optional[Any] = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __a , __a , __a :int = model_name.split('-') __a :str = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
86
1
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( lowerCamelCase = "AAPL" ): __magic_name__ : Any =F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" __magic_name__ : List[str] =BeautifulSoup(requests.get(lowerCamelCase ).text , """html.parser""" ) __magic_name__ : Optional[Any] ="""My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
367
from ... import PretrainedConfig UpperCAmelCase_ : List[str] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class __A ( UpperCamelCase__ ): UpperCamelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase = """nezha""" def __init__( self :List[Any] , __snake_case :Optional[int]=2_11_28 , __snake_case :Dict=7_68 , __snake_case :str=12 , __snake_case :List[Any]=12 , __snake_case :Optional[int]=30_72 , __snake_case :Any="gelu" , __snake_case :List[str]=0.1 , __snake_case :Optional[int]=0.1 , __snake_case :Dict=5_12 , __snake_case :Optional[int]=64 , __snake_case :Any=2 , __snake_case :List[Any]=0.02 , __snake_case :List[str]=1E-12 , __snake_case :Any=0.1 , __snake_case :str=0 , __snake_case :int=2 , __snake_case :str=3 , __snake_case :Any=True , **__snake_case :Any , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : Tuple =vocab_size __magic_name__ : str =hidden_size __magic_name__ : Dict =num_hidden_layers __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : Optional[int] =intermediate_size __magic_name__ : Union[str, Any] =hidden_dropout_prob __magic_name__ : Any =attention_probs_dropout_prob __magic_name__ : Union[str, Any] =max_position_embeddings __magic_name__ : str =max_relative_position __magic_name__ : Tuple =type_vocab_size __magic_name__ : str =initializer_range __magic_name__ : Tuple =layer_norm_eps __magic_name__ : Optional[int] =classifier_dropout __magic_name__ : List[str] =use_cache
367
1
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert("RGB" ) UpperCAmelCase_ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) UpperCAmelCase_ = transform(snake_case_ ).unsqueeze(0 ).to(snake_case_ ) return image def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if "visual_encoder" in key: UpperCAmelCase_ = re.sub("visual_encoder*" , "vision_model.encoder" , snake_case_ ) if "blocks" in key: UpperCAmelCase_ = re.sub(R"blocks" , "layers" , snake_case_ ) if "attn" in key: UpperCAmelCase_ = re.sub(R"attn" , "self_attn" , snake_case_ ) if "norm1" in key: UpperCAmelCase_ = re.sub(R"norm1" , "layer_norm1" , snake_case_ ) if "norm2" in key: UpperCAmelCase_ = re.sub(R"norm2" , "layer_norm2" , snake_case_ ) if "encoder.norm" in key: UpperCAmelCase_ = re.sub(R"encoder.norm" , "post_layernorm" , snake_case_ ) if "encoder.patch_embed.proj" in key: UpperCAmelCase_ = re.sub(R"encoder.patch_embed.proj" , "embeddings.patch_embedding" , snake_case_ ) if "encoder.pos_embed" in key: UpperCAmelCase_ = re.sub(R"encoder.pos_embed" , "embeddings.position_embedding" , snake_case_ ) if "encoder.cls_token" in key: UpperCAmelCase_ = re.sub(R"encoder.cls_token" , "embeddings.class_embedding" , snake_case_ ) if "self_attn" in key: UpperCAmelCase_ = re.sub(R"self_attn.proj" , "self_attn.projection" , snake_case_ ) return key @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Any=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase_ = BlipConfig.from_pretrained(snake_case_ ) else: UpperCAmelCase_ = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) UpperCAmelCase_ = BlipForConditionalGeneration(snake_case_ ).eval() UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" UpperCAmelCase_ = blip_decoder(pretrained=snake_case_ , image_size=3_84 , vit="base" ) UpperCAmelCase_ = pt_model.eval() UpperCAmelCase_ = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(snake_case_ ) UpperCAmelCase_ = rename_key(snake_case_ ) UpperCAmelCase_ = value hf_model.load_state_dict(snake_case_ ) UpperCAmelCase_ = 3_84 UpperCAmelCase_ = load_demo_image(image_size=snake_case_ , device="cpu" ) UpperCAmelCase_ = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCAmelCase_ = tokenizer(["a picture of"] ).input_ids UpperCAmelCase_ = hf_model.generate(snake_case_ , snake_case_ ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] UpperCAmelCase_ = hf_model.generate(snake_case_ ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(snake_case_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCAmelCase_ = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) UpperCAmelCase_ = blip_vqa(pretrained=snake_case_ , image_size=snake_case_ , vit="base" ) vqa_model.eval() UpperCAmelCase_ = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(snake_case_ ) UpperCAmelCase_ = rename_key(snake_case_ ) UpperCAmelCase_ = value UpperCAmelCase_ = BlipForQuestionAnswering(snake_case_ ) hf_vqa_model.load_state_dict(snake_case_ ) UpperCAmelCase_ = ["How many dogs are in this image?"] UpperCAmelCase_ = tokenizer(snake_case_ , return_tensors="pt" ).input_ids UpperCAmelCase_ = hf_vqa_model.generate(snake_case_ , snake_case_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) UpperCAmelCase_ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" UpperCAmelCase_ = blip_itm(pretrained=snake_case_ , image_size=snake_case_ , vit="base" ) itm_model.eval() UpperCAmelCase_ = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase_ = modified_state_dict.pop(snake_case_ ) UpperCAmelCase_ = rename_key(snake_case_ ) UpperCAmelCase_ = value UpperCAmelCase_ = BlipForImageTextRetrieval(snake_case_ ) UpperCAmelCase_ = ["A picture of a woman with a dog sitting in a beach"] UpperCAmelCase_ = tokenizer( snake_case_ , return_tensors="pt" , padding="max_length" , truncation=snake_case_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(snake_case_ ) hf_itm_model.eval() UpperCAmelCase_ = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) UpperCAmelCase_ = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[Any] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
78
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = TransfoXLTokenizer _A : Union[str, Any] = False _A : Tuple = False def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().setUp() __lowercase : List[str] = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] __lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : Union[str, Any] , **__a : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Any , __a : int ) -> Tuple: """simple docstring""" __lowercase : Tuple = """<unk> UNwanted , running""" __lowercase : Dict = """<unk> unwanted, running""" return input_text, output_text def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Optional[int] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__a ) __lowercase : Any = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(__a , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [0, 4, 8, 7] ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : Tuple = TransfoXLTokenizer(lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = TransfoXLTokenizer(lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Tuple = TransfoXLTokenizer(lower_case=__a ) __lowercase : List[str] = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" __lowercase : Tuple = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(__a ) , __a ) self.assertEqual(tokenizer.convert_tokens_to_string(__a ) , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : str = self.get_tokenizer() __lowercase : Union[str, Any] = len(__a ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__a ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
149
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : str = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : Dict = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } _lowerCamelCase : Dict = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class lowercase ( a ): lowercase__ : Dict = VOCAB_FILES_NAMES lowercase__ : int = PRETRAINED_VOCAB_FILES_MAP lowercase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Optional[Any] = ["""input_ids""", """attention_mask"""] lowercase__ : Tuple = GPTaTokenizer def __init__( self : str , _UpperCamelCase : int=None , _UpperCamelCase : Any=None , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Dict="<|endoftext|>" , _UpperCamelCase : Union[str, Any]="<|endoftext|>" , _UpperCamelCase : Any="<|endoftext|>" , _UpperCamelCase : List[Any]=False , **_UpperCamelCase : Tuple , ) -> Optional[Any]: '''simple docstring''' super().__init__( _UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = kwargs.pop("add_bos_token" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _UpperCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = add_prefix_space def __snake_case( self : Dict , *_UpperCamelCase : List[Any] , **_UpperCamelCase : int ) -> BatchEncoding: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.get("is_split_into_words" , _UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : List[Any] , *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : List[Any] ) -> BatchEncoding: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.get("is_split_into_words" , _UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase ) def __snake_case( self : Optional[Any] , _UpperCamelCase : "Conversation" ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) + [self.eos_token_id] ) if len(_UpperCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
715
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowercase ( unittest.TestCase ): def __init__( self : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Dict=7 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : Optional[int]=30 , _UpperCamelCase : List[Any]=400 , _UpperCamelCase : Dict=True , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Any=True , _UpperCamelCase : List[Any]=[0.5, 0.5, 0.5] , _UpperCamelCase : Tuple=[0.5, 0.5, 0.5] , _UpperCamelCase : Tuple=True , _UpperCamelCase : List[Any]=1 / 255 , _UpperCamelCase : Optional[Any]=True , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_pad def __snake_case( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __snake_case( self : Any , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any]=False ) -> List[Any]: '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(_UpperCamelCase , Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE = int(self.size["shortest_edge"] * h / w ) SCREAMING_SNAKE_CASE = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE = self.size["shortest_edge"] SCREAMING_SNAKE_CASE = int(self.size["shortest_edge"] * w / h ) else: SCREAMING_SNAKE_CASE = self.size["shortest_edge"] SCREAMING_SNAKE_CASE = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( a , unittest.TestCase ): lowercase__ : Optional[int] = DetaImageProcessor if is_vision_available() else None def __snake_case( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = DetaImageProcessingTester(self ) @property def __snake_case( self : int ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __snake_case( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_pad" ) ) self.assertTrue(hasattr(_UpperCamelCase , "size" ) ) def __snake_case( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) def __snake_case( self : str ) -> List[Any]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __snake_case( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE = json.loads(f.read() ) SCREAMING_SNAKE_CASE = {"image_id": 39_769, "annotations": target} # encode them SCREAMING_SNAKE_CASE = DetaImageProcessor() SCREAMING_SNAKE_CASE = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCamelCase ) ) # verify size SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCamelCase ) ) @slow def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE = json.loads(f.read() ) SCREAMING_SNAKE_CASE = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} SCREAMING_SNAKE_CASE = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them SCREAMING_SNAKE_CASE = DetaImageProcessor(format="coco_panoptic" ) SCREAMING_SNAKE_CASE = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , masks_path=_UpperCamelCase , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _UpperCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCamelCase ) ) # verify size SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCamelCase ) )
647
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path a__ = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __UpperCAmelCase ( __a : List[Any]=True ) -> str: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__lowercase ) ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = None UpperCAmelCase__ : List[str] = None def __lowercase ( self , _a , _a ) -> Optional[Any]: with TemporaryDirectory() as tmp_dir: _a : Dict = dataset_module_factory(_a , cache_dir=_a ) _a : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=_a ) _a : DatasetBuilder = builder_cls( cache_dir=_a , config_name=_a , hash=dataset_module.hash , ) _a : int = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_a ).replace(os.sep , '''/''' ), config.DATASET_INFO_FILENAME, ] ) _a : Optional[int] = cached_path(_a , cache_dir=_a ) self.assertTrue(os.path.exists(_a ) ) @pytest.mark.integration def __UpperCAmelCase ( __a : Optional[int] ) -> List[Any]: """simple docstring""" _a : List[str] = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' _a : List[str] = dataset_module_factory('''wikipedia''' ,cache_dir=__a ) _a : Tuple = import_main_class(dataset_module.module_path ) _a : DatasetBuilder = builder_cls( cache_dir=__a ,config_name='''20220301.frr''' ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _a : int = None builder_instance.download_and_prepare() _a : Tuple = builder_instance.as_dataset() assert ds @pytest.mark.integration def __UpperCAmelCase ( __a : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = dataset_module_factory('''wikipedia''' ,cache_dir=__a ) _a : Optional[int] = import_main_class(dataset_module.module_path ,dataset=__a ) _a : DatasetBuilder = builder_cls( cache_dir=__a ,config_name='''20220301.frr''' ,hash=dataset_module.hash ,) _a : Dict = builder_instance.as_streaming_dataset() assert ds assert isinstance(__a ,__a ) assert "train" in ds assert isinstance(ds['''train'''] ,__a ) assert next(iter(ds['''train'''] ) )
14
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : Optional[Any] = 1_6 a__ : str = 3_2 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = 16 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("bert-base-cased" ) __SCREAMING_SNAKE_CASE = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __SCREAMING_SNAKE_CASE = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": __SCREAMING_SNAKE_CASE = 8 else: __SCREAMING_SNAKE_CASE = None return tokenizer.pad( lowerCAmelCase_ , padding="longest" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ : List[Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase_ ) == "1": __SCREAMING_SNAKE_CASE = 2 # Initialize accelerator __SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __SCREAMING_SNAKE_CASE = config["lr"] __SCREAMING_SNAKE_CASE = int(config["num_epochs"] ) __SCREAMING_SNAKE_CASE = int(config["seed"] ) __SCREAMING_SNAKE_CASE = int(config["batch_size"] ) __SCREAMING_SNAKE_CASE = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer __SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate scheduler __SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) __SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
682
0
'''simple docstring''' import numpy as np from PIL import Image def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = np.array(lowerCamelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : str = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE : Any = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE : List[Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 return updated_arr def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = np.array(lowerCamelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE : Any = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE : Any = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE : List[Any] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Any = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image __UpperCAmelCase = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
703
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None # Automatically constructed SCREAMING_SNAKE_CASE__ = "dict" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = field(default='''Translation''' , init=lowercase_ , repr=lowercase_ ) def __call__( self : int ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None # Automatically constructed SCREAMING_SNAKE_CASE__ = "dict" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = field(default='''TranslationVariableLanguages''' , init=lowercase_ , repr=lowercase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = sorted(set(self.languages ) ) if self.languages else None SCREAMING_SNAKE_CASE : str = len(self.languages ) if self.languages else None def __call__( self : Tuple ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = set(self.languages ) if self.languages and set(lowerCamelCase_ ) - lang_set: raise ValueError( f'''Some languages in example ({", ".join(sorted(set(lowerCamelCase_ ) - lang_set ) )}) are not in valid set ({", ".join(lowerCamelCase_ )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE : List[Any] = [] for lang, text in translation_dict.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = zip(*sorted(lowerCamelCase_ ) ) return {"language": languages, "translation": translations} def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
79
0
"""simple docstring""" from __future__ import annotations class lowerCAmelCase__ : """simple docstring""" def __init__( self : Any , lowercase__ : str , lowercase__ : str ): __lowercase : Tuple = text, pattern __lowercase : Tuple = len(lowercase_ ), len(lowercase_ ) def snake_case ( self : Any , lowercase__ : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def snake_case ( self : str , lowercase__ : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def snake_case ( self : Any ): # searches pattern in text and returns index positions __lowercase : str = [] for i in range(self.textLen - self.patLen + 1 ): __lowercase : List[str] = self.mismatch_in_text(lowercase_ ) if mismatch_index == -1: positions.append(lowercase_ ) else: __lowercase : int = self.match_in_pattern(self.text[mismatch_index] ) __lowercase : str = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __A : List[str] = '''ABAABA''' __A : Union[str, Any] = '''AB''' __A : Tuple = BoyerMooreSearch(text, pattern) __A : Dict = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
575
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _UpperCAmelCase ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Dict=True , lowercase_ : int=True , lowercase_ : str=True , lowercase_ : List[Any]=True , lowercase_ : Optional[int]=99 , lowercase_ : str=32 , lowercase_ : List[str]=5 , lowercase_ : List[str]=4 , lowercase_ : List[Any]=37 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Any=0.1 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=512 , lowercase_ : List[str]=16 , lowercase_ : Any=2 , lowercase_ : Dict=0.02 , lowercase_ : Any=4 , ): snake_case_ : str = parent snake_case_ : List[Any] = batch_size snake_case_ : int = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : List[Any] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : List[str] = use_labels snake_case_ : List[Any] = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : int = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : int = hidden_dropout_prob snake_case_ : int = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : Any = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : int = num_choices def _snake_case ( self : Union[str, Any] ): snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Dict = None if self.use_attention_mask: snake_case_ : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Any = None if self.use_token_type_ids: snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self : List[str] ): snake_case_ : Optional[Any] = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ : int = config_and_inputs snake_case_ : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self : Optional[int] ): snake_case_ : Any = FlaxRoFormerModelTester(self ) @slow def _snake_case ( self : Optional[Any] ): for model_class_name in self.all_model_classes: snake_case_ : str = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=lowercase_ ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ ) @require_flax class _UpperCAmelCase ( unittest.TestCase): @slow def _snake_case ( self : Optional[int] ): snake_case_ : Optional[int] = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) snake_case_ : Dict = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : List[Any] = model(lowercase_ )[0] snake_case_ : List[str] = 50000 snake_case_ : Any = (1, 6, vocab_size) self.assertEqual(output.shape , lowercase_ ) snake_case_ : Tuple = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
123
0
'''simple docstring''' def _lowerCamelCase( UpperCamelCase__ : int = 4_000_000 ) -> int: A : Dict = [0, 1] A : Any = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 A : Optional[int] = 0 for j in range(len(UpperCamelCase__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
537
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCamelCase( UpperCamelCase__ : Dict ) -> Union[str, Any]: A : Optional[Any] = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , UpperCamelCase__ ).groups()[0] class _lowercase ( a ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): A : str = file_names A : Optional[int] = image_transform A : str = label_to_id def __len__( self ): return len(self.file_names ) def __getitem__( self , _UpperCAmelCase ): A : int = self.file_names[idx] A : int = PIL.Image.open(_UpperCAmelCase ) A : str = raw_image.convert('''RGB''' ) if self.image_transform is not None: A : Dict = self.image_transform(_UpperCAmelCase ) A : Tuple = extract_label(_UpperCAmelCase ) if self.label_to_id is not None: A : Optional[Any] = self.label_to_id[label] return {"image": image, "label": label} def _lowerCamelCase( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ) -> Any: # Initialize accelerator if args.with_tracking: A : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: A : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : List[str] = config['''lr'''] A : int = int(config['''num_epochs'''] ) A : List[str] = int(config['''seed'''] ) A : Any = int(config['''batch_size'''] ) A : List[str] = config['''image_size'''] if not isinstance(UpperCamelCase__ , (list, tuple) ): A : List[str] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": A : List[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): A : Optional[Any] = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: A : Optional[Any] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: A : Any = os.path.split(UpperCamelCase__ )[-1].split('''.''' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Grab all the image filenames A : int = [os.path.join(args.data_dir , UpperCamelCase__ ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences A : int = [extract_label(UpperCamelCase__ ) for fname in file_names] A : str = list(set(UpperCamelCase__ ) ) id_to_label.sort() A : Dict = {lbl: i for i, lbl in enumerate(UpperCamelCase__ )} # Set the seed before splitting the data. np.random.seed(UpperCamelCase__ ) torch.manual_seed(UpperCamelCase__ ) torch.cuda.manual_seed_all(UpperCamelCase__ ) # Split our filenames between train and validation A : Dict = np.random.permutation(len(UpperCamelCase__ ) ) A : str = int(0.8 * len(UpperCamelCase__ ) ) A : Tuple = random_perm[:cut] A : List[Any] = random_perm[cut:] # For training we use a simple RandomResizedCrop A : Any = Compose([RandomResizedCrop(UpperCamelCase__ , scale=(0.5, 1.0) ), ToTensor()] ) A : List[Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # For evaluation, we use a deterministic Resize A : Optional[Any] = Compose([Resize(UpperCamelCase__ ), ToTensor()] ) A : List[Any] = PetsDataset([file_names[i] for i in eval_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # Instantiate dataloaders. A : List[str] = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) A : Tuple = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : Union[str, Any] = create_model('''resnet50d''' , pretrained=UpperCamelCase__ , num_classes=len(UpperCamelCase__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A : Optional[int] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): A : Union[str, Any] = False for param in model.get_classifier().parameters(): A : Any = True # We normalize the batches of images to be a bit faster. A : Dict = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) A : str = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer A : List[Any] = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler A : int = OneCycleLR(optimizer=UpperCamelCase__ , max_lr=UpperCamelCase__ , epochs=UpperCamelCase__ , steps_per_epoch=len(UpperCamelCase__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A, A, A, A, A : Optional[int] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over A : Dict = 0 # We also need to keep track of the starting epoch so files are named properly A : str = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) A : Optional[int] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint A : Dict = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) A : Optional[int] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` A : Optional[int] = os.path.splitext(UpperCamelCase__ )[0] if "epoch" in training_difference: A : Tuple = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 A : Union[str, Any] = None else: A : int = int(training_difference.replace('''step_''' , '''''' ) ) A : str = resume_step // len(UpperCamelCase__ ) resume_step -= starting_epoch * len(UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ , UpperCamelCase__ ): model.train() if args.with_tracking: A : int = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step A : str = accelerator.skip_first_batches(UpperCamelCase__ , UpperCamelCase__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader A : int = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. A : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} A : Optional[int] = (batch['''image'''] - mean) / std A : int = model(UpperCamelCase__ ) A : List[Any] = torch.nn.functional.cross_entropy(UpperCamelCase__ , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A : List[Any] = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: A : Dict = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) model.eval() A : Optional[int] = 0 A : int = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. A : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} A : Any = (batch['''image'''] - mean) / std with torch.no_grad(): A : Union[str, Any] = model(UpperCamelCase__ ) A : Tuple = outputs.argmax(dim=-1 ) A, A : List[Any] = accelerator.gather_for_metrics((predictions, batch['''label''']) ) A : Any = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() A : str = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { '''accuracy''': 100 * eval_metric, '''train_loss''': total_loss.item() / len(UpperCamelCase__ ), '''epoch''': epoch, } , step=UpperCamelCase__ , ) if checkpointing_steps == "epoch": A : Dict = F'''epoch_{epoch}''' if args.output_dir is not None: A : Dict = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) if args.with_tracking: accelerator.end_training() def _lowerCamelCase( ) -> int: A : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=UpperCamelCase__ , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=UpperCamelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=UpperCamelCase__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) A : Tuple = parser.parse_args() A : List[str] = {'''lr''': 3e-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 224} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
537
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowercase_: str = logging.get_logger(__name__) class lowercase__ (__snake_case ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Union[str, Any] ): warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
648
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
1
from graphs.minimum_spanning_tree_kruskal import kruskal def __lowerCamelCase ( ) -> Tuple: _UpperCAmelCase = 9 _UpperCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _UpperCAmelCase = kruskal(_lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_lowerCAmelCase ) == sorted(_lowerCAmelCase )
129
import sys def __lowerCamelCase ( _lowerCAmelCase ) -> Tuple: _UpperCAmelCase = len(_lowerCAmelCase ) _UpperCAmelCase = [[0 for x in range(_lowerCAmelCase )] for x in range(_lowerCAmelCase )] _UpperCAmelCase = [[0 for x in range(_lowerCAmelCase )] for x in range(_lowerCAmelCase )] for chain_length in range(2 , _lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): _UpperCAmelCase = a + chain_length - 1 _UpperCAmelCase = sys.maxsize for c in range(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _UpperCAmelCase = cost _UpperCAmelCase = c return matrix, sol def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: if i == j: print("A" + str(_lowerCAmelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(_lowerCAmelCase , _lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(_lowerCAmelCase , optimal_solution[i][j] + 1 , _lowerCAmelCase ) print(")" , end=" " ) def __lowerCamelCase ( ) -> Optional[int]: _UpperCAmelCase = [30, 35, 15, 5, 10, 20, 25] _UpperCAmelCase = len(_lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _UpperCAmelCase , _UpperCAmelCase = matrix_chain_order(_lowerCAmelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(_lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
129
1
def __A ( _lowercase ): '''simple docstring''' _A = len(_lowercase ) for i in range(_lowercase ): for j in range(i + 1 , _lowercase ): if numbers[j] < numbers[i]: _A ,_A = numbers[j], numbers[i] return numbers if __name__ == "__main__": __A = input('Enter numbers separated by a comma:\n').strip() __A = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
484
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self: List[str] , __A: List[str] , __A: List[str]=7 , __A: Tuple=3 , __A: Optional[int]=30 , __A: Optional[Any]=4_00 , __A: int=True , __A: str=None , __A: int=True , __A: Any=[0.5, 0.5, 0.5] , __A: Dict=[0.5, 0.5, 0.5] , __A: Dict=True , __A: str=1 / 2_55 , __A: Dict=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def __A ( self: Optional[Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self: Any , __A: Optional[Any] , __A: int=False ) -> List[str]: if not batched: _A = image_inputs[0] if isinstance(__A , Image.Image ): _A ,_A = image.size else: _A ,_A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A ,_A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__A , key=lambda __A : item[0] )[0] _A = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): """simple docstring""" A_ = DeformableDetrImageProcessor if is_vision_available() else None def __A ( self: List[str] ) -> List[str]: _A = DeformableDetrImageProcessingTester(self ) @property def __A ( self: Tuple ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self: Any ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''image_mean''' ) ) self.assertTrue(hasattr(__A , '''image_std''' ) ) self.assertTrue(hasattr(__A , '''do_normalize''' ) ) self.assertTrue(hasattr(__A , '''do_resize''' ) ) self.assertTrue(hasattr(__A , '''do_rescale''' ) ) self.assertTrue(hasattr(__A , '''do_pad''' ) ) self.assertTrue(hasattr(__A , '''size''' ) ) def __A ( self: Tuple ) -> Optional[Any]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __A ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __A ) def __A ( self: Dict ) -> Any: pass def __A ( self: str ) -> List[str]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A ,_A = self.image_processor_tester.get_expected_values(__A , batched=__A ) _A = image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self: str ) -> Tuple: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__A , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self: int ) -> Any: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__A , return_tensors='''pt''' ).pixel_values _A ,_A = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self: Optional[Any] ) -> Tuple: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__A , annotations=__A , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) _A = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area _A = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) _A = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1e-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) ) @slow def __A ( self: Dict ) -> Optional[int]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) _A = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area _A = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) _A = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1e-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __A ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) )
484
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Union[str, Any] ) -> Tuple: for tf_name, hf_name in patterns: _UpperCAmelCase : List[Any] = k.replace(lowerCAmelCase , lowerCAmelCase ) return k def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: dict , lowerCAmelCase: dict ) -> BigBirdPegasusForConditionalGeneration: _UpperCAmelCase : Tuple = BigBirdPegasusConfig(**lowerCAmelCase ) _UpperCAmelCase : List[str] = BigBirdPegasusForConditionalGeneration(lowerCAmelCase ) _UpperCAmelCase : List[str] = torch_model.state_dict() _UpperCAmelCase : Any = {} # separating decoder weights _UpperCAmelCase : Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _UpperCAmelCase : Optional[Any] = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _UpperCAmelCase : Optional[Any] = [k.endswith(lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(lowerCAmelCase ): continue _UpperCAmelCase : Tuple = DECODER_PATTERNS _UpperCAmelCase : Any = rename_state_dict_key(lowerCAmelCase , lowerCAmelCase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _UpperCAmelCase : Any = v.T _UpperCAmelCase : Any = torch.from_numpy(lowerCAmelCase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _UpperCAmelCase : str = [k.endswith(lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(lowerCAmelCase ): continue _UpperCAmelCase : Optional[int] = REMAINING_PATTERNS _UpperCAmelCase : Optional[Any] = rename_state_dict_key(lowerCAmelCase , lowerCAmelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _UpperCAmelCase : Dict = v.T _UpperCAmelCase : List[str] = torch.from_numpy(lowerCAmelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _UpperCAmelCase : Union[str, Any] = mapping["model.embed_positions.weight"] _UpperCAmelCase : List[Any] = mapping.pop("model.embed_positions.weight" ) _UpperCAmelCase , _UpperCAmelCase : List[str] = torch_model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> Dict: _UpperCAmelCase : int = tf.train.list_variables(lowerCAmelCase ) _UpperCAmelCase : Dict = {} _UpperCAmelCase : int = ["global_step"] for name, shape in tqdm(lowerCAmelCase , desc="converting tf checkpoint to dict" ): _UpperCAmelCase : List[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase : Tuple = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = array return tf_weights def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: dict ) -> Optional[int]: _UpperCAmelCase : Any = get_tf_weights_as_numpy(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = convert_bigbird_pegasus(lowerCAmelCase , lowerCAmelCase ) torch_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
467
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput SCREAMING_SNAKE_CASE_ = 'scheduler_config.json' class a ( UpperCAmelCase ): _lowercase = 1 _lowercase = 2 _lowercase = 3 _lowercase = 4 _lowercase = 5 @dataclass class a ( UpperCAmelCase ): _lowercase = 42 class a : _lowercase = SCHEDULER_CONFIG_NAME _lowercase = ["dtype"] _lowercase = [] _lowercase = True @classmethod def _UpperCAmelCase ( cls , A_ = None , A_ = None , A_=False , **A_ , ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , "create_state" ) and getattr(A_ , "has_state" , A_ ): _UpperCAmelCase : Union[str, Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def _UpperCAmelCase ( self , A_ , A_ = False , **A_ ): '''simple docstring''' self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return self._get_compatibles() @classmethod def _UpperCAmelCase ( cls ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) _UpperCAmelCase : Optional[Any] = importlib.import_module(__name__.split("." )[0] ) _UpperCAmelCase : Dict = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: jnp.ndarray , lowerCAmelCase: Tuple[int] ) -> jnp.ndarray: assert len(lowerCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowerCAmelCase ) - x.ndim) ) , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Tuple=0.999 , lowerCAmelCase: int=jnp.floataa ) -> jnp.ndarray: def alpha_bar(lowerCAmelCase: Union[str, Any] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 _UpperCAmelCase : str = [] for i in range(lowerCAmelCase ): _UpperCAmelCase : Optional[int] = i / num_diffusion_timesteps _UpperCAmelCase : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowerCAmelCase ) / alpha_bar(lowerCAmelCase ) , lowerCAmelCase ) ) return jnp.array(lowerCAmelCase , dtype=lowerCAmelCase ) @flax.struct.dataclass class a : _lowercase = 42 _lowercase = 42 _lowercase = 42 @classmethod def _UpperCAmelCase ( cls , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = scheduler.config if config.trained_betas is not None: _UpperCAmelCase : List[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _UpperCAmelCase : List[Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase : List[str] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase : str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) _UpperCAmelCase : Optional[int] = 1.0 - betas _UpperCAmelCase : int = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: CommonSchedulerState , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = state.alphas_cumprod _UpperCAmelCase : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 _UpperCAmelCase : str = sqrt_alpha_prod.flatten() _UpperCAmelCase : List[Any] = broadcast_to_shape_from_left(lowerCAmelCase , original_samples.shape ) _UpperCAmelCase : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 _UpperCAmelCase : List[Any] = sqrt_one_minus_alpha_prod.flatten() _UpperCAmelCase : int = broadcast_to_shape_from_left(lowerCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: CommonSchedulerState , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray ) -> List[Any]: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = get_sqrt_alpha_prod(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: CommonSchedulerState , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray ) -> Dict: _UpperCAmelCase , _UpperCAmelCase : int = get_sqrt_alpha_prod(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Tuple = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
467
1
from math import factorial def UpperCamelCase( __UpperCamelCase : int = 20 ): lowerCAmelCase_ : List[str] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowerCAmelCase_ : List[Any] = n // 2 return int(factorial(__UpperCamelCase ) / (factorial(__UpperCamelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: A__ : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
171
'''simple docstring''' def A_( A : list[int]): UpperCamelCase = [] if len(A) == 1: return [nums.copy()] for _ in range(len(A)): UpperCamelCase = nums.pop(0) UpperCamelCase = permute(A) for perm in permutations: perm.append(A) result.extend(A) nums.append(A) return result def A_( A : str): def backtrack(A : str): if start == len(A) - 1: output.append(nums[:]) else: for i in range(A , len(A)): UpperCamelCase , UpperCamelCase = nums[i], nums[start] backtrack(start + 1) UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack UpperCamelCase = [] backtrack(0) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
3
0
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCAmelCase ( _UpperCAmelCase ): '''simple docstring''' A = '' A = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self :Tuple , lowerCamelCase_ :Optional[DatasetInfo] = None , lowerCamelCase_ :Optional[str] = None , **lowerCamelCase_ :Any , ) -> Any: """simple docstring""" super().__init__(self , **__UpperCamelCase ) UpperCamelCase__ = repo_info UpperCamelCase__ = token UpperCamelCase__ = None def lowerCamelCase__ ( self :List[str] ) -> List[str]: """simple docstring""" if self.dir_cache is None: UpperCamelCase__ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCamelCase__ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCamelCase ): {"name": str(__UpperCamelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self :Tuple , lowerCamelCase_ :str , lowerCamelCase_ :str = "rb" , **lowerCamelCase_ :Any , ) -> List[str]: """simple docstring""" if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f'Open is only implemented for dataset repositories, but got {self.repo_info}' ) UpperCamelCase__ = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCamelCase__ ( self :int , lowerCamelCase_ :int , **lowerCamelCase_ :Dict ) -> Tuple: """simple docstring""" self._get_dirs() UpperCamelCase__ = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple=False , **lowerCamelCase_ :List[str] ) -> Optional[Any]: """simple docstring""" self._get_dirs() UpperCamelCase__ = PurePosixPath(path.strip("/" ) ) UpperCamelCase__ = {} for p, f in self.dir_cache.items(): UpperCamelCase__ = PurePosixPath(p.strip("/" ) ) UpperCamelCase__ = p.parent if root == path: UpperCamelCase__ = f UpperCamelCase__ = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
719
"""simple docstring""" def snake_case__ ( _snake_case : str ): """simple docstring""" UpperCamelCase__ = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCamelCase__ = "" UpperCamelCase__ = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCamelCase__ , UpperCamelCase__ = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCamelCase__ = [1 for i in range(len(_snake_case ) )] # for each character in new_string find corresponding palindromic string UpperCamelCase__ = 0 for j in range(len(_snake_case ) ): UpperCamelCase__ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCamelCase__ = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCamelCase__ = j - k + 1 # noqa: E741 UpperCamelCase__ = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCamelCase__ = length[j] UpperCamelCase__ = j # create that string UpperCamelCase__ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
304
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[int] = len(__UpperCamelCase ) snake_case_ : List[Any] = [] for i in range(len(__UpperCamelCase ) - pat_len + 1 ): snake_case_ : Dict = True for j in range(__UpperCamelCase ): if s[i + j] != pattern[j]: snake_case_ : Optional[int] = False break if match_found: position.append(__UpperCamelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
58
_lowercase = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
306
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = 1.5 UpperCamelCase_ = int(factor * num_class_images) UpperCamelCase_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=a_ , aesthetic_weight=0.1) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=a_) if len(list(Path(f"""{class_data_dir}/images""").iterdir())) >= num_class_images: return while True: UpperCamelCase_ = client.query(text=a_) if len(a_) >= factor * num_class_images or num_images > 1e4: break else: UpperCamelCase_ = int(factor * num_images) UpperCamelCase_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=a_ , aesthetic_weight=0.1 , ) UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = tqdm(desc='downloading real regularization images' , total=a_) with open(f"""{class_data_dir}/caption.txt""" , 'w') as fa, open(f"""{class_data_dir}/urls.txt""" , 'w') as fa, open( f"""{class_data_dir}/images.txt""" , 'w') as fa: while total < num_class_images: UpperCamelCase_ = class_images[count] count += 1 try: UpperCamelCase_ = requests.get(images['url']) if img.status_code == 200: UpperCamelCase_ = Image.open(BytesIO(img.content)) with open(f"""{class_data_dir}/images/{total}.jpg""" , 'wb') as f: f.write(img.content) fa.write(images['caption'] + '\n') fa.write(images['url'] + '\n') fa.write(f"""{class_data_dir}/images/{total}.jpg""" + '\n') total += 1 pbar.update(1) else: continue except Exception: continue return def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser('' , add_help=a_) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=a_ , type=a_) parser.add_argument('--class_data_dir' , help='path to save images' , required=a_ , type=a_) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=a_) return parser.parse_args() if __name__ == "__main__": snake_case__ : Optional[int] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
705
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : str = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """layoutlmv3""" def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=1024 , _UpperCAmelCase=128 , _UpperCAmelCase=128 , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=128 , _UpperCAmelCase=64 , _UpperCAmelCase=256 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=16 , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> Tuple: super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase_ = max_ad_position_embeddings UpperCamelCase_ = coordinate_size UpperCamelCase_ = shape_size UpperCamelCase_ = has_relative_attention_bias UpperCamelCase_ = rel_pos_bins UpperCamelCase_ = max_rel_pos UpperCamelCase_ = has_spatial_attention_bias UpperCamelCase_ = rel_ad_pos_bins UpperCamelCase_ = max_rel_ad_pos UpperCamelCase_ = text_embed UpperCamelCase_ = visual_embed UpperCamelCase_ = input_size UpperCamelCase_ = num_channels UpperCamelCase_ = patch_size UpperCamelCase_ = classifier_dropout class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.12""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-5 @property def _UpperCAmelCase ( self ) -> int: return 12 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = 3 , _UpperCAmelCase = 40 , _UpperCAmelCase = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase_ = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase_ = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) UpperCamelCase_ = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase_ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase_ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase_ = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
618
0
"""simple docstring""" import math def _snake_case ( lowercase__ ): assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : Any = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _snake_case ( lowercase__ , lowercase__=1 , **lowercase__ ): _lowerCamelCase : Union[str, Any] = factor * value _lowerCamelCase : List[str] = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
630
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowerCamelCase__ ( unittest.TestCase ): __UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _UpperCAmelCase ( self , snake_case , snake_case , snake_case ) -> Tuple: """simple docstring""" lowercase : Tuple = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def _UpperCAmelCase ( self , snake_case , snake_case ) -> Any: """simple docstring""" lowercase : List[str] = generator("""Something there""" ) self.assertEqual(snake_case , [{"""generated_text""": ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) lowercase : str = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{"""generated_text""": ANY(snake_case )}, {"""generated_text""": ANY(snake_case )}], [{"""generated_text""": ANY(snake_case )}, {"""generated_text""": ANY(snake_case )}], ] , ) lowercase : Optional[int] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{"""generated_text""": ANY(snake_case )}, {"""generated_text""": ANY(snake_case )}], [{"""generated_text""": ANY(snake_case )}, {"""generated_text""": ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" lowercase : Dict = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility lowercase : str = generator("""Something there""" , do_sample=snake_case ) self.assertEqual(snake_case , [{"""generated_text""": """"""}] ) lowercase : Dict = 3 lowercase : Optional[Any] = generator( """Something there""" , num_return_sequences=snake_case , num_beams=snake_case , ) lowercase : Optional[Any] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(snake_case , snake_case ) lowercase : List[Any] = generator("""This is a test""" , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) lowercase : Any = generator.model.config.eos_token_id lowercase : Optional[int] = """<pad>""" lowercase : str = generator( ["""This is a test""", """This is a second test"""] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" lowercase : str = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility lowercase : int = generator("""Something there""" , do_sample=snake_case ) self.assertEqual(snake_case , [{"""generated_text""": """"""}] )
607
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Optional[Any] )-> Optional[Any]: snake_case__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) snake_case__ : Tuple = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case__ : List[str] = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids snake_case__ : List[str] = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids snake_case__ : Union[str, Any] = model(lowerCamelCase , labels=lowerCamelCase ).loss snake_case__ : Dict = -tf.math.reduce_mean(lowerCamelCase ).numpy() snake_case__ : str = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
172
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase__ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , lowerCamelCase : Path , lowerCamelCase : Union[str, None] = None , lowerCamelCase : Union[List[str], None] = None , lowerCamelCase : Union[str, List[str], None] = None , lowerCamelCase : bool = True , )-> Dict: snake_case__ : int = [file for file in os.listdir(lowerCamelCase ) if os.path.isfile(os.path.join(lowerCamelCase , lowerCamelCase ) )] if identifier is not None: snake_case__ : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCamelCase , lowerCamelCase ): for n_ in n_identifier: snake_case__ : Union[str, Any] = [file for file in files if n_ not in file] else: snake_case__ : Optional[Any] = [file for file in files if n_identifier not in file] snake_case__ : Tuple = ignore_files or [] ignore_files.append("""__init__.py""" ) snake_case__ : int = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , lowerCamelCase ) if only_modules: snake_case__ : Union[str, Any] = file.split(""".""" )[0] try: snake_case__ : Any = getattr(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = doctest.DocTestSuite(lowerCamelCase ) snake_case__ : int = unittest.TextTestRunner().run(lowerCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: snake_case__ : List[Any] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __lowerCAmelCase ( self : Tuple )-> List[str]: snake_case__ : Optional[int] = Path("""src/transformers""" ) snake_case__ : Optional[Any] = """modeling""" snake_case__ : Optional[Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase , ignore_files=lowerCamelCase ) def __lowerCAmelCase ( self : List[str] )-> Union[str, Any]: snake_case__ : Optional[Any] = Path("""src/transformers""" ) snake_case__ : Any = """tokenization""" self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Dict )-> Dict: snake_case__ : Any = Path("""src/transformers""" ) snake_case__ : List[Any] = """configuration""" self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Dict )-> Tuple: snake_case__ : int = Path("""src/transformers""" ) snake_case__ : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(lowerCamelCase , n_identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Union[str, Any] )-> Tuple: snake_case__ : List[Any] = Path("""docs/source""" ) snake_case__ : Optional[int] = ["""favicon.ico"""] self.analyze_directory(lowerCamelCase , ignore_files=lowerCamelCase , only_modules=lowerCamelCase )
172
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCAmelCase_ (lowercase__ : Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase__ = flatten_dict(lowercase__ ) return flax_params def lowerCAmelCase_ (lowercase__ : Any ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = {} lowerCAmelCase__ = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowerCAmelCase__ = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCAmelCase__ = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCAmelCase__ = new_key.replace(lowercase__ , lowercase__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCAmelCase__ = new_key.replace(lowercase__ , lowercase__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCAmelCase__ = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , lowercase__ ) lowerCAmelCase__ = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCAmelCase__ = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , lowercase__ ) lowerCAmelCase__ = flax_dict[key] lowerCAmelCase__ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCAmelCase__ = torch.from_numpy(converted_dict[key].T ) else: lowerCAmelCase__ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCAmelCase_ (lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : List[str]=False , lowercase__ : Any=False ) -> Dict: '''simple docstring''' lowerCAmelCase__ = get_flax_param(lowercase__ ) if not use_large: lowerCAmelCase__ = PixaStructVisionConfig() lowerCAmelCase__ = PixaStructTextConfig() else: lowerCAmelCase__ = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) lowerCAmelCase__ = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) lowerCAmelCase__ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=lowercase__ ) lowerCAmelCase__ = PixaStructForConditionalGeneration(lowercase__ ) lowerCAmelCase__ = rename_and_convert_flax_params(lowercase__ ) model.load_state_dict(lowercase__ ) lowerCAmelCase__ = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowerCAmelCase__ = PixaStructImageProcessor() lowerCAmelCase__ = PixaStructProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) if use_large: lowerCAmelCase__ = 40_96 lowerCAmelCase__ = True # mkdir if needed os.makedirs(lowercase__ , exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) print('''Model saved in {}'''.format(lowercase__ ) ) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _UpperCAmelCase : int = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
668
def lowerCAmelCase_ (lowercase__ : float , lowercase__ : int ) -> float: '''simple docstring''' if digit_amount > 0: return round(number - int(lowercase__ ) , lowercase__ ) return number - int(lowercase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
668
1
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = ["image_processor"] A = "SamImageProcessor" def __init__(self , _UpperCAmelCase ) -> Any: super().__init__(_UpperCAmelCase ) __UpperCamelCase : Optional[int] = self.image_processor __UpperCamelCase : List[Any] = -1_0 __UpperCamelCase : Optional[int] = self.image_processor.size["longest_edge"] def __call__(self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> BatchEncoding: __UpperCamelCase : Optional[int] = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # pop arguments that are not used in the foward but used nevertheless __UpperCamelCase : int = encoding_image_processor["original_sizes"] if hasattr(_UpperCAmelCase , "numpy" ): # Checks if Torch or TF tensor __UpperCamelCase : Optional[Any] = original_sizes.numpy() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = self._check_and_preprocess_points( input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , ) __UpperCamelCase : Any = self._normalize_and_convert( _UpperCAmelCase , _UpperCAmelCase , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) return encoding_image_processor def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="pt" , ) -> Union[str, Any]: if input_points is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __UpperCamelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] ) for point in input_points ] else: __UpperCamelCase : List[str] = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase ) for point, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __UpperCamelCase , __UpperCamelCase : List[str] = self._pad_points_and_labels(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : Dict = np.array(_UpperCAmelCase ) if input_labels is not None: __UpperCamelCase : Dict = np.array(_UpperCAmelCase ) if input_boxes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __UpperCamelCase : int = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] , is_bounding_box=_UpperCAmelCase ) for box in input_boxes ] else: __UpperCamelCase : Optional[int] = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase , is_bounding_box=_UpperCAmelCase ) for box, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] __UpperCamelCase : Optional[Any] = np.array(_UpperCAmelCase ) if input_boxes is not None: if return_tensors == "pt": __UpperCamelCase : List[str] = torch.from_numpy(_UpperCAmelCase ) # boxes batch size of 1 by default __UpperCamelCase : Optional[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __UpperCamelCase : List[Any] = tf.convert_to_tensor(_UpperCAmelCase ) # boxes batch size of 1 by default __UpperCamelCase : Tuple = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": __UpperCamelCase : Tuple = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __UpperCamelCase : List[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __UpperCamelCase : str = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __UpperCamelCase : int = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": __UpperCamelCase : Any = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __UpperCamelCase : Optional[int] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __UpperCamelCase : Union[str, Any] = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __UpperCamelCase : List[str] = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: __UpperCamelCase : Any = max([point.shape[0] for point in input_points] ) __UpperCamelCase : Optional[Any] = [] for i, point in enumerate(_UpperCAmelCase ): if point.shape[0] != expected_nb_points: __UpperCamelCase : Optional[int] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __UpperCamelCase : Optional[int] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = processed_input_points return input_points, input_labels def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> np.ndarray: __UpperCamelCase , __UpperCamelCase : Optional[Any] = original_size __UpperCamelCase , __UpperCamelCase : Dict = self.image_processor._get_preprocess_shape(_UpperCAmelCase , longest_edge=_UpperCAmelCase ) __UpperCamelCase : Tuple = deepcopy(_UpperCAmelCase ).astype(_UpperCAmelCase ) if is_bounding_box: __UpperCamelCase : Optional[int] = coords.reshape(-1 , 2 , 2 ) __UpperCamelCase : Tuple = coords[..., 0] * (new_w / old_w) __UpperCamelCase : Optional[int] = coords[..., 1] * (new_h / old_h) if is_bounding_box: __UpperCamelCase : Optional[Any] = coords.reshape(-1 , 4 ) return coords def a_ (self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> Dict: if input_points is not None: if hasattr(_UpperCAmelCase , "numpy" ): # Checks for TF or Torch tensor __UpperCamelCase : int = input_points.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_points[0] , _UpperCAmelCase ): raise ValueError("Input points must be a list of list of floating points." ) __UpperCamelCase : Tuple = [np.array(_UpperCAmelCase ) for input_point in input_points] else: __UpperCamelCase : Tuple = None if input_labels is not None: if hasattr(_UpperCAmelCase , "numpy" ): __UpperCamelCase : Optional[int] = input_labels.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_labels[0] , _UpperCAmelCase ): raise ValueError("Input labels must be a list of list integers." ) __UpperCamelCase : Optional[int] = [np.array(_UpperCAmelCase ) for label in input_labels] else: __UpperCamelCase : Dict = None if input_boxes is not None: if hasattr(_UpperCAmelCase , "numpy" ): __UpperCamelCase : Optional[Any] = input_boxes.numpy().tolist() if ( not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_boxes[0] , _UpperCAmelCase ) or not isinstance(input_boxes[0][0] , _UpperCAmelCase ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) __UpperCamelCase : Union[str, Any] = [np.array(_UpperCAmelCase ).astype(np.floataa ) for box in input_boxes] else: __UpperCamelCase : Optional[Any] = None return input_points, input_labels, input_boxes @property def a_ (self ) -> Tuple: __UpperCamelCase : str = self.image_processor.model_input_names return list(dict.fromkeys(_UpperCAmelCase ) ) def a_ (self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]: return self.image_processor.post_process_masks(*_UpperCAmelCase , **_UpperCAmelCase )
399
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class A : '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase=1_3 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=9_9 , _UpperCAmelCase=3_2 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=3_7 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=5_0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=None , ) -> Any: __UpperCamelCase : Union[str, Any] = parent __UpperCamelCase : Dict = batch_size __UpperCamelCase : Dict = seq_length __UpperCamelCase : Optional[int] = is_training __UpperCamelCase : Optional[Any] = use_input_mask __UpperCamelCase : Optional[Any] = vocab_size __UpperCamelCase : Tuple = hidden_size __UpperCamelCase : Optional[Any] = num_hidden_layers __UpperCamelCase : Optional[Any] = num_attention_heads __UpperCamelCase : Union[str, Any] = intermediate_size __UpperCamelCase : List[str] = hidden_act __UpperCamelCase : Optional[int] = hidden_dropout_prob __UpperCamelCase : Any = attention_probs_dropout_prob __UpperCamelCase : Dict = max_position_embeddings __UpperCamelCase : List[str] = initializer_range __UpperCamelCase : Union[str, Any] = use_labels __UpperCamelCase : Optional[Any] = scope def a_ (self ) -> Tuple: __UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Any = None if self.use_input_mask: __UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Any = self.get_config() return config, input_ids, input_mask, token_labels def a_ (self ) -> Tuple: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def a_ (self ) -> Dict: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCamelCase : int = True __UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) -> Optional[int]: __UpperCamelCase : Union[str, Any] = BertGenerationEncoder(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __UpperCamelCase : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) -> Any: __UpperCamelCase : Any = True __UpperCamelCase : Optional[Any] = BertGenerationEncoder(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : Tuple = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __UpperCamelCase : Any = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) -> Optional[int]: __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = True __UpperCamelCase : Dict = BertGenerationDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() # first forward pass __UpperCamelCase : Tuple = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase , ) __UpperCamelCase : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase : Any = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )["hidden_states"][0] __UpperCamelCase : str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )["hidden_states"][0] # select random slice __UpperCamelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase : int = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , ) -> Optional[Any]: __UpperCamelCase : List[Any] = BertGenerationDecoder(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ (self ) -> Dict: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = self.prepare_config_and_inputs() __UpperCamelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () A = (BertGenerationDecoder,) if is_torch_available() else () A = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def a_ (self ) -> Tuple: __UpperCamelCase : Optional[Any] = BertGenerationEncoderTester(self ) __UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=3_7 ) def a_ (self ) -> List[Any]: self.config_tester.run_common_tests() def a_ (self ) -> List[str]: __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a_ (self ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() __UpperCamelCase : List[Any] = "bert" self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def a_ (self ) -> Any: __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def a_ (self ) -> Optional[int]: __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def a_ (self ) -> Tuple: # This regression test was failing with PyTorch < 1.3 ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCamelCase : Optional[int] = None self.model_tester.create_and_check_model_as_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) def a_ (self ) -> Dict: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase ) @slow def a_ (self ) -> int: __UpperCamelCase : Dict = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def a_ (self ) -> Tuple: __UpperCamelCase : List[str] = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __UpperCamelCase : List[str] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): __UpperCamelCase : Any = model(_UpperCAmelCase )[0] __UpperCamelCase : List[Any] = torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape , _UpperCAmelCase ) __UpperCamelCase : List[Any] = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def a_ (self ) -> Tuple: __UpperCamelCase : Any = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __UpperCamelCase : str = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): __UpperCamelCase : Tuple = model(_UpperCAmelCase )[0] __UpperCamelCase : Tuple = torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape , _UpperCAmelCase ) __UpperCamelCase : int = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
399
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=3 , __lowerCAmelCase=3_2 , __lowerCAmelCase=3 , __lowerCAmelCase=1_0 , __lowerCAmelCase=[1_0, 2_0, 3_0, 4_0] , __lowerCAmelCase=[1, 1, 2, 1] , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="relu" , __lowerCAmelCase=3 , __lowerCAmelCase=None , ): """simple docstring""" __magic_name__ :int = parent __magic_name__ :Any = batch_size __magic_name__ :List[str] = image_size __magic_name__ :str = num_channels __magic_name__ :List[str] = embeddings_size __magic_name__ :Union[str, Any] = hidden_sizes __magic_name__ :List[str] = depths __magic_name__ :int = is_training __magic_name__ :Dict = use_labels __magic_name__ :str = hidden_act __magic_name__ :List[str] = num_labels __magic_name__ :int = scope __magic_name__ :List[str] = len(__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ :Optional[int] = None if self.use_labels: __magic_name__ :Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ :List[Any] = self.get_config() return config, pixel_values, labels def A ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[Any] = TFResNetModel(config=__lowerCAmelCase ) __magic_name__ :List[Any] = model(__lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[str] = self.num_labels __magic_name__ :Optional[int] = TFResNetForImageClassification(__lowerCAmelCase ) __magic_name__ :Optional[Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self ): """simple docstring""" __magic_name__ :int = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ :Optional[int] = config_and_inputs __magic_name__ :List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a__ = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A ( self ): """simple docstring""" __magic_name__ :str = TFResNetModelTester(self ) __magic_name__ :List[str] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def A ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self ): """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def A ( self ): """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :List[str] = model_class(__lowerCAmelCase ) __magic_name__ :List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ :Dict = [*signature.parameters.keys()] __magic_name__ :Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A ( self ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): __magic_name__ :List[Any] = model_class(__lowerCAmelCase ) __magic_name__ :int = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) __magic_name__ :List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ :Tuple = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __magic_name__ , __magic_name__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ :List[str] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __magic_name__ :Optional[int] = layer_type __magic_name__ :List[Any] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ :str = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def A ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ :Tuple = TFResNetModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __lowercase ( ): """simple docstring""" __magic_name__ :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def A ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self ): """simple docstring""" __magic_name__ :List[Any] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __magic_name__ :Any = self.default_image_processor __magic_name__ :List[str] = prepare_img() __magic_name__ :str = image_processor(images=__lowerCAmelCase , return_tensors='''tf''' ) # forward pass __magic_name__ :List[Any] = model(**__lowerCAmelCase ) # verify the logits __magic_name__ :Tuple = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) __magic_name__ :Tuple = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __lowerCAmelCase , atol=1E-4 ) )
0
"""simple docstring""" from math import factorial class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = real if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase = [1] * rank else: _lowerCAmelCase = rank def __repr__( self : int ) -> List[Any]: """simple docstring""" return ( F"""{self.real}+""" F"""{'+'.join(str(UpperCAmelCase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def __lowerCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" _lowerCAmelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , UpperCAmelCase_ ) def __add__( self : List[Any] , UpperCAmelCase_ : List[Any] ) -> str: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return Dual(self.real + other , self.duals ) _lowerCAmelCase = self.duals.copy() _lowerCAmelCase = other.duals.copy() if len(UpperCAmelCase_ ) > len(UpperCAmelCase_ ): o_dual.extend([1] * (len(UpperCAmelCase_ ) - len(UpperCAmelCase_ )) ) elif len(UpperCAmelCase_ ) < len(UpperCAmelCase_ ): s_dual.extend([1] * (len(UpperCAmelCase_ ) - len(UpperCAmelCase_ )) ) _lowerCAmelCase = [] for i in range(len(UpperCAmelCase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_: str = __add__ def __sub__( self : Dict , UpperCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" return self + other * -1 def __mul__( self : List[Any] , UpperCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , UpperCAmelCase_ ) _lowerCAmelCase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_: int = __mul__ def __truediv__( self : str , UpperCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , UpperCAmelCase_ ) raise ValueError def __floordiv__( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , UpperCAmelCase_ ) raise ValueError def __pow__( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" if n < 0 or isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self _lowerCAmelCase = self for _ in range(n - 1 ): x *= self return x def __snake_case ( SCREAMING_SNAKE_CASE: Union[str, Any] , SCREAMING_SNAKE_CASE: List[str] , SCREAMING_SNAKE_CASE: Tuple ): """simple docstring""" if not callable(SCREAMING_SNAKE_CASE ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(SCREAMING_SNAKE_CASE , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('differentiate() requires an int as input for order' ) _lowerCAmelCase = Dual(SCREAMING_SNAKE_CASE , 1 ) _lowerCAmelCase = func(SCREAMING_SNAKE_CASE ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() def __snake_case ( SCREAMING_SNAKE_CASE: Tuple ): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
580
0
from maths.prime_check import is_prime def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : str = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE__ ) if is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
693
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : List[Any] = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } UpperCAmelCase_ : Optional[Any] = { "gpt-neox-20b": 2048, } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_=False , **lowerCamelCase_ , ) -> Any: super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) _a : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase_ ) != add_prefix_space: _a : Optional[Any] = getattr(lowerCamelCase_ , pre_tok_state.pop('type' ) ) _a : Tuple = add_prefix_space _a : Tuple = pre_tok_class(**lowerCamelCase_ ) _a : Dict = add_prefix_space def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: _a : int = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def __UpperCamelCase ( self , lowerCamelCase_ ) -> List[int]: _a : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) + [self.eos_token_id] ) if len(lowerCamelCase_ ) > self.model_max_length: _a : Optional[int] = input_ids[-self.model_max_length :] return input_ids
120
'''simple docstring''' import mpmath # for roots of unity import numpy as np class a : '''simple docstring''' def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None ) -> Tuple: # Input as list _a : Optional[int] = list(poly_a or [0] )[:] _a : List[str] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _a : str = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _a : Optional[int] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _a : str = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _a : Optional[int] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _a : Union[str, Any] = self.__multiply() def __UpperCamelCase ( self , lowerCamelCase_ ) -> Dict: _a : Dict = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(lowerCamelCase_ ) <= 1: return dft[0] # _a : List[str] = self.c_max_length // 2 while next_ncol > 0: _a : Tuple = [[] for i in range(lowerCamelCase_ )] _a : Tuple = self.root**next_ncol # First half of next step _a : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCamelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _a : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCamelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _a : Union[str, Any] = new_dft _a : List[Any] = next_ncol // 2 return dft[0] def __UpperCamelCase ( self ) -> List[Any]: _a : Tuple = self.__dft('A' ) _a : Union[str, Any] = self.__dft('B' ) _a : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _a : Optional[Any] = 2 while next_ncol <= self.c_max_length: _a : Optional[int] = [[] for i in range(lowerCamelCase_ )] _a : List[str] = self.root ** (next_ncol // 2) _a : int = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _a : Dict = new_inverse_c next_ncol *= 2 # Unpack _a : Union[str, Any] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ) -> Dict: _a : Optional[int] = 'A = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _a : Dict = 'B = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _a : Tuple = 'A*B = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
120
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A__: Tuple = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A__: Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(f"{len(upper_files)} files contain uppercase characters:") print('''\n'''.join(upper_files) + '''\n''') A__: Optional[int] = [file for file in filepaths if ''' ''' in file] if space_files: print(f"{len(space_files)} files contain space characters:") print('''\n'''.join(space_files) + '''\n''') A__: List[Any] = [file for file in filepaths if '''-''' in file] if hyphen_files: print(f"{len(hyphen_files)} files contain hyphen characters:") print('''\n'''.join(hyphen_files) + '''\n''') A__: Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"{len(nodir_files)} files are not in a directory:") print('''\n'''.join(nodir_files) + '''\n''') A__: Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
221
def lowerCAmelCase_ ( A_): UpperCamelCase__: Union[str, Any] = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCAmelCase_ ( A_): UpperCamelCase__: Any = [chr(i + 65) for i in range(26)] # Remove duplicate characters from key UpperCamelCase__: Dict = remove_duplicates(key.upper()) UpperCamelCase__: Optional[int] = len(A_) # First fill cipher with key characters UpperCamelCase__: Any = {alphabet[i]: char for i, char in enumerate(A_)} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A_) ,26): UpperCamelCase__: List[Any] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCamelCase__: Any = alphabet[i - offset] UpperCamelCase__: Tuple = char return cipher_alphabet def lowerCAmelCase_ ( A_ ,A_): return "".join(cipher_map.get(A_ ,A_) for ch in message.upper()) def lowerCAmelCase_ ( A_ ,A_): UpperCamelCase__: int = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A_ ,A_) for ch in message.upper()) def lowerCAmelCase_ ( ): UpperCamelCase__: Union[str, Any] = input("Enter message to encode or decode: ").strip() UpperCamelCase__: Union[str, Any] = input("Enter keyword: ").strip() UpperCamelCase__: int = input("Encipher or decipher? E/D:").strip()[0].lower() try: UpperCamelCase__: Optional[Any] = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option") UpperCamelCase__: Optional[Any] = create_cipher_map(A_) print(func(A_ ,A_)) if __name__ == "__main__": import doctest doctest.testmod() main()
221
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a_ : int =field( default=1024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ : bool =field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a_ : Optional[str] =field(default=UpperCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: _snake_case : List[Any] = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _snake_case : List[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : str =field( default=UpperCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowerCamelCase_ ( )-> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case : Union[str, Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) _snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) datasets.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _snake_case : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _snake_case : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _snake_case : str = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _snake_case : int = data_args.train_file.split('.' )[-1] _snake_case : Any = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _snake_case : Tuple = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files _snake_case : Optional[int] = load_dataset('csv' , data_files=lowerCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _snake_case : int = load_dataset('json' , data_files=lowerCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _snake_case : Optional[int] = raw_datasets['train'].features['label'].names _snake_case : Dict = len(lowerCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _snake_case : List[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase , ) _snake_case : Tuple = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _snake_case : Tuple = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _snake_case : Dict = False # Some models have set the order of the labels to use, so let's make sure we do use it. _snake_case : Any = {'Refused': 0, 'Entailed': 1} _snake_case : Optional[int] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _snake_case : int = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase: Any ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase: Dict ): _snake_case : Optional[int] = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] _snake_case : str = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _snake_case : Tuple = examples['statement'] _snake_case : List[Any] = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) _snake_case : Dict = tokenizer(lowerCAmelCase , lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase ) _snake_case : List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): _snake_case : List[Any] = raw_datasets.map( lowerCAmelCase , batched=lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: _snake_case : Union[str, Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _snake_case : str = raw_datasets['validation'] if data_args.max_eval_samples is not None: _snake_case : Dict = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) _snake_case : Tuple = raw_datasets['test'] if data_args.max_predict_samples is not None: _snake_case : List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase: EvalPrediction ): _snake_case : Optional[int] = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase ) else p.predictions _snake_case : Tuple = np.argmax(lowerCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _snake_case : str = default_data_collator elif training_args.fpaa: _snake_case : Any = DataCollatorWithPadding(lowerCAmelCase , pad_to_multiple_of=8 ) else: _snake_case : Tuple = None # Initialize our Trainer _snake_case : Dict = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , data_collator=lowerCAmelCase , ) # Training if training_args.do_train: _snake_case : int = None if training_args.resume_from_checkpoint is not None: _snake_case : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case : Union[str, Any] = last_checkpoint _snake_case : Union[str, Any] = trainer.train(resume_from_checkpoint=lowerCAmelCase ) _snake_case : Optional[Any] = train_result.metrics _snake_case : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase ) ) _snake_case : Tuple = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCAmelCase ) trainer.save_metrics('train' , lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case : int = trainer.evaluate(eval_dataset=lowerCAmelCase ) _snake_case : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase ) _snake_case : Optional[Any] = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.log_metrics('eval' , lowerCAmelCase ) trainer.save_metrics('eval' , lowerCAmelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _snake_case : str = predict_dataset.remove_columns('label' ) _snake_case : str = trainer.predict(lowerCAmelCase , metric_key_prefix='predict' ).predictions _snake_case : Dict = np.argmax(lowerCAmelCase , axis=1 ) _snake_case : List[Any] = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCAmelCase ): _snake_case : Optional[int] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) _snake_case : Optional[Any] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase ) else: trainer.create_model_card(**lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
411
from __future__ import annotations from collections.abc import MutableSequence class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : MutableSequence[float] ): '''simple docstring''' if len(UpperCamelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _snake_case : list[float] = list(UpperCamelCase ) _snake_case : Dict = degree def __add__( self : List[str] , UpperCamelCase : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: _snake_case : int = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , UpperCamelCase ) else: _snake_case : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , UpperCamelCase ) def __sub__( self : Any , UpperCamelCase : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Optional[int] ): '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Tuple , UpperCamelCase : Polynomial ): '''simple docstring''' _snake_case : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : int | float ): '''simple docstring''' _snake_case : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Any ): '''simple docstring''' _snake_case : Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(UpperCamelCase ) return polynomial def __repr__( self : Tuple ): '''simple docstring''' return self.__str__() def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : list[float] = [0] * self.degree for i in range(self.degree ): _snake_case : List[str] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : int | float = 0 ): '''simple docstring''' _snake_case : list[float] = [0] * (self.degree + 2) _snake_case : Optional[int] = constant for i in range(self.degree + 1 ): _snake_case : str = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , UpperCamelCase ) def __eq__( self : str , UpperCamelCase : object ): '''simple docstring''' if not isinstance(UpperCamelCase , UpperCamelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Optional[int] , UpperCamelCase : object ): '''simple docstring''' return not self.__eq__(UpperCamelCase )
411
1
"""simple docstring""" from __future__ import annotations __A : Optional[Any] = [] def lowercase ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for i in range(len(_SCREAMING_SNAKE_CASE ) ): if board[row][i] == 1: return False for i in range(len(_SCREAMING_SNAKE_CASE ) ): if board[i][column] == 1: return False for i, j in zip(range(_SCREAMING_SNAKE_CASE , -1 , -1 ) , range(_SCREAMING_SNAKE_CASE , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_SCREAMING_SNAKE_CASE , -1 , -1 ) , range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) ): if board[i][j] == 1: return False return True def lowercase ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if row >= len(_SCREAMING_SNAKE_CASE ): solution.append(_SCREAMING_SNAKE_CASE ) printboard(_SCREAMING_SNAKE_CASE ) print() return True for i in range(len(_SCREAMING_SNAKE_CASE ) ): if is_safe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 1 solve(_SCREAMING_SNAKE_CASE , row + 1 ) _UpperCAmelCase = 0 return False def lowercase ( _SCREAMING_SNAKE_CASE : list[list[int]] ): '''simple docstring''' for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(len(_SCREAMING_SNAKE_CASE ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) __A : Optional[Any] = 8 __A : Dict = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
95
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __A : str = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : bool , __UpperCamelCase : str = None , __UpperCamelCase : list = None )->int: _UpperCAmelCase = None _UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) _UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__UpperCamelCase ): if item not in EXCLUDE_EXAMPLES: _UpperCAmelCase = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.isfile(__UpperCamelCase ) and ".py" in item_path: with self.subTest( tested_script=__UpperCamelCase , feature_script=__UpperCamelCase , tested_section='''main()''' if parser_only else '''training_function()''' , ): _UpperCAmelCase = compare_against_test( os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = '''\n'''.join(__UpperCamelCase ) if special_strings is not None: for string in special_strings: _UpperCAmelCase = diff.replace(__UpperCamelCase , '''''' ) self.assertEqual(__UpperCamelCase , '''''' ) def lowercase__ ( self : Tuple )->Any: self.one_complete_example('''complete_nlp_example.py''' , __UpperCamelCase ) self.one_complete_example('''complete_nlp_example.py''' , __UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->int: _UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) _UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.one_complete_example('''complete_cv_example.py''' , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""}) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = False @classmethod def lowercase__ ( cls : Optional[int] )->Optional[Any]: super().setUpClass() _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowercase__ ( cls : Dict )->Any: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowercase__ ( self : Optional[int] )->Any: _UpperCAmelCase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def lowercase__ ( self : Optional[int] )->Optional[int]: _UpperCAmelCase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() _UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def lowercase__ ( self : Optional[Any] )->List[Any]: _UpperCAmelCase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() _UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) self.assertNotIn('''epoch 0:''' , __UpperCamelCase ) self.assertIn('''epoch 1:''' , __UpperCamelCase ) def lowercase__ ( self : List[str] )->str: _UpperCAmelCase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() _UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) if torch.cuda.is_available(): _UpperCAmelCase = torch.cuda.device_count() else: _UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __UpperCamelCase ) self.assertIn('''epoch 1:''' , __UpperCamelCase ) else: self.assertIn('''epoch 0:''' , __UpperCamelCase ) self.assertIn('''epoch 1:''' , __UpperCamelCase ) @slow def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): _UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) _UpperCAmelCase = re.findall('''({.+})''' , __UpperCamelCase ) _UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] _UpperCAmelCase = ast.literal_eval(__UpperCamelCase ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def lowercase__ ( self : Any )->List[Any]: _UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowercase__ ( self : Optional[int] )->Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: _UpperCAmelCase = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''tracking''' ) ) ) def lowercase__ ( self : Dict )->Dict: _UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def lowercase__ ( self : Union[str, Any] )->Tuple: _UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
95
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def _snake_case ( *UpperCAmelCase : str , **UpperCAmelCase : Optional[int]): pass @is_pipeline_test @require_vision class _UpperCAmelCase ( unittest.TestCase ): @require_torch def _snake_case ( self : int): SCREAMING_SNAKE_CASE_ :str = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE_ :List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_ :List[Any] = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"]) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE_ :Dict = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2) self.assertEqual( nested_simplify(UpperCAmelCase) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, ], ] , ) @require_tf def _snake_case ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ :Optional[int] = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf") SCREAMING_SNAKE_CASE_ :List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_ :Any = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"]) self.assertEqual( nested_simplify(UpperCAmelCase) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE_ :List[Any] = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2) self.assertEqual( nested_simplify(UpperCAmelCase) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, {"score": 0.333, "label": ANY(UpperCAmelCase)}, ], ] , ) @slow @require_torch def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :Any = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE_ :Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_ :Tuple = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(UpperCAmelCase) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE_ :Tuple = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2) self.assertEqual( nested_simplify(UpperCAmelCase) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self : str): SCREAMING_SNAKE_CASE_ :Union[str, Any] = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf") # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE_ :int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_ :str = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(UpperCAmelCase) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE_ :Any = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2) self.assertEqual( nested_simplify(UpperCAmelCase) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
631
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE__ = Lock() def lowercase ( a , a , a , a , a , a , a ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ :str = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left SCREAMING_SNAKE_CASE_ :int = min(a , a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ :int = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right SCREAMING_SNAKE_CASE_ :Dict = max(a , a ) # after all swaps are performed, send the values back to main result_pipe[1].send(a ) def lowercase ( a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Tuple = [] SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop SCREAMING_SNAKE_CASE_ :str = Pipe() SCREAMING_SNAKE_CASE_ :Optional[Any] = Pipe() process_array_.append( Process( target=a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) SCREAMING_SNAKE_CASE_ :Optional[Any] = temp_rs SCREAMING_SNAKE_CASE_ :Any = temp_rr for i in range(1 , len(a ) - 1 ): SCREAMING_SNAKE_CASE_ :int = Pipe() SCREAMING_SNAKE_CASE_ :Dict = Pipe() process_array_.append( Process( target=a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = temp_rs SCREAMING_SNAKE_CASE_ :int = temp_rr process_array_.append( Process( target=a , args=( len(a ) - 1, arr[len(a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(a ) ): SCREAMING_SNAKE_CASE_ :Tuple = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[str] = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*a ) SCREAMING_SNAKE_CASE_ :int = odd_even_transposition(a ) print("Sorted List\n" ) print(*a ) if __name__ == "__main__": main()
631
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : Union[str, Any] = MODEL_FOR_CAUSAL_LM_MAPPING A__ : Union[str, Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def A__ ( self: str ) -> Any: UpperCAmelCase_ : Tuple = pipeline(task="""text-generation""" ,model="""sshleifer/tiny-ctrl""" ,framework="""pt""" ) # Using `do_sample=False` to force deterministic output UpperCAmelCase_ : List[Any] = text_generator("""This is a test""" ,do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ ,[ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] ,) UpperCAmelCase_ : Tuple = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( lowerCamelCase_ ,[ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] ,) UpperCAmelCase_ : int = text_generator("""This is a test""" ,do_sample=lowerCamelCase_ ,num_return_sequences=2 ,return_tensors=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ ,[ {"""generated_token_ids""": ANY(lowerCamelCase_ )}, {"""generated_token_ids""": ANY(lowerCamelCase_ )}, ] ,) UpperCAmelCase_ : int = text_generator.model.config.eos_token_id UpperCAmelCase_ : str = """<pad>""" UpperCAmelCase_ : Any = text_generator( ["""This is a test""", """This is a second test"""] ,do_sample=lowerCamelCase_ ,num_return_sequences=2 ,batch_size=2 ,return_tensors=lowerCamelCase_ ,) self.assertEqual( lowerCamelCase_ ,[ [ {"""generated_token_ids""": ANY(lowerCamelCase_ )}, {"""generated_token_ids""": ANY(lowerCamelCase_ )}, ], [ {"""generated_token_ids""": ANY(lowerCamelCase_ )}, {"""generated_token_ids""": ANY(lowerCamelCase_ )}, ], ] ,) @require_tf def A__ ( self: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = pipeline(task="""text-generation""" ,model="""sshleifer/tiny-ctrl""" ,framework="""tf""" ) # Using `do_sample=False` to force deterministic output UpperCAmelCase_ : Tuple = text_generator("""This is a test""" ,do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ ,[ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] ,) UpperCAmelCase_ : List[Any] = text_generator(["""This is a test""", """This is a second test"""] ,do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ ,[ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] ,) def A__ ( self: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ) -> int: UpperCAmelCase_ : Dict = TextGenerationPipeline(model=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ) return text_generator, ["This is a test", "Another test"] def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : int = """Hello I believe in""" UpperCAmelCase_ : Optional[int] = pipeline("""text-generation""" ,model="""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Union[str, Any] = text_generator(lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ ,[{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] ,) UpperCAmelCase_ : Optional[Any] = text_generator(lowerCamelCase_ ,stop_sequence=""" fe""" ) self.assertEqual(lowerCamelCase_ ,[{"""generated_text""": """Hello I believe in fe"""}] ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> int: UpperCAmelCase_ : Any = text_generator.model UpperCAmelCase_ : int = text_generator.tokenizer UpperCAmelCase_ : int = text_generator("""This is a test""" ) self.assertEqual(lowerCamelCase_ ,[{"""generated_text""": ANY(lowerCamelCase_ )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCAmelCase_ : Union[str, Any] = text_generator("""This is a test""" ,return_full_text=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ ,[{"""generated_text""": ANY(lowerCamelCase_ )}] ) self.assertNotIn("""This is a test""" ,outputs[0]["""generated_text"""] ) UpperCAmelCase_ : List[str] = pipeline(task="""text-generation""" ,model=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,return_full_text=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = text_generator("""This is a test""" ) self.assertEqual(lowerCamelCase_ ,[{"""generated_text""": ANY(lowerCamelCase_ )}] ) self.assertNotIn("""This is a test""" ,outputs[0]["""generated_text"""] ) UpperCAmelCase_ : Optional[int] = text_generator("""This is a test""" ,return_full_text=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ ,[{"""generated_text""": ANY(lowerCamelCase_ )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCAmelCase_ : List[Any] = text_generator(["""This is great !""", """Something else"""] ,num_return_sequences=2 ,do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ ,[ [{"""generated_text""": ANY(lowerCamelCase_ )}, {"""generated_text""": ANY(lowerCamelCase_ )}], [{"""generated_text""": ANY(lowerCamelCase_ )}, {"""generated_text""": ANY(lowerCamelCase_ )}], ] ,) if text_generator.tokenizer.pad_token is not None: UpperCAmelCase_ : List[str] = text_generator( ["""This is great !""", """Something else"""] ,num_return_sequences=2 ,batch_size=2 ,do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ ,[ [{"""generated_text""": ANY(lowerCamelCase_ )}, {"""generated_text""": ANY(lowerCamelCase_ )}], [{"""generated_text""": ANY(lowerCamelCase_ )}, {"""generated_text""": ANY(lowerCamelCase_ )}], ] ,) with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : Optional[Any] = text_generator("""test""" ,return_full_text=lowerCamelCase_ ,return_text=lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : List[Any] = text_generator("""test""" ,return_full_text=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : Optional[Any] = text_generator("""test""" ,return_text=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCAmelCase_ : int = text_generator("""""" ) self.assertEqual(lowerCamelCase_ ,[{"""generated_text""": ANY(lowerCamelCase_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCAmelCase_ : str = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCAmelCase_ : Dict = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 ,max_new_tokens=20 ) UpperCAmelCase_ : List[str] = text_generator("""This is a test""" * 500 ,handle_long_generation="""hole""" ,max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(lowerCamelCase_ ): text_generator( """This is a test""" * 500 ,handle_long_generation="""hole""" ,max_new_tokens=tokenizer.model_max_length + 10 ,) @require_torch @require_accelerate @require_torch_gpu def A__ ( self: Union[str, Any] ) -> str: import torch # Classic `model_kwargs` UpperCAmelCase_ : Any = pipeline( model="""hf-internal-testing/tiny-random-bloom""" ,model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} ,) self.assertEqual(pipe.model.device ,torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype ,torch.bfloataa ) UpperCAmelCase_ : Any = pipe("""This is a test""" ) self.assertEqual( lowerCamelCase_ ,[ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] ,) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCAmelCase_ : Dict = pipeline(model="""hf-internal-testing/tiny-random-bloom""" ,device_map="""auto""" ,torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device ,torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype ,torch.bfloataa ) UpperCAmelCase_ : Any = pipe("""This is a test""" ) self.assertEqual( lowerCamelCase_ ,[ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] ,) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCAmelCase_ : Dict = pipeline(model="""hf-internal-testing/tiny-random-bloom""" ,device_map="""auto""" ) self.assertEqual(pipe.model.device ,torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype ,torch.floataa ) UpperCAmelCase_ : Any = pipe("""This is a test""" ) self.assertEqual( lowerCamelCase_ ,[ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] ,) @require_torch @require_torch_gpu def A__ ( self: str ) -> str: import torch UpperCAmelCase_ : str = pipeline(model="""hf-internal-testing/tiny-random-bloom""" ,device=0 ,torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def A__ ( self: int ) -> Union[str, Any]: import torch UpperCAmelCase_ : str = pipeline(model="""hf-internal-testing/tiny-random-bloom""" ,device_map="""auto""" ,torch_dtype=torch.floataa ) pipe("""This is a test""" ,do_sample=lowerCamelCase_ ,top_p=0.5 ) def A__ ( self: List[str] ) -> int: UpperCAmelCase_ : List[Any] = """Hello world""" UpperCAmelCase_ : int = pipeline("""text-generation""" ,model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": UpperCAmelCase_ : Optional[Any] = logging.get_logger("""transformers.generation.tf_utils""" ) else: UpperCAmelCase_ : Dict = logging.get_logger("""transformers.generation.utils""" ) UpperCAmelCase_ : Tuple = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowerCamelCase_ ) as cl: UpperCAmelCase_ : List[Any] = text_generator(lowerCamelCase_ ,max_length=10 ,max_new_tokens=1 ) self.assertIn(lowerCamelCase_ ,cl.out ) # The user only sets one -> no warning with CaptureLogger(lowerCamelCase_ ) as cl: UpperCAmelCase_ : Optional[Any] = text_generator(lowerCamelCase_ ,max_new_tokens=1 ) self.assertNotIn(lowerCamelCase_ ,cl.out ) with CaptureLogger(lowerCamelCase_ ) as cl: UpperCAmelCase_ : Union[str, Any] = text_generator(lowerCamelCase_ ,max_length=10 ) self.assertNotIn(lowerCamelCase_ ,cl.out )
322
from __future__ import annotations def lowerCamelCase_ ( _a : int | float | str , _a : int | float | str ): '''simple docstring''' if nth_term == "": return [""] UpperCAmelCase_ : Tuple = int(_a ) UpperCAmelCase_ : Optional[int] = int(_a ) UpperCAmelCase_ : list[str] = [] for temp in range(int(_a ) ): series.append(F'''1 / {pow(temp + 1 , int(_a ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = int(input('''Enter the last number (nth term) of the P-Series''')) UpperCamelCase_ = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
322
1
from __future__ import annotations from collections.abc import Callable _SCREAMING_SNAKE_CASE = list[list[float | int]] def snake_case ( snake_case__ :Tuple , snake_case__ :List[Any]) -> Matrix: _A = len(snake_case__) _A = [[0 for _ in range(size + 1)] for _ in range(snake_case__)] _A = 42 _A = 42 _A = 42 _A = 42 _A = 42 _A = 42 for row in range(snake_case__): for col in range(snake_case__): _A = matrix[row][col] _A = vector[row][0] _A = 0 _A = 0 while row < size and col < size: # pivoting _A = max((abs(augmented[rowa][col]), rowa) for rowa in range(snake_case__ , snake_case__))[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , snake_case__): _A = augmented[rowa][col] / augmented[row][col] _A = 0 for cola in range(col + 1 , size + 1): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , snake_case__): for row in range(snake_case__): _A = augmented[row][col] / augmented[col][col] for cola in range(snake_case__ , size + 1): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10)] for row in range(snake_case__) ] def snake_case ( snake_case__ :Any) -> Callable[[int], int]: _A = len(snake_case__) _A = [[0 for _ in range(snake_case__)] for _ in range(snake_case__)] _A = [[0] for _ in range(snake_case__)] _A = 42 _A = 42 _A = 42 _A = 42 for x_val, y_val in enumerate(snake_case__): for col in range(snake_case__): _A = (x_val + 1) ** (size - col - 1) _A = y_val _A = solve(snake_case__ , snake_case__) def interpolated_func(snake_case__ :Any) -> int: return sum( round(coeffs[x_val][0]) * (var ** (size - x_val - 1)) for x_val in range(snake_case__)) return interpolated_func def snake_case ( snake_case__ :str) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def snake_case ( snake_case__ :Union[str, Any] = question_function , snake_case__ :List[str] = 10) -> int: _A = [func(snake_case__) for x_val in range(1 , order + 1)] _A = [ interpolate(data_points[:max_coeff]) for max_coeff in range(1 , order + 1) ] _A = 0 _A = 42 _A = 42 for poly in polynomials: _A = 1 while func(snake_case__) == poly(snake_case__): x_val += 1 ret += poly(snake_case__) return ret if __name__ == "__main__": print(F'''{solution() = }''')
401
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : str , A : int , A : Tuple=1_3 , A : List[str]=3_0 , A : Any=2 , A : List[Any]=3 , A : Dict=True , A : Tuple=True , A : Optional[int]=3_2 , A : List[Any]=5 , A : Any=4 , A : Optional[int]=3_7 , A : Union[str, Any]="gelu" , A : Optional[int]=0.1 , A : Optional[int]=0.1 , A : Optional[int]=1_0 , A : Optional[int]=0.02 , ) ->Optional[int]: lowerCamelCase__ : Any = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : str = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : Dict = num_channels lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : str = use_labels lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : int = attention_probs_dropout_prob lowerCamelCase__ : int = type_sequence_label_size lowerCamelCase__ : Optional[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : Optional[Any] = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[Any] = num_patches + 1 def __lowerCamelCase ( self : str ) ->Any: lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : int = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values def __lowerCamelCase ( self : Tuple , A : List[Any] , A : Optional[int] ) ->int: lowerCamelCase__ : Dict = FlaxViTModel(config=A ) lowerCamelCase__ : Optional[int] = model(A ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : Optional[Any] = (self.image_size, self.image_size) lowerCamelCase__ : List[str] = (self.patch_size, self.patch_size) lowerCamelCase__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def __lowerCamelCase ( self : Optional[Any] , A : int , A : Optional[int] ) ->Optional[int]: lowerCamelCase__ : Optional[int] = self.type_sequence_label_size lowerCamelCase__ : Optional[Any] = FlaxViTForImageClassification(config=A ) lowerCamelCase__ : int = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : int = FlaxViTForImageClassification(A ) lowerCamelCase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(A ) def __lowerCamelCase ( self : int ) ->str: lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Optional[Any] = config_and_inputs lowerCamelCase__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Union[str, Any] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __lowerCamelCase ( self : Optional[Any] ) ->None: lowerCamelCase__ : int = FlaxViTModelTester(self ) lowerCamelCase__ : List[Any] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def __lowerCamelCase ( self : Any ) ->Dict: self.config_tester.run_common_tests() def __lowerCamelCase ( self : str ) ->List[Any]: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __lowerCamelCase ( self : Any ) ->Union[str, Any]: lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def __lowerCamelCase ( self : int ) ->int: lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : int = model_class(A ) lowerCamelCase__ : Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def __lowerCamelCase ( self : int ) ->List[str]: lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : List[str] = self._prepare_for_class(A , A ) lowerCamelCase__ : int = model_class(A ) @jax.jit def model_jitted(A : Union[str, Any] , **A : Union[str, Any] ): return model(pixel_values=A , **A ) with self.subTest('''JIT Enabled''' ): lowerCamelCase__ : Union[str, Any] = model_jitted(**A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase__ : Optional[Any] = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowerCamelCase ( self : Any ) ->Tuple: for model_class_name in self.all_model_classes: lowerCamelCase__ : List[str] = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) lowerCamelCase__ : Dict = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(A )
315
0
def lowerCAmelCase_ ( ): '''simple docstring''' __lowerCamelCase : int =0 for i in range(1 , 1001 ): total += i**i return str(SCREAMING_SNAKE_CASE )[-10:] if __name__ == "__main__": print(solution())
721
"""simple docstring""" import math from datetime import datetime, timedelta def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __lowerCamelCase : Any =year % 19 __lowerCamelCase : Optional[Any] =year % 4 __lowerCamelCase : Tuple =year % 7 __lowerCamelCase : Optional[int] =math.floor(year / 100 ) __lowerCamelCase : List[str] =math.floor((13 + 8 * leap_day_inhibits) / 25 ) __lowerCamelCase : Any =leap_day_inhibits / 4 __lowerCamelCase : Optional[Any] =( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __lowerCamelCase : Optional[Any] =(4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowerCamelCase : Any =(19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __lowerCamelCase : str =( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE , 4 , 18 ) else: return datetime(SCREAMING_SNAKE_CASE , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): _UpperCamelCase = 'will be' if year > datetime.now().year else 'was' print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
363
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( lowerCAmelCase__ ,unittest.TestCase ): """simple docstring""" a_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def _lowerCAmelCase ( self , lowerCAmelCase_=0 ): '''simple docstring''' a_ : Union[str, Any] = np.random.RandomState(lowerCAmelCase_ ) a_ : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : int = self.get_dummy_inputs() a_ : Optional[int] = pipe(**lowerCAmelCase_ ).images a_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a_ : Any = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) a_ : Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : Dict = self.get_dummy_inputs() a_ : Optional[Any] = pipe(**lowerCAmelCase_ ).images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a_ : Tuple = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) a_ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : Dict = self.get_dummy_inputs() a_ : int = pipe(**lowerCAmelCase_ ).images a_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a_ : int = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) a_ : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : Union[str, Any] = self.get_dummy_inputs() a_ : Any = pipe(**lowerCAmelCase_ ).images a_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a_ : Optional[Any] = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) a_ : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : Optional[Any] = self.get_dummy_inputs() a_ : List[Any] = pipe(**lowerCAmelCase_ ).images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a_ : Tuple = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) a_ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : int = self.get_dummy_inputs() a_ : Dict = pipe(**lowerCAmelCase_ ).images a_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a_ : Optional[Any] = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : Dict = self.get_dummy_inputs() a_ : Dict = 3 * [inputs["""prompt"""]] # forward a_ : int = pipe(**lowerCAmelCase_ ) a_ : List[str] = output.images[0, -3:, -3:, -1] a_ : int = self.get_dummy_inputs() a_ : Tuple = 3 * [inputs.pop("""prompt""" )] a_ : Union[str, Any] = pipe.tokenizer( lowerCAmelCase_ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors="""np""" , ) a_ : Tuple = text_inputs["""input_ids"""] a_ : int = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] a_ : Union[str, Any] = prompt_embeds # forward a_ : List[Any] = pipe(**lowerCAmelCase_ ) a_ : List[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : Tuple = self.get_dummy_inputs() a_ : int = 3 * ["""this is a negative prompt"""] a_ : List[Any] = negative_prompt a_ : int = 3 * [inputs["""prompt"""]] # forward a_ : Optional[Any] = pipe(**lowerCAmelCase_ ) a_ : int = output.images[0, -3:, -3:, -1] a_ : int = self.get_dummy_inputs() a_ : Union[str, Any] = 3 * [inputs.pop("""prompt""" )] a_ : Union[str, Any] = [] for p in [prompt, negative_prompt]: a_ : Any = pipe.tokenizer( lowerCAmelCase_ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors="""np""" , ) a_ : Dict = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) a_ , a_ : int = embeds # forward a_ : Any = pipe(**lowerCAmelCase_ ) a_ : Optional[int] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowerCAmelCase ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = ort.SessionOptions() a_ : Optional[int] = False return options def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : Optional[Any] = """A painting of a squirrel eating a burger""" np.random.seed(0 ) a_ : Any = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) a_ : int = output.images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a_ : Any = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) a_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : List[str] = """open neural network exchange""" a_ : Any = np.random.RandomState(0 ) a_ : Dict = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase_ , output_type="""np""" ) a_ : str = output.images a_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a_ : Tuple = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) a_ : Dict = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : List[str] = """open neural network exchange""" a_ : Optional[Any] = np.random.RandomState(0 ) a_ : Tuple = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase_ , output_type="""np""" ) a_ : str = output.images a_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a_ : str = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = 0 def test_callback_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: a_ : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) a_ : str = latents[0, -3:, -3:, -1] a_ : Dict = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) a_ : Optional[int] = latents[0, -3:, -3:, -1] a_ : List[str] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 a_ : Tuple = False a_ : Dict = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) a_ : Any = """Andromeda galaxy in a bottle""" a_ : Optional[Any] = np.random.RandomState(0 ) pipe( prompt=lowerCAmelCase_ , num_inference_steps=5 , guidance_scale=7.5 , generator=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert pipe.safety_checker is None a_ : Any = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) a_ : Any = OnnxStableDiffusionPipeline.from_pretrained(lowerCAmelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None a_ : List[str] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
577
'''simple docstring''' def _snake_case ( A_ : list ): """simple docstring""" for i in range(len(A_ ) - 1 , 0 , -1 ): a_ : List[str] = False for j in range(A_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: a_ , a_ : List[str] = unsorted[j - 1], unsorted[j] a_ : int = True for j in range(A_ ): if unsorted[j] > unsorted[j + 1]: a_ , a_ : Any = unsorted[j + 1], unsorted[j] a_ : int = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __snake_case: Any = input("Enter numbers separated by a comma:\n").strip() __snake_case: Tuple = [int(item) for item in user_input.split(",")] print(F"""{cocktail_shaker_sort(unsorted) = }""")
577
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( UpperCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """AutoImageProcessor""" lowerCAmelCase__ = """AutoTokenizer""" def __init__( self : Optional[int] , A : Dict , A : Dict ): super().__init__(_a , _a ) __snake_case: List[str] = self.image_processor def __call__( self : Tuple , A : str=None , A : Optional[int]=None , A : Optional[Any]=None , **A : List[str] ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case: Dict = self.tokenizer(_a , return_tensors=_a , **_a ) if images is not None: __snake_case: Tuple = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: __snake_case: Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def UpperCAmelCase__ ( self : Optional[int] , *A : List[str] , **A : Tuple ): return self.tokenizer.batch_decode(*_a , **_a ) def UpperCAmelCase__ ( self : str , *A : List[Any] , **A : List[str] ): return self.tokenizer.decode(*_a , **_a ) @property def UpperCAmelCase__ ( self : List[Any] ): return ["input_ids", "attention_mask", "pixel_values"]
712
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
155
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _a = logging.get_logger(__name__) _a = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'deberta-v2' def __init__( self , __a=12_81_00 , __a=15_36 , __a=24 , __a=24 , __a=61_44 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=0 , __a=0.02 , __a=1e-7 , __a=False , __a=-1 , __a=0 , __a=True , __a=None , __a=0 , __a="gelu" , **__a , ) -> Optional[int]: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = relative_attention _UpperCamelCase = max_relative_positions _UpperCamelCase = pad_token_id _UpperCamelCase = position_biased_input # Backwards compatibility if type(__a) == str: _UpperCamelCase = [x.strip() for x in pos_att_type.lower().split('''|''')] _UpperCamelCase = pos_att_type _UpperCamelCase = vocab_size _UpperCamelCase = layer_norm_eps _UpperCamelCase = kwargs.get('''pooler_hidden_size''' , __a) _UpperCamelCase = pooler_dropout _UpperCamelCase = pooler_hidden_act class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)]) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)]) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12 def UpperCAmelCase ( self , __a , __a = -1 , __a = -1 , __a = -1 , __a = False , __a = None , __a = 3 , __a = 40 , __a = 40 , __a = None , ) -> Mapping[str, Any]: '''simple docstring''' _UpperCamelCase = super().generate_dummy_inputs(preprocessor=__a , framework=__a) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
19
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
1
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict ) -> Any: '''simple docstring''' _lowercase : List[Any] = 0 _lowercase : str = 0 _lowercase : List[Any] = {} def __lowercase ( self : Optional[int] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' if vertex not in self.adjacency: _lowercase : Optional[int] = {} self.num_vertices += 1 def __lowercase ( self : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Any ) -> Tuple: '''simple docstring''' self.add_vertex(UpperCamelCase_ ) self.add_vertex(UpperCamelCase_ ) if head == tail: return _lowercase : Union[str, Any] = weight _lowercase : Dict = weight def __lowercase ( self : int ) -> Optional[int]: '''simple docstring''' _lowercase : Union[str, Any] = self.get_edges() for edge in edges: _lowercase , _lowercase , _lowercase : int = edge edges.remove((tail, head, weight) ) for i in range(len(UpperCamelCase_ ) ): _lowercase : List[str] = list(edges[i] ) edges.sort(key=lambda UpperCamelCase_ : e[2] ) for i in range(len(UpperCamelCase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _lowercase : List[Any] = edges[i][2] + 1 for edge in edges: _lowercase , _lowercase , _lowercase : int = edge _lowercase : int = weight _lowercase : List[Any] = weight def __str__( self : str ) -> List[Any]: '''simple docstring''' _lowercase : List[Any] = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: _lowercase : Dict = self.adjacency[head][tail] string += F"{head} -> {tail} == {weight}\n" return string.rstrip('''\n''' ) def __lowercase ( self : Optional[int] ) -> Tuple: '''simple docstring''' _lowercase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowercase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return self.adjacency.keys() @staticmethod def __lowercase ( UpperCamelCase_ : int=None , UpperCamelCase_ : int=None ) -> Union[str, Any]: '''simple docstring''' _lowercase : Any = Graph() if vertices is None: _lowercase : List[str] = [] if edges is None: _lowercase : Union[str, Any] = [] for vertex in vertices: g.add_vertex(UpperCamelCase_ ) for edge in edges: g.add_edge(*UpperCamelCase_ ) return g class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = {} _lowercase : Any = {} def __len__( self : str ) -> str: '''simple docstring''' return len(self.parent ) def __lowercase ( self : Optional[Any] , UpperCamelCase_ : int ) -> List[Any]: '''simple docstring''' if item in self.parent: return self.find(UpperCamelCase_ ) _lowercase : str = item _lowercase : List[Any] = 0 return item def __lowercase ( self : str , UpperCamelCase_ : Any ) -> Optional[Any]: '''simple docstring''' if item not in self.parent: return self.make_set(UpperCamelCase_ ) if item != self.parent[item]: _lowercase : List[str] = self.find(self.parent[item] ) return self.parent[item] def __lowercase ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int ) -> str: '''simple docstring''' _lowercase : Any = self.find(UpperCamelCase_ ) _lowercase : Optional[int] = self.find(UpperCamelCase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowercase : Union[str, Any] = roota return roota if self.rank[roota] < self.rank[roota]: _lowercase : str = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowercase : List[str] = roota return roota return None @staticmethod def __lowercase ( UpperCamelCase_ : str ) -> Union[str, Any]: '''simple docstring''' _lowercase : Union[str, Any] = graph.num_vertices _lowercase : int = Graph.UnionFind() _lowercase : Optional[int] = [] while num_components > 1: _lowercase : List[str] = {} for vertex in graph.get_vertices(): _lowercase : List[str] = -1 _lowercase : Optional[int] = graph.get_edges() for edge in edges: _lowercase , _lowercase , _lowercase : Dict = edge edges.remove((tail, head, weight) ) for edge in edges: _lowercase , _lowercase , _lowercase : Dict = edge _lowercase : List[Any] = union_find.find(UpperCamelCase_ ) _lowercase : int = union_find.find(UpperCamelCase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowercase : Dict = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowercase : List[str] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowercase , _lowercase , _lowercase : Tuple = cheap_edge[vertex] if union_find.find(UpperCamelCase_ ) != union_find.find(UpperCamelCase_ ): union_find.union(UpperCamelCase_ , UpperCamelCase_ ) mst_edges.append(cheap_edge[vertex] ) _lowercase : List[str] = num_components - 1 _lowercase : Any = Graph.build(edges=UpperCamelCase_ ) return mst
411
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE( snake_case_ : str ) ->Optional[Any]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowercase : Optional[int] = model_type_to_module_name(snake_case_ ) _lowercase : Optional[Any] = importlib.import_module(F".{module_name}" , '''transformers.models''' ) try: return getattr(snake_case_ , snake_case_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case_ , '''__name__''' , snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowercase : int = importlib.import_module('''transformers''' ) if hasattr(snake_case_ , snake_case_ ): return getattr(snake_case_ , snake_case_ ) return None def _SCREAMING_SNAKE_CASE( snake_case_ : Union[str, os.PathLike] , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[Dict[str, str]] = None , snake_case_ : Optional[Union[bool, str]] = None , snake_case_ : Optional[str] = None , snake_case_ : bool = False , **snake_case_ : int , ) ->Union[str, Any]: '''simple docstring''' _lowercase : Dict = get_file_from_repo( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(snake_case_ , encoding='''utf-8''' ) as reader: return json.load(snake_case_ ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : int ) -> Tuple: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase_ ) def __lowercase ( cls : str , UpperCamelCase_ : Dict , **UpperCamelCase_ : Any ) -> Tuple: '''simple docstring''' _lowercase : int = kwargs.pop('''config''' , UpperCamelCase_ ) _lowercase : Union[str, Any] = kwargs.pop('''trust_remote_code''' , UpperCamelCase_ ) _lowercase : str = True _lowercase , _lowercase : int = ImageProcessingMixin.get_image_processor_dict(UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Any = config_dict.get('''image_processor_type''' , UpperCamelCase_ ) _lowercase : List[str] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _lowercase : List[str] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowercase : str = config_dict.pop('''feature_extractor_type''' , UpperCamelCase_ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _lowercase : Any = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _lowercase : List[str] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _lowercase : List[str] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : Tuple = AutoConfig.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # It could be in `config.image_processor_type`` _lowercase : Optional[int] = getattr(UpperCamelCase_ , '''image_processor_type''' , UpperCamelCase_ ) if hasattr(UpperCamelCase_ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _lowercase : List[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _lowercase : int = image_processor_class_from_name(UpperCamelCase_ ) _lowercase : str = image_processor_auto_map is not None _lowercase : List[str] = image_processor_class is not None or type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING _lowercase : Tuple = resolve_trust_remote_code( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if has_remote_code and trust_remote_code: _lowercase : Dict = get_class_from_dynamic_module( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : List[str] = kwargs.pop('''code_revision''' , UpperCamelCase_ ) if os.path.isdir(UpperCamelCase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING: _lowercase : List[str] = IMAGE_PROCESSOR_MAPPING[type(UpperCamelCase_ )] return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def __lowercase ( UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ) -> Optional[int]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(UpperCamelCase_ , UpperCamelCase_ )
411
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : List[Any] = AltDiffusionPipeline _UpperCAmelCase : Dict = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowerCamelCase ( self : List[Any] ) ->Any: torch.manual_seed(0 ) lowerCamelCase__ : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) lowerCamelCase__ : List[str] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowerCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) lowerCamelCase__ : List[str] = CLIPTextModel(A ) lowerCamelCase__ : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase__ : Optional[Any] = 7_7 lowerCamelCase__ : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCamelCase ( self : Dict , A : int , A : Optional[Any]=0 ) ->int: if str(A ).startswith('''mps''' ): lowerCamelCase__ : Optional[Any] = torch.manual_seed(A ) else: lowerCamelCase__ : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase__ : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCamelCase ( self : Dict ) ->Optional[int]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __lowerCamelCase ( self : Optional[Any] ) ->List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __lowerCamelCase ( self : Dict ) ->Tuple: lowerCamelCase__ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : int = self.get_dummy_components() torch.manual_seed(0 ) lowerCamelCase__ : Tuple = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCamelCase__ : Tuple = RobertaSeriesModelWithTransformation(A ) lowerCamelCase__ : str = text_encoder lowerCamelCase__ : List[Any] = AltDiffusionPipeline(**A ) lowerCamelCase__ : Optional[int] = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase__ : str = self.get_dummy_inputs(A ) lowerCamelCase__ : List[str] = '''A photo of an astronaut''' lowerCamelCase__ : Union[str, Any] = alt_pipe(**A ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : Dict = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self : str ) ->Any: lowerCamelCase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : str = self.get_dummy_components() lowerCamelCase__ : str = PNDMScheduler(skip_prk_steps=A ) torch.manual_seed(0 ) lowerCamelCase__ : int = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCamelCase__ : Dict = RobertaSeriesModelWithTransformation(A ) lowerCamelCase__ : List[Any] = text_encoder lowerCamelCase__ : Any = AltDiffusionPipeline(**A ) lowerCamelCase__ : Optional[int] = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase__ : int = self.get_dummy_inputs(A ) lowerCamelCase__ : int = alt_pipe(**A ) lowerCamelCase__ : Optional[int] = output.images lowerCamelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : Optional[int] ) ->Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : List[Any] ) ->int: # make sure here that pndm scheduler skips prk lowerCamelCase__ : Dict = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=A ) lowerCamelCase__ : Optional[Any] = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase__ : Optional[int] = '''A painting of a squirrel eating a burger''' lowerCamelCase__ : Dict = torch.manual_seed(0 ) lowerCamelCase__ : Dict = alt_pipe([prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) lowerCamelCase__ : int = output.images lowerCamelCase__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : int = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self : Dict ) ->Union[str, Any]: lowerCamelCase__ : Union[str, Any] = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) lowerCamelCase__ : Dict = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=A , safety_checker=A ) lowerCamelCase__ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase__ : Optional[int] = '''A painting of a squirrel eating a burger''' lowerCamelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCamelCase__ : int = alt_pipe([prompt] , generator=A , num_inference_steps=2 , output_type='''numpy''' ) lowerCamelCase__ : int = output.images lowerCamelCase__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : List[str] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
315
from __future__ import annotations from collections.abc import Callable _A : Tuple = list[list[float | int]] def _a ( UpperCAmelCase , UpperCAmelCase ) -> Matrix: """simple docstring""" lowerCamelCase__ : int = len(UpperCAmelCase ) lowerCamelCase__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase )] lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float for row in range(UpperCAmelCase ): for col in range(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = matrix[row][col] lowerCamelCase__ : Union[str, Any] = vector[row][0] lowerCamelCase__ : str = 0 lowerCamelCase__ : Optional[Any] = 0 while row < size and col < size: # pivoting lowerCamelCase__ : Dict = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase , UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCamelCase__ , lowerCamelCase__ : List[str] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCAmelCase ): lowerCamelCase__ : str = augmented[rowa][col] / augmented[row][col] lowerCamelCase__ : Any = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCAmelCase ): for row in range(UpperCAmelCase ): lowerCamelCase__ : Tuple = augmented[row][col] / augmented[col][col] for cola in range(UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase ) ] def _a ( UpperCAmelCase ) -> Callable[[int], int]: """simple docstring""" lowerCamelCase__ : int = len(UpperCAmelCase ) lowerCamelCase__ : Matrix = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] lowerCamelCase__ : Matrix = [[0] for _ in range(UpperCAmelCase )] lowerCamelCase__ : Matrix lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int for x_val, y_val in enumerate(UpperCAmelCase ): for col in range(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = (x_val + 1) ** (size - col - 1) lowerCamelCase__ : List[Any] = y_val lowerCamelCase__ : Tuple = solve(UpperCAmelCase , UpperCAmelCase ) def interpolated_func(UpperCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCAmelCase ) ) return interpolated_func def _a ( UpperCAmelCase ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _a ( UpperCAmelCase = question_function , UpperCAmelCase = 10 ) -> int: """simple docstring""" lowerCamelCase__ : list[int] = [func(UpperCAmelCase ) for x_val in range(1 , order + 1 )] lowerCamelCase__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowerCamelCase__ : int = 0 lowerCamelCase__ : Callable[[int], int] lowerCamelCase__ : int for poly in polynomials: lowerCamelCase__ : Any = 1 while func(UpperCAmelCase ) == poly(UpperCAmelCase ): x_val += 1 ret += poly(UpperCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
315
1
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = (KDPMaDiscreteScheduler,) A__ = 10 def __SCREAMING_SNAKE_CASE ( self , **snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = { "num_train_timesteps": 1100, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**snake_case__ ) return config def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) _SCREAMING_SNAKE_CASE : str = self.dummy_model() _SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _SCREAMING_SNAKE_CASE : Dict = sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE : List[str] = scheduler.scale_model_input(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = model(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : str = scheduler.step(snake_case__ , snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample _SCREAMING_SNAKE_CASE : Tuple = torch.sum(torch.abs(snake_case__ ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" if torch_device == "mps": return _SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() _SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) _SCREAMING_SNAKE_CASE : str = self.dummy_model() _SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter * scheduler.init_noise_sigma _SCREAMING_SNAKE_CASE : Any = sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE : Tuple = scheduler.scale_model_input(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = model(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(snake_case__ , snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : int = output.prev_sample _SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(snake_case__ ) ) _SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" if torch_device == "mps": return _SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() _SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ ) _SCREAMING_SNAKE_CASE : Any = self.dummy_model() _SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = model(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = scheduler.step(snake_case__ , snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample _SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(snake_case__ ) ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(snake_case__ ) ) if str(snake_case__ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
701
"""simple docstring""" import operator as op def _lowerCAmelCase ( lowerCamelCase__ : Tuple ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : str = lambda lowerCamelCase__, lowerCamelCase__ : int(x / y ) # noqa: E731 integer division operation _SCREAMING_SNAKE_CASE : Any = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ), "Action".center(1_2 ), "Stack", sep=" | " ) print("-" * (3_0 + len(lowerCamelCase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowerCamelCase__ ) # append x to stack # output in tabular format print(x.rjust(8 ), ("push(" + x + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) else: _SCREAMING_SNAKE_CASE : Dict = stack.pop() # pop stack # output in tabular format print("".rjust(8 ), ("pop(" + b + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) _SCREAMING_SNAKE_CASE : Any = stack.pop() # pop stack # output in tabular format print("".rjust(8 ), ("pop(" + a + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) stack.append( str(opr[x](int(lowerCamelCase__ ), int(lowerCamelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ("push(" + a + x + b + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | ", ) return int(stack[0] ) if __name__ == "__main__": lowercase_ : int = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
295
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Tuple: """simple docstring""" for attribute in key.split(""".""" ): _UpperCamelCase = getattr(lowerCAmelCase , lowerCAmelCase ) if weight_type is not None: _UpperCamelCase = getattr(lowerCAmelCase , lowerCAmelCase ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __A(lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) _UpperCamelCase = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(lowerCAmelCase )[0].split(""".""" )[-2] _UpperCamelCase = mapped_key.replace("""*""" , lowerCAmelCase ) if "weight_g" in name: _UpperCamelCase = """weight_g""" elif "weight_v" in name: _UpperCamelCase = """weight_v""" elif "bias" in name: _UpperCamelCase = """bias""" elif "weight" in name: _UpperCamelCase = """weight""" else: _UpperCamelCase = None set_recursively(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[str]: """simple docstring""" _UpperCamelCase = full_name.split("""conv_layers.""" )[-1] _UpperCamelCase = name.split(""".""" ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _UpperCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCAmelCase ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Tuple: """simple docstring""" _UpperCamelCase = full_name.split("""adaptor.""" )[-1] _UpperCamelCase = name.split(""".""" ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' _UpperCamelCase = value logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' _UpperCamelCase = value logger.info(F'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' _UpperCamelCase = value logger.info(F'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' _UpperCamelCase = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' _UpperCamelCase = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(lowerCAmelCase ) def __A(lowerCAmelCase ) -> List[str]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> int: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( lowerCAmelCase , add_adapter=lowerCAmelCase , adapter_stride=lowerCAmelCase , adapter_kernel_size=lowerCAmelCase , use_auth_token=lowerCAmelCase , output_hidden_size=lowerCAmelCase , ) _UpperCamelCase = MBartConfig.from_pretrained(lowerCAmelCase ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase , use_auth_token=lowerCAmelCase ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(lowerCAmelCase ) recursively_load_weights_wavaveca(model.encoder , lowerCAmelCase ) # load decoder weights _UpperCamelCase = MBartForCausalLM(lowerCAmelCase ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCAmelCase ) logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=lowerCAmelCase , decoder=lowerCAmelCase ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = """mbart50""" _UpperCamelCase = """wav2vec2""" _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 2_5_0_0_0_4 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) feature_extractor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=25_0004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
612
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase__ ( __lowercase ): @staticmethod @abstractmethod def A_ ( a ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError() @abstractmethod def A_ ( self ) -> List[Any]: '''simple docstring''' raise NotImplementedError()
612
1
def _lowerCAmelCase ( __lowerCamelCase : int ) -> Tuple: """simple docstring""" if n == 1 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return 0 elif n == 2: return 1 else: __SCREAMING_SNAKE_CASE : Optional[int] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _lowerCAmelCase ( __lowerCamelCase : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Any = 2 while digits < n: index += 1 __SCREAMING_SNAKE_CASE : str = len(str(fibonacci(lowerCamelCase_ ) ) ) return index def _lowerCAmelCase ( __lowerCamelCase : int = 1000 ) -> Tuple: """simple docstring""" return fibonacci_digits_index(lowerCamelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
702
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _SCREAMING_SNAKE_CASE (UpperCamelCase ): lowerCAmelCase = ["""vqvae"""] def __init__( self : Tuple , UpperCamelCase : AutoencoderKL , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : Mel , UpperCamelCase : Union[DDIMScheduler, DDPMScheduler] , )->Tuple: super().__init__() self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase , mel=UpperCamelCase , vqvae=UpperCamelCase ) def __snake_case ( self : List[Any] )->int: return 5_0 if isinstance(self.scheduler , UpperCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self : Dict , UpperCamelCase : int = 1 , UpperCamelCase : str = None , UpperCamelCase : np.ndarray = None , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = None , UpperCamelCase : torch.Generator = None , UpperCamelCase : float = 0 , UpperCamelCase : float = 0 , UpperCamelCase : torch.Generator = None , UpperCamelCase : float = 0 , UpperCamelCase : torch.Tensor = None , UpperCamelCase : torch.Tensor = None , UpperCamelCase : Any=True , )->Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: __SCREAMING_SNAKE_CASE : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __SCREAMING_SNAKE_CASE : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __SCREAMING_SNAKE_CASE : Any = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCamelCase , device=self.device , ) __SCREAMING_SNAKE_CASE : Any = noise __SCREAMING_SNAKE_CASE : Any = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCamelCase , UpperCamelCase ) __SCREAMING_SNAKE_CASE : str = self.mel.audio_slice_to_image(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (input_image / 2_5_5) * 2 - 1 __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.vqvae.encode(torch.unsqueeze(UpperCamelCase , 0 ) ).latent_dist.sample( generator=UpperCamelCase )[0] __SCREAMING_SNAKE_CASE : int = self.vqvae.config.scaling_factor * input_images if start_step > 0: __SCREAMING_SNAKE_CASE : List[str] = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , self.scheduler.timesteps[start_step - 1] ) __SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __SCREAMING_SNAKE_CASE : Union[str, Any] = int(mask_start_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE : int = int(mask_end_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE : Any = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , UpperCamelCase ): __SCREAMING_SNAKE_CASE : str = self.unet(UpperCamelCase , UpperCamelCase , UpperCamelCase )["sample"] else: __SCREAMING_SNAKE_CASE : int = self.unet(UpperCamelCase , UpperCamelCase )["sample"] if isinstance(self.scheduler , UpperCamelCase ): __SCREAMING_SNAKE_CASE : int = self.scheduler.step( model_output=UpperCamelCase , timestep=UpperCamelCase , sample=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , )["prev_sample"] else: __SCREAMING_SNAKE_CASE : Tuple = self.scheduler.step( model_output=UpperCamelCase , timestep=UpperCamelCase , sample=UpperCamelCase , generator=UpperCamelCase , )["prev_sample"] if mask is not None: if mask_start > 0: __SCREAMING_SNAKE_CASE : int = mask[:, step, :, :mask_start] if mask_end > 0: __SCREAMING_SNAKE_CASE : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __SCREAMING_SNAKE_CASE : Any = 1 / self.vqvae.config.scaling_factor * images __SCREAMING_SNAKE_CASE : Any = self.vqvae.decode(UpperCamelCase )["sample"] __SCREAMING_SNAKE_CASE : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : str = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __SCREAMING_SNAKE_CASE : Tuple = (images * 2_5_5).round().astype("uint8" ) __SCREAMING_SNAKE_CASE : Optional[int] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCamelCase , mode="RGB" ).convert("L" ) for _ in images) ) __SCREAMING_SNAKE_CASE : List[str] = [self.mel.image_to_audio(UpperCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(UpperCamelCase ) ) @torch.no_grad() def __snake_case ( self : Dict , UpperCamelCase : List[Image.Image] , UpperCamelCase : int = 5_0 )->np.ndarray: assert isinstance(self.scheduler , UpperCamelCase ) self.scheduler.set_timesteps(UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) __SCREAMING_SNAKE_CASE : Dict = (sample / 2_5_5) * 2 - 1 __SCREAMING_SNAKE_CASE : Optional[int] = torch.Tensor(UpperCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __SCREAMING_SNAKE_CASE : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.alphas_cumprod[t] __SCREAMING_SNAKE_CASE : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : Dict = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE : List[Any] = self.unet(UpperCamelCase , UpperCamelCase )["sample"] __SCREAMING_SNAKE_CASE : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output __SCREAMING_SNAKE_CASE : Union[str, Any] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __SCREAMING_SNAKE_CASE : Optional[Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __snake_case ( UpperCamelCase : torch.Tensor , UpperCamelCase : torch.Tensor , UpperCamelCase : float )->torch.Tensor: __SCREAMING_SNAKE_CASE : List[str] = acos(torch.dot(torch.flatten(UpperCamelCase ) , torch.flatten(UpperCamelCase ) ) / torch.norm(UpperCamelCase ) / torch.norm(UpperCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(UpperCamelCase ) + sin(alpha * theta ) * xa / sin(UpperCamelCase )
447
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = cva.getAffineTransform(__lowerCamelCase, __lowerCamelCase ) return cva.warpAffine(__lowerCamelCase, __lowerCamelCase, (rows, cols) ) if __name__ == "__main__": # read original image UpperCamelCase__ =cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value UpperCamelCase__ =cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCamelCase__ , UpperCamelCase__ =gray_img.shape # set different points to rotate image UpperCamelCase__ =np.array([[50, 50], [200, 50], [50, 200]], np.floataa) UpperCamelCase__ =np.array([[10, 100], [200, 50], [100, 250]], np.floataa) UpperCamelCase__ =np.array([[50, 50], [150, 50], [120, 200]], np.floataa) UpperCamelCase__ =np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list UpperCamelCase__ =[ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCamelCase__ =plt.figure(1) UpperCamelCase__ =['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
249
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = checkpoints.load_tax_checkpoint(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": _SCREAMING_SNAKE_CASE : List[str] = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": _SCREAMING_SNAKE_CASE : Optional[Any] = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : int = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): _SCREAMING_SNAKE_CASE : List[str] = f"""layers_{str(__lowerCamelCase )}""" # Self-Attention _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] _SCREAMING_SNAKE_CASE : int = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization _SCREAMING_SNAKE_CASE : Tuple = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] _SCREAMING_SNAKE_CASE : int = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _SCREAMING_SNAKE_CASE : List[str] = flax_model.params["encoder"]["block"][str(__lowerCamelCase )]["layer"] _SCREAMING_SNAKE_CASE : Tuple = tax_attention_key _SCREAMING_SNAKE_CASE : List[Any] = tax_attention_out _SCREAMING_SNAKE_CASE : Tuple = tax_attention_query _SCREAMING_SNAKE_CASE : List[str] = tax_attention_value _SCREAMING_SNAKE_CASE : Any = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : str = tax_global_layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE : int = tax_mlp_wi_a _SCREAMING_SNAKE_CASE : Tuple = tax_mlp_wi_a else: _SCREAMING_SNAKE_CASE : List[str] = tax_mlp_wi _SCREAMING_SNAKE_CASE : int = tax_mlp_wo _SCREAMING_SNAKE_CASE : Optional[int] = tax_mlp_layer_norm _SCREAMING_SNAKE_CASE : Tuple = flax_model_encoder_layer_block # Only for layer 0: _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T _SCREAMING_SNAKE_CASE : str = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T _SCREAMING_SNAKE_CASE : Tuple = tax_encoder_global_rel_embedding # Assigning _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _SCREAMING_SNAKE_CASE : Dict = f"""layers_{str(__lowerCamelCase )}""" # Self-Attention _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] _SCREAMING_SNAKE_CASE : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] _SCREAMING_SNAKE_CASE : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention _SCREAMING_SNAKE_CASE : List[Any] = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_enc_dec_attention_module["key"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_enc_dec_attention_module["out"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_enc_dec_attention_module["query"]["kernel"] _SCREAMING_SNAKE_CASE : int = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : int = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: _SCREAMING_SNAKE_CASE : int = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : Any = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _SCREAMING_SNAKE_CASE : int = flax_model.params["decoder"]["block"][str(__lowerCamelCase )]["layer"] _SCREAMING_SNAKE_CASE : Any = tax_attention_key _SCREAMING_SNAKE_CASE : Optional[int] = tax_attention_out _SCREAMING_SNAKE_CASE : Optional[Any] = tax_attention_query _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_attention_value _SCREAMING_SNAKE_CASE : Optional[Any] = tax_pre_attention_layer_norm _SCREAMING_SNAKE_CASE : Optional[int] = tax_enc_dec_attention_key _SCREAMING_SNAKE_CASE : Dict = tax_enc_dec_attention_out _SCREAMING_SNAKE_CASE : Dict = tax_enc_dec_attention_query _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_enc_dec_attention_value _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_cross_layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE : int = tax_mlp_wi_a _SCREAMING_SNAKE_CASE : Tuple = tax_mlp_wi_a else: _SCREAMING_SNAKE_CASE : Tuple = tax_mlp_wi _SCREAMING_SNAKE_CASE : List[str] = tax_mlp_wo _SCREAMING_SNAKE_CASE : Any = txa_mlp_layer_norm _SCREAMING_SNAKE_CASE : List[str] = flax_model_decoder_layer_block # Decoder Normalization _SCREAMING_SNAKE_CASE : Optional[int] = tax_model["target"]["decoder"]["decoder_norm"]["scale"] _SCREAMING_SNAKE_CASE : List[str] = txa_decoder_norm # Only for layer 0: _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T _SCREAMING_SNAKE_CASE : Tuple = tax_decoder_rel_embedding # Token Embeddings _SCREAMING_SNAKE_CASE : Tuple = tax_model["target"]["token_embedder"]["embedding"] _SCREAMING_SNAKE_CASE : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(__lowerCamelCase ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) UpperCamelCase__ =parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
249
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } lowerCAmelCase__ = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off lowerCAmelCase__ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __snake_case ( UpperCamelCase_): snake_case__ : Optional[Any] = VOCAB_FILES_NAMES snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : str = PRETRAINED_VOCAB_FILES_MAP snake_case__ : int = ["""input_ids""", """attention_mask"""] snake_case__ : Tuple = NllbTokenizer snake_case__ : List[int] = [] snake_case__ : List[int] = [] def __init__( self : List[str] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : int="<s>" , __lowerCAmelCase : Union[str, Any]="</s>" , __lowerCAmelCase : Optional[int]="</s>" , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : Optional[Any]="<pad>" , __lowerCAmelCase : int="<mask>" , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Optional[Any]=False , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" _lowerCamelCase : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _lowerCamelCase : Optional[int] = legacy_behaviour super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , ) _lowerCamelCase : Optional[int] = vocab_file _lowerCamelCase : str = False if not self.vocab_file else True _lowerCamelCase : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) _lowerCamelCase : List[str] = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCamelCase : Dict = src_lang if src_lang is not None else """eng_Latn""" _lowerCamelCase : List[str] = self.convert_tokens_to_ids(self._src_lang ) _lowerCamelCase : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int = None ): """simple docstring""" _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , **__lowerCAmelCase : Dict ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _lowerCamelCase : Dict = src_lang _lowerCamelCase : Dict = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) _lowerCamelCase : Union[str, Any] = self.convert_tokens_to_ids(_a ) _lowerCamelCase : List[Any] = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple = "eng_Latn" , __lowerCAmelCase : str = None , __lowerCAmelCase : Dict = "fra_Latn" , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" _lowerCamelCase : Tuple = src_lang _lowerCamelCase : Dict = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[Any] = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: _lowerCamelCase : str = [] _lowerCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCamelCase : Dict = [self.cur_lang_code] _lowerCamelCase : Dict = [self.eos_token_id] _lowerCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCamelCase : int = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : str = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: _lowerCamelCase : List[Any] = [] _lowerCamelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: _lowerCamelCase : Optional[int] = [self.cur_lang_code] _lowerCamelCase : Union[str, Any] = [self.eos_token_id] _lowerCamelCase : Any = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int , __lowerCAmelCase : List[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return _lowerCamelCase : Dict = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
712
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Tuple = GPTaTokenizer snake_case__ : str = GPTaTokenizerFast snake_case__ : Union[str, Any] = True snake_case__ : Dict = {"add_prefix_space": True} snake_case__ : Any = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] _lowerCamelCase : Union[str, Any] = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _lowerCamelCase : List[Any] = {'''unk_token''': '''<unk>'''} _lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__lowerCAmelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , **__lowerCAmelCase : Tuple ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = '''lower newer''' _lowerCamelCase : Any = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Any = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Any = '''lower newer''' _lowerCamelCase : Dict = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _lowerCamelCase : Optional[int] = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = tokens + [tokenizer.unk_token] _lowerCamelCase : List[str] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : int = '''lower newer''' # Testing tokenization _lowerCamelCase : Optional[int] = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens _lowerCamelCase : str = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Dict = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing the unknown token _lowerCamelCase : int = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : List[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : str ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[Any]=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # Simple input _lowerCamelCase : Tuple = '''This is a simple input''' _lowerCamelCase : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase : Tuple = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input _lowerCamelCase : List[str] = '''This is a simple input''' _lowerCamelCase : int = ['''This is a simple input looooooooong''', '''This is a simple input'''] _lowerCamelCase : int = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase : int = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] _lowerCamelCase : Tuple = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=3_0 , return_tensors='''np''' ) _lowerCamelCase : Any = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='''np''' ) _lowerCamelCase : List[Any] = tokenizer(*__lowerCAmelCase , padding='''max_length''' , max_length=6_0 , return_tensors='''np''' ) _lowerCamelCase : Optional[Any] = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = '''$$$''' _lowerCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCAmelCase , add_bos_token=__lowerCAmelCase ) _lowerCamelCase : Any = '''This is a simple input''' _lowerCamelCase : Tuple = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = tokenizer(__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : Any = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : Any = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = [self.get_tokenizer(do_lower_case=__lowerCAmelCase , add_bos_token=__lowerCAmelCase )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _lowerCamelCase : str = '''Encode this.''' _lowerCamelCase : Optional[Any] = '''This one too please.''' _lowerCamelCase : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) encoded_sequence += tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode_plus( __lowerCAmelCase , __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , ) _lowerCamelCase : str = encoded_sequence_dict['''input_ids'''] _lowerCamelCase : List[Any] = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) _lowerCamelCase : Any = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__lowerCAmelCase ) ] _lowerCamelCase : List[Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @require_tokenizers class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__lowerCAmelCase ) _lowerCamelCase : Tuple = '''A photo of a cat''' _lowerCamelCase : Tuple = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''test_opt''' ) _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('''./test_opt''' ) _lowerCamelCase : Optional[int] = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=__lowerCAmelCase ) _lowerCamelCase : Tuple = '''A photo of a cat''' _lowerCamelCase : List[str] = tokenizer.encode( __lowerCAmelCase , ) # Same as above self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = '''bos''' _lowerCamelCase : Optional[Any] = tokenizer.get_vocab()['''bos'''] _lowerCamelCase : Any = '''A photo of a cat''' _lowerCamelCase : int = tokenizer.encode( __lowerCAmelCase , ) # We changed the bos token self.assertEqual(__lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''./tok''' ) _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) _lowerCamelCase : Tuple = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
598
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def A__ ( snake_case_ : str , snake_case_ : str , **snake_case_ : Optional[int] ): SCREAMING_SNAKE_CASE__: Any= AutoConfig.from_pretrained(snake_case_ , **snake_case_ ) SCREAMING_SNAKE_CASE__: Dict= AutoModelForSeqaSeqLM.from_config(snake_case_ ) model.save_pretrained(snake_case_ ) AutoTokenizer.from_pretrained(snake_case_ ).save_pretrained(snake_case_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
64
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): def __lowerCamelCase ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self :Dict ): snake_case__ : Optional[Any] = 1 snake_case__ : int = 3 snake_case__ : Optional[int] = (3_2, 3_2) snake_case__ : Any = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(__lowercase ) return image @property def __lowerCamelCase ( self :int ): torch.manual_seed(0 ) snake_case__ : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=7 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=3_2 ,attention_head_dim=8 ,use_linear_projection=__lowercase ,only_cross_attention=(True, True, False) ,num_class_embeds=1_0_0 ,) return model @property def __lowerCamelCase ( self :List[Any] ): torch.manual_seed(0 ) snake_case__ : Tuple = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) return model @property def __lowerCamelCase ( self :str ): torch.manual_seed(0 ) snake_case__ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) return CLIPTextModel(__lowercase ) def __lowerCamelCase ( self :List[str] ): snake_case__ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ : str = self.dummy_cond_unet_upscale snake_case__ : Optional[int] = DDPMScheduler() snake_case__ : Tuple = DDIMScheduler(prediction_type='''v_prediction''' ) snake_case__ : List[Any] = self.dummy_vae snake_case__ : Optional[int] = self.dummy_text_encoder snake_case__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ : Any = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case__ : List[str] = Image.fromarray(np.uinta(__lowercase ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk snake_case__ : Union[str, Any] = StableDiffusionUpscalePipeline( unet=__lowercase ,low_res_scheduler=__lowercase ,scheduler=__lowercase ,vae=__lowercase ,text_encoder=__lowercase ,tokenizer=__lowercase ,max_noise_level=3_5_0 ,) snake_case__ : List[str] = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Tuple = '''A painting of a squirrel eating a burger''' snake_case__ : int = torch.Generator(device=__lowercase ).manual_seed(0 ) snake_case__ : Optional[Any] = sd_pipe( [prompt] ,image=__lowercase ,generator=__lowercase ,guidance_scale=6.0 ,noise_level=2_0 ,num_inference_steps=2 ,output_type='''np''' ,) snake_case__ : Optional[int] = output.images snake_case__ : Dict = torch.Generator(device=__lowercase ).manual_seed(0 ) snake_case__ : Tuple = sd_pipe( [prompt] ,image=__lowercase ,generator=__lowercase ,guidance_scale=6.0 ,noise_level=2_0 ,num_inference_steps=2 ,output_type='''np''' ,return_dict=__lowercase ,)[0] snake_case__ : List[str] = image[0, -3:, -3:, -1] snake_case__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] snake_case__ : Any = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) snake_case__ : List[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self :int ): snake_case__ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ : int = self.dummy_cond_unet_upscale snake_case__ : Optional[int] = DDPMScheduler() snake_case__ : str = DDIMScheduler(prediction_type='''v_prediction''' ) snake_case__ : Any = self.dummy_vae snake_case__ : Any = self.dummy_text_encoder snake_case__ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ : int = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case__ : Union[str, Any] = Image.fromarray(np.uinta(__lowercase ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk snake_case__ : Union[str, Any] = StableDiffusionUpscalePipeline( unet=__lowercase ,low_res_scheduler=__lowercase ,scheduler=__lowercase ,vae=__lowercase ,text_encoder=__lowercase ,tokenizer=__lowercase ,max_noise_level=3_5_0 ,) snake_case__ : Union[str, Any] = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : str = '''A painting of a squirrel eating a burger''' snake_case__ : Tuple = sd_pipe( 2 * [prompt] ,image=2 * [low_res_image] ,guidance_scale=6.0 ,noise_level=2_0 ,num_inference_steps=2 ,output_type='''np''' ,) snake_case__ : Tuple = output.images assert image.shape[0] == 2 snake_case__ : Optional[Any] = torch.Generator(device=__lowercase ).manual_seed(0 ) snake_case__ : Dict = sd_pipe( [prompt] ,image=__lowercase ,generator=__lowercase ,num_images_per_prompt=2 ,guidance_scale=6.0 ,noise_level=2_0 ,num_inference_steps=2 ,output_type='''np''' ,) snake_case__ : Union[str, Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' ,'''This test requires a GPU''' ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Tuple = self.dummy_cond_unet_upscale snake_case__ : Tuple = DDPMScheduler() snake_case__ : Dict = DDIMScheduler(prediction_type='''v_prediction''' ) snake_case__ : int = self.dummy_vae snake_case__ : List[Any] = self.dummy_text_encoder snake_case__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ : Tuple = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case__ : Tuple = Image.fromarray(np.uinta(__lowercase ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 snake_case__ : Optional[Any] = unet.half() snake_case__ : Any = text_encoder.half() # make sure here that pndm scheduler skips prk snake_case__ : Tuple = StableDiffusionUpscalePipeline( unet=__lowercase ,low_res_scheduler=__lowercase ,scheduler=__lowercase ,vae=__lowercase ,text_encoder=__lowercase ,tokenizer=__lowercase ,max_noise_level=3_5_0 ,) snake_case__ : str = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : List[Any] = '''A painting of a squirrel eating a burger''' snake_case__ : Optional[int] = torch.manual_seed(0 ) snake_case__ : str = sd_pipe( [prompt] ,image=__lowercase ,generator=__lowercase ,num_inference_steps=2 ,output_type='''np''' ,).images snake_case__ : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class a ( unittest.TestCase ): def __lowerCamelCase ( self :Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) snake_case__ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) snake_case__ : int = '''stabilityai/stable-diffusion-x4-upscaler''' snake_case__ : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() snake_case__ : List[str] = '''a cat sitting on a park bench''' snake_case__ : List[Any] = torch.manual_seed(0 ) snake_case__ : Any = pipe( prompt=__lowercase ,image=__lowercase ,generator=__lowercase ,output_type='''np''' ,) snake_case__ : Any = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def __lowerCamelCase ( self :int ): snake_case__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) snake_case__ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) snake_case__ : Tuple = '''stabilityai/stable-diffusion-x4-upscaler''' snake_case__ : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained( __lowercase ,torch_dtype=torch.floataa ,) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() snake_case__ : Union[str, Any] = '''a cat sitting on a park bench''' snake_case__ : Optional[int] = torch.manual_seed(0 ) snake_case__ : List[Any] = pipe( prompt=__lowercase ,image=__lowercase ,generator=__lowercase ,output_type='''np''' ,) snake_case__ : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __lowerCamelCase ( self :Union[str, Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) snake_case__ : Optional[Any] = '''stabilityai/stable-diffusion-x4-upscaler''' snake_case__ : List[Any] = StableDiffusionUpscalePipeline.from_pretrained( __lowercase ,torch_dtype=torch.floataa ,) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : List[Any] = '''a cat sitting on a park bench''' snake_case__ : List[Any] = torch.manual_seed(0 ) snake_case__ : Tuple = pipe( prompt=__lowercase ,image=__lowercase ,generator=__lowercase ,num_inference_steps=5 ,output_type='''np''' ,) snake_case__ : str = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
252
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__: Tuple = logging.get_logger(__name__) a__: Tuple = """▁""" a__: Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} a__: List[Any] = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } a__: Dict = {"""vinai/bartpho-syllable""": 1_024} class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase="<s>",__lowerCamelCase="</s>",__lowerCamelCase="</s>",__lowerCamelCase="<s>",__lowerCamelCase="<unk>",__lowerCamelCase="<pad>",__lowerCamelCase="<mask>",__lowerCamelCase = None,**__lowerCamelCase,): A__ = AddedToken(UpperCamelCase__,lstrip=UpperCamelCase__,rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__,UpperCamelCase__ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__,eos_token=UpperCamelCase__,unk_token=UpperCamelCase__,sep_token=UpperCamelCase__,cls_token=UpperCamelCase__,pad_token=UpperCamelCase__,mask_token=UpperCamelCase__,sp_model_kwargs=self.sp_model_kwargs,**UpperCamelCase__,) A__ = vocab_file A__ = monolingual_vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility A__ = {} A__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase__ ) not in self.fairseq_tokens_to_ids: A__ = cnt cnt += 1 with open(UpperCamelCase__,'''r''',encoding='''utf-8''' ) as f: for line in f.readlines(): A__ = line.strip().split()[0] A__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase__ ) not in self.fairseq_tokens_to_ids: A__ = len(self.fairseq_tokens_to_ids ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): A__ = self.__dict__.copy() A__ = None A__ = self.sp_model.serialized_model_proto() return state def __setstate__( self,__lowerCamelCase ): A__ = d # for backward compatibility if not hasattr(self,'''sp_model_kwargs''' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__,token_ids_a=UpperCamelCase__,already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase ( self ): return len(self.fairseq_ids_to_tokens ) def UpperCamelCase ( self ): A__ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self,__lowerCamelCase ): return self.sp_model.encode(UpperCamelCase__,out_type=UpperCamelCase__ ) def UpperCamelCase ( self,__lowerCamelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCamelCase ( self,__lowerCamelCase ): return self.fairseq_ids_to_tokens[index] def UpperCamelCase ( self,__lowerCamelCase ): A__ = ''''''.join(UpperCamelCase__ ).replace(UpperCamelCase__,''' ''' ).strip() return out_string def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( UpperCamelCase__,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) A__ = os.path.join( UpperCamelCase__,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''],) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__,'''wb''' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file,UpperCamelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase__,'''w''',encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"{str(UpperCamelCase__ )} \n" ) return out_vocab_file, out_monolingual_vocab_file
700
def UpperCamelCase__( UpperCamelCase__ : int )->list: A__ = int(UpperCamelCase__ ) if n_element < 1: A__ = ValueError('''a should be a positive number''' ) raise my_error A__ = [1] A__ , A__ , A__ = (0, 0, 0) A__ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": a__: str = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') a__: Union[str, Any] = hamming(int(n)) print('-----------------------------------------------------') print(F"The list with nth numbers is: {hamming_numbers}") print('-----------------------------------------------------')
212
0
import heapq import sys import numpy as np UpperCAmelCase_ = tuple[int, int] class __UpperCamelCase : def __init__( self ): _UpperCAmelCase = [] _UpperCAmelCase = set() def UpperCamelCase( self ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def UpperCamelCase( self ): return len(self.elements ) == 0 def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_UpperCamelCase ) else: # update # print("update", item) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase( self , _UpperCamelCase ): if item in self.set: self.set.remove(_UpperCamelCase ) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase( self ): return self.elements[0][1] def UpperCamelCase( self ): ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(_UpperCamelCase ) return (priority, item) def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos ) -> Any: """simple docstring""" _UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) return np.linalg.norm(a - b ) def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos ) -> int: """simple docstring""" return consistent_heuristic(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) // t def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos ) -> Tuple: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : dict[TPos, float] ) -> str: """simple docstring""" _UpperCAmelCase = g_function[start] + Wa * heuristics[i](SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return ans def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase = np.chararray((n, n) ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = '''*''' for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if (j, (n - 1) - i) in blocks: _UpperCAmelCase = '''#''' _UpperCAmelCase = '''-''' _UpperCAmelCase = back_pointer[goal] while x != start: ((_UpperCAmelCase) , (_UpperCAmelCase)) = x # print(x) _UpperCAmelCase = '''-''' _UpperCAmelCase = back_pointer[x] _UpperCAmelCase = '''-''' for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) _UpperCAmelCase = back_pointer[goal] while x != start: print(SCREAMING_SNAKE_CASE_ , end=''' ''' ) _UpperCAmelCase = back_pointer[x] print(SCREAMING_SNAKE_CASE_ ) sys.exit() def A__ ( SCREAMING_SNAKE_CASE_ : TPos ) -> Tuple: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , ) -> List[Any]: """simple docstring""" for itera in range(SCREAMING_SNAKE_CASE_ ): open_list[itera].remove_element(SCREAMING_SNAKE_CASE_ ) # print("s", s) # print("j", j) ((_UpperCAmelCase) , (_UpperCAmelCase)) = s _UpperCAmelCase = (x - 1, y) _UpperCAmelCase = (x + 1, y) _UpperCAmelCase = (x, y + 1) _UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(SCREAMING_SNAKE_CASE_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = -1 _UpperCAmelCase = float('''inf''' ) if valid(SCREAMING_SNAKE_CASE_ ) and g_function[neighbours] > g_function[s] + 1: _UpperCAmelCase = g_function[s] + 1 _UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if neighbours not in close_list_inad: for var in range(1 , SCREAMING_SNAKE_CASE_ ): if key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) <= Wa * key( SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): open_list[j].put( SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def A__ ( ) -> Any: """simple docstring""" _UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list UpperCAmelCase_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCAmelCase_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCAmelCase_ = make_common_ground() UpperCAmelCase_ = blocks_blk # hyper parameters UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 UpperCAmelCase_ = 20 UpperCAmelCase_ = 3 # one consistent and two other inconsistent # start and end destination UpperCAmelCase_ = (0, 0) UpperCAmelCase_ = (n - 1, n - 1) UpperCAmelCase_ = 1 def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = {start: 0, goal: float('''inf''' )} _UpperCAmelCase = {start: -1, goal: -1} _UpperCAmelCase = [] _UpperCAmelCase = set() for i in range(SCREAMING_SNAKE_CASE_ ): open_list.append(PriorityQueue() ) open_list[i].put(SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = [] _UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , SCREAMING_SNAKE_CASE_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: _UpperCAmelCase , _UpperCAmelCase = open_list[i].top_show() visited.add(SCREAMING_SNAKE_CASE_ ) expand_state( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) close_list_inad.append(SCREAMING_SNAKE_CASE_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: _UpperCAmelCase = open_list[0].top_show() visited.add(SCREAMING_SNAKE_CASE_ ) expand_state( SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) close_list_anchor.append(SCREAMING_SNAKE_CASE_ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(SCREAMING_SNAKE_CASE_ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
32
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Tuple = logging.get_logger(__name__) def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Tuple=False , _lowerCamelCase: str=False ): __SCREAMING_SNAKE_CASE : List[Any] = """backbone.""" if is_semantic else """""" __SCREAMING_SNAKE_CASE : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[Any]=False , _lowerCamelCase: Tuple=False ): for i in range(config.num_hidden_layers ): __SCREAMING_SNAKE_CASE : Union[str, Any] = """backbone.""" if is_semantic else """""" # queries, keys and values __SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[ : config.hidden_size, : ] __SCREAMING_SNAKE_CASE : Union[str, Any] = q_bias __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __SCREAMING_SNAKE_CASE : Any = in_proj_weight[ -config.hidden_size :, : ] __SCREAMING_SNAKE_CASE : Dict = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __SCREAMING_SNAKE_CASE : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __SCREAMING_SNAKE_CASE : Any = gamma_a __SCREAMING_SNAKE_CASE : List[str] = gamma_a def lowerCAmelCase_ ( _lowerCamelCase: Any , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Optional[int] = dct.pop(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = val def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: Tuple , _lowerCamelCase: str=False ): __SCREAMING_SNAKE_CASE : str = False if """rvlcdip""" in checkpoint_url else True __SCREAMING_SNAKE_CASE : Union[str, Any] = BeitConfig(use_absolute_position_embeddings=_lowerCamelCase , use_mask_token=_lowerCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __SCREAMING_SNAKE_CASE : int = 10_24 __SCREAMING_SNAKE_CASE : Any = 40_96 __SCREAMING_SNAKE_CASE : Any = 24 __SCREAMING_SNAKE_CASE : Optional[int] = 16 # labels if "rvlcdip" in checkpoint_url: __SCREAMING_SNAKE_CASE : Optional[int] = 16 __SCREAMING_SNAKE_CASE : List[str] = """huggingface/label-files""" __SCREAMING_SNAKE_CASE : Union[str, Any] = """rvlcdip-id2label.json""" __SCREAMING_SNAKE_CASE : int = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE : int = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Tuple = idalabel __SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __SCREAMING_SNAKE_CASE : int = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="""cpu""" )["""model"""] __SCREAMING_SNAKE_CASE : List[Any] = create_rename_keys(_lowerCamelCase , has_lm_head=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , has_lm_head=_lowerCamelCase ) # load HuggingFace model __SCREAMING_SNAKE_CASE : List[str] = BeitForMaskedImageModeling(_lowerCamelCase ) if has_lm_head else BeitForImageClassification(_lowerCamelCase ) model.eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image __SCREAMING_SNAKE_CASE : Any = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() __SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = encoding["""pixel_values"""] __SCREAMING_SNAKE_CASE : Optional[int] = model(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = outputs.logits # verify logits __SCREAMING_SNAKE_CASE : int = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(_lowerCamelCase ), "Shape of logits not as expected" Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: if has_lm_head: __SCREAMING_SNAKE_CASE : Tuple = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __SCREAMING_SNAKE_CASE : Optional[int] = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowerCamelCase , ) model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
578
0
"""simple docstring""" def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Optional[Any] = len(A__ ) + 1 UpperCAmelCase_ : Union[str, Any] = len(A__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase_ : List[str] = [[0 for i in range(A__ )] for j in range(A__ )] # since string of zero length match pattern of zero length UpperCAmelCase_ : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 ,A__ ): UpperCAmelCase_ : List[str] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 ,A__ ): UpperCAmelCase_ : List[Any] = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 ,A__ ): for j in range(1 ,A__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase_ : str = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase_ : Dict = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase_ : str = dp[i - 1][j] else: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : Union[str, Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowerCamelCase_ = '''aab''' lowerCamelCase_ = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'{input_string} matches the given pattern {pattern}') else: print(f'{input_string} does not match with the given pattern {pattern}')
706
"""simple docstring""" from itertools import count def snake_case ( A__ = 50 ): UpperCAmelCase_ : Any = [1] * min_block_length for n in count(A__ ): fill_count_functions.append(1 ) for block_length in range(A__ ,n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'{solution() = }')
463
0
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version UpperCAmelCase = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize UpperCAmelCase = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ UpperCAmelCase = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ UpperCAmelCase = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def UpperCAmelCase (self : Optional[int] ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase (self : Optional[int] ,SCREAMING_SNAKE_CASE_ : Dict ) -> Any: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase (self : int ,SCREAMING_SNAKE_CASE_ : Dict ,SCREAMING_SNAKE_CASE_ : int ,SCREAMING_SNAKE_CASE_ : List[str]=0.9 ,SCREAMING_SNAKE_CASE_ : Dict=3 ,SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.5 ) -> Dict: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowerCAmelCase = [ meteor_score.single_meteor_score( word_tokenize(SCREAMING_SNAKE_CASE_ ) ,word_tokenize(SCREAMING_SNAKE_CASE_ ) ,alpha=SCREAMING_SNAKE_CASE_ ,beta=SCREAMING_SNAKE_CASE_ ,gamma=SCREAMING_SNAKE_CASE_ ) for ref, pred in zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ] else: lowerCAmelCase = [ meteor_score.single_meteor_score(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,alpha=SCREAMING_SNAKE_CASE_ ,beta=SCREAMING_SNAKE_CASE_ ,gamma=SCREAMING_SNAKE_CASE_ ) for ref, pred in zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ] return {"meteor": np.mean(SCREAMING_SNAKE_CASE_ )}
535
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class lowercase ( lowercase__ ,lowercase__ ): lowercase = '''nat''' lowercase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__(self : Union[str, Any] ,SCREAMING_SNAKE_CASE_ : Optional[Any]=4 ,SCREAMING_SNAKE_CASE_ : Dict=3 ,SCREAMING_SNAKE_CASE_ : int=64 ,SCREAMING_SNAKE_CASE_ : Tuple=[3, 4, 6, 5] ,SCREAMING_SNAKE_CASE_ : Dict=[2, 4, 8, 16] ,SCREAMING_SNAKE_CASE_ : Optional[int]=7 ,SCREAMING_SNAKE_CASE_ : Optional[Any]=3.0 ,SCREAMING_SNAKE_CASE_ : Optional[Any]=True ,SCREAMING_SNAKE_CASE_ : Any=0.0 ,SCREAMING_SNAKE_CASE_ : List[Any]=0.0 ,SCREAMING_SNAKE_CASE_ : Dict=0.1 ,SCREAMING_SNAKE_CASE_ : Tuple="gelu" ,SCREAMING_SNAKE_CASE_ : str=0.02 ,SCREAMING_SNAKE_CASE_ : str=1e-5 ,SCREAMING_SNAKE_CASE_ : int=0.0 ,SCREAMING_SNAKE_CASE_ : List[Any]=None ,SCREAMING_SNAKE_CASE_ : Tuple=None ,**SCREAMING_SNAKE_CASE_ : Union[str, Any] ,) -> Tuple: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = num_heads lowerCAmelCase = kernel_size lowerCAmelCase = mlp_ratio lowerCAmelCase = qkv_bias lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = drop_path_rate lowerCAmelCase = hidden_act lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_ ) - 1) ) lowerCAmelCase = layer_scale_init_value lowerCAmelCase = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 ,len(SCREAMING_SNAKE_CASE_ ) + 1 )] lowerCAmelCase , lowerCAmelCase = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ ,out_indices=SCREAMING_SNAKE_CASE_ ,stage_names=self.stage_names )
535
1
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A = sys.version_info >= (3, 1_0) def lowerCAmelCase__ ( lowerCamelCase__=None , lowerCamelCase__=None ) -> Any: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : int lowerCAmelCase_ : float lowerCAmelCase_ : str lowerCAmelCase_ : bool @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : int = 42 lowerCAmelCase_ : str = field(default="""toto""" ,metadata={"""help""": """help message"""} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = True lowerCAmelCase_ : Optional[bool] = None class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : Tuple = """titi""" lowerCAmelCase_ : Optional[int] = """toto""" class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : List[str] = """titi""" lowerCAmelCase_ : Dict = """toto""" lowerCAmelCase_ : Dict = 42 @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : BasicEnum = "toto" def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A = BasicEnum(self.foo ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : MixedTypeEnum = "toto" def A_ ( self : int ) -> Dict: '''simple docstring''' A = MixedTypeEnum(self.foo ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[float] = field(default=UpperCamelCase ,metadata={"""help""": """help message"""} ) lowerCAmelCase_ : Optional[str] = None lowerCAmelCase_ : Optional[List[str]] = list_field(default=[] ) lowerCAmelCase_ : Optional[List[int]] = list_field(default=[] ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : List[int] = list_field(default=[] ) lowerCAmelCase_ : List[int] = list_field(default=[1, 2, 3] ) lowerCAmelCase_ : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) lowerCAmelCase_ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : List[int] = field() lowerCAmelCase_ : str = field() lowerCAmelCase_ : BasicEnum = field() def A_ ( self : Optional[Any] ) -> int: '''simple docstring''' A = BasicEnum(self.required_enum ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : int lowerCAmelCase_ : "BasicEnum" = field() lowerCAmelCase_ : "Optional[bool]" = None lowerCAmelCase_ : "str" = field(default="""toto""" ,metadata={"""help""": """help message"""} ) lowerCAmelCase_ : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = True lowerCAmelCase_ : bool | None = None @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : int | None = None lowerCAmelCase_ : float | None = field(default=UpperCamelCase ,metadata={"""help""": """help message"""} ) lowerCAmelCase_ : str | None = None lowerCAmelCase_ : list[str] | None = list_field(default=[] ) lowerCAmelCase_ : list[int] | None = list_field(default=[] ) class UpperCAmelCase__ ( unittest.TestCase ): def A_ ( self : Dict , snake_case : argparse.ArgumentParser , snake_case : argparse.ArgumentParser ) -> str: '''simple docstring''' self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A = {k: v for k, v in vars(snake_case ).items() if k != 'container'} A = {k: v for k, v in vars(snake_case ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , snake_case ) and yy.get('choices' , snake_case ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](snake_case ) , yy['type'](snake_case ) ) del xx["type"], yy["type"] self.assertEqual(snake_case , snake_case ) def A_ ( self : str ) -> Any: '''simple docstring''' A = HfArgumentParser(snake_case ) A = argparse.ArgumentParser() expected.add_argument('--foo' , type=snake_case , required=snake_case ) expected.add_argument('--bar' , type=snake_case , required=snake_case ) expected.add_argument('--baz' , type=snake_case , required=snake_case ) expected.add_argument('--flag' , type=snake_case , default=snake_case , const=snake_case , nargs='?' ) self.argparsersEqual(snake_case , snake_case ) A = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((A) , ) = parser.parse_args_into_dataclasses(snake_case , look_for_args_file=snake_case ) self.assertFalse(example.flag ) def A_ ( self : int ) -> Optional[Any]: '''simple docstring''' A = HfArgumentParser(snake_case ) A = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=snake_case ) expected.add_argument('--baz' , default='toto' , type=snake_case , help='help message' ) self.argparsersEqual(snake_case , snake_case ) def A_ ( self : Any ) -> Any: '''simple docstring''' A = argparse.ArgumentParser() expected.add_argument('--foo' , type=snake_case , default=snake_case , const=snake_case , nargs='?' ) expected.add_argument('--baz' , type=snake_case , default=snake_case , const=snake_case , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=snake_case , dest='baz' ) expected.add_argument('--opt' , type=snake_case , default=snake_case ) A = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(snake_case ) for dataclass_type in dataclass_types: A = HfArgumentParser(snake_case ) self.argparsersEqual(snake_case , snake_case ) A = parser.parse_args([] ) self.assertEqual(snake_case , Namespace(foo=snake_case , baz=snake_case , opt=snake_case ) ) A = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(snake_case , Namespace(foo=snake_case , baz=snake_case , opt=snake_case ) ) A = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(snake_case , Namespace(foo=snake_case , baz=snake_case , opt=snake_case ) ) A = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(snake_case , Namespace(foo=snake_case , baz=snake_case , opt=snake_case ) ) A = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(snake_case , Namespace(foo=snake_case , baz=snake_case , opt=snake_case ) ) def A_ ( self : str ) -> str: '''simple docstring''' A = HfArgumentParser(snake_case ) A = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(snake_case , snake_case ) A = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) A = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) A = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) A = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def A_ ( self : List[str] ) -> Tuple: '''simple docstring''' @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : Literal["titi", "toto", 42] = "toto" A = HfArgumentParser(snake_case ) A = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(snake_case , snake_case ) A = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) A = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) A = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def A_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A = HfArgumentParser(snake_case ) A = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=snake_case ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=snake_case ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=snake_case ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=snake_case ) self.argparsersEqual(snake_case , snake_case ) A = parser.parse_args([] ) self.assertEqual( snake_case , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) A = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(snake_case , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def A_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' A = argparse.ArgumentParser() expected.add_argument('--foo' , default=snake_case , type=snake_case ) expected.add_argument('--bar' , default=snake_case , type=snake_case , help='help message' ) expected.add_argument('--baz' , default=snake_case , type=snake_case ) expected.add_argument('--ces' , nargs='+' , default=[] , type=snake_case ) expected.add_argument('--des' , nargs='+' , default=[] , type=snake_case ) A = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(snake_case ) for dataclass_type in dataclass_types: A = HfArgumentParser(snake_case ) self.argparsersEqual(snake_case , snake_case ) A = parser.parse_args([] ) self.assertEqual(snake_case , Namespace(foo=snake_case , bar=snake_case , baz=snake_case , ces=[] , des=[] ) ) A = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(snake_case , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def A_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A = HfArgumentParser(snake_case ) A = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=snake_case , required=snake_case ) expected.add_argument('--required_str' , type=snake_case , required=snake_case ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=snake_case , ) self.argparsersEqual(snake_case , snake_case ) def A_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A = HfArgumentParser(snake_case ) A = argparse.ArgumentParser() expected.add_argument('--foo' , type=snake_case , required=snake_case ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=snake_case , ) expected.add_argument('--opt' , type=snake_case , default=snake_case ) expected.add_argument('--baz' , default='toto' , type=snake_case , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=snake_case ) self.argparsersEqual(snake_case , snake_case ) def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' A = HfArgumentParser(snake_case ) A = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } A = parser.parse_dict(snake_case )[0] A = BasicExample(**snake_case ) self.assertEqual(snake_case , snake_case ) def A_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A = HfArgumentParser(snake_case ) A = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(snake_case , parser.parse_dict , snake_case , allow_extra_keys=snake_case ) def A_ ( self : str ) -> List[str]: '''simple docstring''' A = HfArgumentParser(snake_case ) A = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(snake_case , 'temp_json' ) os.mkdir(snake_case ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(snake_case , snake_case ) A = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] A = BasicExample(**snake_case ) self.assertEqual(snake_case , snake_case ) def A_ ( self : Dict ) -> Tuple: '''simple docstring''' A = HfArgumentParser(snake_case ) A = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(snake_case , 'temp_yaml' ) os.mkdir(snake_case ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(snake_case , snake_case ) A = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] A = BasicExample(**snake_case ) self.assertEqual(snake_case , snake_case ) def A_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A = HfArgumentParser(snake_case ) self.assertIsNotNone(snake_case )
109
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 16000 ) -> Union[str, Any]: A = int(round(sample_rate * max_length ) ) if len(lowerCamelCase__ ) <= sample_length: return wav A = randint(0 , len(lowerCamelCase__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : Optional[str] = field(default=UpperCamelCase ,metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowerCAmelCase_ : Optional[str] = field( default=UpperCamelCase ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCAmelCase_ : Optional[str] = field( default=UpperCamelCase ,metadata={"""help""": """A file containing the training audio paths and labels."""} ) lowerCAmelCase_ : Optional[str] = field( default=UpperCamelCase ,metadata={"""help""": """A file containing the validation audio paths and labels."""} ) lowerCAmelCase_ : str = field( default="""train""" ,metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } ,) lowerCAmelCase_ : str = field( default="""validation""" ,metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } ,) lowerCAmelCase_ : str = field( default="""audio""" ,metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} ,) lowerCAmelCase_ : str = field( default="""label""" ,metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} ) lowerCAmelCase_ : Optional[int] = field( default=UpperCamelCase ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } ,) lowerCAmelCase_ : Optional[int] = field( default=UpperCamelCase ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } ,) lowerCAmelCase_ : float = field( default=20 ,metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} ,) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : str = field( default="""facebook/wav2vec2-base""" ,metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ,) lowerCAmelCase_ : Optional[str] = field( default=UpperCamelCase ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCAmelCase_ : Optional[str] = field( default=UpperCamelCase ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) lowerCAmelCase_ : str = field( default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,) lowerCAmelCase_ : Optional[str] = field( default=UpperCamelCase ,metadata={"""help""": """Name or path of preprocessor config."""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } ,) lowerCAmelCase_ : Optional[bool] = field( default=UpperCamelCase ,metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} ,) def A_ ( self : List[str] ) -> str: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , snake_case , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def lowerCAmelCase__ ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , lowerCamelCase__ , lowerCamelCase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. A = DatasetDict() A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ 'Make sure to set `--audio_column_name` to the correct audio column - one of ' f"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ 'Make sure to set `--label_column_name` to the correct text column - one of ' f"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy A = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. A = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) A = feature_extractor.model_input_names[0] def train_transforms(lowerCamelCase__ ): A = [] for audio in batch[data_args.audio_column_name]: A = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCamelCase__ ) A = feature_extractor(lowerCamelCase__ , sampling_rate=feature_extractor.sampling_rate ) A = {model_input_name: inputs.get(lowerCamelCase__ )} A = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCamelCase__ ): A = [audio['array'] for audio in batch[data_args.audio_column_name]] A = feature_extractor(lowerCamelCase__ , sampling_rate=feature_extractor.sampling_rate ) A = {model_input_name: inputs.get(lowerCamelCase__ )} A = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A = raw_datasets['train'].features[data_args.label_column_name].names A , A = {}, {} for i, label in enumerate(lowerCamelCase__ ): A = str(lowerCamelCase__ ) A = label # Load the accuracy metric from the datasets package A = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase__ ): A = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowerCamelCase__ , references=eval_pred.label_ids ) A = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCamelCase__ ) , labelaid=lowerCamelCase__ , idalabel=lowerCamelCase__ , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: A = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCamelCase__ , output_all_columns=lowerCamelCase__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: A = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCamelCase__ , output_all_columns=lowerCamelCase__ ) # Initialize our trainer A = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , ) # Training if training_args.do_train: A = None if training_args.resume_from_checkpoint is not None: A = training_args.resume_from_checkpoint elif last_checkpoint is not None: A = last_checkpoint A = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A = trainer.evaluate() trainer.log_metrics('eval' , lowerCamelCase__ ) trainer.save_metrics('eval' , lowerCamelCase__ ) # Write model card and (optionally) push to hub A = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) if __name__ == "__main__": main()
109
1
from graphs.minimum_spanning_tree_kruskal import kruskal def _SCREAMING_SNAKE_CASE ( ) -> Any: _UpperCAmelCase = 9 _UpperCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] _UpperCAmelCase = kruskal(snake_case , snake_case ) _UpperCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(snake_case ) == sorted(snake_case )
518
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 a = get_tests_dir("fixtures/dummy_feature_extractor_config.json") a = get_tests_dir("fixtures/vocab.json") a = get_tests_dir("fixtures") class _A ( unittest.TestCase ): __a = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def UpperCAmelCase ( self ): _UpperCAmelCase = 0 def UpperCAmelCase ( self ): _UpperCAmelCase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = WavaVecaConfig() _UpperCAmelCase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) ) _UpperCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = WavaVecaFeatureExtractor() _UpperCAmelCase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) _UpperCAmelCase = WavaVecaProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # drop `processor_class` in tokenizer with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """r""" ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) config_dict.pop("""processor_class""" ) with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """w""" ) as f: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = WavaVecaFeatureExtractor() _UpperCAmelCase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) _UpperCAmelCase = WavaVecaProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # drop `processor_class` in feature extractor with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """r""" ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) config_dict.pop("""processor_class""" ) with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """w""" ) as f: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) # copy relevant files copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """w""" ) as f: f.write("""{}""" ) _UpperCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) _UpperCAmelCase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) _UpperCAmelCase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version _UpperCAmelCase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def UpperCAmelCase ( self ): try: AutoConfig.register("""custom""" , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCAmelCase = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , """vocab.txt""" ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _UpperCAmelCase = CustomTokenizer(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = CustomProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self ): class _A ( __lowercase ): __a = False class _A ( __lowercase ): __a = False class _A ( __lowercase ): __a = """AutoFeatureExtractor""" __a = """AutoTokenizer""" __a = False try: AutoConfig.register("""custom""" , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local classes. _UpperCAmelCase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. _UpperCAmelCase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. _UpperCAmelCase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self ): _UpperCAmelCase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def UpperCAmelCase ( self ): _UpperCAmelCase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _A ( unittest.TestCase ): __a = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def UpperCAmelCase ( cls ): _UpperCAmelCase = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def UpperCAmelCase ( self ): _UpperCAmelCase = WavaVecaProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_SCREAMING_SNAKE_CASE , """test-processor""" ) , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) _UpperCAmelCase = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , _SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCAmelCase ( self ): _UpperCAmelCase = WavaVecaProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_SCREAMING_SNAKE_CASE , """test-processor-org""" ) , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token , organization="""valid_org""" , ) _UpperCAmelCase = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , _SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCAmelCase ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _UpperCAmelCase = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , """vocab.txt""" ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _UpperCAmelCase = CustomTokenizer(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = CustomProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) _UpperCAmelCase = Repository(_SCREAMING_SNAKE_CASE , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_SCREAMING_SNAKE_CASE , """tokenizer_config.json""" ) ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , """custom_processing.py""" ) ) ) repo.push_to_hub() _UpperCAmelCase = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
518
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: snake_case : List[str] = analyze_text(lowercase ) snake_case : Optional[int] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. snake_case : int = sum(single_char_strings.values() ) # one length string snake_case : Optional[Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: snake_case : Dict = single_char_strings[ch] snake_case : Tuple = my_str / all_sum my_fir_sum += prob * math.loga(lowercase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string snake_case : Dict = sum(two_char_strings.values() ) snake_case : List[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: snake_case : List[Any] = cha + cha if sequence in two_char_strings: snake_case : Tuple = two_char_strings[sequence] snake_case : str = int(lowercase ) / all_sum my_sec_sum += prob * math.loga(lowercase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[dict, dict]: snake_case : int = Counter() # type: ignore snake_case : Union[str, Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
709
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a : List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A = Accelerator(kwargs_handlers=[ddp_scaler]) A = torch.nn.Linear(100, 200) A = accelerator.prepare(model) # Check the values changed in kwargs A = '''''' A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
52
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class a_ ( _lowerCAmelCase ): def lowercase__ ( self : Tuple , lowercase : float ): """simple docstring""" return 0.0 def UpperCAmelCase_ ( __lowerCamelCase : np.ndarray ,__lowerCamelCase : int ): lowercase_ :List[str] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ :Any = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def UpperCAmelCase_ ( __lowerCamelCase : FilterType ,__lowerCamelCase : int ): lowercase_ :List[Any] = 5_12 lowercase_ :Any = [1] + [0] * (size - 1) lowercase_ :List[str] = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ :Optional[int] = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ :Tuple = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ :List[Any] = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ :Tuple = get_bounds(__lowerCamelCase ,__lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) ,min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def UpperCAmelCase_ ( __lowerCamelCase : FilterType ,__lowerCamelCase : int ): lowercase_ :Union[str, Any] = 5_12 lowercase_ :Union[str, Any] = [1] + [0] * (size - 1) lowercase_ :Any = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ :Union[str, Any] = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ :Union[str, Any] = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi ,2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase ,-2 * pi ) ) plt.show()
172
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __lowerCamelCase ( self : Dict): '''simple docstring''' torch.manual_seed(0) __lowercase =UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.dummy_uncond_unet __lowercase =KarrasVeScheduler() __lowercase =KarrasVePipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase) pipe.to(_lowerCAmelCase) pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase =torch.manual_seed(0) __lowercase =pipe(num_inference_steps=2 , generator=_lowerCAmelCase , output_type='numpy').images __lowercase =torch.manual_seed(0) __lowercase =pipe(num_inference_steps=2 , generator=_lowerCAmelCase , output_type='numpy' , return_dict=_lowerCAmelCase)[0] __lowercase =image[0, -3:, -3:, -1] __lowercase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowercase =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase ='google/ncsnpp-celebahq-256' __lowercase =UNetaDModel.from_pretrained(_lowerCAmelCase) __lowercase =KarrasVeScheduler() __lowercase =KarrasVePipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase) pipe.to(_lowerCAmelCase) pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase =torch.manual_seed(0) __lowercase =pipe(num_inference_steps=2_0 , generator=_lowerCAmelCase , output_type='numpy').images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowercase =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
454
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger() @dataclass class _UpperCamelCase : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = field(default_factory=A ) lowerCAmelCase__ = field(default_factory=A ) def __lowerCamelCase ( self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tensor , _lowerCAmelCase : Tensor): '''simple docstring''' __lowercase =len(list(m.modules())) == 1 or isinstance(_lowerCAmelCase , nn.Convad) or isinstance(_lowerCAmelCase , nn.BatchNormad) if has_not_submodules: self.traced.append(_lowerCAmelCase) def __call__( self : Dict , _lowerCAmelCase : Tensor): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(_lowerCAmelCase) [x.remove() for x in self.handles] return self @property def __lowerCamelCase ( self : Any): '''simple docstring''' return list(filter(lambda _lowerCAmelCase: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 0 lowerCAmelCase__ = field(default_factory=A ) lowerCAmelCase__ = field(default_factory=A ) def __call__( self : Any , _lowerCAmelCase : Tensor): '''simple docstring''' __lowercase =Tracker(self.dest)(_lowerCAmelCase).parametrized __lowercase =Tracker(self.src)(_lowerCAmelCase).parametrized __lowercase =list(filter(lambda _lowerCAmelCase: type(_lowerCAmelCase) not in self.src_skip , _lowerCAmelCase)) __lowercase =list(filter(lambda _lowerCAmelCase: type(_lowerCAmelCase) not in self.dest_skip , _lowerCAmelCase)) if len(_lowerCAmelCase) != len(_lowerCAmelCase): raise Exception( f"""Numbers of operations are different. Source module has {len(_lowerCAmelCase)} operations while""" f""" destination module has {len(_lowerCAmelCase)}.""") for dest_m, src_m in zip(_lowerCAmelCase , _lowerCAmelCase): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""") def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True ): """simple docstring""" print(f"""Converting {name}...""" ) with torch.no_grad(): __lowercase =timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ).eval() __lowercase =ResNetForImageClassification(_lowerCAmelCase ).eval() __lowercase =ModuleTransfer(src=_lowerCAmelCase , dest=_lowerCAmelCase ) __lowercase =torch.randn((1, 3, 224, 224) ) module_transfer(_lowerCAmelCase ) assert torch.allclose(from_model(_lowerCAmelCase ) , our_model(_lowerCAmelCase ).logits ), "The model logits don't match the original one." __lowercase =f"""resnet{'-'.join(name.split('resnet' ) )}""" print(_lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_lowerCAmelCase , ) # we can use the convnext one __lowercase =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_lowerCAmelCase , ) print(f"""Pushed {checkpoint_name}""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = True ): """simple docstring""" __lowercase ='imagenet-1k-id2label.json' __lowercase =1_000 __lowercase =(1, num_labels) __lowercase ='huggingface/label-files' __lowercase =num_labels __lowercase =json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __lowercase ={int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase =idalabel __lowercase ={v: k for k, v in idalabel.items()} __lowercase =partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) __lowercase ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(_lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCamelCase = parser.parse_args() lowerCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
454
1
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any]=13 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[Any]=37 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Optional[int]=10 , lowerCAmelCase_ : List[Any]=0.0_2 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Union[str, Any]=0.6 , lowerCAmelCase_ : Union[str, Any]=None , ) -> List[Any]: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = mask_ratio _a = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _a = (image_size // patch_size) ** 2 _a = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ) -> str: """simple docstring""" _a = TFViTMAEModel(config=lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int ) -> Dict: """simple docstring""" _a = TFViTMAEForPreTraining(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) # expected sequence length = num_patches _a = (self.image_size // self.patch_size) ** 2 _a = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _a = 1 _a = TFViTMAEForPreTraining(lowerCAmelCase_ ) _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) _a = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" _a = self.prepare_config_and_inputs() ((_a) , (_a) , (_a)) = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A ( _a ,_a ,unittest.TestCase ): lowercase_ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowercase_ = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _a = TFViTMAEModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass def __lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , tf.keras.layers.Layer ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = int((config.image_size // config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , noise=lowerCAmelCase_ ) _a = copy.deepcopy(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _a = model(**lowerCAmelCase_ , noise=lowerCAmelCase_ ) _a = outputs_dict[0].numpy() _a = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = int((config.image_size // config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCAmelCase_ : List[str] ): _a = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCAmelCase_ ): _a = v.numpy() else: _a = np.array(lowerCAmelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _a = prepare_numpy_arrays(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , noise=lowerCAmelCase_ ) _a = model(**lowerCAmelCase_ , noise=lowerCAmelCase_ ) self.assert_outputs_same(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] ) -> Any: """simple docstring""" np.random.seed(2 ) _a = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _a = tf.constant(lowerCAmelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _a = tf_noise super().check_pt_tf_models(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" np.random.seed(2 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCAmelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(lowerCAmelCase_ , lowerCAmelCase_ ),) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCAmelCase_ , '''_keras_serializable''' , lowerCAmelCase_ ) } _a = int((config.image_size // config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _a = tf.convert_to_tensor(lowerCAmelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: _a = main_layer_class(lowerCAmelCase_ ) _a = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _a = tf.keras.Model(lowerCAmelCase_ , outputs=main_layer(lowerCAmelCase_ ) ) _a = model(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(lowerCAmelCase_ , '''keras_model.h5''' ) model.save(lowerCAmelCase_ ) _a = tf.keras.models.load_model( lowerCAmelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCAmelCase_ , tf.keras.Model ) _a = model(lowerCAmelCase_ ) self.assert_outputs_same(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" np.random.seed(2 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = int((config.image_size // config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , noise=lowerCAmelCase_ ) if model_class.__name__ == "TFViTMAEModel": _a = outputs.last_hidden_state.numpy() _a = 0 else: _a = outputs.logits.numpy() _a = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ , saved_model=lowerCAmelCase_ ) _a = model_class.from_pretrained(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , noise=lowerCAmelCase_ ) if model_class.__name__ == "TFViTMAEModel": _a = after_outputs['''last_hidden_state'''].numpy() _a = 0 else: _a = after_outputs['''logits'''].numpy() _a = 0 _a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-5 ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" np.random.seed(2 ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = int((config.image_size // config.patch_size) ** 2 ) _a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , noise=lowerCAmelCase_ ) _a = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCAmelCase_ ) _a = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _a = model_class.from_config(model.config ) _a = new_model(lowerCAmelCase_ ) # Build model new_model.set_weights(model.get_weights() ) _a = new_model(lowerCAmelCase_ , noise=lowerCAmelCase_ ) self.assert_outputs_same(lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass @slow def __lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _a = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case_ (): '''simple docstring''' _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" np.random.seed(2 ) _a = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=lowerCAmelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _a = ViTMAEConfig() _a = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _a = np.random.uniform(size=(1, num_patches) ) # forward pass _a = model(**lowerCAmelCase_ , noise=lowerCAmelCase_ ) # verify the logits _a = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _a = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 )
22
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1_3 , _SCREAMING_SNAKE_CASE=3_0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=3_2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3_7 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1_0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: a_ : List[Any] = parent a_ : Any = batch_size a_ : Optional[int] = image_size a_ : Optional[int] = patch_size a_ : Any = num_channels a_ : int = is_training a_ : Dict = use_labels a_ : Dict = hidden_size a_ : List[str] = num_hidden_layers a_ : str = num_attention_heads a_ : Tuple = intermediate_size a_ : Tuple = hidden_act a_ : Union[str, Any] = hidden_dropout_prob a_ : Dict = attention_probs_dropout_prob a_ : List[str] = type_sequence_label_size a_ : Tuple = initializer_range a_ : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a_ : Tuple = (image_size // patch_size) ** 2 a_ : Optional[int] = num_patches + 1 def A ( self ) -> str: a_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Dict = None if self.use_labels: a_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Optional[int] = self.get_config() return config, pixel_values, labels def A ( self ) -> Optional[int]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: a_ : Tuple = ViTMSNModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: a_ : Any = self.type_sequence_label_size a_ : Union[str, Any] = ViTMSNForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ : Optional[int] = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a_ : str = 1 a_ : Dict = ViTMSNForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self ) -> List[str]: a_ : str = self.prepare_config_and_inputs() a_ , a_ , a_ : Any = config_and_inputs a_ : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( __lowerCamelCase, __lowerCamelCase, unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : str = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCAmelCase__ : List[str] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ : int = False lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : List[str] = False def A ( self ) -> int: a_ : Dict = ViTMSNModelTester(self ) a_ : Optional[Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def A ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def A ( self ) -> List[Any]: pass def A ( self ) -> str: a_ , a_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def A ( self ) -> Optional[Any]: a_ , a_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Tuple = model_class(_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Tuple = [*signature.parameters.keys()] a_ : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def A ( self ) -> str: a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A ( self ) -> Tuple: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def A ( self ) -> List[str]: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Optional[Any] = ViTMSNModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ () -> Dict: a_ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self ) -> Dict: return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def A ( self ) -> Optional[Any]: torch.manual_seed(2 ) a_ : Union[str, Any] = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(_SCREAMING_SNAKE_CASE ) a_ : Dict = self.default_image_processor a_ : Any = prepare_img() a_ : Dict = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): a_ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits a_ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) a_ : List[Any] = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
473
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a__ = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
566
'''simple docstring''' def snake_case__ ( a ) -> int: '''simple docstring''' if n == 1 or not isinstance(a , a ): return 0 elif n == 2: return 1 else: snake_case__ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def snake_case__ ( a ) -> int: '''simple docstring''' snake_case__ = 0 snake_case__ = 2 while digits < n: index += 1 snake_case__ = len(str(fibonacci(a ) ) ) return index def snake_case__ ( a = 1000 ) -> int: '''simple docstring''' return fibonacci_digits_index(a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
566
1
'''simple docstring''' import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( snake_case , unittest.TestCase ): UpperCAmelCase : Optional[Any] = GPTaTokenizer UpperCAmelCase : Optional[Any] = GPTaTokenizerFast UpperCAmelCase : Optional[int] = True UpperCAmelCase : Tuple = {"""add_prefix_space""": True} UpperCAmelCase : Optional[Any] = False def UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case: Tuple =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] snake_case: int =dict(zip(a_ , range(len(a_ ) ) ) ) snake_case: List[str] =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case: Tuple ={'unk_token': '<unk>'} snake_case: Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Union[str, Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a_ ) ) def UpperCamelCase ( self : Dict , **a_ : int ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **a_ ) def UpperCamelCase ( self : List[str] , **a_ : str ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def UpperCamelCase ( self : Any , a_ : Any ) -> Optional[int]: snake_case: Dict ='lower newer' snake_case: Dict ='lower newer' return input_text, output_text def UpperCamelCase ( self : Tuple ) -> List[Any]: snake_case: List[Any] =GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case: Tuple ='lower newer' snake_case: Optional[Any] =['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] snake_case: List[Any] =tokenizer.tokenize(a_ , add_prefix_space=a_ ) self.assertListEqual(a_ , a_ ) snake_case: Tuple =tokens + [tokenizer.unk_token] snake_case: Union[str, Any] =[1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def UpperCamelCase ( self : Dict ) -> Optional[int]: if not self.test_rust_tokenizer: return snake_case: int =self.get_tokenizer() snake_case: Union[str, Any] =self.get_rust_tokenizer(add_prefix_space=a_ ) snake_case: Dict ='lower newer' # Testing tokenization snake_case: int =tokenizer.tokenize(a_ , add_prefix_space=a_ ) snake_case: int =rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids without special tokens snake_case: Optional[int] =tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) snake_case: Optional[int] =rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids with special tokens snake_case: int =self.get_rust_tokenizer(add_prefix_space=a_ ) snake_case: List[Any] =tokenizer.encode(a_ , add_prefix_space=a_ ) snake_case: Optional[int] =rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) # Testing the unknown token snake_case: Any =tokens + [rust_tokenizer.unk_token] snake_case: Any =[1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def UpperCamelCase ( self : List[str] , *a_ : Union[str, Any] , **a_ : List[Any] ) -> Optional[int]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def UpperCamelCase ( self : Optional[Any] , a_ : Union[str, Any]=1_5 ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case: List[str] =self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) # Simple input snake_case: int ='This is a simple input' snake_case: str =['This is a simple input 1', 'This is a simple input 2'] snake_case: Dict =('This is a simple input', 'This is a pair') snake_case: Optional[int] =[ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding='max_length' ) # Simple input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding='max_length' ) # Simple input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding='max_length' , ) # Pair input self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding='max_length' ) # Pair input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding='max_length' ) # Pair input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding='max_length' , ) def UpperCamelCase ( self : Any ) -> int: snake_case: Dict =GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input snake_case: Optional[int] ='This is a simple input' snake_case: Union[str, Any] =['This is a simple input looooooooong', 'This is a simple input'] snake_case: str =('This is a simple input', 'This is a pair') snake_case: str =[ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] snake_case: Optional[int] =tokenizer.pad_token_id snake_case: str =tokenizer(a_ , padding='max_length' , max_length=3_0 , return_tensors='np' ) snake_case: str =tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors='np' ) snake_case: Dict =tokenizer(*a_ , padding='max_length' , max_length=6_0 , return_tensors='np' ) snake_case: str =tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def UpperCamelCase ( self : Dict ) -> int: snake_case: Any ='$$$' snake_case: Tuple =GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a_ , add_bos_token=a_ ) snake_case: Dict ='This is a simple input' snake_case: Optional[Any] =['This is a simple input 1', 'This is a simple input 2'] snake_case: Any =tokenizer.bos_token_id snake_case: Dict =tokenizer(a_ ) snake_case: Optional[int] =tokenizer(a_ ) self.assertEqual(out_s.input_ids[0] , a_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) snake_case: int =tokenizer.decode(out_s.input_ids ) snake_case: Union[str, Any] =tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def UpperCamelCase ( self : Union[str, Any] ) -> List[str]: pass def UpperCamelCase ( self : List[str] ) -> str: # TODO: change to self.get_tokenizers() when the fast version is implemented snake_case: Dict =[self.get_tokenizer(do_lower_case=a_ , add_bos_token=a_ )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case: List[str] ='Encode this.' snake_case: Dict ='This one too please.' snake_case: str =tokenizer.encode(a_ , add_special_tokens=a_ ) encoded_sequence += tokenizer.encode(a_ , add_special_tokens=a_ ) snake_case: Any =tokenizer.encode_plus( a_ , a_ , add_special_tokens=a_ , return_special_tokens_mask=a_ , ) snake_case: Optional[int] =encoded_sequence_dict['input_ids'] snake_case: List[str] =encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(a_ ) , len(a_ ) ) snake_case: List[str] =[ (x if not special_tokens_mask[i] else None) for i, x in enumerate(a_ ) ] snake_case: Tuple =[x for x in filtered_sequence if x is not None] self.assertEqual(a_ , a_ ) @require_tokenizers class a_ ( unittest.TestCase ): def UpperCamelCase ( self : Tuple ) -> Any: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 snake_case: str =AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=a_ ) snake_case: Optional[int] ='A photo of a cat' snake_case: Optional[int] =tokenizer.encode( a_ , ) self.assertEqual(a_ , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('test_opt' ) snake_case: str =AutoTokenizer.from_pretrained('./test_opt' ) snake_case: Optional[int] =tokenizer.encode( a_ , ) self.assertEqual(a_ , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def UpperCamelCase ( self : int ) -> Tuple: snake_case: List[Any] =AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=a_ ) snake_case: int ='A photo of a cat' snake_case: Optional[Any] =tokenizer.encode( a_ , ) # Same as above self.assertEqual(a_ , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def UpperCamelCase ( self : str ) -> Optional[int]: snake_case: str =AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=a_ ) snake_case: List[str] ='bos' snake_case: Dict =tokenizer.get_vocab()['bos'] snake_case: int ='A photo of a cat' snake_case: Union[str, Any] =tokenizer.encode( a_ , ) # We changed the bos token self.assertEqual(a_ , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('./tok' ) snake_case: Optional[Any] =AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) snake_case: Union[str, Any] =tokenizer.encode( a_ , ) self.assertEqual(a_ , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
350
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class a_ ( snake_case ): UpperCAmelCase : str = (CMStochasticIterativeScheduler,) UpperCAmelCase : int = 10 def UpperCamelCase ( self : Dict , **a_ : List[str] ) -> Any: snake_case: Any ={ 'num_train_timesteps': 2_0_1, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } config.update(**a_ ) return config def UpperCamelCase ( self : List[Any] ) -> List[Any]: snake_case: Any =1_0 snake_case: List[str] =self.get_scheduler_config() snake_case: List[Any] =self.scheduler_classes[0](**a_ ) scheduler.set_timesteps(a_ ) snake_case: Dict =scheduler.timesteps[0] snake_case: Union[str, Any] =scheduler.timesteps[1] snake_case: List[str] =self.dummy_sample snake_case: List[str] =0.1 * sample snake_case: int =scheduler.step(a_ , a_ , a_ ).prev_sample snake_case: Optional[Any] =scheduler.step(a_ , a_ , a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase ( self : int ) -> int: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a_ ) def UpperCamelCase ( self : Optional[Any] ) -> Dict: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=a_ ) def UpperCamelCase ( self : Tuple ) -> List[str]: snake_case: List[Any] =self.scheduler_classes[0] snake_case: List[Any] =self.get_scheduler_config() snake_case: Any =scheduler_class(**a_ ) snake_case: Dict =1 scheduler.set_timesteps(a_ ) snake_case: List[Any] =scheduler.timesteps snake_case: Optional[Any] =torch.manual_seed(0 ) snake_case: Optional[Any] =self.dummy_model() snake_case: List[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(a_ ): # 1. scale model input snake_case: Any =scheduler.scale_model_input(a_ , a_ ) # 2. predict noise residual snake_case: List[str] =model(a_ , a_ ) # 3. predict previous sample x_t-1 snake_case: Dict =scheduler.step(a_ , a_ , a_ , generator=a_ ).prev_sample snake_case: List[Any] =pred_prev_sample snake_case: Optional[Any] =torch.sum(torch.abs(a_ ) ) snake_case: Optional[Any] =torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 1_9_2.7_6_1_4 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1E-3 def UpperCamelCase ( self : Dict ) -> Union[str, Any]: snake_case: Dict =self.scheduler_classes[0] snake_case: Tuple =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: List[Any] =[1_0_6, 0] scheduler.set_timesteps(timesteps=a_ ) snake_case: Optional[Any] =scheduler.timesteps snake_case: Dict =torch.manual_seed(0 ) snake_case: Optional[int] =self.dummy_model() snake_case: Any =self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case: List[Any] =scheduler.scale_model_input(a_ , a_ ) # 2. predict noise residual snake_case: Any =model(a_ , a_ ) # 3. predict previous sample x_t-1 snake_case: List[str] =scheduler.step(a_ , a_ , a_ , generator=a_ ).prev_sample snake_case: Optional[Any] =pred_prev_sample snake_case: Union[str, Any] =torch.sum(torch.abs(a_ ) ) snake_case: Tuple =torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 3_4_7.6_3_5_7 ) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1E-3 def UpperCamelCase ( self : int ) -> Tuple: snake_case: List[Any] =self.scheduler_classes[0] snake_case: Union[str, Any] =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: str =[3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(a_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=a_ ) def UpperCamelCase ( self : Dict ) -> Optional[int]: snake_case: Optional[Any] =self.scheduler_classes[0] snake_case: Dict =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: Any =[3_9, 3_0, 1_2, 1, 0] snake_case: List[Any] =len(a_ ) with self.assertRaises(a_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=a_ , timesteps=a_ ) def UpperCamelCase ( self : Optional[Any] ) -> Tuple: snake_case: Any =self.scheduler_classes[0] snake_case: int =self.get_scheduler_config() snake_case: Optional[Any] =scheduler_class(**a_ ) snake_case: List[Any] =[scheduler.config.num_train_timesteps] with self.assertRaises( a_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=a_ )
350
1
from __future__ import annotations import typing from collections import Counter def __lowerCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(snake_case_ , max_perimeter + 1 ): _UpperCAmelCase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(snake_case_ ): _UpperCAmelCase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCamelCase ( _lowerCAmelCase = 1_000 ) -> Optional[Any]: _UpperCAmelCase = pythagorean_triple(snake_case_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F'''Perimeter {solution()} has maximum solutions''')
703
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
129
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _UpperCAmelCase ( *lowerCAmelCase : Any , **lowerCAmelCase : Dict ): pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Any =MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int ): A_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) A_ = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : str ): A_ = object_detector(examples[0] , threshold=0.0 ) A_ = len(lowerCAmelCase ) self.assertGreater(lowerCAmelCase , 0 ) self.assertEqual( lowerCAmelCase , [ { "score": ANY(lowerCAmelCase ), "label": ANY(lowerCAmelCase ), "box": {"xmin": ANY(lowerCAmelCase ), "ymin": ANY(lowerCAmelCase ), "xmax": ANY(lowerCAmelCase ), "ymax": ANY(lowerCAmelCase )}, } for i in range(lowerCAmelCase ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def _UpperCAmelCase ( self : int ): pass @require_torch def _UpperCAmelCase ( self : Union[str, Any] ): A_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) A_ = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ {"score": 0.7_2_3_5, "label": "cat", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7_2_1_8, "label": "remote", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7_1_8_4, "label": "couch", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.6_7_4_8, "label": "remote", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_6_5_6, "label": "cat", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_6_1_4, "label": "couch", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_4_5_6, "label": "remote", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, {"score": 0.6_4_2, "label": "remote", "box": {"xmin": 67, "ymin": 2_74, "xmax": 93, "ymax": 2_97}}, {"score": 0.6_4_1_9, "label": "cat", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, ] , ) A_ = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ [ {"score": 0.7_2_3_5, "label": "cat", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7_2_1_8, "label": "remote", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7_1_8_4, "label": "couch", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.6_7_4_8, "label": "remote", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_6_5_6, "label": "cat", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_6_1_4, "label": "couch", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6_4_5_6, "label": "remote", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, {"score": 0.6_4_2, "label": "remote", "box": {"xmin": 67, "ymin": 2_74, "xmax": 93, "ymax": 2_97}}, {"score": 0.6_4_1_9, "label": "cat", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, ] ] , ) @require_torch @slow def _UpperCAmelCase ( self : Dict ): A_ = pipeline("zero-shot-object-detection" ) A_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ] , ) A_ = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ], [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def _UpperCAmelCase ( self : List[Any] ): pass @require_torch @slow def _UpperCAmelCase ( self : Dict ): A_ = 0.2 A_ = pipeline("zero-shot-object-detection" ) A_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=lowerCAmelCase , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, ] , ) @require_torch @slow def _UpperCAmelCase ( self : Optional[int] ): A_ = 2 A_ = pipeline("zero-shot-object-detection" ) A_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=lowerCAmelCase , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, ] , )
452
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) def a_ ( UpperCamelCase_ ): A_ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) A_ = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , UpperCamelCase_ ) if matches: A_ = float(matches[1] ) A_ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". A_ = 1_0_0_1 A_ = "imagenet-1k-id2label.json" A_ = "huggingface/label-files" A_ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) ) A_ = {int(UpperCamelCase_ ) + 1: v for k, v in idalabel.items()} A_ = "background" A_ = idalabel A_ = {v: k for k, v in idalabel.items()} return config def a_ ( ): A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): A_ = get_mobilenet_va_config(UpperCamelCase_ ) # Load 🤗 model A_ = MobileNetVaForImageClassification(UpperCamelCase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor A_ = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) A_ = image_processor(images=prepare_img() , return_tensors="pt" ) A_ = model(**UpperCamelCase_ ) A_ = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": A_ = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": A_ = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: A_ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) A_ = "google/" + model_name image_processor.push_to_hub(UpperCamelCase_ ) model.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
452
1
from torch import nn def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
116
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
116
1
'''simple docstring''' SCREAMING_SNAKE_CASE = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) SCREAMING_SNAKE_CASE = frozenset(['prompt', 'negative_prompt']) SCREAMING_SNAKE_CASE = frozenset([]) SCREAMING_SNAKE_CASE = frozenset(['image']) SCREAMING_SNAKE_CASE = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) SCREAMING_SNAKE_CASE = frozenset(['image']) SCREAMING_SNAKE_CASE = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) SCREAMING_SNAKE_CASE = frozenset(['prompt', 'image', 'negative_prompt']) SCREAMING_SNAKE_CASE = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) SCREAMING_SNAKE_CASE = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) SCREAMING_SNAKE_CASE = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) SCREAMING_SNAKE_CASE = frozenset(['image', 'mask_image']) SCREAMING_SNAKE_CASE = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) SCREAMING_SNAKE_CASE = frozenset(['example_image', 'image', 'mask_image']) SCREAMING_SNAKE_CASE = frozenset(['class_labels']) SCREAMING_SNAKE_CASE = frozenset(['class_labels']) SCREAMING_SNAKE_CASE = frozenset(['batch_size']) SCREAMING_SNAKE_CASE = frozenset([]) SCREAMING_SNAKE_CASE = frozenset(['batch_size']) SCREAMING_SNAKE_CASE = frozenset([]) SCREAMING_SNAKE_CASE = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) SCREAMING_SNAKE_CASE = frozenset(['prompt', 'negative_prompt']) SCREAMING_SNAKE_CASE = frozenset(['input_tokens']) SCREAMING_SNAKE_CASE = frozenset(['input_tokens'])
94
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a_ : Optional[Any] = TypeVar('''T''') class __lowercase( Generic[T] ): '''simple docstring''' __a : deque[T] # Cache store of keys __a : set[T] # References of the keys in cache __a : int = 10 # Maximum capacity of cache def __init__( self , __a ): __lowerCamelCase : List[str] = deque() __lowerCamelCase : Tuple = set() if not n: __lowerCamelCase : Any = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: __lowerCamelCase : int = n def snake_case_ ( self , __a ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __lowerCamelCase : Tuple = self.dq_store.pop() self.key_reference.remove(__a ) else: self.dq_store.remove(__a ) self.dq_store.appendleft(__a ) self.key_reference.add(__a ) def snake_case_ ( self ): for k in self.dq_store: print(__a ) def __repr__( self ): return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a_ : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
594
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __snake_case = logging.get_logger(__name__) __snake_case = TypeVar("DatasetType", Dataset, IterableDataset) def _lowercase ( SCREAMING_SNAKE_CASE_ : List[DatasetType] , SCREAMING_SNAKE_CASE_ : Optional[List[float]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[DatasetInfo] = None , SCREAMING_SNAKE_CASE_ : Optional[NamedSplit] = None , SCREAMING_SNAKE_CASE_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , (Dataset, IterableDataset) ): if isinstance(SCREAMING_SNAKE_CASE_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( f'Dataset at position {i} has at least one split: {list(SCREAMING_SNAKE_CASE_ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(SCREAMING_SNAKE_CASE_ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(SCREAMING_SNAKE_CASE_ ).__name__}.' ) if i == 0: UpperCamelCase , UpperCamelCase = ( (Dataset, IterableDataset) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else (IterableDataset, Dataset) ) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , info=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , stopping_strategy=SCREAMING_SNAKE_CASE_ ) else: return _interleave_iterable_datasets( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , info=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , stopping_strategy=SCREAMING_SNAKE_CASE_ ) def _lowercase ( SCREAMING_SNAKE_CASE_ : List[DatasetType] , SCREAMING_SNAKE_CASE_ : Optional[DatasetInfo] = None , SCREAMING_SNAKE_CASE_ : Optional[NamedSplit] = None , SCREAMING_SNAKE_CASE_ : int = 0 , ): """simple docstring""" if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , (Dataset, IterableDataset) ): if isinstance(SCREAMING_SNAKE_CASE_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( f'Dataset at position {i} has at least one split: {list(SCREAMING_SNAKE_CASE_ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(SCREAMING_SNAKE_CASE_ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(SCREAMING_SNAKE_CASE_ ).__name__}.' ) if i == 0: UpperCamelCase , UpperCamelCase = ( (Dataset, IterableDataset) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else (IterableDataset, Dataset) ) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(SCREAMING_SNAKE_CASE_ , info=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ ) else: return _concatenate_iterable_datasets(SCREAMING_SNAKE_CASE_ , info=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , axis=SCREAMING_SNAKE_CASE_ )
181
import math def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase = [True] * n UpperCamelCase = False UpperCamelCase = False UpperCamelCase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCamelCase = i * 2 while index < n: UpperCamelCase = False UpperCamelCase = index + i UpperCamelCase = [2] for i in range(3 , SCREAMING_SNAKE_CASE_ , 2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE_ ) return primes def _lowercase ( SCREAMING_SNAKE_CASE_ : int = 999_966_663_333 ): """simple docstring""" UpperCamelCase = math.floor(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) + 100 UpperCamelCase = prime_sieve(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = primes[prime_index] while (last_prime**2) <= limit: UpperCamelCase = primes[prime_index + 1] UpperCamelCase = last_prime**2 UpperCamelCase = next_prime**2 # Get numbers divisible by lps(current) UpperCamelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCamelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCamelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCamelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
181
1
"""simple docstring""" UpperCAmelCase : int = range(2, 20 + 1) UpperCAmelCase : Any = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = sum(a_i[j] for j in range(a__ , len(a__ ) ) ) __UpperCAmelCase : Tuple = sum(a_i[j] * base[j] for j in range(min(len(a__ ) , a__ ) ) ) __UpperCAmelCase ,__UpperCAmelCase : Dict = 0, 0 __UpperCAmelCase : Any = n - i __UpperCAmelCase : int = memo.get(a__ ) if sub_memo is not None: __UpperCAmelCase : Optional[Any] = sub_memo.get(a__ ) if jumps is not None and len(a__ ) > 0: # find and make the largest jump without going over __UpperCAmelCase : List[Any] = -1 for _k in range(len(a__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __UpperCAmelCase : List[Any] = _k break if max_jump >= 0: __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Tuple = jumps[max_jump] # since the difference between jumps is cached, add c __UpperCAmelCase : List[str] = diff + c for j in range(min(a__ , len(a__ ) ) ): __UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(a__ , 1_0 ) if new_c > 0: add(a__ , a__ , a__ ) else: __UpperCAmelCase : Optional[Any] = [] else: __UpperCAmelCase : Any = {c: []} __UpperCAmelCase : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __UpperCAmelCase ,__UpperCAmelCase : Dict = next_term(a__ , k - 1 , i + dn , a__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = compute(a__ , a__ , i + dn , a__ ) diff += _diff dn += terms_jumped __UpperCAmelCase : Optional[int] = sub_memo[c] # keep jumps sorted by # of terms skipped __UpperCAmelCase : Dict = 0 while j < len(a__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(a__ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' if i >= n: return 0, i if k > len(a__ ): a_i.extend([0 for _ in range(k - len(a__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __UpperCAmelCase : Any = i __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = 0, 0, 0 for j in range(len(a__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __UpperCAmelCase : List[str] = ds_c + ds_b diff += addend __UpperCAmelCase : int = 0 for j in range(a__ ): __UpperCAmelCase : List[str] = a_i[j] + addend __UpperCAmelCase ,__UpperCAmelCase : List[Any] = divmod(a__ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(a__ , a__ , a__ ) return diff, i - start_i def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' for j in range(a__ , len(a__ ) ): __UpperCAmelCase : Optional[int] = digits[j] + addend if s >= 1_0: __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = divmod(a__ , 1_0 ) __UpperCAmelCase : Union[str, Any] = addend // 1_0 + quotient else: __UpperCAmelCase : List[str] = s __UpperCAmelCase : Optional[int] = addend // 1_0 if addend == 0: break while addend > 0: __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = divmod(a__ , 1_0 ) digits.append(a__ ) def lowerCamelCase ( _UpperCamelCase : int = 1_0**1_5 ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = [1] __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Optional[int] = 0 while True: __UpperCAmelCase ,__UpperCAmelCase : str = next_term(a__ , 2_0 , i + dn , a__ ) dn += terms_jumped if dn == n - i: break __UpperCAmelCase : Optional[int] = 0 for j in range(len(a__ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(F"{solution() = }")
139
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase( a__ ,a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] _SCREAMING_SNAKE_CASE ={ '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } _SCREAMING_SNAKE_CASE =f"{src_lang}-{tgt_lang}" _SCREAMING_SNAKE_CASE =f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=a__ ,exist_ok=a__) _SCREAMING_SNAKE_CASE =os.path.join(a__ ,'''README.md''') print(f"Generating {path}") with open(a__ ,'''w''' ,encoding='''utf-8''') as f: f.write(a__) # make sure we are under the root of the project snake_case_ : Any = Path(__file__).resolve().parent.parent.parent snake_case_ : Tuple = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: snake_case_ : Union[str, Any] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
691
0
'''simple docstring''' def UpperCAmelCase ( A : list ): if len(_lowerCamelCase ) <= 1: return lst SCREAMING_SNAKE_CASE : Tuple = 1 while i < len(_lowerCamelCase ): if lst[i - 1] <= lst[i]: i += 1 else: SCREAMING_SNAKE_CASE : List[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = 1 return lst if __name__ == "__main__": lowerCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase_ : Union[str, Any] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
719
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : def __init__( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str=13 , lowerCAmelCase__ : List[Any]=7 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=99 , lowerCAmelCase__ : List[str]=32 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Any=37 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : str=5_12 , lowerCAmelCase__ : List[str]=16 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : List[Any]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : str = type_vocab_size SCREAMING_SNAKE_CASE : int = type_sequence_label_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : List[Any] = num_choices SCREAMING_SNAKE_CASE : Any = scope def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Dict = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : List[Any] ): """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def __lowercase ( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = BioGptModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BioGptForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : str , *lowerCAmelCase__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BioGptModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # create attention mask SCREAMING_SNAKE_CASE : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.seq_length // 2 SCREAMING_SNAKE_CASE : Any = 0 # first forward pass SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ).to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids SCREAMING_SNAKE_CASE : List[Any] = ids_tensor((1,) , lowerCAmelCase__ ).item() + 1 SCREAMING_SNAKE_CASE : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) SCREAMING_SNAKE_CASE : str = random_other_next_tokens # append to next input_ids and attn_mask SCREAMING_SNAKE_CASE : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : str = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowerCAmelCase__ )] , dim=1 , ) # get two different outputs SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )['''last_hidden_state'''] SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def __lowercase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , *lowerCAmelCase__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : str = BioGptModel(config=lowerCAmelCase__ ).to(lowerCAmelCase__ ).eval() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase__ ) # first forward pass SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )['''last_hidden_state'''] SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[ '''last_hidden_state''' ] # select random slice SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def __lowercase ( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , *lowerCAmelCase__ : Any , lowerCAmelCase__ : int=False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = BioGptForCausalLM(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __lowercase ( self : Any , lowerCAmelCase__ : str , *lowerCAmelCase__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BioGptModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __lowercase ( self : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , *lowerCAmelCase__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : Tuple = BioGptForTokenClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): _lowerCAmelCase : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : Optional[Any] = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : List[str] = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : Dict = False def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BioGptModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def __lowercase ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def __lowercase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : Optional[Any] = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __lowercase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowerCAmelCase__ ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowerCAmelCase__ , gradient_checkpointing=lowerCAmelCase__ ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowerCAmelCase__ ) def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowerCAmelCase__ ) def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowerCAmelCase__ ) @slow def __lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''left''' # Define PAD Token = EOS Token = 50256 SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE : Dict = model.config.eos_token_id # use different length sentences to test batching SCREAMING_SNAKE_CASE : Any = [ '''Hello, my dog is a little''', '''Today, I''', ] SCREAMING_SNAKE_CASE : List[str] = tokenizer(lowerCAmelCase__ , return_tensors='''pt''' , padding=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = inputs['''input_ids'''].to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate( input_ids=lowerCAmelCase__ , attention_mask=inputs['''attention_mask'''].to(lowerCAmelCase__ ) , ) SCREAMING_SNAKE_CASE : int = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = model.generate(input_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() SCREAMING_SNAKE_CASE : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(input_ids=lowerCAmelCase__ , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) @slow def __lowercase ( self : Tuple ): """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = BioGptModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = 3 SCREAMING_SNAKE_CASE : Dict = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : str = input_ids.ne(1 ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = BioGptForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Optional[Any] = '''multi_label_classification''' SCREAMING_SNAKE_CASE : Any = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : Any = input_ids.ne(1 ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE : List[Any] = BioGptForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE : str = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE : Tuple = 4_23_84 SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def __lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : int = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE : Optional[Any] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(lowerCAmelCase__ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate( **lowerCAmelCase__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
464
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ,A__ = None ,): UpperCAmelCase_ : int = {} if train_file is not None: UpperCAmelCase_ : Tuple = [train_file] if eval_file is not None: UpperCAmelCase_ : Union[str, Any] = [eval_file] if test_file is not None: UpperCAmelCase_ : Tuple = [test_file] UpperCAmelCase_ : Any = datasets.load_dataset("csv" ,data_files=A__ ) UpperCAmelCase_ : Optional[int] = list(ds[list(files.keys() )[0]].features.keys() ) UpperCAmelCase_ : List[str] = features_name.pop(A__ ) UpperCAmelCase_ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCAmelCase_ : int = {label: i for i, label in enumerate(A__ )} UpperCAmelCase_ : int = tokenizer.model_input_names UpperCAmelCase_ : Tuple = {} if len(A__ ) == 1: for k in files.keys(): UpperCAmelCase_ : Any = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] ,truncation=A__ ,max_length=A__ ,padding="max_length" ) ,batched=A__ ,) elif len(A__ ) == 2: for k in files.keys(): UpperCAmelCase_ : Dict = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) ,truncation=A__ ,max_length=A__ ,padding="max_length" ,) ,batched=A__ ,) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCAmelCase_ : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : Any = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCAmelCase_ : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : int = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCAmelCase_ : str = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : int = labelaid[ex[label_name]] yield (d, label) UpperCAmelCase_ : List[Any] = ( tf.data.Dataset.from_generator( A__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCAmelCase_ : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCAmelCase_ : Optional[Any] = ( tf.data.Dataset.from_generator( A__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCAmelCase_ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCAmelCase_ : Dict = ( tf.data.Dataset.from_generator( A__ ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCAmelCase_ : List[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCamelCase_ = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : __magic_name__ = field(metadata={'''help''': '''Which column contains the label'''} ) __magic_name__ = field(default=__A , metadata={'''help''': '''The path of the training file'''} ) __magic_name__ = field(default=__A , metadata={'''help''': '''The path of the development file'''} ) __magic_name__ = field(default=__A , metadata={'''help''': '''The path of the test file'''} ) __magic_name__ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __magic_name__ = field( default=__A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class UpperCamelCase_ : __magic_name__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __magic_name__ = field( default=__A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __magic_name__ = field( default=__A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __magic_name__ = field(default=__A , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __magic_name__ = field( default=__A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_tfds( train_file=data_args.train_file ,eval_file=data_args.dev_file ,test_file=data_args.test_file ,tokenizer=A__ ,label_column_id=data_args.label_column_id ,max_seq_length=data_args.max_seq_length ,) UpperCAmelCase_ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=len(A__ ) ,labelaid=A__ ,idalabel={id: label for label, id in labelaid.items()} ,finetuning_task="text-classification" ,cache_dir=model_args.cache_dir ,) with training_args.strategy.scope(): UpperCAmelCase_ : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_pt=bool(".bin" in model_args.model_name_or_path ) ,config=A__ ,cache_dir=model_args.cache_dir ,) def compute_metrics(A__ ) -> Dict: UpperCAmelCase_ : Any = np.argmax(p.predictions ,axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCAmelCase_ : Optional[int] = TFTrainer( model=A__ ,args=A__ ,train_dataset=A__ ,eval_dataset=A__ ,compute_metrics=A__ ,) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : List[str] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ : str = trainer.evaluate() UpperCAmelCase_ : Tuple = os.path.join(training_args.output_dir ,"eval_results.txt" ) with open(A__ ,"w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(A__ ) return results if __name__ == "__main__": main()
95
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __snake_case , unittest.TestCase ): _lowerCAmelCase = LEDTokenizer _lowerCAmelCase = LEDTokenizerFast _lowerCAmelCase = True def lowerCAmelCase__(self ): '''simple docstring''' super().setUp() __a : str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __a : int = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) __a : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __a : List[Any] = {"""unk_token""": """<unk>"""} __a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowercase ) ) def lowerCAmelCase__(self , **_lowercase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def lowerCAmelCase__(self , **_lowercase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCAmelCase__(self ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCAmelCase__(self ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __a : List[str] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Optional[int] = tokenizer(_lowercase , max_length=len(_lowercase ) , padding=_lowercase , return_tensors="""pt""" ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __a : Dict = batch.input_ids.tolist()[0] self.assertListEqual(_lowercase , _lowercase ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Tuple = tokenizer(_lowercase , padding=_lowercase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , _lowercase ) self.assertIn("""attention_mask""" , _lowercase ) self.assertNotIn("""labels""" , _lowercase ) self.assertNotIn("""decoder_attention_mask""" , _lowercase ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Dict = tokenizer(text_target=_lowercase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Optional[int] = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=_lowercase , truncation=_lowercase , return_tensors="""pt""" ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = ["""A long paragraph for summarization."""] __a : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : int = tokenizer(_lowercase , return_tensors="""pt""" ) __a : Dict = tokenizer(text_target=_lowercase , return_tensors="""pt""" ) __a : List[str] = inputs["""input_ids"""] __a : List[Any] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Optional[Any] = ["""Summary of the text.""", """Another summary."""] __a : List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __a : Union[str, Any] = tokenizer(_lowercase , padding=_lowercase ) __a : Tuple = [[0] * len(_lowercase ) for x in encoded_output["""input_ids"""]] __a : Union[str, Any] = tokenizer.pad(_lowercase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , _lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' pass def lowerCAmelCase__(self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a : Dict = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __a : Union[str, Any] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __a : Union[str, Any] = """A, <mask> AllenNLP sentence.""" __a : Dict = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) __a : Tuple = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __a : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __a : Any = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
63
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase__ = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): _lowerCAmelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCAmelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowerCAmelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowerCAmelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __a : Tuple = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __a : Optional[Any] = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __a : int = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __a : List[str] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __a : Optional[int] = text_classifier("""This is great !""" , return_all_scores=_lowercase ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __a : Tuple = text_classifier("""This is great !""" , return_all_scores=_lowercase ) self.assertEqual( nested_simplify(_lowercase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __a : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=_lowercase ) self.assertEqual( nested_simplify(_lowercase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __a : Union[str, Any] = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=_lowercase ) self.assertEqual( nested_simplify(_lowercase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' import torch __a : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __a : Optional[int] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __a : List[str] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = pipeline("""text-classification""" ) __a : Tuple = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __a : Optional[int] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __a : Union[str, Any] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : List[str] = pipeline("""text-classification""" , framework="""tf""" ) __a : str = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __a : Tuple = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __a : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Dict = TextClassificationPipeline(model=_lowercase , tokenizer=_lowercase ) return text_classifier, ["HuggingFace is in", "This is another test"] def lowerCAmelCase__(self , _lowercase , _lowercase ): '''simple docstring''' __a : List[str] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __a : Union[str, Any] = """HuggingFace is in""" __a : List[str] = text_classifier(_lowercase ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __a : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __a : Dict = text_classifier(_lowercase ) self.assertEqual( nested_simplify(_lowercase ) , [{"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}, {"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __a : Dict = text_classifier(_lowercase , top_k=_lowercase ) __a : Dict = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(_lowercase ) , [[{"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}] * N, [{"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}] * N] , ) __a : Dict = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __a : Any = text_classifier(_lowercase ) self.assertEqual( nested_simplify(_lowercase ) , {"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __a : Dict = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(_lowercase ): text_classifier(_lowercase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __a : Optional[int] = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(_lowercase ) , [{"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
63
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _A = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case ): def __init__( self , *lowercase , **lowercase ) -> None: '''simple docstring''' warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , lowercase , ) super().__init__(*lowercase , **lowercase )
158
'''simple docstring''' def A_ ( __SCREAMING_SNAKE_CASE : int ) -> bool: if num < 0: return False __SCREAMING_SNAKE_CASE : int = num __SCREAMING_SNAKE_CASE : int = 0 while num > 0: __SCREAMING_SNAKE_CASE : str = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
158
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Dict = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
367
from ... import PretrainedConfig UpperCAmelCase_ : List[str] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class __A ( UpperCamelCase__ ): UpperCamelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase = """nezha""" def __init__( self :List[Any] , __snake_case :Optional[int]=2_11_28 , __snake_case :Dict=7_68 , __snake_case :str=12 , __snake_case :List[Any]=12 , __snake_case :Optional[int]=30_72 , __snake_case :Any="gelu" , __snake_case :List[str]=0.1 , __snake_case :Optional[int]=0.1 , __snake_case :Dict=5_12 , __snake_case :Optional[int]=64 , __snake_case :Any=2 , __snake_case :List[Any]=0.02 , __snake_case :List[str]=1E-12 , __snake_case :Any=0.1 , __snake_case :str=0 , __snake_case :int=2 , __snake_case :str=3 , __snake_case :Any=True , **__snake_case :Any , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : Tuple =vocab_size __magic_name__ : str =hidden_size __magic_name__ : Dict =num_hidden_layers __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : Optional[int] =intermediate_size __magic_name__ : Union[str, Any] =hidden_dropout_prob __magic_name__ : Any =attention_probs_dropout_prob __magic_name__ : Union[str, Any] =max_position_embeddings __magic_name__ : str =max_relative_position __magic_name__ : Tuple =type_vocab_size __magic_name__ : str =initializer_range __magic_name__ : Tuple =layer_norm_eps __magic_name__ : Optional[int] =classifier_dropout __magic_name__ : List[str] =use_cache
367
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase = logging.getLogger(__name__) def _A ( ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=lowerCAmelCase_ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=lowerCAmelCase_ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=lowerCAmelCase_ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=lowerCAmelCase_ , default="data/dump" , help="The dump file prefix." ) lowerCAmelCase__ = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` lowerCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>` lowerCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` lowerCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , "r" , encoding="utf8" ) as fp: lowerCAmelCase__ = fp.readlines() logger.info("Start encoding" ) logger.info(F'{len(lowerCAmelCase_ )} examples to process.' ) lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 1_0000 lowerCAmelCase__ = time.time() for text in data: lowerCAmelCase__ = F'{bos} {text.strip()} {sep}' lowerCAmelCase__ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) rslt.append(lowerCAmelCase_ ) iter += 1 if iter % interval == 0: lowerCAmelCase__ = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase__ = time.time() logger.info("Finished binarization" ) logger.info(F'{len(lowerCAmelCase_ )} examples processed.' ) lowerCAmelCase__ = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase__ = [np.uintaa(lowerCAmelCase_ ) for d in rslt] else: lowerCAmelCase__ = [np.intaa(lowerCAmelCase_ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(lowerCAmelCase_ , "wb" ) as handle: pickle.dump(rslt_ , lowerCAmelCase_ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
61
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) torch.set_grad_enabled(False) SCREAMING_SNAKE_CASE_ = "cuda" if torch.cuda.is_available() else "cpu" def lowerCamelCase__ ( a__ , a__=1_0_0 , a__=" ") -> List[str]: """simple docstring""" _snake_case : Optional[Any] = text.split(a__) return [character.join(text[i : i + n]).strip() for i in range(0 , len(a__) , a__)] def lowerCamelCase__ ( a__) -> dict: """simple docstring""" _snake_case , _snake_case : List[Any] = [], [] for title, text in zip(documents['title'] , documents['text']): if text is not None: for passage in split_text(a__): titles.append(title if title is not None else '') texts.append(a__) return {"title": titles, "text": texts} def lowerCamelCase__ ( a__ , a__ , a__) -> dict: """simple docstring""" _snake_case : Optional[int] = ctx_tokenizer( documents['title'] , documents['text'] , truncation=a__ , padding='longest' , return_tensors='pt')['input_ids'] _snake_case : List[str] = ctx_encoder(input_ids.to(device=a__) , return_dict=a__).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase__ ( a__ , a__ , a__ , ) -> Optional[int]: """simple docstring""" logger.info('Step 1 - Create the dataset') ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way _snake_case : List[Any] = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text']) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _snake_case : Optional[Any] = dataset.map(a__ , batched=a__ , num_proc=processing_args.num_proc) # And compute the embeddings _snake_case : Any = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=a__) _snake_case : Tuple = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) _snake_case : Optional[int] = Features( {'text': Value('string'), 'title': Value('string'), 'embeddings': Sequence(Value('float32'))}) # optional, save as float32 instead of float64 to save space _snake_case : List[str] = dataset.map( partial(a__ , ctx_encoder=a__ , ctx_tokenizer=a__) , batched=a__ , batch_size=processing_args.batch_size , features=a__ , ) # And finally save your dataset _snake_case : Optional[Any] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset') dataset.save_to_disk(a__) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset') ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _snake_case : Dict = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index('embeddings' , custom_index=a__) # And save the index _snake_case : str = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss') dataset.get_index('embeddings').save(a__) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field( default=str(Path(lowercase_ ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) ,metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase_ ,metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} ,) SCREAMING_SNAKE_CASE__ : str = field( default='''facebook/rag-sequence-nq''' ,metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} ,) SCREAMING_SNAKE_CASE__ : str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' ,metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=str(Path(lowercase_ ).parent / '''test_run''' / '''dummy-kb''' ) ,metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} ,) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = field( default=lowercase_ ,metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } ,) SCREAMING_SNAKE_CASE__ : int = field( default=16 ,metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } ,) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = field( default=768 ,metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} ,) SCREAMING_SNAKE_CASE__ : int = field( default=128 ,metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) SCREAMING_SNAKE_CASE_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
517
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def _lowerCamelCase ( UpperCAmelCase_ : Optional[Any] ) -> List[str]: """simple docstring""" if "resnet-50" in model_name: A__ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: A__ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) A__ = DetrConfig(use_timm_backbone=snake_case__, backbone_config=snake_case__ ) # set label attributes A__ = "panoptic" in model_name if is_panoptic: A__ = 250 else: A__ = 91 A__ = "huggingface/label-files" A__ = "coco-detection-id2label.json" A__ = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) A__ = {int(snake_case__ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config, is_panoptic def _lowerCamelCase ( UpperCAmelCase_ : List[str] ) -> int: """simple docstring""" A__ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def _lowerCamelCase ( UpperCAmelCase_ : List[str], UpperCAmelCase_ : List[str], UpperCAmelCase_ : str ) -> str: """simple docstring""" A__ = state_dict.pop(snake_case__ ) A__ = val def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : Tuple=False ) -> List[Any]: """simple docstring""" A__ = "" if is_panoptic: A__ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) A__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:256, :] A__ = in_proj_bias[:256] A__ = in_proj_weight[256:512, :] A__ = in_proj_bias[256:512] A__ = in_proj_weight[-256:, :] A__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) A__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:256, :] A__ = in_proj_bias[:256] A__ = in_proj_weight[256:512, :] A__ = in_proj_bias[256:512] A__ = in_proj_weight[-256:, :] A__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention A__ = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) A__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict A__ = in_proj_weight_cross_attn[:256, :] A__ = in_proj_bias_cross_attn[:256] A__ = in_proj_weight_cross_attn[256:512, :] A__ = in_proj_bias_cross_attn[256:512] A__ = in_proj_weight_cross_attn[-256:, :] A__ = in_proj_bias_cross_attn[-256:] def _lowerCamelCase ( ) -> Dict: """simple docstring""" A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _lowerCamelCase ( UpperCAmelCase_ : Tuple, UpperCAmelCase_ : List[Any]=None, UpperCAmelCase_ : str=False ) -> Optional[Any]: """simple docstring""" A__ , A__ = get_detr_config(snake_case__ ) # load original model from torch hub A__ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F"""Converting model {model_name}...""" ) A__ = torch.hub.load("facebookresearch/detr", model_name_to_original_name[model_name], pretrained=snake_case__ ).eval() A__ = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case__ ): if is_panoptic: A__ = "detr." + src rename_key(snake_case__, snake_case__, snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__, is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A__ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): A__ = state_dict.pop(snake_case__ ) A__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A__ = state_dict.pop(snake_case__ ) A__ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: A__ = state_dict.pop(snake_case__ ) A__ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): A__ = state_dict.pop(snake_case__ ) A__ = val # finally, create HuggingFace model and load state dict A__ = DetrForSegmentation(snake_case__ ) if is_panoptic else DetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # verify our conversion on an image A__ = "coco_panoptic" if is_panoptic else "coco_detection" A__ = DetrImageProcessor(format=snake_case__ ) A__ = processor(images=prepare_img(), return_tensors="pt" ) A__ = encoding["pixel_values"] A__ = detr(snake_case__ ) A__ = model(snake_case__ ) assert torch.allclose(outputs.logits, original_outputs["pred_logits"], atol=1e-3 ) assert torch.allclose(outputs.pred_boxes, original_outputs["pred_boxes"], atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs["pred_masks"], atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") UpperCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) UpperCamelCase = None UpperCamelCase = { """7B""": 1_1008, """13B""": 1_3824, """30B""": 1_7920, """65B""": 2_2016, """70B""": 2_8672, } UpperCamelCase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def _lowerCamelCase ( UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Optional[Any]=1, UpperCAmelCase_ : Union[str, Any]=256 ) -> Any: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _lowerCamelCase ( UpperCAmelCase_ : Optional[int] ) -> List[str]: """simple docstring""" with open(UpperCAmelCase_, "r" ) as f: return json.load(UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCAmelCase_, "w" ) as f: json.dump(UpperCAmelCase_, UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Optional[int]=True ) -> List[Any]: """simple docstring""" os.makedirs(UpperCAmelCase_, exist_ok=UpperCAmelCase_ ) A__ = os.path.join(UpperCAmelCase_, "tmp" ) os.makedirs(UpperCAmelCase_, exist_ok=UpperCAmelCase_ ) A__ = read_json(os.path.join(UpperCAmelCase_, "params.json" ) ) A__ = NUM_SHARDS[model_size] A__ = params["n_layers"] A__ = params["n_heads"] A__ = n_heads // num_shards A__ = params["dim"] A__ = dim // n_heads A__ = 1_0000.0 A__ = 1.0 / (base ** (torch.arange(0, UpperCAmelCase_, 2 ).float() / dims_per_head)) if "n_kv_heads" in params: A__ = params["n_kv_heads"] # for GQA / MQA A__ = n_heads_per_shard // num_key_value_heads A__ = dim // num_key_value_heads else: # compatibility with other checkpoints A__ = n_heads A__ = n_heads_per_shard A__ = dim # permute for sliced rotary def permute(UpperCAmelCase_ : Optional[Any], UpperCAmelCase_ : List[str]=n_heads, UpperCAmelCase_ : List[str]=dim, UpperCAmelCase_ : str=dim ): return w.view(UpperCAmelCase_, dima // n_heads // 2, 2, UpperCAmelCase_ ).transpose(1, 2 ).reshape(UpperCAmelCase_, UpperCAmelCase_ ) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) A__ = torch.load(os.path.join(UpperCAmelCase_, "consolidated.00.pth" ), map_location="cpu" ) else: # Sharded A__ = [ torch.load(os.path.join(UpperCAmelCase_, F"""consolidated.{i:02d}.pth""" ), map_location="cpu" ) for i in range(UpperCAmelCase_ ) ] A__ = 0 A__ = {"weight_map": {}} for layer_i in range(UpperCAmelCase_ ): A__ = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded A__ = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""] ), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""] ), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. A__ = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } A__ = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ) ], dim=0, ).reshape(UpperCAmelCase_, UpperCAmelCase_ ) ) A__ = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ) ], dim=0, ).reshape(UpperCAmelCase_, UpperCAmelCase_ ), UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, ) A__ = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ) ], dim=0, ).reshape(UpperCAmelCase_, UpperCAmelCase_ ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(UpperCAmelCase_ )], dim=1 ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(UpperCAmelCase_ )], dim=0 ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(UpperCAmelCase_ )], dim=1 ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(UpperCAmelCase_ )], dim=0 ) A__ = inv_freq for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(UpperCAmelCase_, os.path.join(UpperCAmelCase_, UpperCAmelCase_ ) ) A__ = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded A__ = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: A__ = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(UpperCAmelCase_ )], dim=1 ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(UpperCAmelCase_ )], dim=0 ), } for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(UpperCAmelCase_, os.path.join(UpperCAmelCase_, UpperCAmelCase_ ) ) # Write configs A__ = {"total_size": param_count * 2} write_json(UpperCAmelCase_, os.path.join(UpperCAmelCase_, "pytorch_model.bin.index.json" ) ) A__ = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 A__ = params["multiple_of"] if "multiple_of" in params else 256 A__ = LlamaConfig( hidden_size=UpperCAmelCase_, intermediate_size=compute_intermediate_size(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ), num_attention_heads=params["n_heads"], num_hidden_layers=params["n_layers"], rms_norm_eps=params["norm_eps"], num_key_value_heads=UpperCAmelCase_, ) config.save_pretrained(UpperCAmelCase_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model." ) A__ = LlamaForCausalLM.from_pretrained(UpperCAmelCase_, torch_dtype=torch.floataa, low_cpu_mem_usage=UpperCAmelCase_ ) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format." ) model.save_pretrained(UpperCAmelCase_, safe_serialization=UpperCAmelCase_ ) shutil.rmtree(UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : Optional[Any], UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) A__ = tokenizer_class(UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) def _lowerCamelCase ( ) -> int: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of LLaMA weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--model_size", choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"], ) parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) parser.add_argument("--safe_serialization", type=UpperCAmelCase_, help="Whether or not to save using `safetensors`." ) A__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, ) A__ = os.path.join(args.input_dir, "tokenizer.model" ) write_tokenizer(args.output_dir, UpperCAmelCase_ ) if __name__ == "__main__": main()
562
0
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> list: snake_case__ : Optional[int] = [0] * len(snake_case__ ) for i in range(1 , len(snake_case__ ) ): # use last results for better performance - dynamic programming snake_case__ : str = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : List[Any] = j return prefix_result def __snake_case( _lowerCAmelCase ) -> int: return max(prefix_function(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
374
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCamelCase : int = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase : Dict = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case__ ) UpperCamelCase : List[Any] = [] for value in value_array: UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] ) UpperCamelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: UpperCamelCase : str = temp_dist UpperCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
40
0
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline __A : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowercase ( __snake_case : Dict , __snake_case : tuple , __snake_case : Path , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any]=False , ): output_path.parent.mkdir(parents=__snake_case , exist_ok=__snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __snake_case , __snake_case , f=output_path.as_posix() , input_names=__snake_case , output_names=__snake_case , dynamic_axes=__snake_case , do_constant_folding=__snake_case , use_external_data_format=__snake_case , enable_onnx_checker=__snake_case , opset_version=__snake_case , ) else: export( __snake_case , __snake_case , f=output_path.as_posix() , input_names=__snake_case , output_names=__snake_case , dynamic_axes=__snake_case , do_constant_folding=__snake_case , opset_version=__snake_case , ) @torch.no_grad() def lowercase ( __snake_case : str , __snake_case : str , __snake_case : int , __snake_case : bool = False ): lowercase_ : int = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase_ : Union[str, Any] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowercase_ : List[Any] = '''cpu''' lowercase_ : Tuple = StableDiffusionPipeline.from_pretrained(__snake_case , torch_dtype=__snake_case ).to(__snake_case ) lowercase_ : Any = Path(__snake_case ) # TEXT ENCODER lowercase_ : Optional[int] = pipeline.text_encoder.config.max_position_embeddings lowercase_ : Tuple = pipeline.text_encoder.config.hidden_size lowercase_ : Union[str, Any] = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=__snake_case , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__snake_case , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=__snake_case , ) del pipeline.text_encoder # UNET lowercase_ : Dict = pipeline.unet.config.in_channels lowercase_ : Optional[Any] = pipeline.unet.config.sample_size lowercase_ : str = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), torch.randn(2 ).to(device=__snake_case , dtype=__snake_case ), torch.randn(2 , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=__snake_case , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=__snake_case , use_external_data_format=__snake_case , ) lowercase_ : List[str] = str(unet_path.absolute().as_posix() ) lowercase_ : Optional[int] = os.path.dirname(__snake_case ) lowercase_ : Dict = onnx.load(__snake_case ) # clean up existing tensor files shutil.rmtree(__snake_case ) os.mkdir(__snake_case ) # collate external tensor files into one onnx.save_model( __snake_case , __snake_case , save_as_external_data=__snake_case , all_tensors_to_one_file=__snake_case , location='''weights.pb''' , convert_attribute=__snake_case , ) del pipeline.unet # VAE ENCODER lowercase_ : Optional[int] = pipeline.vae lowercase_ : Dict = vae_encoder.config.in_channels lowercase_ : int = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowercase_ : Dict = lambda __snake_case , __snake_case : vae_encoder.encode(__snake_case , __snake_case )[0].sample() onnx_export( __snake_case , model_args=( torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__snake_case , ) # VAE DECODER lowercase_ : int = pipeline.vae lowercase_ : Optional[Any] = vae_decoder.config.latent_channels lowercase_ : int = vae_decoder.config.out_channels # forward only through the decoder part lowercase_ : Any = vae_encoder.decode onnx_export( __snake_case , model_args=( torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__snake_case , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowercase_ : Optional[int] = pipeline.safety_checker lowercase_ : List[str] = safety_checker.config.vision_config.num_channels lowercase_ : Optional[int] = safety_checker.config.vision_config.image_size lowercase_ : int = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __snake_case , __snake_case , __snake_case , ).to(device=__snake_case , dtype=__snake_case ), torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=__snake_case , ) del pipeline.safety_checker lowercase_ : Any = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) lowercase_ : Dict = pipeline.feature_extractor else: lowercase_ : List[Any] = None lowercase_ : Union[str, Any] = None lowercase_ : int = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=__snake_case , feature_extractor=__snake_case , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__snake_case ) print('''ONNX pipeline saved to''' , __snake_case ) del pipeline del onnx_pipeline lowercase_ : int = OnnxStableDiffusionPipeline.from_pretrained(__snake_case , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') __A : List[str] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
700
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowercase ( ): lowercase_ : Union[str, Any] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 2_0, '''a ''' * 3_0, '''b ''' * 7], } lowercase_ : Any = Dataset.from_dict(__snake_case ) return dataset class _UpperCAmelCase ( _A ): def A ( self : str ) -> str: lowercase_ : Tuple = get_dataset() lowercase_ : Any = make_duplicate_clusters(A , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A ( self : List[str] ) -> Union[str, Any]: lowercase_ : Any = get_dataset() lowercase_ , lowercase_ : str = deduplicate_dataset(A ) self.assertEqual(len(A ) , 2 ) print(A ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , A )
141
0
lowerCamelCase__ = 8.3_14_45_98 def _lowerCamelCase( __snake_case , __snake_case ) -> float: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowerCamelCase__ = 3_00 lowerCamelCase__ = 28 lowerCamelCase__ = rms_speed_of_molecule(temperature, molar_mass) print(F"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
524
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self : Any ): """simple docstring""" __snake_case = 0 @slow def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_lowerCAmelCase ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_lowerCAmelCase ) ,0 ) def UpperCamelCase_ ( self : int ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def UpperCamelCase_ ( self : List[str] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def UpperCamelCase_ ( self : Optional[Any] ): """simple docstring""" __snake_case = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) # Check that tokenizer_type ≠ model_type __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,config=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" ,os.path.join(_lowerCAmelCase ,"vocab.txt" ) ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,tokenizer_type="bert" ,use_fast=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" ,os.path.join(_lowerCAmelCase ,"vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" ,os.path.join(_lowerCAmelCase ,"merges.txt" ) ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,tokenizer_type="gpt2" ,use_fast=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) @require_tokenizers def UpperCamelCase_ ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" ,os.path.join(_lowerCAmelCase ,"vocab.txt" ) ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,tokenizer_type="bert" ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" ,os.path.join(_lowerCAmelCase ,"vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" ,os.path.join(_lowerCAmelCase ,"merges.txt" ) ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,tokenizer_type="gpt2" ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Dict ): """simple docstring""" with pytest.raises(_lowerCAmelCase ): AutoTokenizer.from_pretrained("./" ,tokenizer_type="xxx" ) @require_tokenizers def UpperCamelCase_ ( self : List[str] ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __snake_case = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(_lowerCAmelCase ,(BertTokenizer, BertTokenizerFast) ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,_lowerCAmelCase ) else: self.assertEqual(tokenizer.do_lower_case ,_lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length ,512 ) @require_tokenizers def UpperCamelCase_ ( self : Tuple ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _lowerCAmelCase ,"julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" ,): __snake_case = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def UpperCamelCase_ ( self : str ): """simple docstring""" __snake_case = TOKENIZER_MAPPING.values() __snake_case = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_lowerCAmelCase ) @require_tokenizers def UpperCamelCase_ ( self : Dict ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ,use_fast=_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) ,_lowerCAmelCase ) @require_tokenizers def UpperCamelCase_ ( self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained("distilbert-base-uncased" ,do_lower_case=_lowerCAmelCase ) __snake_case = "Hello, world. How are you?" __snake_case = tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual("[UNK]" ,tokens[0] ) __snake_case = AutoTokenizer.from_pretrained("microsoft/mpnet-base" ,do_lower_case=_lowerCAmelCase ) __snake_case = tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual("[UNK]" ,tokens[0] ) @require_tokenizers def UpperCamelCase_ ( self : Optional[int] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length ,512 ) self.assertEqual(tokenizer.vocab_size ,30_000 ) self.assertEqual(tokenizer.unk_token ,"[UNK]" ) self.assertEqual(tokenizer.padding_side ,"right" ) self.assertEqual(tokenizer.truncation_side ,"right" ) def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def UpperCamelCase_ ( self : Any ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Tuple ): """simple docstring""" __snake_case = get_tokenizer_config("bert-base-cased" ) __snake_case = config.pop("_commit_hash" ,_lowerCAmelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_lowerCAmelCase ,{"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __snake_case = get_tokenizer_config(_lowerCAmelCase ) self.assertDictEqual(_lowerCAmelCase ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = get_tokenizer_config(_lowerCAmelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] ,"BertTokenizer" ) def UpperCamelCase_ ( self : str ): """simple docstring""" try: AutoConfig.register("custom" ,_lowerCAmelCase ) AutoTokenizer.register(_lowerCAmelCase ,slow_tokenizer_class=_lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoTokenizer.register(_lowerCAmelCase ,slow_tokenizer_class=_lowerCAmelCase ) __snake_case = CustomTokenizer.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("custom" ,_lowerCAmelCase ) # Can register in two steps AutoTokenizer.register(_lowerCAmelCase ,slow_tokenizer_class=_lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(_lowerCAmelCase ,fast_tokenizer_class=_lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _lowerCAmelCase ,slow_tokenizer_class=_lowerCAmelCase ,fast_tokenizer_class=_lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoTokenizer.register(_lowerCAmelCase ,fast_tokenizer_class=_lowerCAmelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = BertTokenizerFast.from_pretrained(_lowerCAmelCase ) bert_tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = CustomTokenizerFast.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self : Any ): """simple docstring""" with self.assertRaises(_lowerCAmelCase ): __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,trust_remote_code=_lowerCAmelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,"NewTokenizerFast" ) # Test we can also load the slow version __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,trust_remote_code=_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,"NewTokenizer" ) @require_tokenizers def UpperCamelCase_ ( self : Optional[Any] ): """simple docstring""" class UpperCamelCase ( snake_case__ ): __UpperCamelCase = False class UpperCamelCase ( snake_case__ ): __UpperCamelCase = NewTokenizer __UpperCamelCase = False try: AutoConfig.register("custom" ,_lowerCAmelCase ) AutoTokenizer.register(_lowerCAmelCase ,slow_tokenizer_class=_lowerCAmelCase ) AutoTokenizer.register(_lowerCAmelCase ,fast_tokenizer_class=_lowerCAmelCase ) # If remote code is not set, the default is to use local __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ,use_fast=_lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" ,trust_remote_code=_lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) # Test we can also load the slow version __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" ,trust_remote_code=_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) def UpperCamelCase_ ( self : Any ): """simple docstring""" with self.assertRaisesRegex( _lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): __snake_case = AutoTokenizer.from_pretrained("bert-base" ) def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( _lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,revision="aaaaaa" ) def UpperCamelCase_ ( self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
524
1
from bisect import bisect from itertools import accumulate def __magic_name__ ( __a : str , __a : Tuple , __a : int , __a : str ): '''simple docstring''' UpperCamelCase__ = sorted(zip(__a , __a ) , key=lambda __a : x[0] / x[1] , reverse=__a ) UpperCamelCase__ , UpperCamelCase__ = [i[0] for i in r], [i[1] for i in r] UpperCamelCase__ = list(accumulate(__a ) ) UpperCamelCase__ = bisect(__a , __a ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
719
from __future__ import annotations from typing import TypedDict class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 def __magic_name__ ( __a : str ): '''simple docstring''' if not isinstance(__a , __a ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__a ) )] def __magic_name__ ( __a : str ): '''simple docstring''' if not isinstance(__a , __a ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) UpperCamelCase__ = all_rotations(__a ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation UpperCamelCase__ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__a ), } return response def __magic_name__ ( __a : str , __a : int ): '''simple docstring''' if not isinstance(__a , __a ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: UpperCamelCase__ = int(__a ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__a ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) UpperCamelCase__ = [""""""] * len(__a ) for _ in range(len(__a ) ): for i in range(len(__a ) ): UpperCamelCase__ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase_ = '''Provide a string that I will generate its BWT transform: ''' lowerCamelCase_ = input(entry_msg).strip() lowerCamelCase_ = bwt_transform(s) print( f'Burrows Wheeler transform for string \'{s}\' results ' f'in \'{result["bwt_string"]}\'' ) lowerCamelCase_ = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( f'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' f'we get original string \'{original_string}\'' )
86
0
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig A_ = logging.get_logger(__name__) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ = question_encoder lowerCamelCase_ = generator lowerCamelCase_ = self.question_encoder def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE_ ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , 'question_encoder_tokenizer' ) lowerCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE_ ) @classmethod def UpperCamelCase( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer lowerCamelCase_ = kwargs.pop('config' , SCREAMING_SNAKE_CASE_ ) if config is None: lowerCamelCase_ = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE_ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) lowerCamelCase_ = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE_ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.question_encoder def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.generator def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "longest" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> BatchEncoding: '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE_ , ) if max_length is None: lowerCamelCase_ = self.current_tokenizer.model_max_length lowerCamelCase_ = self( SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowerCamelCase_ = self.current_tokenizer.model_max_length lowerCamelCase_ = self( text_target=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = labels['input_ids'] return model_inputs
42
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _snake_case ( A_ : Optional[Any] , A_ : List[str] , A_ : Any , A_ : Dict ): """simple docstring""" if isinstance(A_ , A_ ): a_ : Dict = np.full((len(A_ ), sequence_length, 2) , A_ ) else: a_ : Tuple = np.full((len(A_ ), sequence_length) , A_ ) for i, tensor in enumerate(A_ ): if padding_side == "right": if isinstance(A_ , A_ ): a_ : List[str] = tensor[:sequence_length] else: a_ : int = tensor[:sequence_length] else: if isinstance(A_ , A_ ): a_ : Optional[int] = tensor[:sequence_length] else: a_ : Optional[int] = tensor[:sequence_length] return out_tensor.tolist() def _snake_case ( A_ : str ): """simple docstring""" a_ : Optional[Any] = ord(A_ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True a_ : List[Any] = unicodedata.category(A_ ) if cat.startswith("""P""" ): return True return False @dataclass class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def _lowerCAmelCase ( self , lowerCAmelCase_ ): '''simple docstring''' import torch a_ : List[Any] = """label""" if """label""" in features[0].keys() else """labels""" a_ : Dict = [feature[label_name] for feature in features] if label_name in features[0].keys() else None a_ : Union[str, Any] = self.tokenizer.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch a_ : Dict = torch.tensor(batch["""entity_ids"""] ).shape[1] a_ : List[Any] = self.tokenizer.padding_side if padding_side == "right": a_ : List[str] = [ list(lowerCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase_ )) for label in labels ] else: a_ : int = [ [self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase_ )) + list(lowerCAmelCase_ ) for label in labels ] a_ : int = [feature["""ner_tags"""] for feature in features] a_ : Union[str, Any] = padding_tensor(lowerCAmelCase_ , -1 , lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Dict = [feature["""original_entity_spans"""] for feature in features] a_ : Optional[Any] = padding_tensor(lowerCAmelCase_ , (-1, -1) , lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Any = {k: torch.tensor(lowerCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
577
0
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __snake_case = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def a ( __a , __a , __a , __a , __a , __a ) -> Dict: '''simple docstring''' if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(__a ) , version.parse(__a ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def a ( __a , __a = None ) -> None: '''simple docstring''' UpperCamelCase__ :Dict = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , __a ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Any = requirement, None, None else: UpperCamelCase__ :List[Any] = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , __a ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) UpperCamelCase__ , UpperCamelCase__ :int = match[0] UpperCamelCase__ :Tuple = want_full.split(''',''' ) # there could be multiple requirements UpperCamelCase__ :Dict = {} for w in want_range: UpperCamelCase__ :List[Any] = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , __a ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = match[0] UpperCamelCase__ :List[str] = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": UpperCamelCase__ :Optional[int] = '''.'''.join([str(__a ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) return # check if any version is installed try: UpperCamelCase__ :List[Any] = importlib.metadata.version(__a ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) def a ( __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Optional[int] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(__a , __a )
280
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __snake_case = logging.getLogger() def a ( __a ) -> Dict: '''simple docstring''' UpperCamelCase__ :str = {} UpperCamelCase__ :Dict = os.path.join(__a , '''all_results.json''' ) if os.path.exists(__a ): with open(__a , '''r''' ) as f: UpperCamelCase__ :int = json.load(__a ) else: raise ValueError(f'''can\'t find {path}''' ) return results __snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowercase ( A__ ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' import xla_spawn UpperCamelCase__ :Any = self.get_auto_remove_tmp_dir() UpperCamelCase__ :List[str] = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): UpperCamelCase__ :List[Any] = time() xla_spawn.main() UpperCamelCase__ :List[Any] = time() UpperCamelCase__ :Tuple = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowerCAmelCase__ ( self ): '''simple docstring''' import xla_spawn UpperCamelCase__ :Tuple = ''' ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py '''.split() with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): xla_spawn.main()
280
1
"""simple docstring""" import numpy as np from PIL import Image def _A ( __lowercase , __lowercase , __lowercase ): """simple docstring""" lowerCamelCase__ = np.array(__lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 # compute the shape of the output matrix lowerCamelCase__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 return updated_arr def _A ( __lowercase , __lowercase , __lowercase ): """simple docstring""" lowerCamelCase__ = np.array(__lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 # compute the shape of the output matrix lowerCamelCase__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ = 0 lowerCamelCase__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image __magic_name__ = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
129
"""simple docstring""" def _A ( __lowercase , __lowercase ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
129
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class a_ ( unittest.TestCase ): def UpperCamelCase ( self : Optional[int] ) -> Dict: snake_case: Union[str, Any] =tempfile.mkdtemp() snake_case: Optional[int] =BlipImageProcessor() snake_case: List[str] =GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) snake_case: Optional[int] =BlipaProcessor(a_ , a_ ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : str , **a_ : Optional[int] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).tokenizer def UpperCamelCase ( self : List[Any] , **a_ : Optional[int] ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).image_processor def UpperCamelCase ( self : Union[str, Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self : str ) -> int: snake_case: Optional[Any] =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case: Union[str, Any] =[Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self : int ) -> Optional[Any]: snake_case: int =BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Dict =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) snake_case: Optional[int] =self.get_image_processor(do_normalize=a_ , padding_value=1.0 ) snake_case: Dict =BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def UpperCamelCase ( self : List[Any] ) -> List[str]: snake_case: Tuple =self.get_image_processor() snake_case: List[Any] =self.get_tokenizer() snake_case: int =BlipaProcessor(tokenizer=a_ , image_processor=a_ ) snake_case: Tuple =self.prepare_image_inputs() snake_case: Union[str, Any] =image_processor(a_ , return_tensors='np' ) snake_case: Dict =processor(images=a_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase ( self : int ) -> List[Any]: snake_case: Any =self.get_image_processor() snake_case: Optional[Any] =self.get_tokenizer() snake_case: List[Any] =BlipaProcessor(tokenizer=a_ , image_processor=a_ ) snake_case: Any ='lower newer' snake_case: Any =processor(text=a_ ) snake_case: Dict =tokenizer(a_ , return_token_type_ids=a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self : str ) -> str: snake_case: Dict =self.get_image_processor() snake_case: int =self.get_tokenizer() snake_case: Dict =BlipaProcessor(tokenizer=a_ , image_processor=a_ ) snake_case: Any ='lower newer' snake_case: str =self.prepare_image_inputs() snake_case: int =processor(text=a_ , images=a_ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def UpperCamelCase ( self : int ) -> Tuple: snake_case: int =self.get_image_processor() snake_case: Any =self.get_tokenizer() snake_case: Tuple =BlipaProcessor(tokenizer=a_ , image_processor=a_ ) snake_case: str =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: Tuple =processor.batch_decode(a_ ) snake_case: Optional[Any] =tokenizer.batch_decode(a_ ) self.assertListEqual(a_ , a_ ) def UpperCamelCase ( self : List[Any] ) -> List[Any]: snake_case: Dict =self.get_image_processor() snake_case: str =self.get_tokenizer() snake_case: Union[str, Any] =BlipaProcessor(tokenizer=a_ , image_processor=a_ ) snake_case: Any ='lower newer' snake_case: Dict =self.prepare_image_inputs() snake_case: Dict =processor(text=a_ , images=a_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
347
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class a_ ( snake_case ): UpperCAmelCase : Union[List[PIL.Image.Image], np.ndarray] UpperCAmelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class a_ ( snake_case ): UpperCAmelCase : np.ndarray UpperCAmelCase : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
347
1
'''simple docstring''' def a ( _UpperCAmelCase ) -> bool: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('check_bouncy() accepts only integer arguments' ) a_ = str(_UpperCAmelCase ) a_ = ''.join(sorted(_UpperCAmelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def a ( _UpperCAmelCase = 9_9 ) -> int: """simple docstring""" if not 0 < percent < 1_0_0: raise ValueError('solution() only accepts values from 0 to 100' ) a_ = 0 a_ = 1 while True: if check_bouncy(_UpperCAmelCase ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
697
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "lilt" def __init__( self , UpperCAmelCase__=3_0522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=4 , UpperCAmelCase__=1024 , **UpperCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = classifier_dropout a_ = channel_shrink_ratio a_ = max_ad_position_embeddings
697
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): if attention_mask is None: lowerCamelCase_: Tuple = tf.cast(tf.math.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a__ : _A = OPTConfig _A = {} _A = 'gelu' def __init__( self : List[Any] , A_ : Optional[int] , A_ : Optional[Any]=13 , A_ : Tuple=7 , A_ : List[Any]=True , A_ : Dict=False , A_ : Dict=99 , A_ : List[str]=16 , A_ : int=2 , A_ : Any=4 , A_ : Optional[Any]=4 , A_ : str="gelu" , A_ : Dict=0.1 , A_ : str=0.1 , A_ : List[Any]=20 , A_ : Tuple=2 , A_ : Optional[Any]=1 , A_ : int=0 , A_ : Dict=16 , A_ : Optional[int]=16 , ) -> Dict: """simple docstring""" lowerCamelCase_: Tuple = parent lowerCamelCase_: Dict = batch_size lowerCamelCase_: Tuple = seq_length lowerCamelCase_: Tuple = is_training lowerCamelCase_: Dict = use_labels lowerCamelCase_: Optional[int] = vocab_size lowerCamelCase_: List[str] = hidden_size lowerCamelCase_: Optional[Any] = num_hidden_layers lowerCamelCase_: Any = num_attention_heads lowerCamelCase_: Tuple = intermediate_size lowerCamelCase_: Union[str, Any] = hidden_act lowerCamelCase_: Tuple = hidden_dropout_prob lowerCamelCase_: List[Any] = attention_probs_dropout_prob lowerCamelCase_: Optional[Any] = max_position_embeddings lowerCamelCase_: Any = eos_token_id lowerCamelCase_: List[str] = pad_token_id lowerCamelCase_: Dict = bos_token_id lowerCamelCase_: Optional[Any] = embed_dim lowerCamelCase_: List[str] = word_embed_proj_dim lowerCamelCase_: List[str] = False def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_: int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase_: List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_: Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_: Dict = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=A_ , **self.config_updates , ) lowerCamelCase_: Tuple = prepare_opt_inputs_dict(A_ , A_ ) return config, inputs_dict def lowerCAmelCase ( self : List[str] , A_ : List[Any] , A_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_: Optional[int] = TFOPTModel(config=A_ ) lowerCamelCase_: str = inputs_dict["""input_ids"""] lowerCamelCase_: Tuple = input_ids[:1, :] lowerCamelCase_: Optional[Any] = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase_: int = 1 # first forward pass lowerCamelCase_: Any = model(A_ , attention_mask=A_ , use_cache=A_ ) lowerCamelCase_ , lowerCamelCase_: List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_: Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_: Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase_: Any = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase_: Optional[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase_: Optional[int] = model(A_ , attention_mask=A_ )[0] lowerCamelCase_: List[str] = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase_: Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase_: int = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase_: Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1e-3 ) @require_tf class a__ ( lowercase__ , lowercase__ , unittest.TestCase ): _A = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _A = (TFOPTForCausalLM,) if is_tf_available() else () _A = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) _A = False _A = False _A = False _A = 10 def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_: Tuple = TFOPTModelTester(self ) lowerCamelCase_: Tuple = ConfigTester(self , config_class=A_ ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_: str = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(A_ : Any , A_ : Any ): if hasattr(A_ , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(A_ , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCamelCase_: Tuple = model_class(config=A_ ) lowerCamelCase_: Union[str, Any] = _get_word_embedding_weight(A_ , model.get_input_embeddings() ) lowerCamelCase_: Tuple = _get_word_embedding_weight(A_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(A_ ) lowerCamelCase_: List[Any] = _get_word_embedding_weight(A_ , model.get_input_embeddings() ) lowerCamelCase_: Tuple = _get_word_embedding_weight(A_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase_: Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , A_ ) # check that weights remain the same after resizing lowerCamelCase_: Dict = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase_: List[str] = False self.assertTrue(A_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , A_ ) lowerCamelCase_: List[str] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase_: Optional[Any] = False self.assertTrue(A_ ) def UpperCAmelCase_ ( _UpperCAmelCase ): return tf.constant(__SCREAMING_SNAKE_CASE , dtype=tf.intaa ) @require_tf class a__ ( unittest.TestCase ): _A = 99 def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_: str = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCamelCase_: Optional[Any] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCamelCase_: Optional[int] = input_ids.shape[0] lowerCamelCase_: Tuple = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a__ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_: List[str] = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowerCamelCase_: Optional[int] = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) lowerCamelCase_: List[str] = tf.not_equal(A_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase_: List[Any] = model(input_ids=A_ , attention_mask=A_ ).last_hidden_state lowerCamelCase_: str = (1, 11, 5_12) self.assertEqual(output.shape , A_ ) lowerCamelCase_: Optional[int] = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , A_ , atol=4e-3 ) ) lowerCamelCase_: List[str] = tf.function(A_ , jit_compile=A_ ) lowerCamelCase_: Tuple = xla_generate(A_ , A_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , A_ , atol=4e-2 ) ) @require_tf @slow class a__ ( unittest.TestCase ): def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" super().setUp() lowerCamelCase_: List[Any] = """facebook/opt-350m""" def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: Any = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase_: int = GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase_: Any = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase_: Tuple = tokenizer(A_ , return_tensors="""tf""" , padding=A_ , add_special_tokens=A_ ) lowerCamelCase_: str = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCamelCase_: List[Any] = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(A_ , A_ , atol=1e-4 ) ) lowerCamelCase_: Dict = tf.function(A_ , jit_compile=A_ ) lowerCamelCase_: List[str] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(A_ , A_ , atol=1e-4 ) ) @require_tf @slow class a__ ( unittest.TestCase ): @property def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_: Optional[Any] = """facebook/opt-125m""" lowerCamelCase_: List[Any] = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase_: Any = [] lowerCamelCase_: Tuple = GPTaTokenizer.from_pretrained(A_ ) lowerCamelCase_: Dict = TFOPTForCausalLM.from_pretrained(A_ ) for prompt in self.prompts: lowerCamelCase_: Tuple = tokenizer(A_ , return_tensors="""tf""" ).input_ids lowerCamelCase_: List[str] = model.generate(A_ , max_length=10 ) lowerCamelCase_: Tuple = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) predicted_outputs += generated_string self.assertListEqual(A_ , A_ ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_: List[str] = """facebook/opt-350m""" lowerCamelCase_: Union[str, Any] = GPTaTokenizer.from_pretrained(A_ ) lowerCamelCase_: str = TFOPTForCausalLM.from_pretrained(A_ ) lowerCamelCase_: List[str] = """left""" # use different length sentences to test batching lowerCamelCase_: Dict = [ """Hello, my dog is a little""", """Today, I""", ] lowerCamelCase_: Tuple = tokenizer(A_ , return_tensors="""tf""" , padding=A_ ) lowerCamelCase_: Optional[int] = inputs["""input_ids"""] lowerCamelCase_: Any = model.generate(input_ids=A_ , attention_mask=inputs["""attention_mask"""] ) lowerCamelCase_: List[str] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCamelCase_: Dict = model.generate(input_ids=A_ ) lowerCamelCase_: Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowerCamelCase_: Dict = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCamelCase_: Union[str, Any] = model.generate(input_ids=A_ , max_length=model.config.max_length - num_paddings ) lowerCamelCase_: List[Any] = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) lowerCamelCase_: List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_ ) lowerCamelCase_: Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=A_ ) lowerCamelCase_: List[str] = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , [non_padded_sentence, padded_sentence] ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_: Union[str, Any] = """facebook/opt-350m""" lowerCamelCase_: List[str] = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase_: Dict = [] lowerCamelCase_: Any = GPTaTokenizer.from_pretrained(A_ ) lowerCamelCase_: Optional[int] = TFOPTForCausalLM.from_pretrained(A_ ) for prompt in self.prompts: lowerCamelCase_: List[str] = tokenizer(A_ , return_tensors="""tf""" ).input_ids lowerCamelCase_: Optional[int] = model.generate(A_ , max_length=10 ) lowerCamelCase_: Optional[Any] = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) predicted_outputs += generated_string self.assertListEqual(A_ , A_ )
701
from graphs.minimum_spanning_tree_kruskal import kruskal def UpperCAmelCase_ ( ): lowerCamelCase_: str = 9 lowerCamelCase_: Tuple = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCamelCase_: List[str] = kruskal(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase_: int = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_UpperCAmelCase ) == sorted(_UpperCAmelCase )
584
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> list[int]: '''simple docstring''' snake_case_ = [0 for i in range(len(__UpperCAmelCase ) )] # initialize interval's left pointer and right pointer snake_case_ ,snake_case_ = 0, 0 for i in range(1, len(__UpperCAmelCase ) ): # case when current index is inside the interval if i <= right_pointer: snake_case_ = min(right_pointer - i + 1, z_result[i - left_pointer] ) snake_case_ = min_edge while go_next(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: snake_case_ ,snake_case_ = i, i + z_result[i] - 1 return z_result def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> bool: '''simple docstring''' return i + z_result[i] < len(__UpperCAmelCase ) and s[z_result[i]] == s[i + z_result[i]] def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string snake_case_ = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__UpperCAmelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
640
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = CLIPTokenizer snake_case_ = CLIPTokenizerFast snake_case_ = True snake_case_ = {} snake_case_ = False def A_ ( self : List[Any] ): super().setUp() # fmt: off snake_case_ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on snake_case_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] snake_case_ = {'''unk_token''': '''<unk>'''} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) def A_ ( self : Tuple , **lowercase_ : Tuple ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def A_ ( self : List[str] , **lowercase_ : Dict ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def A_ ( self : Optional[int] , lowercase_ : Optional[int] ): snake_case_ = '''lower newer''' snake_case_ = '''lower newer''' return input_text, output_text def A_ ( self : Optional[int] ): snake_case_ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ = '''lower newer''' snake_case_ = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] snake_case_ = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) @require_ftfy def A_ ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case_ = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' snake_case_ = tokenizer_s.tokenize(lowercase_ ) snake_case_ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways snake_case_ = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' snake_case_ = tokenizer_s.tokenize(lowercase_ ) snake_case_ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on unicode of space type snake_case_ = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: snake_case_ = tokenizer_s.tokenize(lowercase_ ) snake_case_ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on unicode of line break type snake_case_ = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: snake_case_ = tokenizer_s.tokenize(lowercase_ ) snake_case_ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def A_ ( self : List[str] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case_ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` snake_case_ = F"{text_of_1_token} {text_of_1_token}" snake_case_ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , ) snake_case_ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) snake_case_ = F" {text}" snake_case_ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , ) snake_case_ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) def A_ ( self : Optional[Any] ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowercase_ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def A_ ( self : List[str] ): super().test_tokenization_python_rust_equals() def A_ ( self : List[Any] ): # CLIP always lower cases letters pass
640
1
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__UpperCAmelCase ) ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' if index == len(__UpperCAmelCase ): return True # Recursive Step for i in range(__UpperCAmelCase ): if valid_coloring(graph[index] , __UpperCAmelCase , __UpperCAmelCase ): # Color current vertex _lowerCamelCase = i # Validate coloring if util_color(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , index + 1 ): return True # Backtrack _lowerCamelCase = -1 return False def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: '''simple docstring''' _lowerCamelCase = [-1] * len(__UpperCAmelCase ) if util_color(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , 0 ): return colored_vertices return []
638
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
1
from string import ascii_uppercase __lowerCamelCase : Optional[int] = {str(ord(c) - 55): c for c in ascii_uppercase} def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int ): if isinstance(snake_case_ , snake_case_ ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(snake_case_ , snake_case_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(snake_case_ , snake_case_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 36: raise ValueError("base must be <= 36" ) snake_case__ : Dict = "" snake_case__ : Dict = 0 snake_case__ : Optional[Any] = 0 while div != 1: snake_case__, snake_case__ : Union[str, Any] = divmod(snake_case_ , snake_case_ ) if base >= 11 and 9 < mod < 36: snake_case__ : str = ALPHABET_VALUES[str(snake_case_ )] else: snake_case__ : Any = str(snake_case_ ) new_value += actual_value snake_case__ : Any = num // base snake_case__ : Optional[Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(snake_case_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
297
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __lowerCamelCase : Optional[Any] = None __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Any = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : List[str] = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } __lowerCamelCase : List[Any] = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } __lowerCamelCase : List[str] = """▁""" class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = AlbertTokenizer def __init__( self : List[Any] , __A : Optional[int]=None , __A : Any=None , __A : Optional[Any]=True , __A : List[Any]=True , __A : Tuple=False , __A : str="[CLS]" , __A : int="[SEP]" , __A : Optional[int]="<unk>" , __A : List[str]="[SEP]" , __A : Optional[Any]="<pad>" , __A : Union[str, Any]="[CLS]" , __A : Optional[Any]="[MASK]" , **__A : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. snake_case__ : Optional[Any] = ( AddedToken(__A , lstrip=__A , rstrip=__A , normalized=__A ) if isinstance(__A , __A ) else mask_token ) super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , ) snake_case__ : Any = do_lower_case snake_case__ : int = remove_space snake_case__ : List[Any] = keep_accents snake_case__ : str = vocab_file snake_case__ : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : str = [self.sep_token_id] snake_case__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
297
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE = "MobileNetV1Config" # Base docstring _SCREAMING_SNAKE_CASE = "google/mobilenet_v1_1.0_224" _SCREAMING_SNAKE_CASE = [1, 10_24, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE = "google/mobilenet_v1_1.0_224" _SCREAMING_SNAKE_CASE = "tabby, tabby cat" _SCREAMING_SNAKE_CASE = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' _lowerCAmelCase = {} if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = model.mobilenet_va else: _lowerCAmelCase = model _lowerCAmelCase = "MobilenetV1/Conv2d_0/" _lowerCAmelCase = backbone.conv_stem.convolution.weight _lowerCAmelCase = backbone.conv_stem.normalization.bias _lowerCAmelCase = backbone.conv_stem.normalization.weight _lowerCAmelCase = backbone.conv_stem.normalization.running_mean _lowerCAmelCase = backbone.conv_stem.normalization.running_var for i in range(13 ): _lowerCAmelCase = i + 1 _lowerCAmelCase = i * 2 _lowerCAmelCase = backbone.layer[pt_index] _lowerCAmelCase = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' _lowerCAmelCase = pointer.convolution.weight _lowerCAmelCase = pointer.normalization.bias _lowerCAmelCase = pointer.normalization.weight _lowerCAmelCase = pointer.normalization.running_mean _lowerCAmelCase = pointer.normalization.running_var _lowerCAmelCase = backbone.layer[pt_index + 1] _lowerCAmelCase = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' _lowerCAmelCase = pointer.convolution.weight _lowerCAmelCase = pointer.normalization.bias _lowerCAmelCase = pointer.normalization.weight _lowerCAmelCase = pointer.normalization.running_mean _lowerCAmelCase = pointer.normalization.running_var if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = "MobilenetV1/Logits/Conv2d_1c_1x1/" _lowerCAmelCase = model.classifier.weight _lowerCAmelCase = model.classifier.bias return tf_to_pt_map def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model _lowerCAmelCase = tf.train.list_variables(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) _lowerCAmelCase = tf.train.load_variable(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = array # Build TF to PyTorch weights loading map _lowerCAmelCase = _build_tf_to_pytorch_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue _lowerCAmelCase = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) _lowerCAmelCase = np.transpose(SCREAMING_SNAKE_CASE_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer _lowerCAmelCase = array.squeeze().transpose() else: _lowerCAmelCase = np.transpose(SCREAMING_SNAKE_CASE_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) _lowerCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) tf_weights.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) tf_weights.pop(name + "/RMSProp" , SCREAMING_SNAKE_CASE_ ) tf_weights.pop(name + "/RMSProp_1" , SCREAMING_SNAKE_CASE_ ) tf_weights.pop(name + "/ExponentialMovingAverage" , SCREAMING_SNAKE_CASE_ ) logger.info(F'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}''' ) return model def __a(SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : nn.Convad ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = features.shape[-2:] _lowerCAmelCase , _lowerCAmelCase = conv_layer.stride _lowerCAmelCase , _lowerCAmelCase = conv_layer.kernel_size if in_height % stride_height == 0: _lowerCAmelCase = max(kernel_height - stride_height , 0 ) else: _lowerCAmelCase = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _lowerCAmelCase = max(kernel_width - stride_width , 0 ) else: _lowerCAmelCase = max(kernel_width - (in_width % stride_width) , 0 ) _lowerCAmelCase = pad_along_width // 2 _lowerCAmelCase = pad_along_width - pad_left _lowerCAmelCase = pad_along_height // 2 _lowerCAmelCase = pad_along_height - pad_top _lowerCAmelCase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , "constant" , 0.0 ) class lowerCAmelCase_ ( nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1 , _lowerCAmelCase = 1 , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = True , ) -> None: super().__init__() _lowerCAmelCase = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) _lowerCAmelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _lowerCAmelCase = nn.Convad( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , kernel_size=_lowerCAmelCase , stride=_lowerCAmelCase , padding=_lowerCAmelCase , groups=_lowerCAmelCase , bias=_lowerCAmelCase , padding_mode="zeros" , ) if use_normalization: _lowerCAmelCase = nn.BatchNormad( num_features=_lowerCAmelCase , eps=config.layer_norm_eps , momentum=0.9997 , affine=_lowerCAmelCase , track_running_stats=_lowerCAmelCase , ) else: _lowerCAmelCase = None if use_activation: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCAmelCase ): _lowerCAmelCase = ACTaFN[config.hidden_act] else: _lowerCAmelCase = config.hidden_act else: _lowerCAmelCase = None def _snake_case ( self , _lowerCAmelCase ) -> torch.Tensor: if self.config.tf_padding: _lowerCAmelCase = apply_tf_padding(_lowerCAmelCase , self.convolution ) _lowerCAmelCase = self.convolution(_lowerCAmelCase ) if self.normalization is not None: _lowerCAmelCase = self.normalization(_lowerCAmelCase ) if self.activation is not None: _lowerCAmelCase = self.activation(_lowerCAmelCase ) return features class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Tuple = MobileNetVaConfig __lowerCamelCase : Any = load_tf_weights_in_mobilenet_va __lowerCamelCase : Optional[int] = "mobilenet_v1" __lowerCamelCase : Optional[Any] = "pixel_values" __lowerCamelCase : List[Any] = False def _snake_case ( self , _lowerCAmelCase ) -> None: if isinstance(_lowerCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCAmelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _SCREAMING_SNAKE_CASE = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _SCREAMING_SNAKE_CASE = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,__magic_name__ ,) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = True ) -> Tuple: super().__init__(_lowerCAmelCase ) _lowerCAmelCase = config _lowerCAmelCase = 32 _lowerCAmelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) _lowerCAmelCase = MobileNetVaConvLayer( _lowerCAmelCase , in_channels=config.num_channels , out_channels=_lowerCAmelCase , kernel_size=3 , stride=2 , ) _lowerCAmelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _lowerCAmelCase = nn.ModuleList() for i in range(13 ): _lowerCAmelCase = out_channels if strides[i] == 2 or i == 0: depth *= 2 _lowerCAmelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCAmelCase , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCAmelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCAmelCase , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , kernel_size=1 , ) ) _lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: _lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) _lowerCAmelCase = self.conv_stem(_lowerCAmelCase ) _lowerCAmelCase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _lowerCAmelCase = layer_module(_lowerCAmelCase ) if output_hidden_states: _lowerCAmelCase = all_hidden_states + (hidden_states,) _lowerCAmelCase = hidden_states if self.pooler is not None: _lowerCAmelCase = torch.flatten(self.pooler(_lowerCAmelCase ) , start_dim=1 ) else: _lowerCAmelCase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=_lowerCAmelCase , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,__magic_name__ ,) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase ) -> None: super().__init__(_lowerCAmelCase ) _lowerCAmelCase = config.num_labels _lowerCAmelCase = MobileNetVaModel(_lowerCAmelCase ) _lowerCAmelCase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _lowerCAmelCase = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCAmelCase ) _lowerCAmelCase = nn.Linear(_lowerCAmelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: _lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase = self.mobilenet_va(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase ) _lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase = self.classifier(self.dropout(_lowerCAmelCase ) ) _lowerCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase = "single_label_classification" else: _lowerCAmelCase = "multi_label_classification" if self.config.problem_type == "regression": _lowerCAmelCase = MSELoss() if self.num_labels == 1: _lowerCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowerCAmelCase = loss_fct(_lowerCAmelCase , _lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase = CrossEntropyLoss() _lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase = BCEWithLogitsLoss() _lowerCAmelCase = loss_fct(_lowerCAmelCase , _lowerCAmelCase ) if not return_dict: _lowerCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states , )
489
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class lowerCAmelCase_ : def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: pass def _snake_case ( self ) -> Dict: pass def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: _lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {"vision_model": vision_model, "text_model": text_model} _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowerCAmelCase = after_output[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1E-5 ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _snake_case ( self ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase = self.get_pretrained_model_and_inputs() _lowerCAmelCase = model_a(**_lowerCAmelCase ) _lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model_a(**_lowerCAmelCase ) _lowerCAmelCase = after_outputs[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1E-5 ) @require_tf class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = TFViTModel(_lowerCAmelCase , name="vision_model" ) _lowerCAmelCase = TFBertModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = TFViTModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): def _snake_case ( self ) -> List[Any]: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> int: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = TFDeiTModel(_lowerCAmelCase , name="vision_model" ) _lowerCAmelCase = TFRobertaModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def _snake_case ( self ) -> List[str]: _lowerCAmelCase = TFDeiTModelTester(self ) _lowerCAmelCase = TFRobertaModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): def _snake_case ( self ) -> Any: _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = TFCLIPVisionModel(_lowerCAmelCase , name="vision_model" ) _lowerCAmelCase = TFBertModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = TFCLIPVisionModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCAmelCase = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="np" ) _lowerCAmelCase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1E-3 ) )
489
1
'''simple docstring''' from __future__ import annotations lowercase__ : Dict = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowercase__ : Optional[int] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def a__ ( lowercase : list[float] ) -> list[float]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = len(lowercase ) for i in range(lowercase ): _UpperCamelCase = -1 for j in range(i + 1, lowercase ): if arr[i] < arr[j]: _UpperCamelCase = arr[j] break result.append(lowercase ) return result def a__ ( lowercase : list[float] ) -> list[float]: """simple docstring""" _UpperCamelCase = [] for i, outer in enumerate(lowercase ): _UpperCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: _UpperCamelCase = inner break result.append(lowercase ) return result def a__ ( lowercase : list[float] ) -> list[float]: """simple docstring""" _UpperCamelCase = len(lowercase ) _UpperCamelCase = [] _UpperCamelCase = [-1] * arr_size for index in reversed(range(lowercase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _UpperCamelCase = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowercase__ : Dict = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
98
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ : List[str] =imread(r'''digital_image_processing/image_data/lena_small.jpg''') A__ : Union[str, Any] =cvtColor(img, COLOR_BGR2GRAY) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def UpperCamelCase__ ( ): """simple docstring""" with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase , 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCAmelCase = canny.canny(lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def UpperCamelCase__ ( ): """simple docstring""" assert gg.gaussian_filter(lowerCAmelCase , 5 , sigma=0.9 ).all() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _lowerCAmelCase = conv.img_convolve(lowerCAmelCase , lowerCAmelCase ).astype(lowerCAmelCase ) assert res.any() def UpperCamelCase__ ( ): """simple docstring""" assert med.median_filter(lowerCAmelCase , 3 ).any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = sob.sobel_filter(lowerCAmelCase ) assert grad.any() and theta.any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = sp.make_sepia(lowerCAmelCase , 20 ) assert sepia.all() def UpperCamelCase__ ( lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" _lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCamelCase__ ( lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" _lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. _lowerCAmelCase = imread(lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = image[x_coordinate][y_coordinate] _lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) assert lbp_image.any()
207
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) a_ = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class snake_case ( _UpperCamelCase): __UpperCamelCase = 'deformable_detr' __UpperCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[Any] , a__ : Optional[int]=True , a__ : str=None , a__ : Union[str, Any]=3 , a__ : Union[str, Any]=3_00 , a__ : str=10_24 , a__ : List[Any]=6 , a__ : List[str]=10_24 , a__ : Union[str, Any]=8 , a__ : Optional[int]=6 , a__ : Union[str, Any]=10_24 , a__ : Tuple=8 , a__ : List[str]=0.0 , a__ : List[str]=True , a__ : List[Any]="relu" , a__ : Optional[int]=2_56 , a__ : Union[str, Any]=0.1 , a__ : Union[str, Any]=0.0 , a__ : Any=0.0 , a__ : Dict=0.0_2 , a__ : int=1.0 , a__ : Any=True , a__ : Optional[Any]=False , a__ : Union[str, Any]="sine" , a__ : Tuple="resnet50" , a__ : Any=True , a__ : List[str]=False , a__ : Optional[int]=4 , a__ : Optional[int]=4 , a__ : Optional[int]=4 , a__ : Union[str, Any]=False , a__ : Dict=3_00 , a__ : int=False , a__ : Dict=1 , a__ : Dict=5 , a__ : Optional[int]=2 , a__ : Union[str, Any]=1 , a__ : Any=1 , a__ : List[str]=5 , a__ : int=2 , a__ : Optional[int]=0.1 , a__ : Optional[Any]=0.2_5 , a__ : Optional[Any]=False , **a__ : Optional[int] , ) -> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _A = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(a__ , a__ ): _A = backbone_config.get("model_type" ) _A = CONFIG_MAPPING[backbone_model_type] _A = config_class.from_dict(a__ ) _A = use_timm_backbone _A = backbone_config _A = num_channels _A = num_queries _A = max_position_embeddings _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = init_xavier_std _A = encoder_layerdrop _A = auxiliary_loss _A = position_embedding_type _A = backbone _A = use_pretrained_backbone _A = dilation # deformable attributes _A = num_feature_levels _A = encoder_n_points _A = decoder_n_points _A = two_stage _A = two_stage_num_proposals _A = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _A = class_cost _A = bbox_cost _A = giou_cost # Loss coefficients _A = mask_loss_coefficient _A = dice_loss_coefficient _A = bbox_loss_coefficient _A = giou_loss_coefficient _A = eos_coefficient _A = focal_alpha _A = disable_custom_kernels super().__init__(is_encoder_decoder=a__ , **a__ ) @property def a_ ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def a_ ( self : Optional[int] ) -> int: '''simple docstring''' return self.d_model def a_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' _A = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _A = self.backbone_config.to_dict() _A = self.__class__.model_type return output
621
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"vocab_file": "spiece.model"} a_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 a_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } a_ = "▁" class snake_case ( _UpperCamelCase): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self : List[str] , a__ : Optional[int] , a__ : Union[str, Any]="</s>" , a__ : Union[str, Any]="<unk>" , a__ : str="<pad>" , a__ : Optional[int]=1_00 , a__ : List[Any]=None , a__ : Optional[Dict[str, Any]] = None , a__ : Any=True , **a__ : Optional[int] , ) -> None: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _A = [F"""<extra_id_{i}>""" for i in range(a__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _A = len(set(filter(lambda a__ : bool("extra_id" in str(a__ ) ) , a__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) _A = legacy _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a__ , unk_token=a__ , pad_token=a__ , extra_ids=a__ , additional_special_tokens=a__ , sp_model_kwargs=self.sp_model_kwargs , legacy=a__ , **a__ , ) _A = vocab_file _A = extra_ids _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) @staticmethod def a_ ( a__ : List[str] , a__ : Optional[int] , a__ : Tuple ) -> Tuple: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _A = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , a__ , ) return max_model_length @property def a_ ( self : List[Any] ) -> Dict: '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _A = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a_ ( self : Optional[Any] , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a__ )) + [1] return ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] def a_ ( self : List[str] ) -> List[str]: '''simple docstring''' return list( set(filter(lambda a__ : bool(re.search(r"<extra_id_\d+>" , a__ ) ) is not None , self.additional_special_tokens ) ) ) def a_ ( self : str ) -> List[Any]: '''simple docstring''' return [self._convert_token_to_id(a__ ) for token in self.get_sentinel_tokens()] def a_ ( self : List[Any] , a__ : List[int] ) -> List[int]: '''simple docstring''' if len(a__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def a_ ( self : int , a__ : List[int] , a__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _A = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a_ ( self : Union[str, Any] , a__ : List[int] , a__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _A = self._add_eos_if_not_present(a__ ) if token_ids_a is None: return token_ids_a else: _A = self._add_eos_if_not_present(a__ ) return token_ids_a + token_ids_a def __getstate__( self : Dict ) -> Union[str, Any]: '''simple docstring''' _A = self.__dict__.copy() _A = None return state def __setstate__( self : int , a__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _A = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : int , a__ : "TextInput" , **a__ : List[str] ) -> List[str]: '''simple docstring''' if not self.legacy: _A = SPIECE_UNDERLINE + text.replace(a__ , " " ) return super().tokenize(a__ , **a__ ) def a_ ( self : str , a__ : Dict , **a__ : Optional[int] ) -> Any: '''simple docstring''' if not self.legacy: _A = text.startswith(a__ ) if is_first: _A = text[1:] _A = self.sp_model.encode(a__ , out_type=a__ ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(a__ ): _A = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def a_ ( self : int , a__ : List[Any] ) -> List[str]: '''simple docstring''' if token.startswith("<extra_id_" ): _A = re.match(r"<extra_id_(\d+)>" , a__ ) _A = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(a__ ) def a_ ( self : Dict , a__ : Union[str, Any] ) -> Any: '''simple docstring''' if index < self.sp_model.get_piece_size(): _A = self.sp_model.IdToPiece(a__ ) else: _A = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def a_ ( self : Optional[int] , a__ : Tuple ) -> List[str]: '''simple docstring''' _A = [] _A = "" _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token _A = True _A = [] else: current_sub_tokens.append(a__ ) _A = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def a_ ( self : Dict , a__ : str , a__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , "wb" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
621
1